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Abstract: Collision-free motion generation in unknown environments is a core1

building block for robot manipulation. Generating such motions is challenging2

due to multiple objectives; not only should the solutions be optimal, the mo-3

tion generator itself must be fast enough for real-time performance and reliable4

enough for practical deployment. A wide variety of methods have been proposed5

ranging from local controllers to global planners, often being combined to offset6

their shortcomings. We present an end-to-end neural model called Motion Policy7

Networks (MπNets) to generate collision-free, smooth motion from just a single8

depth camera observation. MπNets are trained on over 3 million motion plan-9

ning problems in 500,000 environments. Our experiments show that MπNets are10

significantly faster than global planners while exhibiting the reactivity needed to11

deal with dynamic scenes. They are 46% better than prior neural planners and12

more robust than local control policies. Despite being only trained in simulation,13

MπNets transfer well to the real robot with noisy partial point clouds.14

Keywords: Motion Control, Imitation Learning, End-to-end Learning15

Figure 1: MπNets are trained on a large dataset of synthetic demonstrations (left) and can solve
complex motion planning problems using raw point cloud observations (right).

1 Introduction16

Generating fast and legible motions for a robotic manipulator in unknown environments is still an17

open problem. Decades of research have established many well-studied algorithms, but there are18

two practical issues that prevent motion planning methods from being widely adopted in industrial19

applications and home environments that require real-time control. First, it is challenging for any20

single approach to satisfy multiple planning considerations: speed, completeness, optimality, ease-21

of-use, legibility (from the perspective of a human operator), determinism, and smoothness. Second,22

existing approaches enforce strong assumptions about the visual obstacle representations—such as23

accurate collision checking in configuration space [1] or the availability of a gradient [2, 3, 4]—and24

hence require intermediate processing to operate in novel scenes directly using raw sensor observa-25

tions.26

Global planners such as RRT [5] are useful to quickly find a feasible path but say nothing about27

optimality. Other sampling-based approaches iteratively refine their paths to reduce cost and asymp-28

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.



totically approach the optimal solution [6, 7, 8, 9]. Optimization-based approaches [2, 3, 10] em-29

brace locally optimal behavior in exchange for completeness. Recent methods such as Geometric30

Fabrics [4] and STORM [11] deploy reactive local policies and assume that local decisions will lead31

to globally acceptable paths. Unfortunately, as we show in our experiments, the performance of32

these local approaches degrades in more geometrically complex environments as they get stuck in33

local minima. Motivated by the success of deep learning, neural motion planning approaches such34

as Motion Planning Networks [12] have been proposed to greatly improve the sampling of an RRT35

planner with imitation learning. However, they still require a planner and a collision checker with36

known models at test time.37

Planners have traditionally been evaluated with known environment models and perfect state esti-38

mation. When deploying them in practice, however, one would have to create one of several scene39

representations: a static or dynamic mesh, occupancy grids [13, 14], signed distance fields, etc. Re-40

construction systems such as SLAM and KinectFusion [15] have a large system start-up time, require41

a moving camera to aggregate many viewpoints, and ultimately require costly updates in the pres-42

ence of dynamic objects. Recent implicit deep learning methods like DeepSDF [16] and NERF [17]43

are slow or do not yet generalize to novel scenes. Methods such as SceneCollisionNet [18] provide44

fast collision checks but require expensive MPC rollouts at test time. It also draws samples from a45

straight line path in configuration space which may not generalize to challenging environments be-46

yond a tabletop. Other RL-based methods learn a latent representation from observations but have47

only been applied to simple 2D [19, 20] or 3D [21] environments in simulation.48

We present Motion Policy Networks (MπNets), a novel method for learning an end-to-end policy for49

motion planning. Our approach circumvents the challenges of traditional motion planning and is50

flexible enough to be applied in unknown environments. Our contributions are as follows:51

• We present a large-scale effort in neural motion planning for manipulation. Specifically, we52

learn from over 3 million motion planning problems across over 500,000 instances of three53

types of environments, nearly 300x larger than prior work [12].54

• We train a reactive, end-to-end neural policy that operates on point clouds of the environment55

and moves to task space targets while avoiding obstacles. Our policy is significantly faster than56

other baseline configuration space planners and succeeds more than local task space controllers.57

• On our challenging dataset benchmarks, we show that MπNets is nearly 46% more successful58

at finding collision-free paths than prior work [12] without even needing the full scene collision59

model.60

• Finally, we demonstrate sim2real transfer to real robot partial point cloud observations.61

2 Related Work62

Global Planning: Robotic motion planning typically splits into three camps: search, sampling, and63

optimization-based planning. Search-based planning algorithms, such as A* [22, 23, 24], discretize64

the state space and perform a graph search to find an optimal path. While the graph search can65

be fast, complete, and guaranteed optimal, the requirement to construct a discrete graph hinders66

these algorithms in continuous spaces and for novel problems not well covered by the current graph.67

Sampling-based planners [5] function in a continuous state space by drawing samples and building68

a tree. When the tree has sufficient coverage of the planning problem, the algorithm traverses the69

tree to produce the final plan. Sampling based planners are continuous, probabilistically complete,70

i.e. find a solution with probability 1, and some are even asymptotically optimal [6, 7, 8], but under71

practical time limitations, their random nature can produce erratic—though valid—paths.72

Both of the aforementioned planner types are designed to optimize for path length in the given state73

space (e.g. configuration space) while avoiding collisions. An optimal path in configuration space74

is not necessarily optimal for the end effector in cartesian space. Humans motion tends to minimize75

hand distance traveled [25], so what appears optimal for the algorithm may be unintuitive for a hu-76

man partner or operator. In the manipulation domain, goals are typically represented in end effector77
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task space [26, 27]. In a closed loop setting with a moving target, the traditional process of using78

IK to map task to configuration space can produce highly variable configurations, especially around79

obstacles. Motion Optimization [2, 3, 28] on the other hand, generates paths with non-linear opti-80

mization and can consider multiple objectives such as smoothness of the motion, obstacle avoidance81

and convergence to an end effector pose. These algorithms require careful tuning of the respective82

cost functions to ensure convergence to a desirable path and are prone to local minima. Furthermore,83

non-linear optimization is computationally complex and can be slow for difficult planning problems.84

Local Control: In contrast to global planners, local controllers have long been applied to create85

collision-free motions [29, 30, 4, 11]. While they prioritize speed and smoothness, they are highly86

local and may fail to find a valid path in complex environments. We demonstrate in our experiments87

that MπNets are more effective at producing convergent motions in these types of environments,88

including in dynamic and in partially observed settings.89

Imitation Learning: Imitation Learning [31] can train a policy from expert demonstrations with90

limited knowledge of the expert’s internal model. For motion planning problems, we can apply im-91

itation learning and leverage a traditional planner as the expert demonstrator—with perfect model92

of the scene during training—and learn a policy that forgoes the need for an explicit scene model at93

test time. Popular imitation learning methods include Inverse Reinforcement Learning [32, 33, 34]94

and Behavior Cloning [35, 36]. The former typically assumes expert optimality and learns a cost95

function accordingly, whereas the later directly learns the state-action mapping from demonstra-96

tions, regardless of the expert’s optimality. We thus employ behavior cloning because producing97

optimal plans for continuous manipulation problems is challenging. Recent work demonstrates98

behavior cloning’s efficacy for fine-grained manipulation tasks, such as chopstick use [37] and pick-99

and-place [38]. For long-horizon tasks like ours, however, distributional shift and data variance can100

hinder behavior cloning performance. Distribution shift during execution can lead to states unseen101

in training data [37]. Complex tasks often have a long tail of possible action states that are under-102

represented in the data, leading to high data variance [39]. There are many techniques to address103

these challenges through randomization, noise injection, regret optimization, and expert correction104

[37, 40, 41, 42, 43]. These techniques, however, have not been demonstrated on a problem of our105

scale and complexity (see Appendix D for details on the range of data). Our proposal seeks to over-106

come these issues by specifically designing a learnable expert, increasing the scale and variation of107

the data, and using a sufficiently expressive policy model.108

Neural Motion Planning: Many deep planning methods [13, 44, 45, 46] seek to learn efficient sam-109

plers to speed up traditional planners. Motion Planning Networks (MPNets) [12] learn to directly110

plan through imitation of a standard sampling based RRT* planner [6] and is used in conjunction111

with a traditional planner for stronger guarantees. While these works greatly improve the speed of112

the planning search, they have the same requirements as a standard planning system: targets in con-113

figuration space and an explicit collision checker to connect the path. Our work operates based on114

task-space targets and perceptual observations from a depth sensor without explicit state estimation.115

Novel architectures have been proposed, such as differentiable planning modules in Value Iteration116

Networks [20], transformers by Chaplot et al. [47] and goal-conditioned RL policies [48]. These117

methods are challenging to generalize to unknown environments or have only been shown in simple118

2D [19] or 3D settings [21]. In contrast, we illustrate our approach in the challenging domain of119

controlling a 7 degrees of freedom (DOF) manipulator in unknown, dynamic environments.120

3 Learning from Motion Planning121

3.1 Problem Formulation122

MπNets expect two inputs, a robot configuration qt and a segmented, calibrated point cloud zt.123

Before passing qt through the network, we normalize each element to be within [−1, 1] according124

to the limits for the corresponding joint. We call this q∥·∥t . The point cloud is always assumed to be125

calibrated in the robot’s base frame, and it encodes three segmentation classes: the robot’s current126
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geometry, the scene geometry, and the target pose. Targets are inserted into the point cloud via127

points sampled from the mesh of a floating end effector placed at the target pose.128

The network produces a displacement within normalized configuration space q̇
∥·∥
t . To get the next129

predicted state q̂t+1, we take q
∥·∥
t + q̇

∥·∥
t , clamp between [−1, 1], and unnormalize. During training,130

we use q̂t+1 to compute the loss, and when executing, we use q̂t+1 as the next position target for the131

robot’s low-level controller.132

3.2 Model Architecture133

Figure 2: MπNets encodes state as a normalized robot configuration and segmented point cloud
with three classes for the robot, the obstacles, and the target. The policy outputs a displacement in
normalized joint space, which can then be applied to the input before unnormalizing to get qt+1.

The network consists of two separate encoders, one for the point cloud and one for the robot’s134

current configuration, as well as a decoder, totaling 19M parameters. Our neural policy architecture135

is visualized in Fig. 2. We use PointNet++ [49] for our point cloud encoder. PointNet++ learns a136

hierarchical point cloud representation and can encode a point cloud’s 3D geometry, even with high137

variation in sampling density. PointNet++ architectures have been shown to be effective for a variety138

of point cloud processing tasks, such as segmentation [49], collision checking [18], and robotic139

grasping [50, 51]. The robot configuration encoder and the displacement decoder are both fully140

connected multilayer perceptrons. We discuss the architecture in detail in Appendix C. /fishyTalk141

about where partial observability comes from.142

3.3 Loss Function143

The network is trained with a compound loss function with two constituent parts: a behavior cloning144

loss to enforce accurate predictions and a collision loss to safeguard against catastrophic behavior.145

Geometric Loss for Behavior Cloning To encourage alignment between the prediction and the146

expert, we compute a geometric loss across a set of 1,024 fixed points along the surface of the robot.147

148

LBC(∆̂qt) =
∑
i

∥x̂i
t+1 − xi

t+1∥2 + ∥x̂i
t+1 − xi

t+1∥1, where
x̂i
t+1 = ϕi(qt + ∆̂qt)

xi
t+1 = ϕi(qt+1)

(1)

ϕi(·) represents a forward kinematics mapping from the joint angles of the robot to point i defined149

on the robot’s surface. The loss is computed as the sum of the L1 and L2 distances between cor-150

responding points on the expert and the prediction after applying the predicted displacement. By151

using both L1 and L2, we are able to penalize both large and small deviations.152

We use a geometric, task-space loss because our goal is to ensure task-space consistency of our153

policy. Configuration space loss appears in prior work [12], but does capture the accumulated error154

of the kinematic chain as effectively (see Appendix J).155

Collision Loss In order to avoid collisions–a catastrophic failure–we apply an additional hinge-156

loss inspired by motion optimization [52].157

Lcollision =
∑
i

∑
j

∥hj(x̂
i
t+1)∥2, where hj(x̂

i
t+1) =

{
−Dj(x̂

i
t+1), if Dj(x̂

i
t+1) ≤ 0

0, if Dj(x̂
i
t+1) > 0

(2)
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The synthetic environments are fully-observable during training, giving us access to the signed-158

distance functions (SDF), {Dj(·)}j , of the obstacles in each scene. For a given closed surface, its159

SDF maps a point in Euclidean space to the minimum distance from the point to the surface. If the160

point is inside the surface, the function returns negative.161

3.4 Training Implementation Details162

MπNets is trained for single-step prediction, but during inference, we use it recursively for closed-163

loop rollouts. The compounded noise in subsequent inputs equates covariate shift [41, 43]. To164

promote robustness, we augment our training data with random perturbations in two ways. We apply165

Gaussian noise to the joint angles of each input configuration, which in turn affects the corresponding166

points in the point cloud, passed as input to the network [37, 53]. Additionally, for each training167

example, we generate a unique point cloud during training, i.e. during each epoch, the network sees168

163.5M unique point clouds. We train our network with a single set of weights across our entire169

dataset.170

4 Procedural Data Generation171

Figure 3: MπNets is trained with a dataset consisting of solutions to 3.27 million unique planning
problems across over 575,000 unique, procedurally generated environments.

4.1 Large-scale Motion Planning Problems172

Each planning problem is defined by three components: the scene geometry, the start configuration,173

and the goal pose. Our dataset consists of randomly generated problems across all three components,174

totaling 3.27 million problems in over 575, 000 environments. We have three classes of problems of175

increasing difficulty: a cluttered tabletop with randomly placed objects, cubbies and dressers. Rep-176

resentative examples of these environments are shown in Fig. 1. Once we build these environments,177

we generate a set of potential end-effector targets and corresponding inverse kinematics solutions.178

We then randomly choose pairs of these configurations and verify if a plan exists between them179

using our expert pipeline, as detailed further in Sec. 4.2 and in the Appendix D.180

4.2 Expert Pipeline181

Our expert pipeline is designed to produce high quality demonstrations we want to mimic, i.e. tra-182

jectories with smooth, consistent motion and short path lengths. Here, consistency is meant to183

describe quality and repeatability of an expert planner—see Appendix B for further discussion. We184

considered two candidates for the expert - the Global Planner which is a typical state-of-the-art185

configuration space planning pipeline [9] and a Hybrid Planner that we engineered specifically to186

generate consistent motion in task space. For both planners, we reject any trajectories that produce187

collisions, exceed the joint limits, exhibit erratic behavior (i.e. high jerk), or that have divergent188

motion (i.e. final task space pose is more than 5cm from the target).189

Global Planner consists of off-the-shelf components of a standard motion planning pipeline–inverse190

kinematics (IK) [54], configuration-space AIT* [9], and spline-based, collision-aware trajectory191

5



smoothing [55]. For a solvable problem, as the planning time approaches infinity, IK will find a valid192

solution and AIT* will produce an optimal collision-free path, both with probability 1. Likewise,193

with continuous collision checking, the smoother will produce a smooth, collision-free path. In194

practice, our dataset size goal—we generated 6.54M trajectories across over 773K environments—195

dictated our computation budget and tuned the algorithms according to this limit. We attempted IK at196

most 1,000 times, utilized an AIT* time out of 20s, and employed discrete collision checking when197

smoothing. Most commonly, the pipeline failed when AIT* timed out or when, close to obstacles,198

the smoother’s discrete checker missed a collision, thereby creating invalid trajectories.199

Hybrid Planner is designed to produce consistent motion in task space. The planner consists of200

task-space AIT* [9] and Geometric Fabrics [4]. AIT* produces an efficient end effector path and201

Geometric Fabrics produce geometrically consistent motion. The end effector paths acts as a dense202

sequence of waypoints for a sequence of Geometric Fabrics, but as the robot moves through the203

waypoints, the speed can vary. To promote smooth configuration space velocity over the final tra-204

jectory, we fit a spline to the path and retime it to have steady velocity. As we discuss in Sec. 5.1,205

Geometric Fabrics often fail to converge to a target, so we redefine the planning problem to have the206

same target as the final position of the trajectory produced by the expert. Inspired by [56], we call207

this technique Hindsight Goal Revision (HGR) and demonstrate its importance in Sec. 5.4. Using208

the Hybrid Planner, we generated 3.27 million trajectories across 576,532 environments.209

5 Experimental Evaluation210

We evaluate our method with problems generated from the same distribution as the training set. See211

Appendix for more detail on the procedural generation and random distribution. Within the test212

set, each problem has a unique, randomly generated environment, as well as a unique target and213

starting configuration. None of the test environments, starting configurations, nor goals were seen214

by the network during training. Our evaluations were performed on three test sets: a set of problems215

solvable by the Global Planner, problems solvable by the Hybrid Planner, and problems solvable216

by both. Each test set has 1,800 problems, with 600 in each of the three types of environments.217

Quantitative Metrics: To understand the performance of a policy, we roll it out until it matches218

one of two termination conditions: 1) the Euclidean distance to the target is within 1cm or 2) the219

trajectory has been executed for 20 s (based on consultations with the authors of [4] and [11]). We220

consider the following metrics (see Appendix for details):221

• Success Rate - A trajectory is considered a success if its final position and orientation target222

errors are below 1 cm and 15° respectively and there are no physical violations.223

• Time - We measure the wall time for each successful trajectory. We also measure Cold Start224

(CS) Time, the average time to react to a new planning problem.225

• Rollout Target Error - The L2 position and orientation error (taken from [57]) between the226

target and final end-effector pose in the trajectory.227

• Collision Rate - The rate of fatal collisions, both self and scene collisions228

• Smoothness - We use Spectral Arc Length (SPARC) [58] and consider a path to be smooth if229

its SPARC values in joint and end-effector space are below −1.6.230

5.1 Comparison to Methods With Complete State231

Most methods to generate motion in the literature assume access to complete state information in232

order to perform collision checks. In each of the following experiments, we provide each baseline233

method with an oracle collision checker. When running MπNets, we use a point cloud sampled234

uniformly from the surface of the entire scene. Results are shown in Table 1. /fishyTalk about which235

expert would be better where236
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Success Rate (%)

Soln. Time (s) CS Time (s) Global Hybrid Both Smooth (%)

Global Planner [9] 16.46± 0.90 16.46± 0.90 100 78.44 100 51.00
Hybrid Planner 7.37± 2.23 7.37± 2.23 50.22 100 100 99.26

G. Fabrics [4] 0.15± 0.09 2.4e94± 3e95 38.44 59.33 60.06 85.39
STORM [11] 4.03± 1.89 13.4e93± 2.2e93 50.22 74.50 76.00 62.26

MPNets [12]
Hybrid Expert 4.95± 23.51 4.95± 23.51 41.33 65.28 67.67 99.97
Random 0.31± 3.55 0.31± 3.55 32.89 55.33 58.17 99.96

MπNets (Ours)
Global Expert 0.33± 0.08 6.8e93± 7e95 75.06 80.39 82.78 89.67
Hybrid Expert 0.33± 0.08 6.8e93± 7e95 75.78 95.33 95.06 93.81

Table 1: Algorithm performance on problems sets solvable by planner types. All prior methods use
state-information and a oracle collision checker while MπNets only needs a point cloud

Evaluation Set

Training Set MPNets-Style Hybrid Expert Solvable (Ours)

MPNets [12] MPNets-Style 78.70 49.89
MπNets (Ours) MPNets-Style 33.70 5.50

MPNets [12] Hybrid Expert 88.90 65.28
MπNets (Ours) Hybrid Expert 89.50 95.33

Table 2: Success rates (%) of our method compared to Motion Planning Networks (MPNets) [12]
trained and evaluated on different datasets

Global Configuration Space Planner The Global Planner is unmatched in its ability to reach a237

target, but this comes at the cost of average computation time (16.46s) compared to MπNets (0.33s).238

With a global planner, there is no option to partially solve a problem, meaning the Cold Start Time239

is equal to the planning time. In a real system, optimizers [2, 3, 10] could be used to quickly240

replan once an initial plan has been discovered. As discussed in Sec. 4.2, the Global Planner is241

theoretically complete, but fails in practice on some of the Hybrid Planner-solvable problems due242

to system timeouts and discrete collision checking during smoothing.243

Hybrid End-Effector Space Planner Our Hybrid Planner struggles with a large proportion of244

problems solvable by the Global Planner. Yet, its solutions are both faster and smoother than the245

Global Planner. Surprisingly, MπNets trained with data from the expert outperformed the expert246

on the Global Planner-solvable test set. We attribute this to two features: 1) we use strict rejection247

sampling to reduce erratic and divergent behavior in our expert dataset and train only on the filtered248

data and 2) our use of Hindsight Goal Revision to turn an imperfect expert into a perfect one.249

Neural Motion Planning Motion Planning Networks (MPNets) [12] proposed a similar method250

for neural motion planning, but there are a few key differences in both problem setup and system251

architecture. MPNets requires a ground-truth collision checker to connect sparse waypoints, plans252

in configuration space, and is not reactive to changing conditions. In the architecture, MPNets uses253

a trained neural sampler within a hierarchical bidirectional planner. The neural sampler is a fully-254

connected network that accepts the start, goal, and a flattened representation of the obstacle points255

as inputs and outputs a sample. MPNets guarantees completeness by using a traditional planner256

as a fallback if the neural sampler fails to produce a valid plan. /fishyPut in some info about why257

MPiNets score is so low on MPNets data258

In addition to our data, we generated a set of tabletop problems, which we call MPNets-Style, akin259

to the Baxter experiments in [12], in order to fairly compare the two methods. The results of this260

experiment can be seen in Table 2. MπNets requires a large dataset that covers the space of test261
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% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 8.61 0.11 0.44 69.89 75.17 83.44 85.11
STORM [11] 0.93 0.11 0.25 79.81 83.54 81.57 85.41

MπNets (Ours)
Hybrid Expert 0.94 0.00 0.00 98.94 99.72 98.22 99.00
Global Expert 13.78 0.06 0.00 98.67 99.89 97.56 99.11

Table 3: Failure Modes on problems solvable by both the global and hybrid planners

problems to achieve compelling performance, while MPNets’ utilization of a traditional planning262

system is much more effective with a small dataset or out of distribution problems. However, the263

MPNets architecture does not scale to more complex scenes, even with more data, as we show264

in Fig. 4. When trained and evaluated on the Hybrid Planner-solvable dataset, MPNets succeeds265

in 65.28% of the test set, whereas MπNets succeeds in 95.33%, thus decreasing the failure rate266

by 7X. Furthermore, as we show in Table 1, using the MPNets neural sampler trained with the267

Hybrid Planner performs similarly to a uniform random sampler when both are embedded within268

the bidirectional MPNets planner.269

Local Task Space Controllers Unlike planners, which succeed or fail in binary fashion, local270

policies will produce individual actions that, when rolled out, may fail for various reasons. We271

break down the various failure modes across the set of problems solvable by both experts in Table 3.272

STORM [11] and Geometric Fabrics [4] make local decisions that can lead them to diverge from273

the target in complex scenarios, such as cluttered environments or those with pockets. For example,274

both STORM and Geometric Fabrics struggle to retract from a drawer and then reach into another275

drawer in a single motion without intermediate waypoints. While STORM, Geometric Fabrics, and276

MπNets are all local policies, STORM and Geometric Fabrics rely on human tuning to achieve277

strong performance. Prior environment knowledge alongside expert tuning can lead to phenomenal278

results, but these parameter values do not generalize. We used a single set of parameters across279

all test environments just as we used a single set of weights for MπNets. MπNets encodes long-280

term planning information across a wide variety of environments, which makes it less prone to local281

minima, especially in unseen environments.282

On problems solvable by the Hybrid Planner, MπNets ties or outperforms these other methods283

across nearly all metrics (see Table 4). On the set of problems solvable by the Global Planner,284

MπNets target convergence rate is consistently higher, while its collision rate (11%) is worse than285

either STORM (1.94%) or Geometric Fabrics (7.83%) (see Table 5). Deteriorating performance286

on out-of-distribution problems is a typical downside of a supervised learning approach such as287

MπNets. However, this could be improved with a more robust expert, e.g. one with the consistency288

of our Hybrid Planner but the success rate of the Global Planner, with finetuning, or with DAgger289

[40].290

5.2 Importance of the Expert Pipeline291

We observed that the choice of the expert pipeline affects the performance of MπNets. We trained292

three policies: MπNets-G with 6.54M demonstrations from the Global Planner, MπNets-H with293

3.27M demonstrations from the Hybrid Planner, and MπNets-C with 3.27M demonstrations from294

each. MπNets-C did not exhibit improved performance over either MπNets-H or MπNets-G (see295

Appendix J for discussion). When evaluated on a test set of problems solvable by the Global Plan-296

ner, MπNets-G shows far better target convergence (97.94% vs. 87.72%) compared to MπNets-H297

but worse obstacle avoidance (21.94% collision rate vs. 11%). Nonetheless, MπNets-H is sig-298

nificantly better across all metrics when evaluated on problems solved by both experts as shown299

in Table 3. We hypothesize that an expert combining the properties of these two–the consistency300
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of the Hybrid Planner and the generality of the Global Planner, would further improve MπNets’s301

performance. We refer to MπNets-H as MπNets throughout the rest of the paper.302

5.3 Comparison to Methods With Partial Observations303

In addition to demonstrating MπNets’ performance on a real robot system, we also compared304

MπNets to the Global Planner (AIT* [9]) in a single-view depth camera setting in simulation.305

We evaluated on the test set of problems solvable by both the Global and Hybrid Planners. MπNets306

only has a minor drop in success rate when using a partial point cloud vs. a full point cloud– from307

95.06% to 93.22% though the collision rate increases from 0.94% to 3.06% due to occlusions. For308

this experiment, we compared to the AIT* component of our Global Planner alone to minimize309

false-positive solutions caused by the smoother’s discrete collision checker (see discussion in Sec-310

tion 4.2). We used a voxel-based reconstruction akin to the standard perception pipeline packaged311

with MoveIt [59]. In our implementation, a voxel is filled only if a 3D point is registered within it.312

On the same test set using the voxel representation, AIT* produces plans with collisions on 16.41%313

of problems. In this setting, MπNets’s collision rate is over 5X smaller than that of the Global314

Planner.315

5.4 Ablations316

Figure 4: MπNets performance continues to
increase with more training data, while MP-
Nets performance stays relatively constant

We perform several ablations to justify our design317

decisions. All ablations were trained using the Hy-318

brid Planner dataset and evaluated on the Hybrid319

Planner-solvable test set. More ablations and details320

can be found in Appendix J.321

MπNets Performance Scales with More Data As322

shown in Fig. 4, the performance of MπNets contin-323

ues to improve with more data, although it saturates324

at 1.1M. Meanwhile, MPNets [12] has constant per-325

formance, demonstrating that our architecture is bet-326

ter able to scale with the data.327

Robot Point Representation Improves Perfor-328

mance Instead of representing the robot by its configuration vector, we insert the robot point cloud329

at the specific configuration. Without this representation, the success rate decreases from 95.33% to330

65.06%.331

Hindsight Goal Revision Improves Convergence When trained without HGR, i.e. with the plan-332

ner’s original target given to the network, we see 58.11% success rate vs. 95.33% when trained with333

HGR. In particular, only 60.28% of trajectories get within 1cm of the target during evaluation.334

Noise Injection Improves Robustness When we train MπNets without injecting noise into the335

input qt, the policy performance decreases by 10.72%.336

5.5 Dynamic Environments337

MπNets is an instantaneous policy that assumes a static world at the time of inference. If the scene338

changes between inference steps, the policy will react accordingly. If the environment is continually339

changing–as is often the case in dynamic settings–MπNets implicitly approximates the dynamic340

movement as a sequence of static motions. When the scene changes are slow, this assumption works341

well. When the changes are fast, it does not. To demonstrate this, we evaluated MπNets in a342

static tabletop environment with a single, moving block placed on the table. We generated 1,000343

planning problems across the table with the block placed at different locations. We specifically344

chose problems where MπNets succeeds when the block is stationary. When moving, the block345

follows a periodic curve in x and y, but the two curves have indivisible periods, preventing repetitive346
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movement. We then moved the block at three different speeds: slow, medium, and fast and measured347

the success rate. At these speeds, MπNets succeeds 88.1%, 57.4%, and 28.3% respectively.348

5.6 Real Robot Evaluation349

We deployed MπNets on a 7-DOF Franka Emika Panda robot with an extrinsically calibrated Intel350

Realsense L515 RGB-D camera mounted next to it. Depth measurements belonging to the robot351

are removed and re-inserted using a 3D model of the robot before inference with MπNets. We352

created qualitative open-loop demonstrations in static environments and closed-loop demonstrations353

in dynamic ones. Rollouts are between 2 and 80 time steps long depending on the control loop354

frequency. See Appendix K for system details. Results can be viewed at https://mpinets.github.io355

and the attached video. As can be seen, MπNets can achieve sim2real transfer on noisy real-world356

point clouds in unknown and changing scenes.357

6 Limitations358

While MπNets can handle a large class of problems, they are ultimately limited by the quality359

of the expert supervisor and its need for a large, diverse dataset of training examples. Both gen-360

erating the data and training MπNets is computationally intensive, requiring access to equipment361

that is both economically and environmentally expensive. It will also struggle to generalize to out-362

of-distribution settings typical of any supervised learning approach. When used on a real robot,363

performance will degrade as the robot’s physical environment drifts from the training distribution.364

Likewise, performance will degrade with increasing point cloud noise. In future work we aim to365

improve MπNets with DAgger [40] or domain adaptation. In order to further enable safe opera-366

tion in real robot systems, MπNets could also be combined with a ground-truth or learnt collision367

checker such as SceneCollisionNet [18]. In future work, we intend to investigate how to incorporate368

a learned safety component to detect out-of-distribution input data and prevent unsafe operation.369

7 Conclusion370

MπNets is a class of end-to-end neural policy policies that learn to navigate to pose targets in task371

space while avoiding obstacles. MπNets show robust, reactive performance on a real robot system372

using data from a single, static depth camera. We train MπNets with what is, as far as we are aware,373

the largest existing dataset of end-to-end motion for a robotic manipulator. Our experiments show374

that when applied to appropriate problems, MπNets are significantly faster than a global motion375

planner and more capable than prior neural planners and manually designed local control policies.376

We will release our code and data upon publication.377
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Appendix548

A Failure Modes Across All Test Sets549

In the main paper, we presented the breakdown of the failure modes on the set of problems solvable550

by both the global and hybrid planners. In this section we present the failure modes separately across551

the two test sets. The Global Planner-solvable test set is consistently the hardest for all methods,552

having the highest collision rates and target error. While STORM and Fabrics both see significant553

increases in target error, the change in collision rate is minor. When trained with the Global Expert,554

MπNets has the highest collision rate across all test sets, yet it also has the most consistent rollout555

accuracy. We attribute the collision rate to inconsistency in the Global Planner’s motion and the556

rollout accuracy to the high coverage of the problem space. When evaluated on the Global Planner-557

solvable test set, MπNets trained with the Hybrid Expert also has its highest collision rate. We558

attribute this to distribution shift in the problem space.

% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 8.17 0.00 0.39 68.56 73.33 82.06 84.00
STORM [11] 0.39 0.11 0.28 83.11 85.33 90.00 91.61

MπNets (Ours)
Hybrid Expert 0.89 0.00 0.00 98.83 99.61 98.83 99.28
Global Expert 15.94 0.00 0.00 99.00 99.83 97.06 99.28

Table 4: Failure Modes on problems solvable by the hybrid planner

% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 7.83 0.50 0.33 45.67 57.33 74.39 78.22
STORM [11] 1.94 0.11 0.28 71.33 78.22 64.44 72.67

MπNets (Ours)
Hybrid Expert 11.00 0.78 0.00 87.72 93.17 84.56 88.56
Global Expert 21.94 0.00 0.00 97.94 99.50 96.56 99.22

Table 5: Failure Modes on problems solvable by the global planner

559

B Expert Pipelines560

We present more details of our planning pipeline in this section.561

Global Planner is composed of widely used off-the-shelf components. We first use inverse kine-562

matics to convert our task space goals to configuration space, followed by AIT* [9] in configuration563

space, and finally, spline-based, collision-aware trajectory smoothing [55]. We use IKFast [54] for564

inverse kinematics, OMPL [60] for AIT*, and Pybullet Planning for the smoothing implementa-565

tion [61]. To manage the compute load when generating a large dataset of trajectories, we employed566

a time-out with AIT* of 20 seconds.567

Hybrid Expert is designed to produce consistent motion in task space. We start by using AIT* [9]568

with a 2 second timeout to plan for a floating end effector, i.e. one not attached to a robot arm, and569

then use Geometric Fabrics [4] to follow the path. Geometric Fabrics are deterministic and geomet-570

rically consistent [4] local controllers, but they struggle to solve the problems in our dataset without571

assistance from a global planner. Geometric Fabrics are highly local, and even with dense waypoints572

given by a global planner, they can run into local minima, which in turn generate trajectories with573
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highly variable velocity. We use a combination of spline-based smoothing and downsampling [62]574

to create a consistent configuration space velocity profile across our dataset.575

Consistency We use the term consistency to describe a qualitative characteristic of a planner and576

its learnability. Specifically, we use it to describe two quantities: 1) expert quality and 2) repeata-577

bility of the planner. Mandlekar et al. [38] demonstrate how Imitation Learning performance varies578

depending on expert quality. Among the metrics they use to describe expert quality, they demon-579

strate the importance of expert trajectory length. MπNets employs task-space goals, and the Hybrid580

Planner produces shorter task space paths. Across our test dataset of global and hybrid solvable581

problems, the Hybrid Planner’s end effector paths average 57cm ± 31cm and the total orientation582

distance traveled in 95° ± 52°. Meanwhile, the Global Planner’s paths average 61cm ± 39cm and583

113° ± 55°, respectively.584

Repeatable input-output datasets are important for deep learning systems. Prior works have shown585

the deep learning systems deteriorate or require more data when using noisy labels [63, 64]. Both586

the Global Planner and Hybrid Planner are sampling-based planners and do not produce repeatable587

paths by their very nature. Yet, the Hybrid Planner uses sampling to plan in a lower-dimensional588

state space—6D pose space—while the Global Planner samples in 7D configuration space. We use589

a naive sampler, so the lower dimensionality of the Hybrid Planner’s sampler implies that it’s typical590

convergence rate will be faster. After planning, the Hybrid Planner employs Geometric Fabrics [4]591

to follow the task-space trajectory. Geometric Fabrics are deterministic, which further promotes592

repeatability in the final, configuration space trajectories. Meanwhile, the Global Planner uses593

a randomized smoothing algorithm that is not deterministic. Taking these individual components594

together, we expect the Hybrid Planner’s solutions on similar problem to be typically more alike595

than the Global Planner’s solutions to the same problems.596

C Network Architecture597

Our PointNet++ architecture has three set abstraction groups followed by three fully connected598

layers. The first set abstraction layer performs iterative furthest point sampling to construct a set of599

512 points, then it does a grouping query within 5cm of at most 128 points. Finally, there is a local600

PointNet [65] made up of layers of size 4, 64, 64, 64 respectively. The second set abstraction is lower601

resolution, sampling 128 furthest points and then grouping at most 128 points within a 30cm radius.602

The corresponding PointNet is made up of layers of size 64, 128, 128, and 256 respectively. Our603

third set abstraction layer skips the furthest point sampling, groups all points together, and uses a604

final PointNet with layers of size 256, 512, 512, 1,024 respectively. Finally, after the set abstraction605

layers, we have three fully connected layers with 4,096, 4,096, and 2,048 dimensions respectively.606

In between these layers, we use group norm and Leaky ReLU.607

The output of our point cloud encoder is a 2,048 dimensional embedding. The robot configura-608

tion encoder and the displacement decoder are both fully connected multilayer perceptrons with609

Leaky ReLU activation functions [66]. The robot configuration encoder maps our 7 dimensional610

input to a 64 dimensional output and has four hidden layers with 32, 64, 128, and 128 dimensions611

respectively. The displacement decoder maps the combined embeddings from the point cloud and612

robot configuration encoders, which together have 2,112 dimensions, to the 7 dimensional normal-613

ized displacement space. The decoder has three hidden layers with 512, 256, and 128 dimensions614

respectively. Our entire architecture together has 19 million parameters.615

D Data Generation Pipeline616

We used the same procedural data generation pipeline to generate data for training as well as infer-617

ence test problems. We will be releasing the code to generate the data alongside our generated data618

sets upon publication.619

Tabletop The dimensions of the table, including height, are randomized, as well as whether the table620

has an L-bend around the robot. The table itself is always axis-oriented. Table height ranges from 0621
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to 40cm. Table edges are chosen independently, e.g. the maximum x value for a table is chosen from622

a uniform distribution, and the center of the tables is not fixed. The front table can range between 90623

and 110cm deep and between 205 and 240cm wide. When there is an L-bend, the side table ranges624

from 90 to 247.5cm deep and 42.5 to 72.5cm wide. After generating the table, a random assortment625

of boxes and cylinders are placed on the table facing upward, i.e. cylinders are on their flat edge.626

There are between 3 and 15 objects in each scene. These objects are between 5 and 35cm tall. The627

side dimensions of the boxes, as well as the radius of the cylinders, are between 5 and 15cm.628

Cubby The dimensions of the cubby, the wall-thickness, the number of cubbies, and orientation of629

the entire fixture are randomized. We start by constructing a two-by-two cubby and then modify it630

to randomize the number of cubby holes. The wall thickness is chosen to be between 1 and 2cm.631

Similar to the tabletop, cubby edges are chosen independently, which implicitly set the center. The632

overall fixture is ranges from 120 to 160cm wide, 20 to 35cm deep, and between 30 and 60cm tall.633

The horizontal and vertical center dividers are then placed randomly within a 20cm range. Finally,634

we apply a random yaw rotation of up to 40◦around the fixture’s central axis. For roughly half of635

the cubby environments, we modify the cubby to reduce the number of cubby holes. To do this, we636

select two random, collision-free robot configurations in two separate cubby holes and then merge637

the cubby holes necessary to create a collision-free path between them.638

Dresser The dimensions of the dresser, the placement of the drawers, and the orientation of the entire639

fixture are randomized. The dresser side walls, drawer side walls, and drawer faces are always 1,640

1.9, and 0.4cm thick respectively. Unlike the other two environments, dimensions for the dresser641

are chosen randomly, as is the center point for the fixture. The dresser dimensions range from 80642

to 120cm wide, 20 to 40cm deep, and 55 to 85cm tall. The dresser is always placed on the ground643

randomly in reachable space of the robot, with a random orientation around its central yaw axis. We644

next construct the drawers. We randomly choose a direction in which to split the dresser and then645

split it into two drawers. We perform this recursively within each drawer, stopping according to a646

decaying probability function. Finally, we open two drawers within reachable space.647

Initial Configurations and Target Poses After generating a random fixture, we search for valid648

start and goal configurations. We first look for target poses with reasonable orientations–in a grasp-649

ing pose for the tabletop, pointing approximately inward for a cubby, or pointing approximately650

downward in a drawer. We choose pairs of these targets, solve for a collision-free inverse kinemat-651

ics solution for each target, and consider these configuration space solutions to be candidates for652

the start or end of a trajectory. We also add a set of collision-free neutral configurations to the mix.653

These neutral configurations are generated by adding uniform randomness to a seed neutral con-654

figuration. From this set of task-space targets and corresponding collision-free configuration space655

solutions, we select pairs to represent a single planning problem. For each pair selected, we use the656

Global Planner to verify that a smooth, collision-free planning solution exists.657

E Training MπNets658

We implemented MπNets in PyTorch and used the Adam optimizer with a learning rate of 0.0004.659

We trained it across 8 NVIDIA Tesla V100 GPUs for a week.660

F Inference with MπNets661

We used separate inference hardware for our simulated experiments and the hardware demonstra-662

tions For our simulated experiments, we use a desktop with CPU Intel(R) Core(TM) i9-9820X CPU663

@ 3.30GHz, GPU NVIDIA A6000, and 64GB of RAM. For our hardware demonstrations, we used664

a desktop with CPU Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz, GPU NVIDIA Titan RTX, and665

32GB of RAM.666
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G Quantitative Metrics667

Success Rate A trajectory is considered a success if the rollout position and orientation target668

errors are below 1 cm and 15° respectively and there are no physical violations. To avoid erroneously669

passing a trajectory that ends on the wrong side of a narrow structure, we also ensure that the end670

effector is within the correct final volume and likewise avoids incorrect volumes. For the cubby and671

dresser environments, these volumes are individual cubbies or drawers.672

Time After setting up each planning problem, we measured the wall time for each successful673

trajectory. We also measure Cold Start (CS) Time, the average time to react to a new planning674

problem. While both expert pipelines have to compute the entire path, the local controllers only675

need time to compute a single action. We only consider the cold-start time here, but if the new676

planning problem is sufficiently similar to a previous one–such as a minor change in the environment677

or target–a global planning system could employ an optimizer that can replan quickly [10].678

Rollout Target Error We calculate both position and orientation errors from the target for the679

final end effector pose in the trajectory. We measure position error with Euclidean distance and680

orientation error with the metric described by Wunsch et al. [57].681

Collisions A trajectory can have two types of fatal collisions–when the robot collides with itself682

or when the robot collides with the scene. When checking for collisions, we use an ensemble of683

collision checkers to ensure fairness. Collision checking varies across algorithmic implementations,684

e.g. our AIT* implementation uses meshes to check scene collisions, while STORM [11] and Ge-685

ometric Fabrics [4] use a sphere-based approximation of the robot’s geometry. A trajectory is only686

considered to be in collision if the entire ensemble agrees.687

Smoothness We use Spectral Arc Length (SPARC) [58] to measure smoothness. Balasubrama-688

nian et al. [58] use a SPARC threshold of −1.6 as sufficiently smooth for reaching tasks. This689

measurement qualitatively describes the behavior of our benchmark algorithms well, so we used the690

same threshold for sufficiency. We therefore consider a path to be smooth if both its joint-space691

trajectory and end effector trajectory have SPARC values below −1.6.692

H Local Policy Implementations693

Both STORM [11] and Geometric Fabrics [4] require expert tuning to achieve compelling perfor-694

mance, and we worked closely with the authors of these papers to tune them as best as possible for695

our evaluation. We train a single network on all three environment types, so similarly use a single696

set of tuning parameters for each algorithm over the entire evaluation set.697

I MPNets Implementation and Data698

In the original paper, Qureshi et al. [12] trained MPNets for execution on the Baxter robot using a699

dataset of 10 different tabletop environments, each with 900 plans. Then, it was evaluated in the700

same environments using 100 unseen start and goal configurations in each. In total, their real-robot701

dataset was 10,000 problems.702

To compare fairly to MPNets, we generated an analogous set of 10,000 problems703

within 10 tabletop environments, which we call the MPNets-Style dataset. We re-704

implemented the MPNets-algorithm based on their open source implementation at705

https://github.com/anthonysimeonov/baxter mpnet experiments.706

After we trained our implementation of their model on the MPNets-Style data, it achieved a similar707

success rate as the one quoted in their paper for the Baxter experiments (78% vs. 85%). We attribute708

the performance difference to the increased complexity of our environments, which, unlike the orig-709

inal dataset, have varying table geometry in addition to object placement. In the original paper, they710
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quote planning as taking 1 second on average. Our re-implementation took 2.47 seconds on average711

with a median of 0.02 seconds. Again, we attribute this difference to the increased complexity, given712

that the median time is so far below the mean. Just as they do in the open source implementation, we713

employ hierarchical re-planning, but we do not fall back to a traditional planner. If given access to714

a collision checker, both MπNets and MPNets can use a similar fallback to re-plan, thus achieving715

theoretically complete performance.716

We used the same training setup described in Appendix E to train MPNets. When trained on the717

MπNets data set, i.e. 3.27M demonstrations from theHybrid Planner, MPNets converged within 15718

hours.719

J Additional Experiments720

Figure 5: After injecting Gaussian noise into
the point clouds, MπNets performance stays
fairly constant up until σ = 3cm when suc-
cess rate is 89.28%.

Training with Mean Squared Error Loss In-721

creases Collisions When trained with a loss of722

mean-squared-error in configuration space, MπNets723

has a similar success rate–94.56% vs. 95.33%–but724

scene collision rate is significantly higher at 2.39%725

vs 0.89%.726

Representing the Target in Point Cloud Improves727

Performance When trained with the target fed ex-728

plicitly through a separate MLP encoder as a posi-729

tion and quaternion, MπNets succeeds less–88.83%730

vs. 95.33% when the target is specified within the731

point cloud. In particular, only 91.61% of trajecto-732

ries get within 1cm of the target vs. 98.83% with the point cloud-based target.733

Training with Collision Loss Improves Collision Rate When trained without the collision loss,734

MπNets collides more often–2.11% vs 0.89% when trained with the collision loss.735

Training with the Configuration Encoder Improves Success Rate When trained with no robot736

configuration encoder, i.e. with only the point cloud encoder, MπNets has success rate of 94.17%737

vs 95.33% when trained with both encoders.738

MπNets is Robust to Point Cloud Noise Up to 3.2cm Figure 5 shows MπNets success rate on739

the set of problems solvable by both planners when random Gaussian noise is added to the point740

cloud. Model performance stays above 90% until noise reaches 3cm at which point success drops741

to 89.28%.742

MπNets is Robust to Varying Point Cloud Shapes To evaluate performance in out-of-distribution743

geometries, we replaced all tabletop objects in test set of problems solvable by the Hybrid Plan-744

ner with randomly meshes from the YCB dataset [67]. For each tabletop primitive, we sampled745

a mesh from the dataset and transformed it so that the bounding boxes of the primitive and mesh746

were aligned and of identical size. Note that in these modified scenes, the primitives-based Hybrid747

Planner solution is still valid. MπNets succeeded in 88.33% in this YCB-tabletop test set, whereas748

with the original primitives, it succeeds in 94.67%. Note that the network was not trained with749

these geometries—we would expect even higher performance if these meshes were included in the750

training set.751

MπNets is Not Suitable for Unsolvable Problems To evaluate performance on unsolvable prob-752

lems, we generated a set of 800 planning problems in randomized tabletops where the target is in753

collision with the table or an object on the table. When used for these problems, MπNets showed a754

64.25% collision rate.755

MπNets is Not Improved by Combining Experts We trained MπNets-C on a combination of756

3.27M demonstrations each from the Hybrid Planner and Global Planner. Environments may have757

overlapped in these data sets, but entire problems, i.e. environment, start, and goal, did not. In758
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problems solvable by the global planner, MπNets-C—like MπNets-G—outperformed MπNets-H in759

terms of target convergence (97.17% vs 87.72%). While its collision rate is lower than MπNets-G,760

(18.56% vs 21.94%) MπNets-C’s collision rate is still significantly higher than MπNets-H (11%).761

The behavior of MπNets-C is essentially an average of MπNets-G and MπNets-H, which we at-762

tribute to the lack of easily learnable obstacle avoidance behavior by the Global Planner. These763

demonstrations equate to additional noise in the training data, which creates less successful obsta-764

cle avoidance behavior. In future work, we intend to explore how to robustly combine experts for765

improved performance.766

K Real-World Experiments767

We demonstrated MπNets in a variety of table top problems using a Franka Emika Panda 7-DOF768

manipulator. A calibrated Intel Realsense L515 RGB-D camera is placed in front of the robot’s769

workspace, viewing the table and potential obstacles on top of it. Point cloud measurements are770

filtered to remove all points belonging to the robot geometry. The remaining cloud is downsampled771

to 4096 points and treated as the obstacle. The filtering process runs at 9Hz. We investigated two772

different control methods:773

Open-Loop Motion: Using a fixed, user-defined goal location and the current depth observation,774

MπNets is rolled out over 80 timesteps or until goal convergence. The resulting path is used to com-775

pute a time-parametrized trajectory [68] which is then tracked by a position controller. The videos776

listed under “Open Loop Demonstrations” at https://mpinets.github.io show a mix of sequential mo-777

tions toward pre-defined goals. In some of the examples, the objects are static throughout the video778

and in others, we re-arrange the objects throughout the video. Despite the changing scene, these are779

still open-loop demos. While the motions adapt to changing obstacles in the scene, the policy only780

considers scene changes that happen before execution of a trajectory. This is because the point cloud781

observations are only updated once the robot reaches its previous target.782

Closed-Loop Motion: To account for dynamic obstacles MπNets is rolled out for a single783

timestep at the same frequency as the point cloud filter operates (9Hz). A time-parametrized tra-784

jectory is generated by linearly interpolating ≈ 70% of the rolled out path. As in the open-loop785

case the resulting trajectory is tracked by a PD controller controller at 1 kHz. The videos listed786

under “Closed Loop, Dynamic Scene Demonstrations” at https://mpinets.github.io show examples787

of boxes thrown into the robot’s path while it is moving towards a user-defined target. The evasive788

maneuver shows MπNets’ ability to react to dynamic obstacles.789

L Limitations790

Training Distribution The limitations of the Hybrid Planner translate to limitations in the trained791

policy network. Certain target poses and starting configurations can create unanticipated behavior.792

When target poses are narrowly out of distribution, the rollout fails to converge to the target, but793

as a target poses drifts further from the training distribution, behavior becomes erratic. Likewise,794

random, initial configurations–such as from rejection-sampling based inverse kinematics–can create795

unexpected behavior, but we did not observe this in our real robot trials running the policy con-796

tinuously to a sequence of points. With an improved expert, e.g. one with the consistency of our797

Hybrid Expert and guaranteed convergence of the Global Planner, we anticipate that the occurrence798

of failure cases will diminish. We also do not expect the network to generalize to wholly unseen799

geometries without more training data. But, in future work, we aim to improve the generalization of800

this method, much in the way that Large Language Models [69] continue to improve generalization801

through data.802

Real Robot System In order to ensure safe operation in a real-robot system, MπNets could be803

combined with a collision checker–either one with ground-truth or a learned, such as Scene Collision804
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Success Rate (%)

Soln. Time (s) Global Hybrid Both Smooth (%)

Global Planner [9] 16.56± 0.88 100 73.50 100 56.86
Hybrid Planner 6.82± 1.50 44.33 100 100 99.22

G. Fabrics [4] 0.11± 0.06 37.83 66.67 65.83 88.61
STORM [11] 3.65± 1.64 53.50 76.67 77.33 59.72

MPNets [12]
Hybrid Expert 2.68± 17.39 44.67 59.00 66.17 17.26
Random 0.06± 0.06 32.17 50.17 53.67 100.00

MπNets (Ours)
Hybrid Expert 0.33± 0.08 67.00 94.33 93.17 93.06
Global Expert 0.34± 0.07 74.83 81.50 80.00 93.44

Table 6: Algorithm performance on cubby problems sets solvable by planner types. All prior meth-
ods use state-information and a oracle collision checker while MπNets only needs a point cloud

Net [18]. The collision checker could be used to a) stop the robot before hitting collisions b) make805

small perturbations to nudge the policy back into distribution or c) enable a traditional planner to806

plan to the goal. In a physical system, not all problems will have feasible solutions. As discussed in807

Appendix J, MπNets will often collide in these scenarios, underscoring the need for some additional808

safety mechanisms to prevent catastrophic behavior. Additionally, MπNets has no concept of history809

and can collide with the scene if, for example, the robot arm blocks the camera mid-trajectory.810

To mitigate this, the perception system could employ a historical buffer or filter to maintain some811

memory of the scene.812

Emergent Behavior In some of our test problems, we observed that MπNets produces a rollout813

where the final gripper orientation is 180° off from the target about the gripper’s central axis (i.e. the814

central axis parallel to the fingers). In the test set of problems solvable by the Global Planner, this815

occurs in 2.44% of rollouts. We suspect this behavior is due to the near-symmetry in the gripper’s816

mesh about this axis. The minor differences between the two sides of the gripper may not provide817

enough information for the Pointnet++ encoder to distinguish between these two orientations. While818

the rollout does not match the requested problem, this behavior can be desirable in some circum-819

stances. For example, because grasps are symmetric with the Franka Panda gripper, a 180° rotation820

is preferable if it reduces the likelihood of a collision. For applications where this behavior is un-821

acceptable, we could replace the target representation in the pointcloud with points sampled from a822

mesh with no symmetry.823

M Experimental Results per Environment824

In this section, we present the evaluation metrics broken down by environment type. However, we825

omit Cold Start Time because for global methods, it is the same as the total time and for local826

methods, the type of environment does not affect startup or reaction time.827

The Tabletop environment is the least challenging with the highest success rates for all methods. In828

general, the dresser environment is the most challenging due to its complex geometry, as evidenced829

by the high collision rates. When trained with the Hybrid Expert, MπNets has the highest rollout830

target error in the cubby problems solvable by Global Planner. Since MπNets trained with the831

Global Expert does not have this issue, we attribute it to a lack of adequate coverage in the training832

dataset.833
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% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 5.00 0.17 0.67 40.17 57.83 84.67 89.17
STORM [11] 0.50 0.00 0.50 79.33 85.33 69.17 80.33

MπNets (Ours)
Hybrid Expert 10.67 0.17 0.00 75.83 84.50 75.83 81.67
Global Expert 23.17 0.00 0.00 99.17 100.00 99.33 100.00

Table 7: Failure Modes on cubby problems solvable by the global planner

% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 4.83 0.00 1.00 72.50 83.00 95.83 96.33
STORM [11] 0.17 0.17 0.33 87.33 89.33 89.17 91.67

MπNets (Ours)
Hybrid Expert 0.50 0.00 0.00 99.83 99.83 100.00 100.00
Global Expert 16.67 0.00 0.00 99.50 100.00 99.83 100.00

Table 8: Failure Modes on cubby problems solvable by the hybrid planner

% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 5.00 0.00 1.17 72.33 84.33 96.33 97.33
STORM [11] 0.00 0.00 0.00 88.33 89.00 89.33 91.67

MπNets (Ours)
Hybrid Expert 0.50 0.00 0.00 99.83 100.00 99.83 100.00
Global Expert 18.17 0.00 0.00 99.00 100.00 100.00 100.00

Table 9: Failure Modes on cubby problems solvable by both the global and hybrid planners

Success Rate (%)

Soln. Time (s) Global Hybrid Both Smooth (%)

Global Planner [9] 16.97± 0.81 100 66.83 100 75.63
Hybrid Planner 9.19± 2.81 37.33 100 100 99.82

G. Fabrics [4] 0.26± 0.12 15.00 25.83 28.50 78.94
STORM [11] 5.54± 1.84 24.17 58.50 62.00 83.22

MPNets [12]
Hybrid Expert 15.55± 46.31 12.83 41.83 41.67 26.68
Random 1.61± 7.38 8.33 27.50 31.17 100.00

MπNets (Ours)
Hybrid Expert 0.34± 0.06 78.67 97.00 96.33 91.56
Global Expert 0.33± 0.05 72.33 77.33 82.17 94.89

Table 10: Algorithm performance on dresser problems sets solvable by planner types. All prior
methods use state-information and a oracle collision checker while MπNets only needs a point
cloud
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% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 17.17 0.83 0.17 19.83 26.33 57.83 62.33
STORM [11] 4.83 0.17 0.33 42.67 51.67 45.17 53.83

MπNets (Ours)
Hybrid Expert 17.00 0.83 0.00 98.00 98.67 93.50 94.33
Global Expert 26.67 0.00 0.00 100.00 100.00 99.00 99.83

Table 11: Failure Modes on dresser problems solvable by the global planner

% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 18.33 0.00 0.17 36.00 39.00 61.00 66.00
STORM [11] 0.83 0.00 0.33 65.33 67.67 90.17 91.00

MπNets (Ours)
Hybrid Expert 1.50 0.00 0.00 99.50 99.50 98.83 99.00
Global Expert 19.67 0.00 0.00 100.00 100.00 97.33 99.50

Table 12: Failure Modes on dresser problems solvable by the hybrid planner

% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 19.50 0.33 0.17 40.00 42.67 64.50 68.17
STORM [11] 1.17 0.17 0.50 69.50 72.83 91.00 92.33

MπNets (Ours)
Hybrid Expert 1.83 0.00 0.00 99.67 99.67 98.50 98.67
Global Expert 14.50 0.00 0.00 100.00 100.00 96.83 99.17

Table 13: Failure Modes on dresser-problems solvable by both the global and hybrid planners

Success Rate (%)

Soln. Time (s) Global Hybrid Both Smooth (%)

Global Planner [9] 16.01± 0.74 100 95.00 100 28.27
Hybrid Planner 6.43± 1.18 69.00 96.33 100 100

G. Fabrics [4] 0.14± 0.07 62.50 85.50 85.83 88.61
STORM [11] 3.49± 1.65 73.00 88.33 88.67 43.83

MPNets [12]
Hybrid Expert 1.36± 7.98 65.67 94.00 94.50 8.23
Random 0.05± 0.05 58.17 85.83 89.67 99.94

MπNets (Ours)
Hybrid Expert 0.33± 0.10 81.67 94.67 95.67 96.83
Global Expert 0.33± 0.11 78.00 82.33 86.17 80.67

Table 14: Algorithm performance on tabletop problems sets solvable by planner types. All prior
methods use state-information and a oracle collision checker while MπNets only needs a point
cloud
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% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 1.33 0.50 0.17 77.00 87.83 80.67 83.17
STORM [11] 0.50 0.17 0.00 92.00 97.67 79.00 83.83

MπNets (Ours)
Hybrid Expert 5.33 1.33 0.00 89.33 96.33 84.33 89.67
Global Expert 16.00 0.00 0.00 94.67 98.50 91.33 97.83

Table 15: Failure Modes on tabletop problems solvable by the global planner

% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 1.33 0.00 0.00 97.17 98.00 89.33 89.67
STORM [11] 0.17 0.17 0.17 96.67 99.00 90.67 92.17

MπNets (Ours)
Hybrid Expert 0.67 0.00 0.00 97.17 99.50 96.17 98.83
Global Expert 11.50 0.00 0.00 97.50 99.50 94.00 98.33

Table 16: Failure Modes on tabletop problems solvable by the hybrid planner

% Within

% Env. Coll. % Self Coll. % Jnt Viol. 1cm 5cm 15° 30°

G. Fabrics [4] 1.33 0.00 0.00 97.33 98.50 89.50 89.83
STORM [11] 0.17 0.17 0.17 97.17 99.33 90.50 91.83

MπNets (Ours)
Hybrid Expert 0.50 0.00 0.00 97.33 99.50 96.33 98.33
Global Expert 8.67 0.17 0.00 97.00 99.67 95.83 98.17

Table 17: Failure Modes on tabletop problems solvable by both the global and hybrid planners
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