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Abstract

The evaluation of noisy binary classifiers on unlabeled data is treated as a streaming1

task - given a data sketch of the decisions by an ensemble, estimate the true2

prevalence of the labels as well as each classifier’s accuracy on them. Two fully3

algebraic evaluators are constructed to do this. Both are based on the assumption4

that the classifiers make independent errors on the test items. The first is based5

on majority voting. The second, the main contribution of the paper, is guaranteed6

to be correct for independent classifiers. But how do we know the classifiers are7

error independent on any given test? This principal/agent monitoring paradox is8

ameliorated by exploiting the failures of the independent evaluator to return sensible9

estimates. Some of these failures can be traced to producing algebraic versus real10

numbers while evaluating a finite test. A search for nearly error independent trios11

is empirically carried out on the adult, mushroom, and two-norm datasets by12

using these algebraic failure modes to reject potential evaluation ensembles as too13

correlated. At its final steps, the searches are refined by constructing a surface14

in evaluation space that must contain the true value point. The surface comes15

from considering the algebra of arbitrarily correlated classifiers and selecting a16

polynomial subset that is free of any correlation variables. Candidate evaluation17

ensembles are then rejected if their data sketches produce independent evaluation18

estimates that are too far from the constructed surface. The results produced by the19

surviving evaluation ensembles can sometimes be as good as 1%. But handling20

even small amounts of correlation remains a challenge. A Taylor expansion of the21

estimates produced when error independence is assumed but the classifiers are,22

in fact, slightly correlated helps clarify how the proposed independent evaluator23

has algebraic ‘blind spots’ of its own. They are points in evaluation space but the24

estimate of the independent evaluator has a sensitivity inversely proportional to25

the distance of the true point from them. How algebraic stream evaluation can and26

cannot help when done for safety or economic reasons is briefly discussed.27

1 Introduction28

Streaming algorithms compute sample statistics of a data stream. A data sketch, selected to fit the29

sample statistic one wants to compute, is updated every time a new item appears in the stream. A30

simple example of such a streaming algorithm is the use of two counters to compute the average31

value of a stream of numbers,32

n, sum =

n∑
i

xi (1)

(2)
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Figure 1: Stream of label predictions by three binary classifiers. Eight integer counters are enough to
tally the number of times a particular prediction or voting pattern occurs when looking at per-item
decision events.

The first integer counter tallies how many numbers have been observed so far. The second keeps33

a running total of the observed values. This data sketch is then used to compute the mean of the34

observed stream,35

sum/n. (3)

Two things are notable about this simple algorithm. It only uses observed variables, and its computa-36

tion is purely algebraic with them. There are no free parameters to tune or know beforehand. This37

paper discusses evaluation algorithms for binary classifiers that act similarly.38

An evaluation on a finite set of labeled data is defined by the sample statistics it computes based on39

knowledge of the true labels. Unlabeled evaluation, the problem considered here, is the estimation of40

the values of these same sample statistics when the true labels are not known. This paper looks at41

how to do so when all we have are statistics of the decisions the members of an ensemble of noisy42

binary classifiers make - it is a ‘black-box’ algorithm. There are 2n possible prediction events when43

we are concerned only about per-item evaluation statistics for n binary classifiers. Figure 1 shows44

how an example of a stream labeled by three classifiers. To keep track of the decisions events at the45

per-item level, only 8 integer counters are needed.46

For three binary classifiers, a basic set of evaluation statistics is defined by the prevalence of one47

of the labels, say label α, P̂α, and the label accuracies, P̂i,α and P̂i,β , for each of the classifiers.48

Note that these are per item statistics. They cannot quantify performance across items in the stream.49

Theorem 1 asserts that these variables are complete to explain the data sketches formed from the50

aligned decisions of independent classifiers. If we knew the value of the value of these evaluation51

statistics, we can predict exactly the value of the per-item data sketch counters. The challenge in52

unlabeled evaluation is to go the other way - to obtain estimates of the basic evaluation statistics53

starting from the data sketch.54

Two evaluators for binary classifiers that are fully algebraic are built. The first is based on majority55

voting (MV). It decides what the correct answer key must be for the test. This makes it nearly56

impossible for it to return a correct answer even when its assumptions are satisfied. Even worse, it57

always provides seemingly correct estimates even when its assumptions are violated. The second58

evaluator is fully inferential. It never decides what the true label is for any items. Theorem 2 proves59

that this approach will correctly trap the true evaluation point to just two point candidates in evaluation60

space. Unlike the MV evaluator, it can return obviously incorrect estimates.61

This paper assumes that these streaming evaluators are being deployed in an environment that has a62

principal/agent monitoring paradox. Evaluation ensembles, like decision ensembles, work best when63

they are independent in their error. Just as one would not want to incur the technical debt of having64

an ensemble of classifiers that always agreed, it makes little sense to deploy evaluation ensembles65

that are highly correlated. This raises two challenges when working on unlabeled data - how do we66

find these error independent evaluation trios, and how do we know, on any given evaluation, that they67

are still independent, or nearly so?68

The approach taken here to ameliorate this monitoring paradox is that the failures of the independent69

evaluator can be used to exclude evaluation trios that are too correlated. The independent evaluator,70

by construction, is deterministic and always returns algebraic numbers. But its answers do not always71

make sense. We can detect this because we have prior knowledge about what seemingly correct72

evaluation estimates look like.73
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1.1 Properties of the true evaluation point74

All the basic evaluation statistics are integer ratios by construction. For example, P̂α, must be the ratio75

of two integers. Its numerator is some integer between 0 and the size of the test. The denominator,76

the size of the test. By construction, their ratio lies inside the unit interval. Similar considerations77

apply to any of the label accuracies for the classifiers - their true value must be an unknown integer78

ratio in the unit interval.79

Seemingly correct estimates are estimated values that seem to be correct because they have this real,80

integer ratio form. Estimates that do not have this form are obviously incorrect. The naive evaluator81

built using majority voting by the ensemble always returns seemingly correct answers, never alerting82

its users that it is wrong and its evaluation assumptions do not apply on a given test.83

The independent evaluator constructed from Theorems 1 and 2 is not like that. It fails, with varying84

degrees, to return seemingly correct estimates when the assumptions of a test are violated. The failures85

vary in their severity. The empirical hypothesis explored here is that their severity are indicative of86

the magnitude of the unknown decision correlations that are needed to correctly predict the observed87

data sketch.88

1.2 A sample definition of decision error independence89

Theorem 2 provides a closed, algebraic solution to the evaluation variety defined by the data sketch90

of error independent classifiers. The variety, the geometrical object in variable space that contains all91

points that satisfy a polynomial ideal, consists of just two points for these classifiers. But as noted92

above, independent evaluation ensembles are rare.93

Handling correlation correctly requires that we introduce new evaluation variables to quantify it.94

Theorem 3 provides a a constructive proof of how to connect the data sketch of correlated classifiers95

to polynomials using these new correlation statistics plus those in the basic evaluation set. The96

evaluation variety, the set of values for the evaluation statistics that solves the polynomials, is not97

solved here for correlated classifiers. Nonetheless, it can be proven that the variety exists, its exact98

shape in evaluation space to be determined in future work. Nonetheless, a partial characterization of99

its shape is possible because of Theorem 3. The same process that solved the polynomial system for100

independent classifiers in Theorem 2 achieves a partial disentanglement of the variables when they101

are correlated. This defines a subset of the generating set that defines a surface computable without102

any knowledge of the correlations between the classifiers. This surface is not the evaluation variety103

but is guaranteed to contain it. This surface is used in the experiments to construct nearly independent104

evaluation ensembles.105

1.3 Previous work and related topics106

A mathematical treatment of the correctness of the decisions made when correct labels are assigned107

to majority voting dates back to Condorcet’s analysis of the correctness of human juries during the108

French Revolution. But it was not until almost two centuries later that a mathematical treatment of109

using juries, this time human doctors, to evaluate themselves using only their aligned decisions was110

published by Dawid and Skene [1]. It proposed a probabilistic solution to evaluation by minimizing111

a likelihood function using the EM algorithm. This work was followed up in the early 2010s by a112

succession of papers in the NeurIPS conferences that took a Bayesian approach to constructing stream113

evaluator ([2], [3], [4], [5], [6]). Applications to evaluating workers in crowd-sourcing platforms114

was a big motivator for some of this research. The algebraic methodology proposed here would be115

economically impractical in such applications since it requires all the classifiers labeling every item116

in the stream.117

The algebraic approach proposed here is closest to another probabilistic method, one proposed by118

Parisi et al. [7]. Rather than minimizing a likelihood function, it considers the spectral properties of119

matrices created by moments of the observed decisions. By hypothesizing hidden distributions, it then120

tries to carry out a matrix decomposition that eventually gives evaluation estimates. In contrast, the121

independent evaluator proposed here is purely algebraic. It invokes no assumptions about distributions.122

Nonetheless, Theorems 1 and 2 discussed here should be contrasted with Theorem 1 in the paper123

by Jaffe et al. [8], a solution for distribution-independent classifiers. The Supplement details the124

mathematical similarities and differences between the two solutions.125
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But research on direct evaluation seems to have waned since the 2010s. The 1st NeurIPS workshop126

on AI safety occurred last year and its RFP had a section on monitoring and anomaly detection that127

does not cite any of the above work [9]. Instead, research has focused on other aspects of monitoring128

that are important for AI safety - for example, carrying out risk minimization computations given129

unknown operating points for an ensemble as was done by Steinhardt et al. in [10].130

Although stream algorithms do not usually calculate hidden knowledge statistics in a stream, some131

do. Good-Turing frequency smoothing [11] is one such algorithm. Its core intellectual idea - that132

you can estimate the probability of seeing hitherto unseen types of items using only the count for133

observed types - is used by LLMs whenever they want to estimate token sequences that were never134

observed during training.135

Finally, most of the mathematical tools used in this paper come from algebraic geometry (AG) [12].136

The use of algebraic concerns to study statistical problems was pioneered by Pistone et al. [13]. The137

topic is known as algebraic statistics. Like most of statistics, it is focused mostly on topics related to138

inferring distributions. This paper uses AG to estimate sample statistics.139

2 Using majority voting to evaluate noisy classifiers140

The correctness of decisions made by an ensemble that majority votes (MV) depends, roughly141

speaking, on two things. They must be error independent, and their labeling accuracies must be142

greater than 50% on each label. Item labels decided by majority voting will be correct more often143

than not if these conditions are met. This section details how a naive algebraic stream evaluator can144

be built on the basis of this decision algorithm. It works by imputing the correct labels or answer key145

for the observed items.146

The integer counters of the per-item data sketch can be trivially turned into frequency variables. Each147

of the counters in a decision sketch tallies how often a decision event has been seen in the stream so148

far. There are only 8 decision events when considering the per-item decisions of three classifiers. The149

sum of their fractional frequencies, fℓ1,ℓ2,ℓ3 , must sum to one,150

fα,α,α + fα,α,β + fα,β,α + fβ,α,α + fβ,β,α + fβ,α,β + fα,β,β + fβ,β,β = 1. (4)

The logic of MV evaluation is straightforward. The true label is given by MV, therefore the prevalence151

of a label is equal to the frequency that label was the majority vote. The estimate for the α label is152

thus a simple linear equation of these ensemble decision frequencies,153

P̂ (MV)
α = fα,α,α + fα,α,β + fα,β,α + fβ,α,α. (5)

Similarly, we can write down algebraic formulas of the decision frequencies for each classifiers label154

accuracy. For classifier 1, those estimates are,155

P̂ (MV)
α = 1− fβ,α,α

fα,α,α + fα,α,β + fα,β,α + fα,β,α
(6)

P̂
(MV)
β = 1− fα,β,β

fβ,β,β + fβ,β,α + fβ,α,β + fα,β,β
. (7)

The MV evaluator considers a classifier wrong if it votes against the majority.156

These are algebraic functions of the frequencies derived from the data sketch, there are no free157

parameters. In addition, the estimates returned by them are always seemingly correct. All the MV158

estimates of prevalence and label accuracies are integer ratios inside the unit interval. The MV159

evaluator will never be able to alert its user that its assumptions are incorrect even when they are160

wildly off the mark.161

2.1 The drawbacks of evaluating by deciding162

Decision and inference are traditionally recognized as separate concerns in Machine Learning.163

Avoiding decisions and its hard choices until they are absolutely required typically leads to better164

performance. So it is here. Making a hard choice on the true label is going to be incorrect on some165

unknown fraction of the events that produced a particular voting pattern. Some of the times the166
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ensemble voted (α, β, α) it could have been a βitem, not an αone. This is expressed by the following167

equation,168

nℓ1,ℓ2,ℓ3 = #(ℓ1, ℓ2, ℓ3 |α) + #(ℓ1, ℓ2, ℓ3 |β). (8)

The number of times we saw a voting pattern is equal to the sum of times the items were α plus the169

times it was β. For any voting pattern by the ensemble, both labels are possible for any one item, no170

matter what the majority says. Zeroing out one term in this sum is an approximation. The supplement171

works out how this decision step means that the MV evaluator is hardly ever right even though it172

always seems so. Fixing this naive MV evaluator is easy - include both terms when expressing data173

sketch frequencies. Carrying out evaluation with these full equations is much harder but leads to an174

evaluator that is guaranteed to be correct when its assumptions are true.175

3 Fully inferential evaluation of sample independent binary classifiers176

Systems of equations can be wrong. Care must also be taken that they they define objects that exist so177

as to avoid making statements about non-existing entities. The two mathematical objects of concern178

here are systems of polynomial equations and the geometrical objects consisting of the points that179

solve them. The following theorem does this for error independent classifiers. It establishes that the180

basic evaluation statistics are sufficient to explain all observed data sketches created by them.181

Theorem 1. The per-item data sketch produced by independent classifiers is complete when expressed182

as polynomials of variables in the basic evaluation set.183

fα,α,α = P̂αP̂1,αP̂2,αP̂3,α + (1− P̂α)(1− P̂1,β)(1− P̂2,β)(1− P̂3,β) (9)

fα,α,β = P̂αP̂1,αP̂2,α(1− P̂3,α) + (1− P̂α)(1− P̂1,β)(1− P̂2,β)P̂3,β (10)

fα,β,α = P̂αP̂1,α(1− P̂2,α)P̂3,α + (1− P̂α)(1− P̂1,β)P̂2,β(1− P̂3,β) (11)

fβ,α,α = P̂α(1− P̂1,α)P̂2,αP̂3,α + (1− P̂α)P̂1,β(1− P̂2,β)(1− P̂3,β) (12)

fβ,β,α = P̂α(1− P̂1,α)(1− P̂2,α)P̂3,α + (1− P̂α)P̂1,βP̂2,β(1− P̂3,β) (13)

fβ,α,β = P̂α(1− P̂1,α) P̂2,α (1− P̂3,α) + (1− P̂α)P̂1,β(1− P̂2,β)P̂3,β (14)

fα,β,β = P̂αP̂1,α(1− P̂2,α)(1− P̂3,α) + (1− P̂α)(1− P̂1,β)P̂2,βP̂3,β (15)

fβ,β,β = P̂α(1− P̂1,α)(1− P̂2,α)(1− P̂3,α) + (1− P̂α)P̂1,βP̂2,βP̂3,β (16)

These polynomial expressions of the data sketch form a generating set for a non-empty polynomial184

ideal, the evaluation ideal. The evaluation variety, the set of points that satisfy all the equations in the185

ideal is also non-empty and contains the true evaluation point.186

Sketch of the proof. The assumption that true labels exist for the stream items underlies the algebraic187

work required for the proof. The correct label of each item can be encoded in indicator functions,188

1s(ℓ), that are 1 if its argument is the correct label for item s, and zero otherwise. The existence of a189

true label for an item s is then equivalent to the equation,190

1s(α) + 1s(β) = 1. (17)

Consider now the first term in Equation 8, #(ℓ1, ℓ2, ℓ3 |α), as it relates to, say, the decisions event191

(α, β, α). By using the predicted labels by the classifiers for a given items s, the following expression192

is exactly equal to one precisely at those decisions events but zero otherwise,193

1s(ℓ1,s) (1− 1s(ℓ2,s))1s(ℓ3,s). (18)

The proof of having a complete representation using the basic evaluation variables then hinges in194

equating the average of this equation to the variables as follows,195

1

nα

∑
1s(α)=1

1s(ℓ1,s) (1− 1s(ℓ2,s))1s(ℓ3,s) = P̂α P̂1,α (1− P̂2,α) P̂3,α. (19)

This equality is only true for independent classifiers because we have substituted the average of196

products of the indicator functions by products of their averages. New correlation variables are197
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Table 1: Algebraic evaluation formulas for the prevalence of α, P̂α, for three classifiers making
independent errors on a test. The ∆i,j and fi,β variables are polynomial functions of the data sketch
frequency counters. Each fi,β is the frequency classifier ‘i’ voted for the β label. The deltas are equal
to fi,j,β − fi,β fj,β , where fi,j,β is the frequency classifiers ‘i’ and ‘j’ voted simultaneously for the β
label.

Evaluator P̂α

Majority Voting fα,α,α + fα,α,β + fα,β,α + fβ,α,α

Fully inferential 1
2 − 1

2
(fβ,β,β−(f1,β f2,β f3,β+f1,β ∆2,3+f2,β ∆1,3+f3,β ∆1,2))√

4∆1,2 ∆1,3 ∆2,3+(fβ,β,β−(f1,β f2,β f3,β+f1,β ∆2,3+f2,β ∆1,3+f3,β ∆1,2))2

introduced and then set to zero to define rigorously a sample definition of decision correlations. For198

example, the definition of the pair correlation variable on a label is given by,199

Γi,j,ℓ =
1

nℓ

∑
1s(ℓ)=1

(1s(ℓi,s)− P̂i,ℓ) (1s(ℓj,s)− P̂j,ℓ) =

 1

nℓ

∑
1s(ℓ)=1

1s(ℓi,s)1s(ℓj,s)

− P̂i,ℓ P̂j,ℓ.

(20)
Setting these pair correlations to zero then guarantees that we can write averages of the product of the200

indicator functions for two classifiers as the product of their label accuracies. Similar considerations201

apply to the product of the indicators for three classifiers. The consequence is that any decision202

event frequency by independent classifiers is complete when written in terms of the basic evaluation203

statistics. All data sketches produced by independent classifiers are predicted by the basic statistics.204

Since the proof is constructive and starts from expressions for the true evaluation point, we know205

that there is at least one point that satisfies all these polynomial equations. We conclude that the206

evaluation variety for independent classifiers exists and it contains the true evaluation point.207

Theorem 2 details exactly what the evaluation variety for independent classifiers must be.208

Theorem 2. The polynomial generating set for independent classifiers has an evaluation variety that209

has two points, one of which is the true evaluation point.210

Sketch of the proof. The quartic polynomials of the independent generating set are not trivial to211

handle. A strategy for solving them is to obtain algebraic consequences of them that isolate the212

variables. Using the tools of AG, this can be accomplished for independent classifiers. Solving their213

polynomial system is accomplished by calculating another representation of the evaluation ideal,214

called the Gröebner basis, that does this. It can be arranged to isolate the P̂αin a quadratic215

a(. . .)P̂ 2
α + b(. . .)P̂α + c(. . .) = 0. (21)

The coefficients a, b, and c are polynomials of the decision frequencies. Since this is a quadratic,216

it follows from the quadratic formula that it can only contain two solutions. This, coupled with217

the fact that other equations in the evaluation ideal are linear equations relating P̂αto P̂i,α or P̂i,β218

variables leads one to conclude that only two points exist in the evaluation variety of independent219

classifiers.220

Table 1 compares the prevalence estimates of the fully inferential independent evaluator with the221

naive MV one. By construction, it will be exact when its assumptions apply. But unlike the naive222

MV evaluator, this formula can return obviously wrong estimates. The next section details how one223

can carry out experiments on unlabeled data to find evaluation ensembles that are going to be nearly224

independent.225

4 Experiments with the failure modes of the independent stream evaluator226

If perfect evaluations are not possible, one should prefer methods that alert us when they fail or their227

assumptions are incorrect. The experiments discussed here show how we can lever the self-alarming228

failures of the independent evaluator to reject highly correlated evaluation ensembles. There are four229

failure modes for the independent evaluator,230

6



(a) Percentage of seemingly correct feature parti-
tions by test size.

(b) Percentage of feature partitions that never had
an independent model solution.

Figure 2: Failure rates for candidate evaluation ensembles constructed from disjoint partitions of the
features.

• The evaluation variety corresponding to the independent evaluation ideal is the empty set -231

no points in evaluation space can zero out the equations in the evaluation ideal.232

• The two evaluation points contain complex numbers.233

• The two evaluation points lie outside the real, unit cube.234

• The estimated values contain unresolved square roots.235

The fourth failure mode is interesting theoretically but not as practical. The Supplement details236

how an unresolved square root in the evaluation estimates can be used to prove that the classifiers237

were not error independent in the evaluation. Its theoretical interest lies in demonstrating that238

algebraic numbers, unlike real ones, can be used to self-alarm, in an almost perfect fashion, when its239

assumptions are violated.240

The first three failure modes are more practical. The first set of experiments will look at how the241

failures can be used to estimate what test sizes are less likely to have failed evaluations when we use242

the independent evaluator. The second set of experiments profiles how well another rejection criteria,243

this time based on the polynomial generating set for correlated classifiers, can help identify nearly244

independent evaluations.245

4.1 Rejecting highly correlated evaluation ensembles246

Given a set of unlabeled data and a smaller set of labeled training data, the goal of the first set247

of experiments is to construct and identify nearly independent evaluation ensembles on a larger,248

unlabeled portion of data. This simple experimental set-up is meant to mimic a possible Auto-ML249

application of stream evaluation. The experiments are meant to answer the question - how big should250

an evaluation test be? This is done by profiling the algebraic failures as a function of test size.251

Since the goal is to construct and then test if an evaluation ensemble is near enough independence to252

give seemingly correct estimates, a generic training protocol was applied to the three datasets studied.253

A training sample of 600 items was selected and the rest of the dataset was then held-out to carry out254

unlabeled evaluations. The rate of failures on the held-out data is then used as a guide to select test255

sizes that have low failure rates as observed empirically.256

Independence in the candidate ensembles was maximized by training each member on features257

disjoint with those used by the others. Disjoint partitions of the small 600 training set, each of size258

200, were then used to train each candidate ensemble. A single profiling run selected 300 disjoint259

feature partitions to test as the size of the held out data was changed. Averaging successive profiling260

runs then gives an empirical measure of the failure rates as a function of test size. Each disjoint261

feature partition was trained and evaluated ten times.262

Figure 2 shows profiles of algebraic failures for the adult, mushroom, and twonorm dataset exper-263

iments. Figure 2a plots the percentage of feature partitions that resulted in evaluation ensembles264

returning seemingly correct estimates. The twonorm and adult experiments suggest that nearly265

independent ensembles will be easier for them than in mushroom. Figure 2b plots the percentage of266
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(a) The adult dataset. (b) The mushroom dataset.

Figure 3: Maximum pair correlation in an evaluation ensemble versus the distance of the independent
evaluator estimate it produces from the containing variety.

feature partitions that never produced data sketches explainable by the independent assumption. This267

plot also suggests that mushroom good evaluation ensembles will be harder to find.268

5 A containing variety for arbitrarily correlated binary classifiers269

The rejection of evaluation ensembles that have algebraic failures is no guarantee that the remaining270

ones will return somewhat accurate evaluation estimates. A different criteria has to be found to271

identify those that are close to independence. We can do this by considering the evaluation ideal of272

arbitrarily correlated classifiers.273

Theorem 3 in the Supplement shows how a complete polynomial representation for their data sketch is274

possible when we include variables for each of the correlation statistics. Its corresponding evaluation275

variety remains an open problem. But another variety that contains it can be defined. And most276

importantly, it can be constructed without knowledge of the correlation statistics. Theorem 4 in the277

Supplement details how the basic evaluation statistics can be disentangled from the correlation ones278

by finding a suitable Gröbner basis for the generating set. The polynomials of the disentangled set279

have the forms,280

P̂α (P̂i,α − fi,α) = (1− P̂α) (P̂i,β − fi,β) (22)

(P̂i,α − fi,α) (P̂j,β − fj,β) = (P̂i,β − fi,β) (P̂j,α − fj,α). (23)

Since this generating set is a subset of the complete generating set for correlated classifiers, it is281

guaranteed to contain their evaluation variety, which, in turn, must contain the true evaluation point.282

By self-consistency, if the evaluation ensemble was truly independent, it would be on this 4-283

dimensional surface. The second set of experiments looked at the hypothesis that data sketches284

from correlated classifiers would return independent evaluator estimates whose distance from the285

containing variety was related to their unknown amount of correlation. Figures 3a and 3b show286

the observed relation between the distance to the containing variety and an ensemble’s maximum287

absolute pair correlation for the adult and mushroom experiments. As in the first experiments, the288

training data was 200 per label items. But the evaluation was carried out on held-out data with 2000289

per label items. As was expected by the test size profiling runs, the mushroom seemingly correct290

evaluations were harder to find. The trend in these plots is suggestive but not conclusive.291

The Supplement contains some of the evaluations from the least-distance evaluation ensembles. The292

evaluations on twonorm perform best, perhaps because that dataset is synthetic. But challenges293

remain when handling correlated ensembles. Perhaps these will be resolved with further work. This294

may be possible because we have a complete representation for correlated classifiers. Using that295

representation one can expand the independent evaluator estimates as Taylor series on the unknown296

8



correlations. The linear term in Γi,j,ℓ has the inverse,297

1/(P̂k,ℓ − fk,ℓ). (24)

Consequently, independent evaluator estimates becomes worse the closer one is to the “blindspots”298

in evaluation space at fi,ℓ. A look at the Gröbner basis for correlated classifiers shows how the299

blindspots shunt off the correlation variables by eliminating them from the basis. An evaluator whose300

evaluation statistics lie at the blindspots is thus unable to capture correlation effects - its sketch is301

explainable by an independent ensemble hypothesis that is not correct. This extreme case happens302

at a finite number of points, so its occurrence would be correspondingly rare. But as the Taylor303

expansion shows, it can affect the quality of the independent evaluator estimate severely if the true304

evaluation point lies near them.305

6 Advantages and disadvantages of algebraic stream evaluation306

The main advantage of algebraic evaluation is that it bypasses the representation and out-of-307

distribution problems in ML. Its focus is on estimating sample statistics with no concern for in-308

ferring models of the phenomena being classified or how the classifiers do it. There are no unknown309

unknowns in algebraic evaluation.310

But algebraic evaluation cannot resolve the principal/agent monitoring paradox, only ameliorate311

it. Its batch approach only estimates average performance on a test. This may not be sufficient to312

handle anomalies or identify important subsets of the test where the classifiers perform much worse.313

In addition, sample statistics are not enough to identify the causes of poor performance or predict314

performance in the future. These are important considerations in settings one bothers to monitor315

with evaluation ensembles. Algebraic evaluators should be used in conjunction with other evaluation316

methods, such as the ones discussed in Section 1.3, that do encode more information about the317

application context.318

Finally, all evaluation methods on unlabeled data are ambiguous. This is seen here by the two-point319

variety associated with independent classifiers. Additional assumptions about the evaluation must be320

made to ‘decode‘ the true evaluation point. For example, in contexts where the prevalences are not321

expected to vary greatly their known value can be used to select to correct point. Such is the case in322

the adult dataset where the rare label corresponds to tax record features for people earning more323

than 50K US dollars annually. Fewer higher income records is a reasonable assumption for future324

random samples of US tax records. Conversely, if one could have high assurances of the quality325

of the classifiers and then use them to select the one point that aligns with it. In that case, stream326

evaluation is being used to monitor the environment and not the classifiers.327

7 Broader Impacts328

Evaluation on unlabeled data is a perennial problem in ML. As this conference and others discuss the329

impact AI agents have on our safety and society, it becomes necessary to have safeguards that can330

protect us from their decisions. The framework proposed here should have a positive impact across331

multiple application areas for ML since it is based on generic considerations.332
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