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Abstract
Bilevel optimization is characterized by a two-
level optimization structure, where the upper-
level problem is constrained by optimal lower-
level solutions, and such structures are preva-
lent in real-world problems. The constraint by
optimal lower-level solutions poses significant
challenges, especially in noisy, constrained, and
derivative-free settings, as repeating lower-level
optimizations is sample inefficient and predicted
lower-level solutions may be suboptimal. We
present BILevel Bayesian Optimization (BILBO),
a novel Bayesian optimization algorithm for gen-
eral bilevel problems with blackbox functions,
which optimizes both upper- and lower-level prob-
lems simultaneously, without the repeated lower-
level optimization required by existing methods.
BILBO samples from confidence-bounds based
trusted sets, which bounds the suboptimality on
the lower level. Moreover, BILBO selects only
one function query per iteration, where the func-
tion query selection strategy incorporates the un-
certainty of estimated lower-level solutions and
includes a conditional reassignment of the query
to encourage exploration of the lower-level objec-
tive. The performance of BILBO is theoretically
guaranteed with a sublinear regret bound for com-
monly used kernels and is empirically evaluated
on several synthetic and real-world problems.

1. Introduction
Many real-world problems involve hierarchical decision-
making with two levels of optimization. Decisions made at
the upper level affect lower-level optimization, while opti-
mal lower-level solutions constrain decisions at the upper
level. Bilevel optimization effectively models such hierar-
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Figure 1: Example of bilevel optimization with upper-level
variable x and lower-level variable z. The bilevel solution
(blue cross) is constrained by lower-level (LL) solutions
(yellow line) and differs from the non-bilevel solution (red
cross).

chical structures, enabling analysis of these interdependent
problems. A simple example of bilevel optimization is in
Figure 1. Applications of bilevel optimization range from
machine learning (e.g., hyperparameter optimization, meta-
learning) to economic problems (e.g., pricing strategies, toll
setting) (Beck & Schmidt, 2021). In energy management,
energy providers determine optimal pricing strategies for
electricity (upper level) while consumers optimize their elec-
tricity demands based on the pricing (lower level). Similarly,
in investment, brokers set fees on different asset classes to
maximize their revenues (upper level), while investors op-
timize their portfolios for expected returns and risk (lower
level). Bilevel optimization has been applied in both cases
(Shu et al., 2018; Leal et al., 2020), typically using a nested
framework with linear solvers at the lower level. This ap-
proach may limit practical effectiveness but it is due to the
inherent complexity of bilevel optimization. Even with only
linear constraints and objective functions, the set of feasible
solutions can be non-convex and non-continuous (Klein-
ert et al., 2021). Lower-level solutions that are ϵ-feasible
w.r.t. non-linear constraints may also lead to a solution arbi-
trarily far from the bilevel solution (Beck et al., 2023).

Classical approaches (Bard & Falk, 1982; Bard & Moore,
1990) rely on simplifying linear or convex assumptions.
More recently, meta-modeling methods employ surrogate
models, such as BLEAQ (Sinha et al., 2013) which uses
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quadratic approximations to map upper-level points to lower-
level solutions. We focus on meta-modeling methods over
gradient-based ones to tackle general bilevel problems
which may contain noisy observations, derivative-free func-
tions at both levels, constraints and discrete variables.

Bayesian optimization (BO), a popular meta-modeling
method, has been employed in a nested framework for
bilevel optimization (Kieffer et al., 2017). The nested frame-
work optimizes the upper level via BO while separately
optimizing the lower level at each upper-level query point.
However, these repeated lower-level optimizations are sam-
ple inefficient and often assume the presence of gradients.

Contributions. We propose BILevel Bayesian Optimization
(BILBO), a novel BO algorithm for general bilevel problems
with blackbox functions and constraints, where both levels
are optimized simultaneously unlike existing nested bilevel
BO frameworks. This adds new complexities, such as the
potential lower-level suboptimality of the query and the
uncertainty of estimated lower-level solutions. To tackle
these challenges, we introduce key components of BILBO:

• Confidence-bounds based trusted sets to reduce search
space with theoretical guarantees. In particular, sam-
pling our trusted set of lower-level solutions bounds
lower-level objective regret, effectively bounding
lower-level suboptimality for upper-level optimization.

• Function query strategy that includes the uncertainty of
the estimated lower-level solution and a conditional re-
assignment of the query point for more effective lower-
level objective evaluation. This balances exploiting
estimated lower-level solutions with exploring to refine
these estimates. We show that our strategy leads to an
instantaneous regret bound on the query.

We further show that BILBO has sublinear cumulative
and simple regret bounds for commonly used kernels, and
demonstrate its effectiveness empirically on several syn-
thetic and real-world problems. The code is provided in
https://github.com/chewwt/bilbo/, and a no-
tation table is in Appendix A.

2. Related Work
Bilevel Bayesian optimization. Most existing bilevel
Bayesian optimization methods, as mentioned in the in-
troduction, apply BO only to the upper-level problem and
rely on repeated lower-level optimizations at each upper-
level query (Kieffer et al., 2017; Islam et al., 2018; Wang
et al., 2021). Dogan & Prestwich (2023) introduced an ac-
quisition function that conditions on lower-level solutions
during upper-level optimization for information flow be-
tween both levels. However, these nested methods require

gradient information to estimate or refine lower-level so-
lutions, making them unsuitable for derivative-free bilevel
problems. Fu et al. (2024) provided theoretical guarantees
for a nested bilevel framework with stochastic gradient de-
scent at the lower level and BO at the upper level. The
reliance on lower-level gradients means the analysis does
not extend to general derivative-free bilevel problems as
well. In contrast, our proposed method is capable of han-
dling blackbox, derivative-free bilevel problems, and our
theoretical analysis is applicable to these settings.

An exception to the nested framework is a very recent paral-
lel work by Ekmekcioglu et al. (2024) on arXiv. However, it
has no theoretical guarantees and cannot handle constraints,
unlike our proposed algorithm.

Constrained Bayesian optimization. Several constrained
BO algorithms have been proposed (Gardner et al., 2014;
Gelbart et al., 2014; Hernández-Lobato et al., 2016; Eriks-
son & Poloczek, 2021; Takeno et al., 2022). In particular,
Xu et al. (2023) and Nguyen et al. (2023) both introduced
confidence-bound based optimistic estimations of the feasi-
ble set, with the former providing an infeasibility declaration
scheme and the latter including a function query strategy
for decoupled settings. These feasible set estimations guide
sampling toward probable feasible points, improving sample
efficiency. Compared to constrained optimization, bilevel op-
timization presents additional challenges due to the need to
optimize a separate lower-level problem, where the optimal
solutions are unknown and often estimated suboptimally.

Comparison to other optimization problems. While some
optimization problems, such as robust optimization (Bo-
gunovic et al., 2018; Kirschner et al., 2020) and compos-
ite objectives optimization (Astudillo & Frazier, 2019; Li
& Scarlett, 2024), respectively involve an additional ran-
dom variable and composite objective function, they re-
main single-level problems. In contrast, bilevel optimiza-
tion involves a two-level hierarchical structure, where the
upper-level is constrained by lower-level solutions, making
it fundamentally different from these other settings.

3. Preliminaries
Bilevel optimization. Let F and f , respectively be the
upper- and lower-level black-box objective function, where
F, f : X × Z → R. Let Cup, Clo, respectively be the set of
upper- and lower-level black-box constraints where c : X ×
Z → R, ∀c ∈ Cup∪Clo. The upper-level variable is denoted
x ∈ X and lower-level variable as z ∈ Z , where X ⊂ RdX

and Z ⊂ RdZ are assumed to be finite. We consider a
general bilevel optimization problem with constraints as

max
x∈X ,z∈P(x)

F (x, z) (3.1)

s.t. C(x, z) ≥ 0, ∀C ∈ Cup, (3.2)
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where P(x) is the set of optimal lower-level solutions at the
upper-level variable x,

P(x) ≜ {argmaxz∈Zf(x, z) | c(x, z) ≥ 0, ∀c ∈ Clo}.
(3.3)

Let (x∗, z∗) denote the optimal bilevel solution, and
(x, z∗(x)) denote the optimal lower-level solution w.r.t. x,
where z∗ ≜ z∗(x∗). We define the set of functions
F ≜ {F, f} ∪ Cup ∪ Clo. At each step t ≥ 1, we se-
lect a query point (xt, zt) and obtain noisy observations
yh(xt, zt) ≜ h(xt, zt) + ϵ where ϵ ∼ N (0, σ2

n), ∀h ∈ F .
In a decoupled setting, a function query ht ∈ F is selected
and only yht

(xt, zt) is observed. Observations are accu-
mulated into Dht,t ≜ Dht,t−1 ∪ {yht(xt, zt)} and Dh,0

is the set of initial observations for function h. (xt, zt) is
commonly used to estimate the optimal solution (x∗, z∗).

Gaussian process. Each function h ∈ F is modelled with a
Gaussian process (GP). Let xz be a concatenation of x and
z. A GPh(mh(xz), kh(xz,xz

′)) is specified by a mean
function mh(xz) ≜ E[h(xz)] and covariance function
kh(xz,xz

′) ≜ E[(h(xz)−mh(xz))(h(xz
′)−mh(xz

′))]
(Williams & Rasmussen, 2006). At iteration t, given query
inputs xz:t−1 and noisy observations yh,t−1, the predictive
distribution for h is Gaussian: h(xz) | xz:t−1,yh,t−1 ∼
N (µh,t−1(xz), σ

2
h,t−1(xz)). More Gaussian process de-

tails can be found in Appendix B.

Bayesian optimization. Given a prior distribution P (h) and
likelihood function P (Dht,t|h), the posterior distribution
P (h|Dht,t) can be calculated via Bayes’ theorem. The prior
distribution is often represented by a GP and the likelihood
function is defined by the choice of GP kernel and hyper-
parameters. The posterior distribution is also a surrogate
model for h. The point which maximizes an acquisition
function ah(xz) is selected as the next point to evaluate
function h at (Brochu et al., 2010; Frazier, 2018; Garnett,
2023). Popular acquisition strategies include information-
theoretic ones (Hennig & Schuler, 2012; Hernández-Lobato
et al., 2014; Wang & Jegelka, 2017) and upper confidence
bounds (Srinivas et al., 2010).

Regrets. Regret is defined as the loss in reward from not se-
lecting the optimal point. Instantaneous regret rt measures
this loss at time t, while cumulative regret RT ≜

∑T
t=1 rt

is the sum of instantaneous regrets over T rounds. An algo-
rithm is no-regret if limT→∞ RT /T = 0 where cumulative
regret is sublinear and convergence to the optimal point is
guaranteed with a large enough T .

We define the instantaneous bilevel regret as

rt ≜ max
h∈F

rh(xt, zt), (3.4)

where F ≜ {F, f} ∪ Cup ∪ Clo. The upper- and lower-level

instantaneous objective regrets are defined, respectively, as

rF (xt, zt) ≜ max(0, F (x∗, z∗)− F (xt, zt)), (3.5)

rf (xt, zt) ≜ f(xt, z
∗(xt))− f(xt, zt), (3.6)

and the instantaneous constraint regrets as

∀c ∈ Cup ∪ Clo, rc(xt, zt) ≜ max(0,−c(xt, zt)). (3.7)

Note that rc is usually known as constraint violation and we
have incorporated them into the bilevel regret for a more
representative estimate of the optimality of a point. An algo-
rithm that is no-regret will have all objective function regrets
and constraint violations converge to 0. If the constraints
and objective functions have different ranges, normalization
can ensure a fairer representation of the overall regret.

4. Bilevel Bayesian optimization
Our method, called BILevel Bayesian Optimization
(BILBO), optimizes both upper- and lower-level simulta-
neously, via sampling from trusted sets and conditional
reassignment to explore the lower-level objective. We avoid
the repeated lower-level optimization found in most exist-
ing bilevel BO literature, as points in our trusted sets are
sufficiently good for upper-level optimization directly. This
is supported theoretically as we show that points in the
trusted sets have upper-bounded instantaneous regrets on
constraints and the lower-level objective. We also introduce
a function query strategy based on estimated regrets, where
we incorporate the uncertainty of estimated lower-level so-
lutions and a conditional reassignment for exploration of
the lower-level objective, to address challenges posed by
the optimal lower-level solutions constraint. This results
in an instantaneous regret bound on the query point, and
leads to a sublinear cumulative and simple regret bound for
commonly used kernels. The key components are illustrated
in Figure 2 and the pseudocode is in Algorithm 1.

The trusted sets are defined in Definitions 4.3 and 4.5, and
Lemmas 4.4 and 4.6 provide instantaneous regret bounds on
points in the trusted sets. Definition 4.7 defines the function
query selection and Lemma 4.8 presents a instantaneous
regret bound on the query. The cumulative regret bound is
in Theorem 4.9 and the simple regret bound in Lemma 4.10.

First, we define the confidence bounds on which we use
to build the trusted sets. Functions are bounded by the
confidence bounds with high probability by Corollary 4.2.
Definition 4.1 (Confidence bounds). For a function h ∈ F
modelled by a Gaussian process (GP), ∀x ∈ X , z ∈ Z , and
t ≥ 1, let the upper and lower confidence bounds of h(x, z)
be denoted, respectively, as

uh,t(x, z) ≜ µh,t−1(x, z) + β
1/2
t σh,t−1(x, z), (4.1)

lh,t(x, z) ≜ µh,t−1(x, z)− β
1/2
t σh,t−1(x, z), (4.2)
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(a) Query point selection (b) Conditional reassignment

Figure 2: Key components of BILBO, where pink shaded ar-
eas represent trusted sets S+t ∩P+

t . (a) Query point selection
within trusted sets following Equation 4.6. (b) Conditional
reassignment following Equation 4.8, where lower-level
query zt may be reassigned to estimated lower-level solu-
tion z̄t(xt) if lower-level objective is selected for query.

where µh,t−1(x, z) and σh,t−1(x, z) are the GP’s poste-
rior mean and standard deviation at (x, z), and βt ≜
2 log(|F||X ||Z|t2π2/(6δ)).

Corollary 4.2. For some small δ > 0, with probability at
least 1− δ, ∀x ∈ X , z ∈ Z, h ∈ F , and t ≥ 1,

h(x, z) ∈ [lh,t(x, z), uh,t(x, z)].

This is derived from Lemma 5.1 of Srinivas et al. (2010) by
applying union bound over h ∈ F .

Next, we introduce a trusted set of feasible solutions by
approximating the unknown feasible regions using the upper
confidence bound and show that points in this trusted set
have constraint regret bounds.

Definition 4.3 (Trusted set of feasible solutions). Let the
trusted set of feasible solutions be defined as

S+t ≜ {(x, z) ∈ X × Z | uc,t(x, z) ≥ 0 ∀c ∈ Cup ∪ Clo} ,
(4.3)

where Cup ∪ Clo is the set of all constraints, and the upper
confidence bound uc,t is defined in Definition 4.1. For
convenience, let S+t (x) ≜ {z | (x, z) ∈ S+t }.
Lemma 4.4. Let δ ∈ (0, 1), with probability at least 1− δ,
∀(x, z) ∈ S+t , c ∈ Cup∪Clo, the constraint regrets are upper
bounded,

rc(x, z) ≤ 2β
1/2
t σc,t−1(x, z).

The proof is provided in Appendix C.1. Sampling from
S+t ensures that the instantaneous constraint regret of the
chosen point is upper bounded, and highly infeasible points
are outside the trusted set. An empty trusted feasible set
would imply an infeasible bilevel problem, and our algo-
rithm would make an infeasibility declaration.

Algorithm 1 BILBO

Require: X ,Z, {Dh,0}h∈F
1: Update GP posterior beliefs: {(µh,0, σh,0)}h∈F
2: Update trusted sets S+t , P+

t // Defs. 4.3 and 4.5
3: for t← 1 to T do
4: if S+t = ∅ then
5: Declare infeasibility
6: end if
7: xt, zt ← argmax(x,z)∈S+

t ∩P+
t
uF,t(x, z) // Eq. 4.6

8: ht ← argmaxh∈F r̄h,t(xt, zt) // Def. 4.7
9: if ht = f then

10: z̄t ← argmaxz∈S+
lo,t(xt)

uf,t(xt, z) // Eq. 4.5
11: if σf,t−1(xt, z̄t) > σf,t−1(xt, zt) then
12: zt ← z̄t // Eq. 4.8
13: end if
14: end if
15: Dht,t ← Dht,t−1 ∪ {yht

(xt, zt)}
16: Update GP posterior belief: µht,t, σht,t

17: Update trusted sets S+t ,P+
t // Defs. 4.3 and 4.5

18: end for

Note the trusted feasible set extends the constraint regret
bounds of constrained BO methods in Xu et al. (2023) and
Nguyen et al. (2023) to all points in the trusted set compared
to only on the query point, so as to facilitate combination
with the trusted set of optimal lower-level solutions for
bilevel optimization with constraints.

4.1. Trusted set of optimal lower-level solutions

We define another trusted set to approximate the unknown
set of optimal lower-level solutions, using confidence
bounds and estimated optimal lower-level solutions. Points
in this trusted set have lower-level objective regret bounds,
allowing us to quantify possible lower-level suboptimality.

Definition 4.5 (Trusted set of optimal lower-level solutions).
Let the trusted set of optimal lower-level solutions be

P+
t ≜ {(x, z) ∈ S+lo,t | uf,t(x, z) ≥ lf,t(x, z̄t(x)}, (4.4)

where S+lo,t ≜ {(x, z) ∈ X × Z | uc,t(x, z) ≥ 0 ∀c ∈
Clo} is the trusted set of feasible solutions w.r.t. lower-level
constraints, and

z̄t(x) ≜ arg max
z∈S+

lo,t(x)
uf,t(x, z), (4.5)

is the estimated optimal lower-level solution at x.

Lemma 4.6. Let δ ∈ (0, 1), with probability at least 1− δ,
∀(x, z) ∈ P+

t , the lower-level objective regret is upper
bounded,

rf,t(x, z) ≤1z̸=z̄t(x)2β
1/2
t σf,t−1(x, z̄t(x))

+ 2β
1/2
t σf,t−1(x, z).
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The proof is given in Appendix C.2. Sampling from P+
t

guarantees an upper-bounded lower-level objective regret,
and points outside of the trusted set P+

t are highly unlikely
to be lower-level optimal.

The trusted set P+
t allows multiple lower-level solutions to

correspond to an upper-level variable, effectively managing
multiple lower-level solutions and noisy observations. More-
over, we can handle infeasible lower-level problems as the
trusted set P+

t filters out highly probable infeasible points
via the set S+lo,t, which can eliminate upper-level points that
are infeasible at the lower-level, ensuring only probable
feasible solutions are considered during optimization.

ϵ-optimal lower-level solutions. In some scenarios, it
may be desirable to consider ϵ-optimal lower-level so-
lutions feasible, as it is common for real-world agents
to operate suboptimally. This allows us to account for
practical limitations where perfect lower-level optimiza-
tion may not be achievable, for example, due to noise
or the cost of querying. In this case, we can relax
the condition in Definition 4.5 to allow ϵ-optimal lower-
level solutions to remain in the trusted set by defining
Pϵ
t ≜ {(x, z) | uf,t(x, z) + ϵ ≥ lf,t(x, z̄t(x)}, and ex-

tending the regret bound in Lemma 4.6 to rf,t(x, z) ≤
ϵ+ 1z ̸=z̄t(x)2β

1/2
t σf,t−1(x, z̄t(x)) + 2β

1/2
t σf,t−1(x, z).

4.2. Query point selection

We reduce the search space to S+t ∩ P+
t . Points in this

search space have upper-bounded instantaneous regrets on
constraints and lower-level objective with high probabil-
ity, according to Lemmas 4.4 and 4.6. The query point at
time t is sampled from the reduced search space and cho-
sen w.r.t. the upper confidence bound of the upper-level
objective uF,t, as shown in Figure 2a and defined as,

xt, zt ≜ argmax(x,z)∈S+
t ∩P+

t
uF,t(x, z). (4.6)

4.3. Function query

In the decoupled case, a function query ht is selected at
each timestep t for evaluation. We follow the function query
selection in Definition 4.7, and Lemma 4.8 provides an
instantaneous regret bound on the query (xt, zt).
Definition 4.7 (Function query). Let the function query ht

selected at each timestep t be

ht ≜ argmax
h∈F

r̄h,t(xt, zt), (4.7)

where F ≜ {F, f} ∪ Cup ∪ Clo. The estimated regrets are
defined using confidence intervals and z̄t from Equation 4.5,

r̄h′,t(xt, zt) ≜ 2β
1/2
t σh′,t−1(xt, zt), ∀h′ ∈ F/{f},

r̄f,t(xt, zt) ≜ 1z̸=z̄t(xt)2β
1/2
t σf,t−1(xt, z̄t(xt))

+ 2β
1/2
t σf,t−1(xt, zt).

The estimated lower-level objective regret r̄f,t(xt, zt) has
an additional term, σf,t−1(xt, z̄t(xt)), compared to other
regret components. This additional term increases r̄f,t when
the estimated lower-level solution is highly uncertain, cor-
responding to the intuitive need for more frequent queries
of the lower-level objective, especially since most existing
bilevel BO methods rely on global optimization of the lower
level.

Conditional reassignment of zt for lower-level objective
query. When the lower-level objective function f is selected
for query, we want to reduce lower-level objective regret
effectively. Thus, as in Figure 2b, the lower-level variable to
query, zt, has to be reassigned on the following condition,

If ht = f and σf,t−1(xt, z̄t(xt)) ≥ σf,t−1(xt, zt),

zt ← z̄t(xt). (4.8)

Without reassignment, f will only be queried at (xt, zt) and
the term σf,t−1(xt, z̄t(xt)) would remain large even after
repeated queries to f . This reassignment encourages explo-
ration of the lower-level objective, replacing the repeated
lower-level optimization required by existing methods.

Lemma 4.8. Let δ ∈ (0, 1), with probability at least 1− δ,
following the function query selection in Definition 4.7 and
reassignment of query point in Equation 4.8, the instanta-
neous regret for the query point (xt, zt) at time t ≥ 1 is
upper bounded by,

rt ≤ 4β
1/2
t max

h∈F
σh,t−1(xt, zt).

The proof is in Appendix C.3. By Lemma C.4, we also see
maxh∈F r̄h,t(xt, zt) ≥ rt. Thus, maxh∈F r̄h,t(xt, zt) is
the upper regret bound at query point (xt, zt), where a large
estimated regret r̄h,t(xt, zt) suggests that function h affects
rt significantly. Since r̄h,t comprises of σh,t−1, selecting
the argmaxh∈F r̄h,t in Definition 4.7 can also be seen as
selecting the most uncertain function at (xt, zt) to query.

4.4. Regret bound

The cumulative regret bound of Algorithm 1 is shown in
Theorem 4.9 and proven in Appendix C.4 using Lemma 4.8.

Theorem 4.9. Let δ ∈ (0, 1) and βt ≜
2 log(|F||X ||Z|t2π2/6δ). With probability of at least 1− δ,
Algorithm 1 has a cumulative regret bound of

RT ≤
√
4T |F|βT max

h∈F
Chγh,T ,

where Ch ≜ 8/ log(1 + σ−2
h ), and γh,T is the maxi-

mum information gain from noisy observations of h at
(xt, zt), ∀t ∈ [T ].

The regret bound is related to the maximum information
gain across all functions in F . Our regret bound has a larger
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constant than the regret bound for constrained Bayesian opti-
mization in Nguyen et al. (2023), as the lower-level objective
regret has a larger upper bound than constraint regret. This
highlights the increased difficulties of optimizing bilevel
problems, where suboptimal lower-level solutions can hin-
der upper-level optimization, making bilevel optimization
more challenging than standard constrained optimization.

The cumulative regret bound of BILBO is sublinear as γh,T
is sublinear for common kernels including Squared Expo-
nential and Matérn kernels (Srinivas et al., 2010). The
sublinear cumulative regret guarantees convergence to the
optimal solution as RT /T → 0 as T →∞.

Lemma 4.10 gives a simple regret bound for the estimator,

x̂T , ẑT ≜ arg min
(xt,zt)∈{(xt′ ,zt′ )}t′∈[T ]

max
h∈F

r̄h,t(xt, zt).

(4.9)

Lemma 4.10. Let δ ∈ (0, 1), with probability at least 1− δ,
T ≥ 1, and βT ≜ 2 log(|F||X ||Z|T 2π2/6δ), the estimator
(x̂T , ẑT ), defined in Equation 4.9, has a simple regret bound
of

rT ≤
√
4|F|βT max

h∈F
Chγh,T /T .

This follows as the simple regret of (x̂T , ẑT ) is upper
bounded by the average regret bound in Lemma 4.8 across
timesteps. The detailed proof is in Appendix C.5.

5. Experiments
We evaluate the performance of BILBO on 4 synthetic and 2
real-world problems. We introduce 2 baselines for compari-
son: “TrustedRand” and “Nested”. TrustedRand randomly
samples query points from trusted sets to assess the trusted
set’s contribution to the overall performance of BILBO.
Nested optimizes the upper- and lower-level problems sep-
arately and serves as a baseline for nested BO approaches
like in Kieffer et al. (2017), approximating lower-level gra-
dients. More details on TrustedRand and Nested are in
Appendix D.1. Note Nested cannot handle constraints and
is not compared in experiments with constraints (SMD12
and Chemical). The very recent parallel work by Ekmek-
cioglu et al. (2024) is not compared as code is not provided.

Algorithms are implemented using GpyTorch (Gardner et al.,
2018). All experiments, except Nested, are initialized with
3 observations on each function. Nested requires more ini-
tial observations of lower-level functions as the upper-level
objective is only evaluated at the estimated lower-level solu-
tion. We allow for this to enable comparisons, which also
highlights the sample inefficiency of nested methods. All
observations are noisy with σn = 0.01, and outputs are
normalized to have mean 0 and standard deviation 1. We

discretize the search space using a uniformly-spaced grid to
facilitate representation of trusted sets. BILBO queries only
one function per iteration, while TrustedRand queries all
function at each iteration. For comparison, the estimator is
chosen as argmax(x,z)∈S+

t ∩P+
t
µF,t(x, z) for BILBO and

TrustedRand, and argmaxx∈X µF,t(x) for Nested. Addi-
tional implementation details are in Appendix D.2.

Results are averaged over 5 runs and performance is com-
pared by examining the instantaneous regret against query
count with 95% confidence intervals. The instantaneous
regret in this section is calculated as the sum of each func-
tion’s instantaneous regret (

∑
h∈F rh,t) to provide intuitive

comparison across different methods. Initial observations
are included in the number of queries, indicated by a small
gap in the regret plots before estimations begin.

5.1. Synthetic problems

The synthetic problems were selected to cover a variety
of scenarios, including conflicting interactions, convex or
multimodal functions, and active constraints.

BraninHoo+GoldsteinPrice has the Branin-Hoo function
as upper-level objective F and the Goldstein-Price function
as the lower-level objective f (Picheny et al., 2013). Both
functions are non-convex and multimodal. The dimensions
dX and dZ are both 1, which facilitates visualization of the
models and queries. Both dimensions were discretized into
100 points. The Branin-Hoo function has 3 optimal points,
but there is only 1 optimal bilevel solution when constrained
by lower-level Goldstein-Price optimal solutions.

BILBO outperforms the other two methods by a substantial
margin, as seen in Figure 4a, where it converges to the opti-
mal bilevel solution within 150 queries. Nested and Truste-
dRand converge equally slowly. For Nested, the predicted
lower-level solutions may be suboptimal because the lower-
level solver cannot handle multimodal functions and noisy
observations effectively. For TrustedRand, random queries
might have led to uninformative points being sampled. The
challenging multimodal characteristic of the functions also
means that sampling in informative areas is integral for this
problem, which BILBO successfully manages to do.

Figures 3a and 3b show the upper- and lower-level objective
function respectively, with optimal lower-level solutions
(yellow dots), and Figures 3c to 3f show BILBO’s inner
workings. BILBO converged to the optimal solution, and the
surrogate models effectively captured the overall landscape
of both functions in Figures 3c and 3d, where predicted
lower-level solutions (yellow crosses) are close to optimal
lower-level solutions, especially in regions where upper-
level objective value is high. Queries selected over iterations
from the upper- and lower-level objective functions are in
Figures 3e and 3f respectively, with darker colors indicating

6
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(a) F (b) f (c) µF,T (d) µf,T (e) F queries (f) f queries

Figure 3: BraninHoo+GoldsteinPrice experiment details. LL refers to lower-level. (a) Upper-level objective, Branin-Hoo.
(b) Lower-level objective, Goldstein-Price. (c) BILBO’s upper-level estimate. (d) BILBO’s lower-level estimate. (e-f)
BILBO’s iterative queries.

(a) BraninHoo+GoldsteinPrice (b) SMD2 (c) SMD6 (d) SMD12

Figure 4: Instantaneous regrets (log-scale) over number of queries, averaged over 5 runs, for synthetic experiments.

samples from earlier iterations, and they mostly clustered
around two probable optimal solutions. BILBO sampled the
objective functions in the top-left region until it ascertained
the absence of optimal solutions and converged on the actual
optimal solution, demonstrating its effectiveness.

SMD2, SMD6, and SMD12 are adapted from the SMD
suite of test problems for bilevel optimization (Sinha et al.,
2014). Details of implementation are in Appendix D.3. The
input dimension of the test problems is set to 5, with dX
being 2 and dZ being 3. The difficulty increases in the order
of SMD2, SMD6, SMD12. SMD2 has convex functions and
conflicting interactions, where improving the lower-level
estimate worsens the upper-level objective value. This re-
quires the algorithm to predict lower-level optimal solutions
accurately to obtain the optimal bilevel solution. SMD6 also
has convex functions and conflicting interactions, but with
multiple lower-level optimal solutions at each upper-level
point (i.e., a convex valley). An algorithm must concurrently
estimate multiple lower-level optimal solutions and identify
the point that optimizes the upper-level objective. Finally,
SMD12 is the most challenging problem from the SMD
suite, with both levels having 3 active constraints, where
the optimal solution is on the boundary of the constraints.
There are also multiple optimal solutions at the lower level.

Results of the SMD experiments are shown in Figures 4b
to 4d. For SMD2, BILBO outperforms both TrustedRand
and Nested. While TrustedRand’s regret decreased quickly

at the start, its rate of decrease diminishes over time, likely
because random queries are initially informative but become
less effective as the process continues. For SMD6, BILBO
has the smallest regret after around 250 steps. Nested is
unable to handle multiple lower-level optimal solutions, as
it predicts only one lower-level solution for each upper-level
point. In comparison, the trusted sets allow multiple optimal
lower-level estimates for both BILBO and TrustedRand. For
SMD12, BILBO converges faster than TrustedRand. With
8 functions in the SMD12 problem, the decoupled setting
becomes more crucial for sample efficiency. The faster
convergence of BILBO demonstrates the effectiveness of
our function query strategy in selecting more informative
functions to query. The presence of active constraints did
not appear to pose any difficulties for BILBO as well.

5.2. Real-world problems

Energy. We simulated a bilevel energy market problem,
where energy providers bid to supply an amount of electric-
ity at the upper level to maximize profits over three time
periods. At the lower level, they optimize their operations,
considering costs, demand responses to prices, and their
ability to meet changing demands. There are 2 upper-level
variables: price and quantity of electricity to bid, and 2
lower-level variables: the ramp limit for one power plant
and the maximum power output at each period for another
power plant. Lower-level variables affect overall optimal

7
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(a) F (x, z∗(x)) (b) f(x∗, z) (c) µF,T (x, z̄T (x)) (d) µf,T (x
∗, z) (e) Energy experiment (f) Chemical experiment

Figure 5: Real-world experiments. (a-b) Functions from energy experiment and (c-d) BILBO outputs, with optimal solution
(red dot) and predicted solution (blue cross). (e-f) Regret plots in log-scale for energy and chemical experiments respectively.

dispatch of electricity and the dispatching of three power
plants was simulated using PyPSA (Brown et al., 2018). We
formulated the lower-level objective as a function of simula-
tion outputs, to seek the lowest cost of electricity generation
while incorporating penalties to reduce wear and tear or
other auxiliary concerns. More details in Appendix D.4.

Figure 5e shows BILBO outperforms the other methods,
with its regret decreasing the fastest. Refer to Figures 5c
and 5d for surrogate models learned after one run of BILBO.
Figures 5a and 5c, respectively, show the upper-level objec-
tive F at optimal lower-level solutions and the estimated
upper-level objective µF,T at estimated lower-level solu-
tions. µF,T approximates F well, especially at regions with
high F values, and correctly predicted the optimal bilevel
solution. Figures 5b and 5d, respectively, show the lower-
level objective f and the estimated lower-level objective
µf,T at the optimal upper-level variable. At this upper-level
variable, µf,T captures the general trend of f , where optimal
points are on the right. However, the optimal lower-level
solution is at a boundary with high discontinuity. The surro-
gate model was unable to model this large step and predicted
a suboptimal lower-level solution, resulting in an empirical
asymptotic regret bound in Figure 5e, compounded by noisy
observations. This may be mitigated by adding a constraint
function to represent the discontinuity in the lower-level ob-
jective, as BILBO has shown the capability to handle active
constraints effectively in previous synthetic experiments.

Chemical. Chemical processes in industries such as phar-
maceuticals, petrochemicals, and food production often in-
volve multiple stages, each requiring parameter optimiza-
tion. Bilevel optimization simplifies this by dividing the
overall process into smaller, more manageable problems,
while still accounting for the interactions between different
stages. We used COCO simulator to simulate carbonylation
of Di-Methyl Ether (DME) to Methyl Acetate, adapted from
the flowsheet provided by ChemSep. The upper-level prob-
lem focuses on maximizing the yield of Methyl Acetate at
99.9% purity through a distillation column, which takes in
a reaction mixture comprising Methyl Acetate, unreacted
DME, and by-products. These are outputs from the lower-
level optimization, which involves carbonylation of DME

to produce Methyl Acetate in a reactor. Additionally, an
upper-level constraint is included to ensure a suitable tem-
perature range for chemicals to be in their correct states.
There is 1 upper-level variable: the number of levels in the
distillation column, and 3 lower-level variables: temperature
of the reactor, number of heating tubes, and the diameter of
heating tubes. More details are in Appendix D.5. Results
are in Figure 5f where BILBO outperforms TrustedRand,
highlighting the potential efficiency and effectiveness of
BILBO in optimizing complex industrial operations.

Additional discussions on the computational complexity and
time efficiency of BILBO can be found in Appendix E.

6. Future Work
We have shown theoretically and empirically that BILBO
is a regret-bounded, sample efficient algorithm for noisy,
constrained, and derivative-free bilevel optimization. A key
direction for future work is improving scalability to high-
dimensional spaces, which is a common challenge in BO.

We currently model upper-level objective F over X ×Z , but
this can be memory inefficient as many lower-level variables
are suboptimal and irrelevant. A more efficient approach
could involve directly modeling F (x, z∗(x)), reducing the
dimension of the surrogate model from dX × dZ to dX .
This poses another challenge: incorporating the uncertainty
associated with the optimality of the lower-level solution
into the uncertainty of the upper-level objective value.

Adaptive discretization (Shekhar & Javidi, 2018) may also
reduce computational complexity by reducing the effective
dimension of the explored space. Discretization strategies
could be integrated with trusted sets, for example concentrat-
ing the discretizations within the trusted sets. Approximate
surrogate models (Calandriello et al., 2019) is another pos-
sible direction for scalability while preserving confidence
bound estimates. The theoretical work presented in this
paper could be extended to approximate surrogate models.

The representation of trusted sets will need to scale effec-
tively to higher dimensions as well. Possible approaches
could be via sampling strategies like Latin Hypercube Sam-
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pling (McKay et al., 2000) for efficient point representation
in high-dimensional spaces or using hyperrectangles to rep-
resent the trusted set efficiently (Eriksson et al., 2019).

Future work can extend our discretized implementation to
continuous domains, which should be feasible with a scal-
able trusted set representation. Our theoretical results can
also generalize to continuous settings with minor modifica-
tions to βt and additional assumptions, following Chowd-
hury & Gopalan (2017).

7. Conclusion
We introduced BILBO, a novel bilevel BO algorithm that op-
timizes the upper- and lower-levels simultaneously. BILBO
samples from confidence-bounds based trusted sets to bound
lower-level suboptimality, and encourages lower-level explo-
ration via conditional reassignment of the query, replacing
the repeated lower-level optimizations required by existing
methods. We show theoretically that BILBO has a sublin-
ear regret bound, and our experiments demonstrate empir-
ically that BILBO outperforms other bilevel optimization
baselines, especially in problems with many non-convex
functions. BILBO is a significant step towards a general
bilevel solver, which will enable applications to complex
real-world bilevel problems involving blackbox functions.
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A. Table of Notations
Bilevel definitions

Upper-level Lower-level

x Upper-level variable z Lower-level variable

X Domain of x Z Domain of z

dX Dimension of x dZ Dimension of z

F Upper-level objective function f Lower-level objective function

Cup Set of upper-level constraint functions Clo Set of lower-level constraint functions

xt Selected upper-level variable to query at time t zt Selected lower-level variable to query at time t

x̂T Estimated optimal upper-level variable at time T ẑt Estimated optimal lower-level variable at time T

F Set of functions in a bilevel problem {F, f} ∪ Cup ∪ Clo

h Arbitrary function in F

µh,t(x, z) GP posterior mean at (x, z) for function h at time t

σh,t(x, z) GP posterior standard deviation at (x, z) for function h at time t

rh(x, z) Instantaneous regret of function h at (x, z)

rt Instantaneous bilevel regret at time t on query point (xt, zt)

RT Cumulative regret at time T

rT Simple bilevel regret at time T based on (x̂t, ẑt)

BILBO notations

uh,t(x, z) Upper confidence bound of function h at (x, z) (Defn. 4.1)

lh,t(x, z) Lower confidence bound of function h at (x, z) (Defn. 4.1)

S+t Trusted set of feasible solutions (Defn. 4.3)

S+lo,t Trusted set of feasible solutions w.r.t. only lower-level constraints (Defn. 4.5)

P+
t Trusted set of optimal lower-level solutions (Defn. 4.5)

z̄t(x) Estimated optimal lower-level solution at x at timestep t (Defn. 4.5)

ht Selected function query (Defn. 4.7)

r̄h,t Estimated regret for function h (Defn. 4.7)
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B. More preliminaries details
B.1. Closed-form posteriors of Gaussian Processes

For a GP defined as GPh(mh(xz), kh(xz,xz
′)) for a function h. The closed-form posterior mean is µh,t−1(xz) ≜

mh(xz) + kh,t−1(xz)
⊤(Kh,t−1 + σ2I)−1(yh,t−1 −mh,t−1) and variance σ2

h,t−1(xz) ≜ kh(xz,xz)− k⊤
h,t−1(Kh,t−1 +

σ2I)−1k−1
h,t−1 where mh,t−1 ≜ [mh(x, z)]xz∈xz:t−1

, kh,t−1(xz) ≜ [kh(xz,xz
′)]xz′∈xz:t−1

, and Kh,t−1 ≜
[kh(xz,xz

′)]xz,xz′∈xz:t−1
.

B.2. Maximum information gain

Maximum information gain, γh,t, on a function h, where d ≜ dX + dZ and T (h) contains the timesteps when function h
was selected for query, from Vakili et al. (2021):

• Squared Exponential kernel: O(logd+1(T (h)))

• Matérn kernels with ν > 1
2 : O(T

d
2ν+d log

2ν
2ν+d (T (h)))

C. Proofs
C.1. Proof of Lemma 4.4

Proof. ∀c ∈ Cup ∪ Clo, (x, z) ∈ S+t ,

rc,t(x, z) ≜ max(0,−c(x, z)) from Equation 3.7
≤ max(0,−lc,t(x, z)) from Corollary 4.2

≤ max(0, uc,t(x, z)− lc,t(x, z)) from (x, z) ∈ S+t
≤ 2β

1/2
t σc,t−1(x, z). from Definition 4.1

C.2. Proof of Lemma 4.6

Lemma C.1. ∀x ∈ {x | (x, z) ∈ P+
t },

uf,t(x, z̄t(x)) ≥ uf,t(x, z
∗(x)), (C.1)

where z̄t(x) ≜ argmaxz∈S+
lo,t(x)

uf,t(x, z) is the estimated optimal lower-level solution at x, and z∗(x) is the actual
optimal lower-level solution at x.

Proof. By definition of z̄t(x), ∀(x, z) ∈ S+lo,t, uf,t(x, z̄t(x)) ≥ uf,t(x, z).

Let Slo ≜ {(x, z) | c(x, z) ≥ 0 ∀c ∈ Clo} be the unknown set of feasible solutions w.r.t. lower-level constraints. Then,
(x, z∗(x)) ∈ S+lo,t, because (x, z∗(x)) ∈ Slo by definition and Slo ⊆ S+lo,t from Corollary 4.2.

Finally, by Definition 4.5 of P+
t , P+

t ⊆ S+lo,t.

Main proof for instantaneous regret bound on f in Lemma 4.6.

Proof. ∀(x, z) ∈ P+
t ,

rf,t(x, z) = f(x, z∗(x))− f(x, z) from Equation 3.6
≤ uf,t(x, z

∗(x))− lf,t(x, z) from Corollary 4.2
≤ uf,t(x, z̄t(x))− lf,t(x, z). from Lemma C.1
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For z = z̄t(x),

rf,t(x, z) ≤ uf,t(x, z̄t(x))− lf,t(x, z̄t(x))

= 2β
1/2
t σf,t−1(x, z̄t(x)) from Definition 4.1

and for z ̸= z̄t(x),

rf,t(x, z) ≤ uf,t(x, z̄t(x))− lf,t(x, z)

≤ uf,t(x, z̄t(x))− uf,t(x, z) + 2β
1/2
t σf,t−1(x, z) from Definition 4.1

≤ uf,t(x, z̄t(x))− lf,t(x, z̄t(x)) + 2β
1/2
t σf,t−1(x, z) from (x, z) ∈ P+

t

= 2β
1/2
t σf,t−1(x, z̄t(x)) + 2β

1/2
t σf,t−1(x, z). from Definition 4.1

Combining both cases, we get the instantaneous regret for lower-level objective function as

rf,t(x, z) ≤ 1z̸=z̄t(x)2β
1/2
t σf,t−1(x, z̄t(x)) + 2β

1/2
t σf,t−1(x, z).

C.3. Proof of Lemma 4.8

Lemma C.2.
(x∗, z∗) ∈ S+t ∩ P+

t ,

where (x∗, z∗) is the optimal bilevel solution.

Proof. Let the unknown feasible set be S ≜ {(x, z) | c(x, z) ≥ 0 ∀c ∈ Cup ∪ Clo}. Since (x∗, z∗) ∈ S by definition and
S ⊆ S+t by Corollary 4.2, we have (x∗, z∗) ∈ S+t .

Let unknown feasible set w.r.t. lower-level constraints be Slo ≜ {(x, z) | c(x, z) ≥ 0 ∀c ∈ Clo}. Similarly, we have
(x∗, z∗) ∈ Slo ⊆ S+lo,t. Since uf,t(x

∗, z∗) ≥ f(x∗, z∗) ≥ f(x∗, z̄t(x
∗)) ≥ lf,t(x

∗, z̄t(x
∗)), we have (x∗, z∗) ∈ P+

t .

(x∗, z∗) ∈ S+t and (x∗, z∗) ∈ P+
t ⇒ (x∗, z∗) ∈ S+t ∩ P+

t

Lemma C.3. For some small δ > 0, with probability at least 1− δ, the instantaneous upper-level objective regret is upper
bounded at the query point,

rF (xt, zt) ≤ 2β
1/2
t σF,t−1(xt, zt).

Proof.

rF (xt, zt) ≜ max(0, F (x∗, z∗)− F (xt, zt)) from Equation 3.5
≤ max(0, uF,t(x

∗, z∗)− lF,t(xt, zt)) from Corollary 4.2
≤ max

(x,z)∈S+
t ∩P+

t

uF,t(x, z)− lF,t(xt, zt) from Lemma C.2

= uF,t(xt, zt)− lF,t(xt, zt) from xt, zt ≜ argmaxS+
t ∩P+

t
uF,t

= 2β
1/2
t σF,t−1(xt, zt). from Definition 4.1

Lemma C.4. Given the estimated regret of the selected function query ht at the query point by Definition 4.7, the
instantaneous regret rt is upper bounded,

rt ≤ r̄ht,t(xt, zt).
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Proof. Given Definition 4.7, Lemma C.3, Lemma 4.4, and Lemma 4.6, ∀h ∈ F , we can see that r̄h,t(xt, zt) ≥ rh(xt, zt).
Then,

rt ≜ max
h∈F

rh(xt, zt) from Equation 3.4

≤ max
h∈F

r̄h,t(xt, zt)

= r̄ht,t(xt, zt).

Main proof for instantaneous regret bound in Lemma 4.8

Proof. By Lemma C.4, if ht = f ,

rt ≤ r̄f,t(xt, zt)

= 1zt ̸=z̄t(xt)2β
1/2
t σf,t−1(xt, z̄t(xt)) + 2β

1/2
t σf,t−1(xt, zt) from Definition 4.7

≤ 4β
1/2
t max(σf,t−1(xt, z̄t(xt)), σf,t−1(xt, zt))

= 4β
1/2
t σf,t−1(xt, zt),

where the last line holds because we reassign zt ≜ z̄t(xt) if σf,t−1(xt, z̄t(xt)) ≥ σf,t−1(xt, zt) as in Equation 4.8.

Else if ht ∈ F/{f},

rt ≤ r̄ht,t(xt, zt)

= 2β
1/2
t σht,t−1(xt, zt)

≤ 4β
1/2
t σht,t−1(xt, zt).

Combining, we obtain

rt ≤ 4β
1/2
t σht,t−1(xt, zt)

≤ 4β
1/2
t max

h∈F
σh,t−1(xt, zt).

C.4. Proof of Theorem 4.9

Proof. From Lemma 4.8 and by Cauchy-Schwarz inequality, we derive the cumulative regret as

R2
T ≤ T

T∑
t=1

r2t

≤ T

T∑
t=1

16βt max
h∈F

σ2
h,t−1(xt, zt)

≤ 4TβT

∑
h∈F

∑
t∈T (h)

4σ2
h,t−1(xt, zt)

≤ 4TβT

∑
h∈F

Chγh,T (h)

≤ 4TβT

∑
h∈F

Chγh,T

≤ 4T |F|βT max
h∈F

Chγh,T ,
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experiment length scale prior dX dZ discrete points per dimension

BraninHoo+GoldsteinPrice 0.2 1 1 100
SMD2 0.7 2 3 25
SMD6 0.2 2 3 25
SMD12 0.4 2 3 16
Energy 0.4 2 2 15

Chemical 0.8 1 3 10

Table 1: Experiment parameters

where T (h) contains the timesteps where function h was queried, so γT (h) ≤ γT , and

RT ≤
√

4T |F|βT max
h∈F

Chγh,T ,

where Ch ≜ 8/ log(1 + σ−2
h ), and γh,T is the maximum information gain from noisy observations of h at (xt, zt),∀t ∈ [T ].

The proof methodology follows Srinivas et al. (2010).

C.5. Proof of Lemma 4.10

Proof.

rT ≤ min
(xt,zt)∈{(xt′ ,zt′ )}t′∈[T ]

max
h∈F

r̄h,t(xt, zt) from Equation 4.9 and Lemma C.4

≤ 1

T

T∑
t=1

max
h∈F

r̄h,t(xt, zt)

≤ 1

T

T∑
t=1

4β
1/2
t max

h∈F
σh,t−1(xt, zt) from Appendix C.3

≤
√

4|F|βT max
h∈F

Chγh,T /T . from Appendix C.4

D. Experiment details
D.1. Baseline details

TrustedRand implements a vanilla variant of the trusted sets S+t and P+
t , where mean µ is used instead of upper confidence

bound u. Query points are then randomly sampled from the trusted set variants.

Nested uses the sequential least squares programming (SLSQP) optimizer for lower-level optimization, following Kieffer
et al. (2017) and Dogan & Prestwich (2023), and BO with upper confidence bound acquisition function (Srinivas et al.,
2010) at the upper level. The lower-level problem is solved to convergence at each upper-level query. Note that gradients are
approximated for SLSQP, which can only work on continuous functions.

D.2. Implementation details

GP with Matérn 5/2 kernel was used, and the GP hyperparameters were automatically tuned at each iteration using
maximum likelihood estimation on the past observations. The hyperparameters include length scale and prior mean. The
prior mean initialized to 0 for all experiments since the output is already normalized. The initial length scale and other
parameters for each experiment are set according to Table 1. For SMD2, energy, and chemical experiment, we sampled from
P̄t ≜ {(x, z̄t(x)) ∀x ∈ X} instead of P+

t as it was empirically found to be better.
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D.3. Edits to SMD2, SMD6, SMD12

The selected SMD problems were adapted so the input ranges from 0 to 1, and the outputs have a mean of 0 and standard
deviation of 1, for parameters p = 1, r = 1, q = 2, while ensuring that their characteristics and optimal points remain the
same. The upper- and lower-level objective functions of SMD each have 3 components. The following only records edits to
the original SMD problems. Refer to Sinha et al. (2014) for the original SMD problems.

Let x = [x̂u1, x̂u2] and z = [x̂l1, x̂l2], x, z ∈ [0, 1]d.

SMD2. To bound the output for the given domain, we set

F3 ≜ −
r∑

i=1

(xi
u2)

2 −
r∑

i=1

(xi
u2 − log(0.99 ∗ xi

l2 + 0.01))2,

f3 ≜
r∑

i=1

xi
u2 − log(0.99 ∗ xi

l2 + 0.01)2,

where x̂u1 ≜ (xu1 + 1)/3, x̂u2 ≜ (xu2 + 5)/6, x̂u1 ≜ (xl1 + 1)/3, and x̂l2 ≜ xl2/e.

SMD6. The different functions have imbalanced ranges. To balance the different functions in f , we set

f̂1 ≜ f1/d

f̂2 ≜ f2/d
2

f̂3 ≜ f3/d,

where d = 3, and use f̂ ≜ f̂1+ f̂2+ f̂3 as the lower-level objective function. x̂b ≜ (xb+1)/3, for xb ∈ {xu1, xu2, xl1, xl2}.

SMD12. To bound the outputs in the domain, we set

F3 ≜
r∑

i=1

(xi
u2 − 2)2 +

r∑
i=1

tanh |xi
l2| −

r∑
i=1

(xi
u2 − tanhxi

l2)
2

f3 ≜
r∑

i=1

(xi
u2 − tanhxi

l2)
2

We also edited the first upper level constraint to xi
u2 − tanhxi

l2 ≥ 1, ∀i ∈ {1, ..., r}, so it becomes an active constraint.
One of the lower level constraint was also edited to bound its output range: xj

l1 −
∑q

i=1,i̸=j(x
i
l1)

3 ≥ 0 ∀j ∈ {1, ..., q}. We
normalize x̂u1 ≜ (xu1 + 5)/15, x̂u2 ≜ (xu2 + 1)/2, x̂l1 ≜ (xl1 + 5)/15, and x̂l2 ≜ (xl2 + π/2)/π.

After the following adaptations, we take the mean over input dimensions to ensure that function values do not increase with
dimensions. Finally, we normalize the outputs.

D.4. Energy market

Let x ≜ [x1,x2], where x1 denotes a price to bid and x2 denotes a quantity in MW to supply at bid price. x1 ∈
(0.01, 0.5),x2 ∈ (200, 500). We simulate a network with 3 generators that has to fulfill an estimated demand schedule
for 3 periods. The generators’ parameters are given in Table 2, where z ≜ [z1, z2] are the lower-level variables. z1 ∈
(0.0, 0.2), z2 ∈ (0.5, 1.5). These two variables were selected as a proxy for auxiliary concerns such as efficiency and
maintenance costs, on top of operational costs.

The lower-level objective function is denoted as

f(x, z) ≜ −cost(x, z)− 2.5 ∗ wr(z1)− 1.5 ∗ ww(z2),

where cost(x, z) is the operational cost of producing z2MW of power, simulated by PyPSA. wr(z1) ≜ exp(5 ∗ z1)− 1 and
ww(z2) ≜ −(log(−0.75 ∗ z2 +1.15)− (−0.75 ∗ z2 +1.15))− 0.797, where wr and ww are different nonlinear weighting
functions applied to z. If dispatch is not feasible at a point, we set the lower-level objective value with an arbitrary large
negative number, and the upper-level objective value at 0.
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type nominal power marginal cost quadratic marginal cost ramp limit max p factor

coal 200 0.005 0.0005 z1 -
gas 100 0.015 0.0005 0.5 -

wind 60 0.02 0.005 - z2

Table 2: Parameters input into PyPSA generator. ‘max p factor’ refer to ‘p max pu’, the maximum power at a snapshot
given as a fraction of nominal power.

Figure 6: Flowsheet of chemical process. R-101 is the reactor, and C101 is the distillation column.

The upper-level objective function measures profit as

F (x, z) ≜ x1 ∗ x2 ∗ df(xt)− cost(x, z),

where df(xt) ≜ min(1, exp(−10x1+0.25)) returns a factor that simulates the demand response of consumers. This implies
a disincentive for providers to bid at high prices, because consumers might choose to reduce their electricity usage or look
for alternative providers.

We discretized the input space into 15 at each dimension.

D.5. Chemical process

The flowsheet used is shown in Figure 6, where the output of reactor R101 contains a mix of Methyl Acetate, unreacted
DME, and other by-products, and the distillation column C101 separates these products to obtain high purity Methyl Acetate.
The flowsheet was adapted from ChemSep, where the recycle streams have been removed to simplify the process. CO and
DME are fed in at a fixed flow rate and concentration for all experiments, as indicated in the figure. The distillation feed is
always at level 2, and we fixed the output concentration of Methyl Acetate at 99.9%. Note that we can simulate the reactor
R101 without the column C101.

The upper- and lower-level parameters to be optimized are defined in Table 3. We discretized the input space into 10 at each
dimension, and the variables are normalized to [0, 1].

Let simR101(x, z) be the simulated mass flow of Methyl Acetate (kg/s) at the output of the reactor R101, and simC101(x, z)
be the simulated mass flow of Methyl Acetate (kg/s) at the MeAce output of the column C101.
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name min max normalized symbol

Number of levels in distillation column 5 23 x0 ∈ [0, 1]
Temperature of reactor (K) 455 500 z0 ∈ [0, 1]

Number of heating tubes in reactor 600 1500 z1 ∈ [0, 1]
Diameter of heating tubes (m) 0.02 0.065 z2 ∈ [0, 1]

Table 3: Parameters of the chemical experiment.

The lower-level objective function is denoted as

f(x, z) ≜ simR101(x, z)− 1e-3 ∗ z41,

where the second term is a penalty on higher temperatures to account for energy costs.

The upper-level objective function is then denoted as

f(x, z) ≜ simC101(x, z)− 1e-4 ∗ x4
0,

where the second term is a penalty on more levels in the distillation column as it is associated with higher costs. The higher
costs could be due to maintenance, energy consumption or equipment cost.

D.6. Computational resources

The experiments in this paper were done on a computer with AMD Ryzen 7 5700X 8-Core Processor and 64 GB of RAM,
unless otherwise specified.

E. Complexity and efficiency of BILBO
E.1. Computational complexity of BILBO

For a discretized implementation, the computational complexity of BILBO is affected by the computational complexity of:

• Gaussian processes, O(n3),
• Updating trusted sets, O(|F|c),
• Selecting function query, O(|F|c),
• Optimizing the acquisition function, O(c),

where n is the number of observations, c is the number of discretized points, and |F| is the number of blackbox functions.

In a uniform grid discretization, which is used in our implementation, if each dimension is divided into m points, then the
cardinality is c = md, where d is the number of dimensions. Thus, dimensionality d exponentially affects computational
complexity when using uniform grid discretization. Adaptive discretization may be able to mitigate the exponential factor of
dimensionality, where effective dimension deff ≪ d.

E.2. Time efficiency of BILBO

While our experiments have shown that BILBO is more sample efficient than nested methods, BILBO does require more
computational cost to update trusted sets and select function queries and query points. In the presence of inexpensive
lower-level evaluations, BILBO’s time efficiency can be lower than that of a nested method. However, do note that
BILBO’s motivation is for settings with expensive blackbox evaluations, where evaluations can be real-world experiments or
simulators that are costly or slow.

In addition, BILBO has advantages in scenarios with noisy observations or multiple lower-level solutions. Nested methods
only solve for one solution in each lower-level optimization, and it can be suboptimal in these scenarios. On the other hand,
BILBO manages the uncertainty of lower-level estimates in a principled way and allows for multiple lower-level estimates,
possibly providing better lower-level estimates to reduce regret more effectively even if each iteration takes more time.
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Figure 7: Regret against wall-clock time for the BraninHoo+GoldsteinPrice experiment

In terms of wall-clock time, on a Mac Studio with M2 Ultra over 5 runs and 40 seconds total runtime, for the 2-dimensional
BraninHoo+GoldsteinPrice experiment, the average time per BILBO iteration is 0.131s, which is about 1.5 times slower
than TrustedRand and about 26 times slower than Nested. Figure 7 shows how regret decreases over wall-clock time. We
observed that while the regret for Nested is smaller than BILBO in the initial 5 seconds, Nested’s regret quickly plateaus due
to suboptimal lower-level estimates of the multimodal lower-level objective. BILBO outperforms Nested subsequently as
BILBO converges to a more optimal solution.
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