
Under review as a conference paper at ICLR 2024

SUBSPACE GRID-SWEEP: ML DEFENSE EVALUATION
VIA CONSTRAINED BRUTE-FORCE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

It is becoming increasingly imperative to design robust ML defenses. However,
recent work has found that many defenses that initially resist state-of-the-art at-
tacks can be broken by an adaptive adversary. Attacks can initially make defenses
look strong by not finding potential adversarial examples due to obfuscated gra-
dients, limited compute, unlucky initialization, etc. In this work, we make steps
towards more reliable defense evaluation by introducing a new defense evaluation
tool, Subspace Grid-sweep, that leverages deterministic inference to more simply
evaluate adversarial robustness. We use Subspace Grid-sweep to show that a pre-
viously published, but now broken, defense could have been known to be broken
without performing a fully adaptive attack. In order to make Subspace Grid-sweep
applicable to random defenses, we show how to make deterministic variants of
random defenses while retaining similar empirical effectiveness. As a result, we
show that randomness may not be necessary for these defense’s robustness.

1 INTRODUCTION

Given the increasing prevalence of machine learning models, their reliability in adversarial environ-
ments has gained much attention (Jia et al., 2020; Cohen et al., 2019; Rauber et al., 2017; 2020;
Croce et al., 2021; Dong et al., 2019; Grathwohl et al., 2020; Nie et al., 2022; Madry et al., 2018).
The ensuing developments towards more robust ML models led to many proposed defenses (Cohen
et al., 2019; Grathwohl et al., 2020; Nie et al., 2022) and methods to evaluate these defenses (Athalye
et al., 2018a; Rauber et al., 2017; Croce et al., 2021; Rauber et al., 2020).

Incorporating randomness into ML defenses has appeared valuable. Some of the most effective
empirical defenses rely on randomness (Nie et al., 2022), and many provably robust defenses are
random (Cohen et al., 2019). Randomness has been used to disrupt iterative white-box attacks (Xie
et al., 2018; Raff et al., 2019) and degrade black-box attacks (Dong et al., 2019). It is no surprise
then that many ML defenses have random components (Raff et al., 2019; Song et al., 2018).

Unfortunately, evaluating ML defense robustness has proven challenging. Initially promising de-
fenses are often quickly broken (Tramèr et al., 2020; Athalye et al., 2018a). One reason for this is
that defenses can seem strong because they break typical attacks (Rauber et al., 2017; Croce et al.,
2021; Dong et al., 2019). However, attacks are necessarily constrained to only searching a tiny
fraction of the input space given limited available compute. This search is influenced by the mecha-
nisms, initialization, and heuristics that make up the attack, and the information (e.g., gradients) the
attack can extract from the classifier. Ideally, an evaluation that could instead uniformly search the
full input space (within some distance of the original input) for perturbations that would cause mis-
classification would be a more consistent measure of robustness. For example, an ideal evaluation of
an ML defense could directly test every possible perturbation (possibly constrained by an Lp norm)
for several given inputs and report whether the defense successfully decreases the pervasiveness of
adversarial perturbations compared to the original, undefended base classifier. Unfortunately, given
high input dimensionality (e.g., 3072 for CIFAR-10), this is almost never feasible.

Moreover, a leading factor further contributing to the difficulty of evaluating robustness is random-
ness (Gao et al., 2022). Despite the above mentioned benefits, randomness also removes the ability
to quickly check whether an underlying loss gradient is smooth, directly inhibits the use of black-
box attacks for evaluation (Dong et al., 2019), and often requires an evaluator to specially craft an
attack to bypass the specific flavor of randomness included (Tramèr et al., 2020).

1

Under review as a conference paper at ICLR 2024

Our work seeks to approximate that ideal evaluation and mitigate the difficulties caused by random-
ness while retaining the benefits of randomness in practice. We side-step the problem of searching
the entire high-dimensional space of perturbations by instead only searching a lower-dimensional
subspace of perturbations. We also show that, for the random defenses we study, their empirical
robustness can be replicated in a deterministic manner. This allows us to bypass the obstacles to ML
defense evaluation inherent to randomness and gives us new insight into published work.

Specifically we make the following contributions:

• We introduce a new brute-force method to better evaluate deterministic ML defenses’ ro-
bustness called Subspace Grid-sweep and demonstrate its efficacy by verifying the findings
of a prior, more complex, robustness evaluation (section 3).

• To use this tool on randomized defenses, we also show that several randomized defenses
can be converted to be deterministic and still retain the same empirical robustness, illustrat-
ing that randomness is not necessary for empirical robustness in these defenses (section 4).

• In section 5, by combining the above two contributions, we provide new evidence some
published defenses are indeed increasing robustness, while other defenses may actually be
decreasing robustness, but just making those adversarial examples harder to find.

2 RELATED WORK

2.1 ML DEFENSE EVALUATION

ML attacks. Adversarial ML attacks create adversarial examples, or inputs that are minimally
perturbed but cause a targeted ML model to misclassify them. To ensure that the input’s ground-
truth label does not change, attacks set a maximal perturbation size ε under some metric Lp, where
p ∈ {0, 1, 2,∞}. Researchers developed standardized suites of attacks (Rauber et al., 2017; 2020;
Croce et al., 2021; Dong et al., 2019) to more fairly benchmark and compare robustness of defenses.
These suites include both black-box attacks (e.g., Boundary Attack (Brendel et al., 2018)) and white-
box attacks (e.g., PGD Madry et al. (2018)).

ML defenses. Researchers have proposed many ML defenses (Madry et al., 2018; Pang et al.,
2018; Nie et al., 2022; Grathwohl et al., 2020; Cohen et al., 2019; Jia et al., 2018; 2020; Song
et al., 2018; Xie et al., 2018; Raff et al., 2019). This includes adversarial training, where an ML
model is exposed to adversarial examples during training, making it less susceptible to attack (Madry
et al., 2018). Other defenses include detection of adversarial examples (Pang et al., 2018), input
refinement (Nie et al., 2022; Grathwohl et al., 2020; Jia et al., 2018; Song et al., 2018), and other
pre-processing techniques (Xie et al., 2018; Raff et al., 2019).

When a defense reports high empirical robustness, this often does not tell us why the defense suc-
ceeds. Prior work has shown that empirical robustness evaluations can be misleading, e.g., due to
obfuscated gradients that hinder some attacks but do not reduce ML model vulnerability (Athalye
et al., 2018a; Tramèr et al., 2020; Carlini & Wagner, 2017). Such defenses are vulnerable to adaptive
attacks that specifically target weak components of the defense (Tramèr et al., 2020). Our work take
steps towards a more useful and informative ML defense evaluation.

Randomness is necessary in certain certified robust defenses (Cohen et al., 2019; Jia et al., 2020;
Levine & Feizi, 2019), but it has also been used to claim increased robustness to black-box at-
tacks (Dong et al., 2019) and white-box attacks (Athalye et al., 2018b; Xie et al., 2018). However,
in a white-box threat model, randomness in defenses can be unhelpful (Gao et al., 2022) or give
a false sense of security (Athalye et al., 2018a;b). To illustrate, one prior published defense states
that “Randomization makes the network much more robust to adversarial images, especially for
iterative attacks (both white-box and black box)...” (Xie et al., 2018, section 1). Yet, later work
broke this defense by incorporating the defense’s random transformations into the attack (Athalye
et al., 2018a)—a general attack strategy that is often referred to as Expectation Over Transformation
(EOT) (Athalye et al., 2018b). Other randomized defenses have suffered similar fates (Gao et al.,
2022). It is thus unclear when randomness in ML defenses is actually helpful, or just an unnecessary
component that complicates defense evaluation.

2

Under review as a conference paper at ICLR 2024

2.2 PUBLISHED RANDOMIZED DEFENSES

Random defenses exhibit robustness both empirically (Nie et al., 2022; Grathwohl et al., 2020)
and provably (Cohen et al., 2019; Levine & Feizi, 2019; Jia et al., 2020). In this work, we create
deterministic analogs of three randomized defenses to understand if randomness is necessary for
them to resist white-box attacks.

Randomized smoothing. Randomized Smoothing (Cohen et al., 2019) operates by taking the
majority vote of a classifier over many randomly corrupted copies of the input (with the option to
abstain prediction if the vote counts are too close). This method of prediction amounts to a Monte
Carlo estimation of the distribution of classes around the input (within some Lp ball), which can be
used to prove a robustness certificate on the prediction’s correctness (Cohen et al., 2019).

Energy-based model defense. This defense (Grathwohl et al., 2020), referred to as EBM–Def in
this work, uses a predictor of the likelihood that the input belongs to the data distribution (i.e., an en-
ergy function). EBM–Def first adds random noise to the input, and then “refines” this noisy input by
nudging it in the direction of increasing energy, hopefully eliminating any adversarial perturbations
in the process. The defense can also aggregate multiple parallel corrupt-refine processes (referred to
as “Markov chains”) using different initial corruptions. As the refinement process is deterministic,
the only random component of this defense is the initial noise addition.

Diffusion models for adversarial purification. This defense, referred to as DiffPure, (Nie et al.,
2022) is similar to EBM–Def in that inputs are first corrupted (via random sampling) and then de-
noised (i.e., refined) to remove adversarial perturbations. The difference is that DiffPure uses a
pre-trained diffusion model for the refinement, which is itself randomized (the diffusion process
iteratively solves a reverse stochastic differential equation (Nie et al., 2022)). This means random-
ness exists in both DiffPure’s initial corruption and refinement processes. In contrast, EBM–Def
refinement process is fully deterministic.

3 SUBSPACE GRID-SWEEP: A NEW EVALUATION TOOL

We begin with our first contribution: an evaluation tool that takes advantage of deterministic infer-
ence to provide a simple brute-force robustness evaluation.

In short, this evaluation works by exhaustively searching for regions in the input space around the
original point that cause a classifier to misclassify, referred to as adversarial regions. By directly
testing if these adversarial regions exist via a grid search (i.e., trying all the perturbations possible to
a specific granularity), we can check to see if gradient-guided methods, executed in the same space,
can also find any adversarial regions. If the gradient-guided methods cannot find any adversarial
examples for a given input (i.e. a CIFAR-10 picture of a dog), but the grid-search did, this could be
indicative of obfuscated gradients (Athalye et al., 2018a).

This evaluation measures two effects of a defense:

• Does the defense, compared to a baseline (usually the base classifier it is protecting) in-
crease, decrease, or not affect the prevalence of successful adversarial examples?

• Does the defense hinder gradient-based attacks ability to find existing successful adversar-
ial examples (e.g., gradient obfuscation (Athalye et al., 2018a))?

3.1 SEARCHING A SUBSPACE

Ideally, we would brute-force search the entire nearby input space for adversarial examples, but
given high input dimensionality, this is not feasible. We side-step this limitation by instead searching
a lower-dimensional (e.g., 1–6 dimensions) subspace within the nearby input space.

Subspaces are defined by K orthonormal basis vectors, each of length D, where D is the number of
dimensions of the original space (e.g., 3072 for CIFAR-10, 784 for MNIST) and K is the number
of dimensions of the subspace. These vectors form a matrix M with shape K ×D which we use to
project any point in the subspace to the original input space (and vice versa).

3

Under review as a conference paper at ICLR 2024

projection

High dimensional ℓ𝑝 ball

𝜀
discretization

Low dimensional projection

𝜀

Adversarial grid search

froghorse froghorse

Figure 1: In order to search for adversarial regions nearby the original point, we take a small slice
of the full high-dimensional space (i.e., a subspace). Within this subspace, we compare whether
grid-sweep and gradient-guided attacks can find adversarial examples. If gradient-guided attacks
cannot find any adversarial examples, but grid-sweep does, this may indicate obfuscated gradients.

Within this subspace, we execute a grid-sweep search. This search discretizes each axis of the
subspace (where each axis is defined by a basis vector) into a preset number of bins B. For a
subspace with K dimensions, this makes the number of points we search in the subspace = BK if
we use the L∞ distance, and ≤ BK if we use the L2 distance. Algorithm 1 provides more detail.

Function GridSweepPerturbationsL2(K,B,M, ε)
for g ∈ {0, ..., B}K do

g ← (g/B) ∗ 2− 1 // scale grid to [-1,1] and origin center
if L2_norm(g) ≤ 1 then

δ ← gM ∗ ε // project coordinate to input space and scale
yield δ // yield perturbation to try

Algorithm 1: Generating Grid Sweep Perturbations

Note that this grid-sweep will miss adversarial examples that do not lie on the discretized grid. To
ensure this was not an issue, we also randomly selected coordinates g (ignoring the equal-spacing of
the grid points) within the K-dimensional subspace (and distance constraint) using the same number
of samples as grid-sweep, and found little difference. These results are in App. A. Finally, we
compare the results of these “blind” attacks with an execution of AutoAttack’s A-PGD (Croce et al.,
2021; Croce & Hein, 2021) also restricted to the continuous K-dimensional subspace.

By comparing these different methods of finding adversarial inputs, we can discover attack bugs
where the gradient-guided attack (A-PGD in our case) fails to find adversarial examples with inputs
that grid-sweep succeeded on. If such bugs are prevalent, then the defense is likely to be causing
some form of gradient obfuscation (Athalye et al., 2018a).

3.2 CASE STUDY: SUBSPACE GRID-SWEEP FOR K-WINNERS-TAKE-ALL

Input : dataset
Output: num_vuln, apgd_found
n← len(dataset);
num_vuln← 0;
apgd_found← 0;
for x in dataset do

if gridsweep_finds_adv_example(x) then
num_vuln← v + 1;
if apgd_finds_adv_example(x) then

apgd_found← apgd_found + 1;
robust_against_gridsweep← 1−

(num_vuln
n

)
;

Algorithm 2: Subspace Grid-sweep

We illustrate the utility of Subspace Grid-sweep
for evaluating a deterministic published ML de-
fense, k-Winners-Take-All (Xiao et al., 2020),
that is known to suffer from (highly) obfuscated
gradients (Tramèr et al., 2020).

We search for adversarial examples within
small subspaces consisting of 1–6 dimensions
using grid-sweep and A-PGD and fix the max-
imum adversarial L2 distance to ε = 0.5.
For A-PGD, we use AutoAttack’s implementa-
tion (Croce et al., 2021; Croce & Hein, 2021)
with 100 steps and 20 restarts. Experiments are
completed on both the CIFAR-10 and SVHN
validation datasets, the same datasets used by
the original work. For grid-sweep, the number of discretized search bins B varies between 9 and
1001, using fewer bins as the subspace dimensionality increases. More detailed results and values

4

keenl
Highlight

keenl
Highlight

keenl
Highlight

Under review as a conference paper at ICLR 2024

Table 1: Subspace Grid-sweep results for k-Winners-Take-All showing increased adversarial exam-
ple prevalence and signs of gradient obfuscation. Read section 3.2 for full reasoning. First column
shows robustness against Grid-sweep, as defined in algorithm 2. Second and third columns show
the number of vulnerable datapoints grid-sweep found how many of those A-PGD found (where
vulnerable means at least one successful adversarial example was found).

Model
Robustness
against
Grid-sweep

Vuln Datapoints Found

Grid-sweep A-PGD

Undefended 0.95 144 144/144
kWTA-defended 0.61 1160 1011/1160

(a) CIFAR-10

Model
Robustness
against
Grid-sweep

Vuln Datapoints Found

Grid-sweep A-PGD

Undefended 0.98 74 74/74
kWTA-defended 0.71 896 787/896

(b) SVHN

of B and K for these experiments are in Tables 4–5 in App. A. Aggregate measures summarizing
experiments over all subspaces are used in this section for brevity.

We calculate and present the results following algorithm 2 to better show the two effects previously
described: (1) whether a defense changes the prevalence of adversarial examples; and (2) whether a
defense is hindering gradient-guided attacks from finding existing adversarial examples.

The results are summarized in in Table 1. As mentioned in section 3.1, there are two effects of the
defense we should observe.

1. Comparing the robustness against grid-sweep between the undefended model1 with the k-
Winners-Take-All-defended model, we find that the robustness against grid-sweep (defined
in algorithm 2) is lower for the k-Winners-Take-All-defended model. This indicates that
this defense is increasing the prevalence of adversarial examples.

2. Comparing the number of vulnerable datapoints between grid-sweep and A-PGD for the
k-Winners-Take-All-defended model, we also notice that A-PGD often fails to find adver-
sarial examples against k-Winners-Take-All in cases where grid-sweep would find them.
This shows that k-Winners-Take-All is making it harder for gradient-based methods to find
adversarial examples, even though they still exist. Note that A-PGD on the undefended
model finds all vulnerable datapoints as grid-sweep, indicating no hindrance.

4 DETERMINISTIC DEFENSES ARE SIMILARLY (WHITE-BOX) ROBUST

An important feature of Subspace Grid-sweep is that its search covers the entire subspace (within
some distance from an input) to a certain granularity, ensuring that existing adversarial regions (not
small enough to fit between grid points) will be discovered. This feature assumes that adversarial
regions are static and non-probabilistic. As adversarial regions are an abstraction of classifier/ML
defense behavior, this means Subspace Grid-sweep only works on deterministic ML defenses.

In this section, we investigate whether we can remove randomness 2 and yet retain the claimed em-
pirical benefits of some randomized defenses. To do this, we begin by constructing deterministic
variants of each of the three randomized defenses introduced earlier (Randomized Smoothing (Co-
hen et al., 2019) (section 4.1), Energy-based Models as a Defense (Grathwohl et al., 2020) (sec-
tion 4.2), and Diffusion Models for Adversarial Purification (Nie et al., 2022) (section 4.3)). We
then compare the robustness of the random and deterministic variants of these defenses against a
white-box attack.

For consistency, we evaluate both variants of the defenses (randomized and deterministic) using
each defense’s published code and the implementation of PGD that the original work used for eval-
uation. Specifically, for Randomized Smoothing, we implemented PGD as described in the original
paper (Cohen et al., 2019). For EBM–Def , we used foolbox (Rauber et al., 2017; 2020) to exe-
cute PGD with a binary-search. Finally, we executed A-PGD from AutoAttack (Croce et al., 2021)

1This is the baseline model from the original paper, but without k-Winners-Take-All.
2‘Removing randomness’ consists of modifying the defense to ensure that a given input will always have

the same output. This property is sufficient to avoid issues caused by randomness discussed in section 6.

5

keenl
Highlight

Under review as a conference paper at ICLR 2024

against DiffPure. All attacks were executed, as in the original works, by using test datapoints from
the CIFAR-10 dataset (Krizhevsky, 2009) as inputs.

Overall, we demonstrate that the deterministic analogs have similar or equal empirical robustness
to the original random defenses, showing that the robustness claimed in these works can also be
achieved via a deterministic mechanism, and that randomness is not necessary.

4.1 RANDOMIZED SMOOTHING

As described in section 2.2, Randomized Smoothing aggregates the inferences of several Gaussian-
corrupted copies of the input through the base classifier (the classifier being defended).

1 2 3 5 10 50 100
Number of Corruptions

0.0

0.2

0.4

0.6

0.8

1.0

Ro
bu

st
 A

cc
ur

ac
y

Deterministic
Random

Figure 2: PGD success against randomized and
deterministic smoothing converges to the same
empirical robustness as number of corruptions in-
creases. Shaded regions are 95% confidence inter-
vals (Random’s confidence interval is very small).

Making this defense deterministic. To make
this process deterministic, we fix the random
seed before every prediction and use the same
set of corruptions for every inference. We re-
fer to this deterministic version of inference as
Deterministic Smoothing.

Comparing the randomized and determin-
istic versions. To compare the robustness of
these defenses, we execute Projected Gradi-
ent Descent (PGD) (Madry et al., 2018) on
both Randomized Smoothing and Determinis-
tic Smoothing using 100 steps, a step size of
0.025 with anL2 distance constraint of 0.5. The
base classifier used is provided by the origi-
nal work (Cohen et al., 2019), and has been
smoothed with N (0, 0.5). We execute a step
towards the increasing loss gradient aggregated
across n noise-corrupted copies of the origi-
nal image. For Deterministic Smoothing, these
noise-corrupted copies do not change across different PGD steps, resulting in a less noisy gradient.
However, for Randomized Smoothing, the sampled noise used to corrupt n copies of the input is re-
sampled and 100 EoT (Expectation over Transformation (Athalye et al., 2018b)) gradient estimates
are conducted for each step. To ensure our results were not affected by PGD non-convergence,
we also executed PGD for up to 10000 steps for 100 corruptions, and found the same results. In
section 5, Deterministic Smoothing also exhibits similar robustness against A-PGD.

Figure 2 shows the robust accuracy of the randomized and deterministic variants as we increase
the number of noise-corrupted copies n used to make predictions. The robust accuracy of both
Randomized Smoothing and Deterministic Smoothing rapidly converge to the same value at around
5 corruptions, which is many fewer than the 100 corruptions used in the original work (Cohen et al.,
2019). This indicates that the empirical robustness of Randomized Smoothing does not come from
the randomness of the noise, but from the self-ensembling effect of aggregating multiple inferences
within proximity of the original point.

4.2 ENERGY-BASED MODELS

Recall from section 2.2 that the only source of randomness in EBM–Def is the random corruption
added before the deterministic refinement stage using the trained energy-based model (EBM).

Making this defense deterministic. Similar to Randomized Smoothing, we make the initial added
corruptions the same for each inference by setting the same random seed before each prediction.

Comparing the randomized and deterministic versions. The EBM–Def paper uses fool-
box (Rauber et al., 2017; 2020) to execute PGD with a binary-search to create adversarial examples
from the CIFAR-10 dataset (Krizhevsky, 2009) with a minimal L2 or L∞ distance to the original
point. PGD is executed using 20 random restarts, with 40 steps targeting both variants of EBM–Def .

6

keenl
Highlight

Under review as a conference paper at ICLR 2024

Using this type of attack, a successful adversarial example is found for every test datapoint, and the
distance to the original point is used to measure the robustness of the targeted classifier, with larger
distances corresponding to more robustness.

1 2 5
Number of Markov Chains

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

Di
st

an
ce

 to
 O

rig
in

al
 Im

ag
e

epsilon = 0.0001

epsilon = 0.0002

epsilon = 0.0005

epsilon = 0.0010

Determ
Random

Figure 3: Attacking randomized and determinis-
tic versions of EBM–Def yields near-identical em-
pirical robustness, at four different magnitudes for
the adversarial perturbations.

The deterministic and randomized versions of
EBM–Def behave nearly identically. Figure 3
shows their robustness using 1, 2 or 5 “markov
chains” (i.e., parallel noise-refine processes on
copies of the input), for four different magni-
tudes for the adversarial perturbations. Thus,
the empirical robustness gained by EBM–Def
appears to be due to the deterministic refine-
ment, rather than the randomness of the initial
corruptions. For more detailed plots that mirror
the original work, see figure 5 in App. B.

4.3 DIFFUSION
MODELS FOR ADVERSARIAL PURIFICATION

Diffusion Models for Adversarial Purifica-
tion (Nie et al., 2022) also adds random noise
to the input, but then applies a denoising stage
that is itself randomized.

Making this defense deterministic As for
Deterministic Smoothing and EBM–Def , we always use a fixed seed for sampling the initial input
noise. For DiffPure, we further use the same seed for the denoising process, thereby making it de-
terministic as well. To smoothly interpolate between this fully deterministic version and the original
randomized version, we also consider a defense variant that introduces increasingly more variability
by cycling through k different seeds in subsequent inferences, where k ∈ {1, 2, 3, 5, 10, 50, 100}.

No Defense 1 2 3 5 10 50 100
Number of Seeds in Deterministic Cycle

0.0

0.2

0.4

0.6

0.8

1.0

Ro
bu

st
 A

cc
ur

ac
y

Determ Avg
Random (Original) Avg

Figure 4: Deterministic analogs of DiffPure are
just as (or nearly as) robust as the random original.

Comparing the randomized and determin-
istic versions The original DiffPure work
measures robustness by executing AutoAt-
tack (Croce et al., 2021) with test samples from
the CIFAR-10 dataset using 20 EoT gradient es-
timates with 1 random restart. We mirror this
evaluation by executing AutoAttack in both its
random and standard settings, with L2 and L∞
constraint distances of 0.5 and 0.031373, re-
spectively. We use A-PGD to compare versions
of DiffPure, as it is the only attack executed in
all of these settings.

Figure 4 shows that DiffPure and its determinis-
tic analog rapidly converge in empirical robust-
ness as we increase the number of seeds used to
sample random noise in subsequent iterations.
The completely deterministic version of DiffPure (1 seed) exhibits 76% of the empirical robustness
of the original randomized version (67% out of 88%). With a cycle of just three random seeds, we
recover the empirical robustness of the original defenses. Thus, this defense’s empirical robustness
appears to stem primarily from the, now deterministic, diffusion denoising process.

5 SUBSPACE GRID-SWEEP ON DETERMINISTIC VARIANTS OF RANDOM
DEFENSES

Section 3 confirmed prior work’s finding that k-Winners-Take-All is flawed (Tramèr et al., 2020). In
this section, we use Subspace Grid-sweep on the deterministic variants of the previously-published

7

keenl
Highlight

Under review as a conference paper at ICLR 2024

random defenses described in section 4 to evaluate their robustness. Overall, our results show that
Randomized Smoothing successfully reduces the prevalence of adversarial examples, while EBM–
Def and DiffPure may actually be increasing the prevalence of adversarial examples, and only mak-
ing it harder for gradient-based attacks to find them.

Table 2: First column shows robustness against
Grid-sweep, as defined in algorithm 2. Second
and third columns show the number of vulnera-
ble datapoints grid-sweep found and how many of
those A-PGD found. Read section 5 for analysis.

Model
Robustness
against
Grid-sweep

Vuln Datapoints Found

Grid-sweep A-PGD

(Smoothing) Base 0.97 74 73/74
(Smoothing) Defended 0.98 70 27/70

(EBM–Def) Base 0.99 34 34/34
(EBM–Def) Defended 0.96 104 92/104

(DiffSmall) Base 0.95 144 144/144
(DiffSmall) Defended 0.48 1572 867/1572

Each defense we consider uses a different un-
derlying base classifier. To create a fair com-
parison, we first execute Subspace Grid-sweep
against each defense’s undefended base classi-
fier (referred to as Base in Table 2), and then
compare it to the deterministic variants of the
defenses from section 4. Because DiffPure’s
inference is computationally expensive (which
makes running A-PGD prohibitive), we created
a faster version—referred to as DiffSmall—that
uses fewer refinement steps. We anticipated it
would not be as robust as the published Diff-
Pure (Nie et al., 2022), but we expected similar
behavior in Subspace Grid-sweep. In App. A,
we provide detailed tables of our full results in-
cluding measures for statistical significance.

Deterministic Smoothing. The first two rows of Table 2 show that the base (undefended) classifier
has a robustness against grid-sweep of 97% and the Deterministic Smoothing-defended classifier is
slightly more robust at 98%. Also, A-PGD successfully finds nearly all vulnerable points on the
base classifier, but misses many when it is defended by Deterministic Smoothing. These results
indicate two insights: 1) Deterministic Smoothing successfully reduces the prevalence of adversarial
examples compared to the undefended classifier and; 2) A-PGD (from AutoAttack (Croce et al.,
2021)) sometimes misses the, albeit smaller, adversarial regions that still exist. We hypothesize this
is because of a slight misalignment between the objective A-PGD tries to maximize and the inference
procedure of Deterministic Smoothing. Specifically, A-PGD uses the mean of the loss gradients
across all (deterministic) corruptions as prescribed by EoT (Athalye et al., 2018b), incentivizing a
perturbation that increases the loss for all corruptions. However, to fool Deterministic Smoothing,
we simply need to fool a plurality of corruptions. An attack that first finds a plurality of easy
corruptions to fool, then only focuses on those may be more appropriate. However, we find the
standard A-PGD implementation to be sufficient for our purposes.

EBM–Def . For this defense, we find that the underlying base classifier is already very robust
against grid-sweep at 99%. Comparing with the EBM–Def -defended classifier yields two in-
sights: 1) ironically, adding EBM–Def increases the prevalence of adversarial examples in the low-
dimensional subspaces searched; and 2) EBM–Def may have a slight gradient obfuscation issue, as
A-PGD fails to find an adversarial example in around 10% of inputs that Grid-sweep does find one.

DiffSmall. For DiffSmall, we find that the defense strongly increases the prevalence of adversarial
examples in the subspaces searched compared to the undefended classifier. Indeed, robustness to
grid-sweep is reduced from 95% to 48% when the diffusion defense is in place compared to the
undefended base classifier. More worryingly, this decrease in robustness is partially missed by A-
PGD. Indeed, the gradient-based attack fails to find many of the vulnerable datapoints that were
found with with either a grid-sweep or random sampling approach.

6 DISCUSSION

In this section, we remark on randomness in evaluation, some limitations and theoretical aspects of
this work, and promising future work.

Problems with randomness in evaluation. As pointed out in section 2.1, confidently figuring out
whether an ML defense can be defeated is difficult. Including randomness adds more difficulty.

8

Under review as a conference paper at ICLR 2024

For example, randomness, sometimes by design (Xiao et al., 2020), is sufficient to remove the
ability to quickly check whether an underlying loss gradient is smooth. While this difficult loss
surface could be the result of a robust defense, it also could be obfuscating a weak defense that
can be defeated via an adaptive attack (Tramèr et al., 2020; Gao et al., 2022). Additionally, while
black-box attacks can be useful to expose gradient masking (Athalye et al., 2018a), randomness
directly degrades the ability to use this class of attack for evaluation (Dong et al., 2019), requiring
potential evaluators to forgo them as tools. Similarly, creating attacks that can expose the underlying
vulnerability of randomized defenses often requires an evaluator to specially craft an attack to bypass
any specific flavor of randomness included (Tramèr et al., 2020).

As shown in section 4, the extra effort needed to expose a randomized defense’s weakness may not be
necessary if these defenses can be made deterministic and still benefit from empirical robustness. For
this reason, random defense authors may consider providing a deterministic analog for evaluation.

Limitations and theoretical aspects. While the three defenses we study could be made deter-
ministic while retaining their adversarial robustness, there exist some ML defense benefits where
randomness is not easily removed or is a truly necessary component. In the cases where these
benefits must be retained, our advice and new evaluation method may not be applicable.

For example, the robustness certificate gained in Randomized Smoothing is dependent on the Monte
Carlo estimation of the distribution of classes within an Lp ball of the original input point. The
defense estimates this by adding Gaussian-sampled corruptions to the input point and aggregating
the classifications into a distribution. However, in the version of this defense where the random
seed is fixed (and known to an attacker) resulting in the same corruptions for each inference (i.e.,
Deterministic Smoothing in section 4.1), a robustness certificate can no longer be justified. The
loss of the robustness certificate occurs because the deterministic corruptions are no longer a valid
Monte Carlo estimation. In this case, an attacker no longer theoretically needs to attempt to optimize
their adversarial perturbations against unknown Gaussian-sampled corruptions, but only against the
known set of corruptions used in every inference.

For this reason, in principle, Deterministic Smoothing should be an easier defense to attack. It is
interesting, then, that the empirical success of an attacker that knows the deterministic corruptions
used for prediction is essentially the same as an attacker that does not know the corruptions used as
shown in section 4.1 (given at least 5 corruptions are used for prediction as shown in figure 2).

Future work. Given this cursory discord between theoretical and empirical robustness, it could be
valuable to investigate how an attacker’s knowledge of a fixed random seed affects their capabilities.

Also, because randomness has been shown to be effective against black-box attacks (Dong et al.,
2019), it could be valuable to see if they become more helpful for evaluating deterministic analogs
of randomized attacks. It may be the case that if a black-box attack becomes more effective against
a deterministic analog of a promising randomized defense, then this may be a sign of a potentially
randomness-obscured weakness in the defense.

7 CONCLUSION

Overall, this work suggests that Subspace Grid-sweep can be a valuable tool to understand: (1) if an
ML defense is likely increasing, decreasing, or not affecting the prevalence of adversarial examples
and; (2) if an ML defense is hindering gradient-guided methods such as A-PGD from finding existing
adversarial examples. Our findings also suggest an additional step of consideration when designing
random ML defenses to check whether randomness is truly necessary. Indeed, we have shown that:
(1) some ML defenses can have their randomness removed and still retain their robustness and; (2)
without randomness, ML defenses can be evaluated with Subspace Grid-sweep.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In Jennifer Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pp. 274–283. PMLR, 10–15 Jul 2018a. URL
https://proceedings.mlr.press/v80/athalye18a.html.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. In International Conference on Machine Learning, 2018b.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=SyZI0GWCZ.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypass-
ing ten detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelli-
gence and Security, AISec ’17, pp. 3–14, New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450352024. doi: 10.1145/3128572.3140444. URL https:
//doi.org/10.1145/3128572.3140444.

Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via random-
ized smoothing. In ICML, 2019.

Francesco Croce and Matthias Hein. Mind the box: l1-apgd for sparse adversarial attacks on image
classifiers. In ICML, 2021.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adver-
sarial robustness benchmark. In Thirty-fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track, 2021. URL https://openreview.net/forum?
id=SSKZPJCt7B.

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu. Bench-
marking adversarial robustness. December 2019.

Yue Gao, Ilia Shumailov, Kassem Fawaz, and Nicolas Papernot. On the limitations of stochastic
pre-processing defenses. 2022. https://arxiv.org/abs/2206.09491.

Will Grathwohl, Kuan-Chieh Wang, and Jorn-Henrik Jacobsen. Your classifier is secretly an energy
based model and you should treat it like one. pp. 23, 2020.

Jinyuan Jia, Xiaoyu Cao, Binghui Wang, and Neil Zhenqiang Gong. Certified robustness for top-
k predictions against adversarial perturbations via randomized smoothing. 2020. https://
arxiv.org/abs/1912.09899.

Xiaojun Jia, Xingxing Wei, Xiaochun Cao, and Hassan Foroosh. Comdefend: An efficient image
compression model to defend adversarial examples. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6077–6085, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Alexander Levine and Soheil Feizi. Robustness certificates for sparse adversarial attacks by ran-
domized ablation. In AAAI Conference on Artificial Intelligence, 2019.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR 2018, 2018. URL https:
//openreview.net/forum?id=rJzIBfZAb.

Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash Vahdat, and Anima Anandkumar.
Diffusion models for adversarial purification. In International Conference on Machine Learning
(ICML), 2022.

10

https://proceedings.mlr.press/v80/athalye18a.html
https://openreview.net/forum?id=SyZI0GWCZ
https://doi.org/10.1145/3128572.3140444
https://doi.org/10.1145/3128572.3140444
https://openreview.net/forum?id=SSKZPJCt7B
https://openreview.net/forum?id=SSKZPJCt7B
https://arxiv.org/abs/2206.09491
https://arxiv.org/abs/1912.09899
https://arxiv.org/abs/1912.09899
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb

Under review as a conference paper at ICLR 2024

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust detection of adversarial ex-
amples. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, pp. 4584–4594, Red Hook, NY, USA, 2018. Curran Associates Inc.

Edward Raff, Jared Sylvester, Steven Forsyth, and Mark McLean. Barrage of random transforms
for adversarially robust defense. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6521–6530, 2019.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark
the robustness of machine learning models. In Reliable Machine Learning in the Wild Workshop,
34th International Conference on Machine Learning, 2017. URL http://arxiv.org/abs/
1707.04131.

Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Brendel. Foolbox native: Fast
adversarial attacks to benchmark the robustness of machine learning models in pytorch, tensor-
flow, and jax. Journal of Open Source Software, 5(53):2607, 2020. doi: 10.21105/joss.02607.
URL https://doi.org/10.21105/joss.02607.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend:
Leveraging generative models to understand and defend against adversarial examples. In Inter-
national Conference on Learning Representations, 2018.

Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Mądry. On adaptive attacks
to adversarial example defenses. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NeurIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.
ISBN 9781713829546.

Chang Xiao, Peilin Zhong, and Changxi Zheng. Enhancing adversarial defense by k-winners-
take-all. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=Skgvy64tvr.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial
effects through randomization. In International Conference on Learning Representations, 2018.

11

http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131
https://doi.org/10.21105/joss.02607
https://openreview.net/forum?id=Skgvy64tvr
https://openreview.net/forum?id=Skgvy64tvr

Under review as a conference paper at ICLR 2024

A SUBSPACE GRID-SWEEP DETAILS

The included tables in this section give the robustness of all undefended and defended classifiers to
all search methods in several different sub-spaces. These results were aggregated in the main paper.

To measure statistical significance, we use McNemar’s test on whether Grid-sweep and A-PGD
found the same set of vulnerable datapoints. P-values are given throughout the tables. We consider
a p-value of less than 0.05 to be significant.

Table 3: Extended summary Subspace Grid-sweep results for k-Winners-Take-All. First column is
the robustness of models when attacked by Grid-sweep. The following columns show how many
vulnerable datapoints are found by each method. In contrast to the undefended classifier, A-PGD
fails to find vulnerable datapoints that Grid-sweep finds in the k-Winners-Take-All-defended clas-
sifier, indicating that this defense makes them harder to find for gradient-based methods. Also, as
reflected in the decreased robustness against Grid-sweep, the k-Winners-Take-All-defended classi-
fier actually increases the prevalence of adversarial examples.

Robustness
against
Grid-sweep

Vulnerable Datapoints Found

Model Grid-sweep Rand-sample A-PGD

1 rep 10 rep 20 rep

Undefended 0.95 144 144/144 139/144 144/144 144/144
kWTA-defended 0.61 1160 1114/1160 808/1160 980/1160 1011/1160

(a) CIFAR-10

Robustness
against
Grid-sweep

Vulnerable Datapoints Found

Model Grid-sweep Rand-sample A-PGD

1 rep 10 rep 20 rep

Undefended 0.98 74 74/74 72/74 74/74 74/74
kWTA-defended 0.71 896 867/896 633/896 760/896 787/896

(b) SVHN

Table 4: Extended results for k-Winners-Take-All defense using Subspace Grid-sweep for CIFAR-
10. For the undefended model, A-PGD finds adversarial regions (within ε distance of original point)
for every datapoint Grid-sweep finds adversarial regions, indicating that gradient-based methods
are not hindered from finding existing adversarial regions. However, A-PGD fails to find vulnera-
ble datapoints that Grid-sweep finds in the k-Winners-Take-All-defended classifier, indicating that
this defense makes them harder to find for gradient-based methods. Also, as reflected in the de-
creased robustness against all search methods, the k-Winners-Take-All-defended classifier increases
the prevalence of adversarial examples.

Sub-space / Grid A-PGD Stat Test: A-PGD same as Grid-sweep?

Dims Bins Grid-sweep Rand-sample 1 rep 10 rep 20 rep 1 rep p-value 10 rep p-value 20-rep p-value

Undefended
1 1001 0.97 0.97 0.97 0.97 0.97 0.1573 No Diff No Diff
2 51 0.96 0.95 0.96 0.95 0.95 1 0.31731 0.31731
3 21 0.96 0.96 0.96 0.96 0.96 0.1573 No Diff No Diff
4 11 0.95 0.95 0.95 0.95 0.95 No Diff No Diff No Diff
5 9 0.94 0.94 0.94 0.94 0.94 0.31731 0.31731 0.31731
6 9 0.94 0.93 0.93 0.93 0.93 0.31731 0.31731 0.31731

Defended
1 1001 0.67 0.7 0.85 0.82 0.82 0 0 0
2 51 0.64 0.63 0.71 0.65 0.64 0 0.23932 0.84148
3 21 0.61 0.6 0.71 0.64 0.61 0 0.00671 0.65472
4 11 0.62 0.61 0.71 0.62 0.61 0 0.82726 0.29715
5 9 0.59 0.57 0.7 0.62 0.61 0 0.00176 0.07364
6 9 0.55 0.52 0.69 0.63 0.6 0 0 0

12

Under review as a conference paper at ICLR 2024

Table 5: Extended results for k-Winners-Take-All defense using Subspace Grid-sweep for SVHN.
For the undefended model, A-PGD finds adversarial regions (within ε distance of original point)
for every datapoint Grid-sweep finds adversarial regions, indicating that gradient-based methods
are not hindered from finding existing adversarial regions. However, A-PGD fails to find vulnera-
ble datapoints that Grid-sweep finds in the k-Winners-Take-All-defended classifier, indicating that
this defense makes them harder to find for gradient-based methods. Also, as reflected in the de-
creased robustness against all search methods, the k-Winners-Take-All-defended classifier increases
the prevalence of adversarial examples.

Sub-space / Grid A-PGD Stat Test: A-PGD same as Grid-sweep?

Dims Bins Grid-sweep Rand-sample 1 rep 10 rep 20 rep 1 rep p-value 10 rep p-value 20-rep p-value

Undefended
1 1001 0.99 0.99 0.99 0.99 0.99 0.1573 No Diff No Diff
2 51 0.98 0.98 0.98 0.98 0.98 1 0.31731 0.31731
3 21 0.98 0.98 0.98 0.98 0.98 0.1573 No Diff No Diff
4 11 0.97 0.97 0.97 0.97 0.97 No Diff No Diff No Diff
5 9 0.97 0.97 0.97 0.97 0.97 0.31731 0.31731 0.31731
6 9 0.96 0.96 0.96 0.96 0.96 0.31731 0.31731 0.31731

Defended
1 1001 0.75 0.76 0.89 0.86 0.86 0 0 0
2 51 0.72 0.72 0.79 0.75 0.73 0 0.23932 0.84148
3 21 0.71 0.7 0.78 0.73 0.72 0 0.00671 0.65472
4 11 0.71 0.71 0.77 0.73 0.72 0 0.82726 0.29715
5 9 0.71 0.69 0.78 0.72 0.71 0 0.00176 0.07364
6 9 0.68 0.68 0.77 0.71 0.7 0 0 0

Table 6: Extended results for Deterministic Smoothing defense using Subspace Grid-sweep. For the
undefended model, A-PGD (10 repeats and 20 repeats) finds adversarial regions (within ε distance
of original point) for every datapoint Grid-sweep finds adversarial regions, indicating that gradient-
based methods are not hindered from finding existing adversarial regions. Deterministic Smoothing
reduces prevalence of adversarial regions and McNemar’s test finds no signs of gradient obfuscation.

Sub-space / Grid A-PGD Stat Test: A-PGD same as Grid-sweep?

Dims Bins Grid-sweep Rand-sample 1 rep 10 rep 20 rep 1 rep p-value 10 rep p-value 20-rep p-value

Undefended
1 1001 0.93 0.93 0.95 0.93 0.93 0.0027 No Diff No Diff
2 51 0.91 0.91 0.92 0.91 0.91 0.01431 No Diff No Diff
3 21 0.89 0.89 0.91 0.89 0.89 0.00091 0.31731 0.31731
4 11 0.87 0.87 0.89 0.87 0.87 0.0027 0.31731 0.31731
5 9 0.86 0.86 0.88 0.85 0.85 0.01255 0.31731 0.08326
6 9 0.85 0.86 0.87 0.85 0.84 0.02092 0.08326 0.0455

Defended
1 1001 0.99 0.99 0.99 0.99 0.99 0.08326 0.08326 0.08326
2 51 0.98 0.98 0.99 0.99 0.99 0.01431 0.01431 0.01431
3 21 0.98 0.98 0.99 0.99 0.99 0.00468 0.00468 0.00815
4 11 0.98 0.98 0.99 0.99 0.99 0.00815 0.00815 0.00815
5 9 0.97 0.97 0.99 0.99 0.99 0.00053 0.00091 0.00091
6 9 0.97 0.96 0.98 0.98 0.98 0.01141 0.01141 0.01141

B EBM–Def DETAILS

C COMPUTE USAGE AND INFRASTRUCTURE

To complete our experiments, we used a Linux server with 256 GB of memory, an AMD Ryzen
Threadripper PRO 3975WX CPU, and a Nvidia GeForce RTX 3090 GPU. The experiments executed
took two months of compute time, albeit while others were also running experiments on the server.

D PROBLEMS WITH RANDOMNESS IN DEPLOYMENT

It is easy to see that a non-deterministic classifier (perhaps made non-deterministic by a defense)
is always more vulnerable than a deterministic classifier against a persistent and repetitive attacker.
The capability to attempt multiple identical queries mirrors that of an attacker that queries a model

13

Under review as a conference paper at ICLR 2024

Table 7: Extended results for EBM–Def defense using Subspace Grid-sweep. For the undefended
model, A-PGD finds adversarial regions (within ε distance of original point) for nearly every data-
point Grid-sweep finds adversarial regions, indicating that gradient-based methods are not hindered
from finding existing adversarial regions. However, EBM–Def seems to slightly increase the preva-
lence of adversarial examples but has few signs of gradient obfuscation.

Sub-space / Grid A-PGD Stat Test: A-PGD same as Grid-sweep?

Dims Bins Grid-sweep Rand-sample 1 rep 10 rep 20 rep 1 rep p-value 10 rep p-value 20-rep p-value

Undefended
1 1001 0.99 0.99 1 0.99 0.99 0.1573 No Diff No Diff
2 51 0.99 0.99 0.99 0.99 0.99 No Diff No Diff No Diff
3 21 0.99 0.99 0.99 0.99 0.99 No Diff No Diff No Diff
4 11 0.99 0.99 0.99 0.99 0.99 No Diff No Diff No Diff
5 9 0.98 0.99 0.98 0.98 0.98 No Diff 0.31731 0.31731
6 9 0.99 0.99 0.98 0.98 0.98 0.31731 0.31731 0.31731

Defended
1 1001 0.97 0.97 0.99 0.98 0.98 0.00157 0.31731 0.5637
2 51 0.97 0.97 0.99 0.97 0.97 0.00468 0.5637 0.5637
3 21 0.97 0.97 0.99 0.97 0.97 0.0027 0.1573 0.1573
4 11 0.96 0.97 0.99 0.97 0.97 0.00091 0.1573 0.1573
5 9 0.96 0.97 0.99 0.97 0.96 0.00053 0.08326 0.31731
6 9 0.95 0.97 0.98 0.96 0.96 0.00031 0.0455 0.0455

0.0000 0.0005 0.0010 0.0015 0.0020
epsilon

0.0

0.2

0.4

0.6

0.8

1.0

%
 a

dv
 e

x
di

st
 >

 e
ps

ilo
n

1 Chains / Determ
1 Chains / Random
2 Chains / Determ
2 Chains / Random
5 Chains / Determ
5 Chains / Random

(a) The distributions of adversarial example dis-
tances found when attacking random (dashed) and
deterministic (solid) EBM–Def using 1, 2, or 5
Markov Chains is nearly identical.

0.00020 0.00025 0.00030 0.00035 0.00040 0.00045 0.00050
epsilon

0.10

0.15

0.20

0.25

0.30

0.35

0.40
%

 a
dv

 e
x

di
st

 >
 e

ps
ilo

n

(b) Zoomed in comparison of EBM–Def adversar-
ial example distances showing the slightest difference
between random (dashed) and deterministic (solid)
EBM–Def when 1 Markov Chain is used.

Figure 5: Distribution of adversarial example distances from the original point when attacking a
random and deterministic EBM–Def .

many times during an attack to optimize their adversarial input. However, in this case, we assume
the attacker only attempts the same input multiple times, with no need to optimize. Because there
is no optimization, the attacker only needs to know the black-box hard-label classification for each
query. The issue is visually presented in figure 6.

For a randomly-seeded classifier fθ, let p(x,y) = Prr∼R[fθ(x; r) = y] be the probability (over the
randomness r) of a correct classification for input (x, y). Also, denote the accuracy of a deterministic
classifier by q(x,y,d) = 1[fθ(x; d) = y], where d is a fixed random seed. To begin, note that
p(x,y) = Ed∼R[q(x,y,d)] on any one random sample because the fixed randomness d, while it does not
change, is still randomly selected once. But now note that if we sample from the random classifier
N times, choosing a fresh random seed each time, then the probability that we correctly label the
example x every time is pN(x,y) by independence. But for the deterministic classifier the probability
it returns the correct answer remains unchanged, i.e., Ed∼R[q(x,y,d)]. Therefore, we are guaranteed
that pN(x,y) ≤ Ed∼R[q(x,y,d)], with the inequality being a strict inequality any time p(x,y) < 1.

Overall, including randomness in an ML classifier (i.e., by using a random ML defense) directly
reduces its adversarial robustness to either a repetitive attacker or an environment where the same
query can be expected many times (e.g., many host-based antivirus scanners scanning the same

14

Under review as a conference paper at ICLR 2024

Table 8: Extended results for DiffSmall defense using Subspace Grid-sweep. For the undefended
model, A-PGD finds adversarial regions (within ε distance of original point) for nearly every data-
point Grid-sweep finds adversarial regions, indicating that gradient-based methods are not hindered
from finding existing adversarial regions. However, DiffSmall both increases the prevalence of ad-
versarial examples and shows signs of gradient obfuscation.

Sub-space / Grid A-PGD Stat Test: A-PGD same as Grid-sweep?

Dims Bins Diffusion Steps Grid-sweep Rand-sample 1 rep 10 rep 20 rep 1 rep p-value 10 rep p-value 20-rep p-value

Undefended
1 1001 0.97 0.97 0.97 0.97 0.97 0.31731 No Diff No Diff
2 51 0.96 0.95 0.96 0.95 0.95 0.31731 0.31731 0.31731
3 21 0.96 0.96 0.96 0.96 0.96 0.1573 No Diff No Diff
4 11 0.95 0.95 0.95 0.95 0.95 No Diff No Diff No Diff
5 9 0.94 0.94 0.95 0.94 0.94 0.1573 0.31731 0.31731
6 9 0.94 0.93 0.94 0.93 0.93 0.31731 0.31731 0.31731

Defended
1 1001 1 0.6 0.61 0.91 0.76 0.75 0 0.00006 0.00011
1 1001 2 0.55 0.56 0.93 0.74 0.71 0 0.00001 0.00006
1 1001 3 0.53 0.55 0.86 0.73 0.71 0 0.00001 0.00002
1 1001 5 0.5 0.52 0.84 0.72 0.66 0 0 0.00016
1 1001 10 0.48 0.46 0.86 0.7 0.68 0 0 0.00001
2 51 1 0.58 0.54 0.89 0.76 0.73 0 0.00002 0.00011
2 51 2 0.52 0.5 0.88 0.75 0.73 0 0 0.00001
2 51 3 0.5 0.48 0.89 0.77 0.71 0 0 0
2 51 5 0.44 0.49 0.85 0.72 0.69 0 0 0
2 51 10 0.45 0.45 0.84 0.71 0.67 0 0 0
3 21 1 0.55 0.54 0.88 0.79 0.76 0 0 0
3 21 2 0.52 0.48 0.9 0.73 0.72 0 0 0.00001
3 21 3 0.47 0.44 0.88 0.75 0.74 0 0 0
3 21 5 0.45 0.44 0.88 0.72 0.69 0 0 0
3 21 10 0.42 0.41 0.88 0.72 0.69 0 0 0
4 11 1 0.57 0.58 0.84 0.76 0.75 0 0.00001 0.00002
4 11 2 0.48 0.48 0.92 0.78 0.75 0 0 0
4 11 3 0.46 0.47 0.89 0.76 0.69 0 0 0
4 11 5 0.44 0.44 0.88 0.72 0.69 0 0 0
4 11 10 0.43 0.43 0.87 0.69 0.67 0 0 0
5 9 1 0.54 0.55 0.93 0.8 0.74 0 0 0.00001
5 9 2 0.49 0.48 0.93 0.8 0.74 0 0 0
5 9 3 0.45 0.44 0.89 0.72 0.69 0 0 0
5 9 5 0.41 0.44 0.86 0.74 0.69 0 0 0
5 9 10 0.4 0.44 0.92 0.71 0.67 0 0 0
6 9 1 0.48 0.49 0.9 0.78 0.75 0 0 0
6 9 2 0.41 0.47 0.9 0.79 0.77 0 0 0
6 9 3 0.41 0.4 0.87 0.73 0.69 0 0 0
6 9 5 0.38 0.38 0.9 0.75 0.72 0 0 0
6 9 10 0.37 0.36 0.85 0.71 0.66 0 0 0

Figure 6: Compared to deterministic defenses, random defenses are more vulnerable to an attacker
(or a large group of users) that can submit the same input many times.

file, email spam filter against a mass spam campaign, many users submitting the same query to a
ChatGPT-like service).

15

Under review as a conference paper at ICLR 2024

D.1 EMPIRICAL COMPARISON OF DEPLOYMENT RANDOMNESS

1 2 5 10 100
Number of Corruptions

0.0

0.2

0.4

0.6

0.8

1.0
Ro

bu
st

 A
cc

ur
ac

y
Deterministic
Random, Trials=10
Random, Trials=100
Random, Trials=1000

(a) Robust accuracy of randomized smoothing vs de-
terministic smoothing at varying corruptions. Shaded
regions indicate 95% confidence intervals.

100 101 102 103

Number of attack repeats

0.0

0.2

0.4

0.6

0.8

1.0

Ro
bu

st
 A

cc
ur

ac
y

Deterministic
Random

(b) Robust accuracy of randomized smoothing vs de-
terministic smoothing at 100 corruptions.

Figure 7: As an attacker repeatedly attempts to evade correct classification, the robust accuracy of
a randomized classifier decreases below its deterministic analog.

As described in section 2.2, Randomized Smoothing makes a prediction by executing a Monte Carlo
estimation of the distribution of classes around the input by inferring the class of several copies of
the input, each with a separate randomly sampled corruption.

To make this process deterministic, we fix the random seed before every prediction and use the
same set of corruptions for every inference. We refer to this deterministic version of inference as
Deterministic Smoothing.

We compare the robustness of Deterministic Smoothing and Randomized Smoothing against an
attacker willing to simply repeat their inference many times to get at least one misclassifica-
tion. Mirroring the original Randomized Smoothing work (Cohen et al., 2019), we use CIFAR-
10 (Krizhevsky, 2009) test datapoints for our experiments. This comparison was completed by
computing the classification result of 100,000 Gaussian-corrupted copies of each test datapoint us-
ing the base classifier (i.e., the classifier being defended). As in prior work, this base classifier has
been trained with Gaussian-sampled noise-corruptions up to an L∞ radius of 0.5. (Cohen et al.,
2019) on the CIFAR-10 training set.

In both Randomized Smoothing and Deterministic Smoothing, the number of inferences n aggre-
gated for a single prediction can be adjusted to control for performance and accuracy requirements.
We vary this parameter to observe its affect on robustness. With a setting as low as n = 1 (which
is far below the n = 100 used in the original work (Cohen et al., 2019)), Randomized Smoothing’s
prediction is the class inferred from one noise-corrupted inference through the base classifier. This
setting predictably leads to a higher variance of predictions given the same input, while higher val-
ues of n leads to lower variance predictions. In contrast, Deterministic Smoothing with n = 1 (or n
equal to any positive integer), uses the same corruption(s) to corrupt the image for every prediction,
so there is no variance in predictions on the same input.

To calculate predictions from Randomized Smoothing using different values of n, we shuffle and
group the 100,000 base classifier inferences into groups of size n, then calculate each of those
groups’ mode to get the most commonly inferred class within each group. From these b 100000n c
predictions, we then calculate the probability of misclassification for each individual datapoint. In
contrast, Deterministic Smoothing’s prediction does not change given the same datapoint and value
of n. For this reason, we only calculate one prediction for each (test datapoint, n) pair. Therefore,
as Deterministic Smoothing either gets its one prediction right or wrong, its probability of correct
classification for each test datapoint is calculated as 0% or 100%.

Given these probabilities for each datapoint, figure 7a compares the robust accuracy of both Ran-
domized Smoothing and Deterministic Smoothing over the test dataset using different numbers of
corruptions n as we increase the number of trials an attacker is allowed. In all cases, Randomized

16

Under review as a conference paper at ICLR 2024

Smoothing is found to be less robust than Deterministic Smoothing, even at the published defense’s
chosen value of n = 100 (Cohen et al., 2019).

As mentioned in section D, the probability a classifier (assuming independent trials) f predicts
the class of a given datapoint correctly N times in a row is pN where p is the probability any
given prediction on that datapoint is correct. However, as just mentioned, deterministic classifiers
correctly classify a datapoint in either 0% or 100% of trials, which means pN = p for deterministic
classifiers. This is why Deterministic Smoothing accuracy appears as a horizontal line in figure 7b,
but Randomized Smoothing’s robust accuracy deteriorates as we increase the number of trials.

17

	Introduction
	Related Work
	ML Defense Evaluation
	Published Randomized Defenses

	Subspace Grid-sweep: a New Evaluation Tool
	Searching a Subspace
	Case Study: Subspace Grid-sweep for k-Winners-Take-All

	Deterministic Defenses are Similarly (White-box) Robust
	Randomized Smoothing
	Energy-based Models
	Diffusion Models for Adversarial Purification

	Subspace Grid-sweep on Deterministic Variants of Random Defenses
	Discussion
	Conclusion
	Subspace Grid-sweep Details
	EBM–Def Details
	Compute Usage and Infrastructure
	Problems with Randomness in Deployment
	Empirical Comparison of Deployment Randomness

