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Abstract

In this paper, we take a new look at real-world image super-resolution (real-SR)
from a multi-task learning perspective. We demonstrate that the conventional
formulation of real-SR can be viewed as solving multiple distinct degradation tasks
using a single shared model. This poses a challenge known as task competition
or task conflict in multi-task learning, where certain tasks dominate the learning
process, resulting in poor performance on other tasks. This problem is exacerbated
in the case of real-SR, due to the involvement of numerous degradation tasks.
To address the issue of task competition in real-SR, we propose a task grouping
approach. Our approach efficiently identifies the degradation tasks where a real-SR
model falls short and groups these unsatisfactory tasks into multiple task groups.
We then utilize the task groups to fine-tune the real-SR model in a simple way,
which effectively mitigates task competition and facilitates knowledge transfer.
Extensive experiments demonstrate our method achieves significantly enhanced
performance across a wide range of degradation scenarios. The source code is
available at https://github.com/XPixelGroup/TGSR.

1 Introduction

Real-world image super-resolution (real-SR) aims to enhance the resolution and quality of low-
resolution images captured in real-world scenarios. Real-SR algorithms enable improved image
quality and better visual understanding, making them valuable in a wide range of applications [43, 46,
45, 14, 17]. Unlike non-blind SR [9, 56, 55] and classical blind SR [13, 18, 38] that assumes a simple
degradation process, real-SR deals with complex and unknown degradations present in real-world
imaging conditions, such as noise, blur, compression artifacts, and sensor limitations. The diversity
of real-world degradations and unknown degradation parameters make it challenging to reverse the
specific degradation effects and accurately recover high-resolution details.

Prior studies tackle real-SR by designing various degradation models to simulate the degradation
process in real-world scenarios. For instance, they generate synthetic paired training data with a
shuffled degradation model (BSRGAN [50]), a high-order degradation model (RealESRGAN [39]),
or a three-level degradation model (DASR [25]). Existing methods commonly train a single real-
SR network with training data generated by a sophisticated degradation model, aiming to cover
as many degradation cases as possible during the training process. Under this framework, recent
works have focused on enhancing various aspects of the real-SR network, including improving the
backbone network architecture [26], optimizing inference efficiency [25], enhancing generalization
capabilities [23], and improving modulation ability [31].
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This study takes a new look at real-SR from a multi-task learning perspective. We show that
the conventional formulation of real-SR essentially corresponds to a multi-task learning problem,
which involves solving a large number of different degradation tasks simultaneously with a single
shared model. Consequently, real-SR faces a well-known challenge in multi-task learning, namely
task competition or task conflict [32]. It refers to the situation that tasks compete for model capacity,
potentially resulting in certain tasks dominating the learning process and adversely affecting the
performance of other tasks. This problem is severely aggravated in the case of real-SR, where a
large number of degradation tasks (up to thousands) are typically involved. In our pilot experiment
(Fig. 1), we have observed that a real-SR network trained with the multi-task objective fails to yield
satisfactory results for a significant portion of degradation tasks.

We propose a task grouping approach (Fig. 2) to alleviate the negative impact of task competition
for real-SR. Task grouping [48, 37, 35, 10] is an effective technique in multi-task learning that helps
mitigate negative transfer by training similar tasks together. This approach typically involves learning
the relationship or relevance between pairs of tasks through validation or fine-tuning, which becomes
impractical in the context of real-SR where there is a large number of tasks to consider. Hence, we
resort to design indirect measures to assess task affinity. Specifically, we introduce a performance
indicator based on gradient updates to efficiently identify the degradation tasks that a real-SR model
falls short of. Then, we propose an algorithm to group these unsatisfactory tasks into multiple groups
based on a performance improvement score. Finally, we propose TGSR, a simple yet effective real-SR
method, which leverages the identified task groups to fine-tune the pre-trained real-SR network. Our
key contributions are summarized as follows:

• We take a new look at real-SR from a multi-task learning perspective and highlight the task
competition problem.

• We propose a task grouping approach to effectively address the task competition problem
for real-SR and develop a task grouping based real-SR method (TGSR).

• We conduct extensive experiments to validate the effectiveness of TGSR, and the results
demonstrate its superior performance compared to state-of-the-art real-SR methods.

2 Related Work

Image super-resolution. Since Dong et al. [9] first introduced Convolutional Neural Networks
(CNNs) to the SR problem, a series of learning-based SR methods have made great progress, including
deep networks [21], dense connections [56], channel attention of [55], residual-in-residual dense
blocks [41], and transformer structure [26]. To reconstruct realistic textures, Generative Adversarial
Networks (GANs) [24, 41, 53, 42] have been employed to generate visually pleasing results. However,
these methods adopt a bicubic down-sampling degradation that is insufficient for real-world images.

Real-world super-resolution. To address the SR problem in real-world scenarios, classical blind
SR methods primarily use Gaussian blur and noise to model the distribution of real-world images.
Significant progress has been made through a variety of approaches, including the use of a single
SR network with multiple degradations [51], kernel estimation [13, 18, 44, 2], and representation
learning [38]. Additionally, BSRGAN [50] proposes a large degradation model that incorporates
multiple degradations using a shuffled strategy, while RealESRGAN [39] employs a high-order
strategy to construct a large degradation model. DASR [25] adopts a three-level degradation distri-
bution (i.e., two one-order and one high-order degradation models) to simulate the distribution of
real-world images. These works demonstrate the potential of large degradation models for real-world
applications. In addition, recent works also improve real-SR in multiple dimensions, such as network
backbone [26], efficiency [25], generalization [23, 54, 52] and modulation ability [31].

Multi-task learning. Multi-task learning methods can be roughly divided into three categories: task
balancing, task grouping, and architecture design. Task balancing [16, 20, 47, 27, 34, 15, 8, 7, 19]
methods address task/gradient conflicts by re-weighting the loss or manipulating the update gradient.
Task grouping [48, 37, 35, 10] methods mainly focus on identifying which tasks should be learned
together. Zamir et al. [48] provide a task taxonomy that captures the notion of task transferability.
TAG [10] determines task groups by computing affinity scores that capture the effect between tasks.
Architecture design methods can mainly be divided into hard parameter sharing methods [22, 28, 3]
and soft parameter sharing methods [30, 33, 12, 11]. Hard parameter sharing methods require
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Figure 1: Illustration of task competition. The jointly-trained multi-task real-SR network falls short
in producing satisfactory results for almost half of the degradation tasks, on which the fine-tuned
single-task networks obtain more than 0.4dB performance gain, indicating these tasks are dominated
by other tasks during the learning process.

different decoders for different tasks, while soft parameter sharing methods do cross-talk between
different task networks. We focus on a task grouping strategy in our TGSR. The strategy identifies
unsatisfactory degradation tasks in a large degradation space. Subsequently, we can further improve
the overall performance of the real-SR network by fine-tuning it in the unsatisfactory tasks.

3 Real-SR as a Multi-task Learning Problem

Problem Formulation Real-SR aims to restore a high-resolution (HR) image x from its low-
resolution (LR) counterpart y that has undergone an unknown and intricate degradation process:

y = D(x) = (fn ◦ · · · ◦ f2 ◦ f1)(x), (1)

where fi represents a degradation function such as Gaussian blurring with a kernel width [0.1, 2.4],
adding Gaussian noise with a noise level [1, 25], a downsampling operation with a scale factor r,
or applying the JPEG compression. Hence, D represents a vast continuous degradation space that
encompasses an infinite number of degradations. Existing real-SR models such as BSRGAN [50],
RealESRGAN [39], and DASR [25] make different assumptions in the generation of D, aiming to
simulate the highly complex degradation process in real-world scenarios.

An SR task τ can be defined as a training pair (x, y = d(x)) formed by sampling a degradation d
from the degradation space D and applying it on an HR image x to generate an LR image y. Due to
the infinite size of D, it is impossible to consider every degradation case. Hence, a common approach
is to sample a large number of degradations to sufficiently represent the degradation space. Given a
set of high-resolution images X , with N different degradations sampled from D (N ≫ |X |), we can
generate a set of SR tasks: T = {τi = (xi, yi)}Ni=1, where xi ∈ X and yi is obtained by applying a
degradation on xi. A real-SR model is commonly trained by minimizing the empirical risk:

Ltotal(θ) =

N∑
i=1

Li(τi; θ), (2)

where Li is the loss on task τi, and θ are the trainable model parameters shared by all N tasks.
Therefore, real-SR is essentially a multi-task learning problem, aiming to solve N different SR tasks
with a single shared model. In the following, we refer to τi as a degradation task.

Task Competition From the view of multi-task learning, real-SR is a challenging problem as it
intends to solve a large number of different degradation tasks (e.g., N = 103) altogether with a single
model, inevitably suffering from task competition that some tasks may dominate the training process
leading to poor performance on other tasks [37].

To illustrate the impact of task competition, we randomly sample 100 degradation tasks with the
degradation model in [39] and train a real-SR network with the multi-task objective in Eq. 2. Next,
we fine-tune the real-SR network on each degradation task independently and obtain 100 fine-tuned
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Figure 2: Overview of our proposed task grouping approach for real-SR.

models, which we call single-task networks. We then compare the performance between the real-SR
network and the single-task networks on each degradation task by computing their PSNR distance.
The results in Fig. 1 show that for nearly half of the degradation tasks, the PSNR distance between
the real-SR network and single-task network exceeds 0.4dB, indicating that these tasks are not well
solved by the real-SR network, which we refer to as unsatisfactory tasks. From an optimization
perspective, the other tasks (those with PSNR distance less than 0.4dB) dominate the learning process
and are effectively solved by the real-SR network, which we refer to as satisfactory tasks.

4 Real-SR via Task Grouping

Our analysis in Sec. 3 shows that when a real-SR network is tasked with many degradation tasks,
they may compete for model capacity or interfere with each other, resulting in a significant decline in
performance for certain tasks. This phenomenon, commonly referred to as negative transfer [37], is a
well-known challenge in the field of multi-task learning. An effective approach to mitigate negative
transfer is task selection or task grouping [10, 37, 48]. By finding groups of tasks that may benefit
from training together, the interference among tasks can be minimized.

4.1 Which Tasks Should Be Learned Together for Real-SR?

The results in Fig. 1 suggest that the satisfactory tasks should be grouped together. These dominant
tasks may share certain characteristics or similarities that lead to minimal task conflicts, making them
more prominent in the training process. More importantly, considering that the real-SR network has
effectively tackled these tasks and reached a satisfactory performance level, we may focus on the
unsatisfactory tasks that present greater potential for improvement.

Efficiently Identifying Unsatisfactory Tasks To identify the unsatisfactory tasks, we may use the
approach described in Sec. 3 and Fig. 1, by comparing the performance between the jointly-trained
multi-task real-SR network (referred to as the pre-trained real-SR network hereafter) and the fine-
tuned single-task networks. However, the cost of adopting this approach is prohibitive due to the
large number of degradation tasks (e.g., thousands or tens of thousands) involved in real-SR.

Therefore, to efficiently identify the unsatisfactory tasks, we propose a measure to assess whether a
degradation task has been well solved by the real-SR network, which is done through fine-tuning
the pre-trained real-SR network for a small number of iterations (e.g., 100) on the degradation task.
Specifically, we assess the impact of the gradient update of task τi on the shared parameters θ (i.e.,
the pre-trained real-SR network), by comparing the loss of τi before and after updating θ. We develop
a performance indicator defined as:

zti =
Li(τi, θ

t
i)

Li(τi, θ)
, (3)

where θti are the parameters updated on task τi at the time step t. Notice that a high value of
zti indicates the loss of task τi is not significantly reduced after fine-tuning, suggesting that the
pre-trained real-SR network has achieved good performance on this task.
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Algorithm 1: Degradation Task Grouping for Real-SR
Input: A set of degradation tasks T = {τ1, τ2, ..., τn}, the pre-trained real-SR model θ, the

number of groups c, and the threshold values t0, t1, · · · , tc.
for any τi ∈ T do

Compute the average performance indicator ẑi with Eq. 4;
end
// Select unsatisfactory tasks
Let T̂ = {τi|ẑi > t0} ;
// Group unsatisfactory tasks
for i = 1, . . . , c do

Fine-tune the pre-trained real-SR network with all unsatisfactory tasks;
for any τj ∈ T̂ do

Compute the performance improvement score sj with Eq. 5;
end
Let Gi = {τj |sj > ti}, where ti is the threshold for group i;
Let T̂ = T̂ \Gi;

end
Output: Degradation task groups G = {G1, G2, .., Gc}.

For stability, we consider the average performance indicator during the fine-tuning process on task τi:

ẑi =
1

te − ts

te∑
t=ts

zti , (4)

where ts and te represent the starting and end points of a time span, respectively. With the computed
average performance indicator of each task, we can set a threshold to select the unsatisfactory tasks.
The effectiveness of ẑi is validated in Sec. 5.2 and Sec. 5.3.

Grouping Unsatisfactory Tasks into Multiple Task Groups The number of identified unsatisfac-
tory degradation tasks can still be significant, typically in the range of hundreds in our experiments.
Given the potential variance among these tasks, it would be advantageous to further divide them into
multiple task groups based on their similarity to reduce negative transfer. A common approach for task
grouping in multi-task learning is to learn pairwise performance indicator between tasks [48, 10, 37],
which is impractical for real-SR due to the large number of degradation tasks involved.

A feasible way is to learn an indirect measure of task similarity by fine-tuning the pre-trained real-SR
network on each degradation task independently and computing the PSNR distance as described
in Sec. 3 and Fig. 1. However, this approach is still time-consuming given the large number of
unsatisfactory tasks. Another alternative of indirect measure is the average performance indicator in
Eq. 4, which, although efficient, may not be accurate enough. Hence, we make a trade-off to fine-tune
the pre-trained real-SR network θ on all unsatisfactory tasks simultaneously through joint-training to
obtain a new network θ̂. Then, we test the fine-tuned network θ̂ on each degradation task with an
available validation set and compute a performance improvement score (PIS) defined as:

sj = I(Dval
j ; θ̂)− I(Dval

j ; θ), (5)

where Dval
i represents the validation set of an unsatisfactory task τi, I is an IQA (image quality

assessment) metric such as PSNR, and si is the PIS of task τi. We then select the tasks with PIS
larger than some threshold to form a task group, which should have small conflicts as they dominate
the fine-tuning process. We repeat this process to find the rest of task groups as described in Alg. 1.

4.2 TGSR: A Task Grouping Based Real-SR Method

With the identified degradation task groups G = {G1, G2, .., Gc}, we adopt a straightforward method
to fine-tune the pre-trained real-SR network, referred to as TGSR. We first form Ĝ = {G0,G} =
{G0, G1, G2, .., Gc}, where G0 represents the entire degradation space and serves for preventing
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Figure 3: Sample images from different degradation task groups in our DIV2K5G datasets.

catastrophic forgetting during the fine-tuning process. Then, we randomly select a group from Ĝ and
randomly sample a task from the chosen group for fine-tuning. This approach effectively increases
the inclusion of the unsatisfactory tasks during the fine-tuning process and weights their likelihood
of being chosen based on their respective group size (i.e., tasks in smaller groups have a higher
probability to be selected). In essence, it is similar to the task re-weighting approach commonly used
in multi-task learning.

5 Experiments

5.1 Experimental Setup

Datasets and evaluation. We employ DIV2K [1], Flickr2K [1] and OutdoorSceneTraining [40]
datasets to implement our task grouping algorithm and train the TGSR network. For evaluation, we
use DIV2K validation set to construct a DIV2K5G dataset consisting of 5 validation sets according
to the divided 5 different degradation groups by the task grouping algorithm, as shown in Fig. 3.
Each validation set contains 100 image pairs. In addition to the task group based test set, we employ
the synthetic test set AIM2019 [29] and DIV2K_random for evaluation. The DIV2K_random is
generated using the RealESRGAN degradation model on the DIV2K validation set. Furthermore, we
incorporate the real-world test set, RealSR set [4], into our evaluation process. All evaluations are
conducted on ×4 SR and PSNR is computed on the Y channel of YCbCr color space.

Implementation details. We adopt the high-order degradation model proposed by RealESRGAN [39]
as the real-SR degradation model in our experiments. To compute the performance indicator, N
(4× 103) degradation tasks are sampled from the whole degradation space. The single-task network
is fine-tuned from the pre-trained RealESRNet model for 100 iterations. The performance indicator
is computed based on the average of the last 10 iterations considering the instability of the training
procedure. To implement the degradation grouping, the degradation tasks with the top 40% higher
performance indicators (1.6× 103 degradation tasks) are selected as unsatisfactory tasks. Then, we
fine-tune the pre-trained RealESRNet for 1× 104 iterations based on all unsatisfactory tasks. After
that, we evaluate the model on Set14 [49] for each unsatisfactory degradation task. By using the
proposed performance improvement score, we divide the degradation tasks into five groups based on
the thresholds of [0.8, 0.6, 0.4, 0.2]. According to this set of thresholds, we obtain four groups with
the number of tasks in each group being [14, 29, 84, 200] as groups1-4. Then, we label the entire
degradation space beyond the four degradation groups as Group0. To avoid forgetting the satisfactory
tasks, we uniformly sample degradation tasks from each group to fine-tune the pre-trained real-SR
network. Other basic training settings follow RealESRGAN.

5.2 Comparison with State-of-the-Art

We compare our TGSR with the state-of-the-art methods, including SRGAN [24], ESRGAN [41],
RDSR [23], MM-RealSR [31] BSRGAN [50], SwinIR [26], RealESRGAN [39], DASR [25] and
HAT [6, 5]. Officially released pre-trained models are used for the compared methods.

Our TGSR improves the overall performance. The quantitative results of different methods are
presented in Tab. 1. ESRGAN is based on a single-degradation model (i.e., Bicubic setting), so it
performs worst under the multi-degradation evaluation system. RDSR is an MSE-based method,
so it achieves the highest PSNR but performs rather poorly (the second worst) performance on
LPIPS. BSRGAN, RealSwinIR, and DASR employ a one-order degradation model. They sacrifice
performance on PSNR for better perceptual quality (reflected in low LPIPS). MM-RealSR and
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Table 1: Quantitative results of different methods on DIV2K5G. Group0 denotes the validation set
with satisfactory degradation tasks, and Group1-4 represent the validation sets with unsatisfactory
degradation tasks. The ESRGAN trained on the non-blind setting and RDSR trained on the MSE-
based setting are marked in gray.

Group0 Group1 Group2 Group3 Group4
PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

ESRGAN 21.49 0.6166 20.29 0.6697 20.95 0.6530 22.42 0.5940 22.02 0.5837
RDSR 25.00 0.5196 21.18 0.6167 23.06 0.5586 25.00 0.4993 25.58 0.4814
MM-RealSR 23.49 0.4549 19.74 0.5326 21.76 0.4731 23.37 0.4205 23.97 0.3989
DASR 23.87 0.4683 19.97 0.5752 22.31 0.5093 24.00 0.4474 24.85 0.4225
BSRGAN 23.99 0.4549 20.07 0.5799 22.45 0.4961 24.34 0.4388 24.80 0.4210

RealSRGAN 23.88 0.4599 20.10 0.5586 22.12 0.5019 23.85 0.4499 24.48 0.4270
RealSRGAN-TG 23.95 0.4617 21.14 0.5323 23.06 0.4802 24.69 0.4248 25.05 0.4112
RealESRGAN 23.85 0.4325 20.10 0.5355 22.07 0.4701 24.30 0.4147 24.58 0.3970
RealESRGAN-TG 23.99 0.4286 21.10 0.5056 23.15 0.4494 24.62 0.3975 25.03 0.3851
RealSwinIR 23.35 0.4468 19.60 0.5624 21.65 0.4905 23.66 0.4265 24.16 0.4077
RealSwinIR-TG 23.90 0.4168 20.62 0.4925 22.70 0.4377 24.56 0.3815 24.98 0.3670
RealHAT 24.26 0.4084 20.64 0.5022 22.44 0.4468 24.42 0.3918 25.02 0.3734
RealHAT-TG 24.31 0.4110 21.41 0.4932 23.20 0.4395 24.87 0.3841 25.32 0.3674

Input ESRGAN RDSR MM-RealSR BSRGAN RealSwinIR RealESRGANDASR RealESRGAN-TG 
(ours)

Figure 4: Qualitative results of different methods. Zoom in for details.

RealESRGAN utilize a more complex high-order degradation. As a result, they achieve better LPIPS
for real-SR evaluation. However, the two approaches obtain low PSNR performance due to the great
difficulty of optimizing. Notably, we can enhance the performance of the pre-trained real-SR network
by fine-tuning it on the identified Task Groups (TG). This improvement is particularly significant in
Groups 1-4. For instance, on RealESRGAN-TG, we can observe a maximum boost of 1 dB in PSNR
and 0.03 in LPIPS.

Our TGSR demonstrates significant superiority when applied to a large degradation space.
It is noticeable that RealESRGAN-TG outperforms RealESRGAN even in Group0. This indicates
that our approach enhances real-SR performance across nearly the entire degradation space, not just
the specifically addressed Groups 1-4. In addition to the identified task groups, our TGSR can also
achieve performance gains on the randomized synthetic test sets DIV2K_random and AIM2019 test
set as shown in Tab. 2. Additionally, our method achieves a gain on the real scene test set RealSRset.
These results clearly demonstrate that our approach does not compromise the performance of certain
degradation tasks to enhance the performance of others.
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Table 2: Quantitative results of different methods on the real-world test set. The ESRGAN trained on
the non-blind setting and RDSR trained on the MSE-based setting are marked in gray.

DIV2K_random AIM2019 RealSRset-Nikon RealSRset-Cano
PSNR LPIPS PSNR LPIPS PSNR LPIPS PSNR LPIPS

ESRGAN 20.63 0.6345 23.16 0.5500 27.40 0.4132 27.73 0.4054
RDSR 24.61 0.5268 24.44 0.4803 26.39 0.4053 26.93 0.3795
MM-RealSR 23.17 0.4394 23.48 0.3917 23.78 0.3841 24.42 0.3664
DASR 23.52 0.4832 23.76 0.4210 26.68 0.3972 27.68 0.3792
BSRGAN 23.76 0.4622 24.20 0.4000 26.11 0.3900 26.90 0.3648
SwinIR 23.13 0.4432 23.89 0.3870 26.20 0.3616 26.68 0.3469
RealESRGAN 23.54 0.4423 23.89 0.3960 25.62 0.3820 26.06 0.3629

RealSRGAN 23.58 0.4710 23.72 0.4247 24.71 0.4159 25.42 0.3902
RealSRGAN-TG 23.79 0.4705 23.97 0.4174 25.18 0.4018 25.93 0.3759
RealESRGAN 23.54 0.4423 23.89 0.3960 25.62 0.3820 26.06 0.3629
RealESRGAN-TG 23.84 0.4368 24.27 0.3899 26.01 0.3819 26.33 0.3637

RealSwinIR 23.67 0.4216 23.98 0.3804 25.70 0.3700 26.43 0.3506
RealSwinIR-TG 23.74 0.4190 24.10 0.3766 26.36 0.3751 27.18 0.3585

RealHAT 24.04 0.4156 24.19 0.3742 25.88 0.3532 26.56 0.3339
RealHAT-TG 24.21 0.4189 24.41 0.3723 26.12 0.3635 26.69 0.3451

RealHAT RealHAT-TGInput GT

RealSwinIR RealSwinIR-TGInput GT

Figure 5: RealSwinIR and RealHAT may unreasonably generate unpleasant artifacts or semantic
textures that shouldn’t be there. However, our method does not have this problem.

Our TGSR obtains better visual results than other methods. The visual results of different
methods are shown in Fig. 4 and Fig. 5. TGSR significantly improves existing methods by removing
various degradation artifacts and noticeable unpleasant artifacts. For the first four rows of images
with complex degradation, the other methods cannot remove the degradation or generate unacceptable
artifacts. In contrast, our TGSR handles the degradation well and produces visually pleasant results.
For the image on the last row, our method can generate more realistic results than other methods with
clear textures. In the RealSwinIR results of Fig. 5, we can observe the unpleasant artifacts in the
flat area of Flower image and the fur of cat image. In the RealHAT results, we also find semantic
textures appearing where they shouldn’t be. For example, a tree texture appears on the train, and
fur-like textures are present in the background of the Wolf image. However, our method can remove
these artifacts by fine-tuning the real-SR network on identified task groups.

5.3 Ablation and Analysis

Effectiveness of the performance indicator. 1) In Fig. 6 (a) and (b), we present the PSNR
improvement achieved by fine-tuning the real-SR network on individual tasks with lower and higher
performance indicators. It can be observed that tasks with higher performance indicators exhibit a
significant PSNR improvement (about 0.4-1.4dB), while tasks with lower performance indicators
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Figure 6: Performance comparison of real-SR networks that trained on the degradation tasks with (a)
lower performance indicators and (b) higher performance indicators. The degradation tasks with a
lower performance indicator can be further improved in quantitative and qualitative results.
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Figure 7: Performance comparison of RealESRGAN and our TGSR/ TGSR with random grouping
on (a) PSNR and (b) LPIPS. The results indicate random grouping achieves limited improvement
compared with our proposed task grouping. (c) Visual results demonstrate that random grouping
chooses a satisfactory degradation task that is not required for further training, while our task grouping
method finds an unsatisfactory degradation task that needs to be further improved.

show only a small PSNR improvement (about 0.2 dB). This finding indicates that our proposed
performance indicator can effectively distinguish between satisfactory and unsatisfactory tasks for a
real-SR model in a large degradation space. Additionally, Fig. 6 (c) illustrates that significant visual
improvements can be achieved with the unsatisfactory degradation task. 2) Directly fine-tuning a
model for each task incurs a high computational cost (empirically requiring at least 10,000 iterations).
However, our performance indicator requires only 100 iterations of fine-tuning. It suggests that
utilizing the performance indicator can be 100 times faster than direct fine-tuning for distinguishing
the unsatisfactory and satisfactory degradation tasks. This further illustrates the superiority of the
proposed performance indicator.

Effectiveness of our task grouping algorithm. We compare the performance of RealESRGAN-TG
with our task grouping and random grouping to demonstrate the effectiveness of our method. As
shown in Fig. 7 (a) and (b), random grouping can only bring very limited performance gains of about
0.2dB on PSNR and about 0.01 on LPIPS. In contrast, the groups generated by our task grouping
algorithm show a significant improvement up to 1dB on PSNR and 0.03 on LPIPS. These results
demonstrate the significance of a well-designed task grouping approach. Furthermore, Fig. 7 (c)
shows that random grouping can not select the unsatisfactory task, while our task grouping algorithm
can find it.

Study of the performance upper bound. (1) We randomly select 100 single tasks and then add the
corresponding small range of similar degradation parameters to each task, named single-task network
with range (see details in appendix). Fig. 8 shows that the existence of related tasks can improve the
upper bound of some tasks (about 40%). However, there has been a performance drop for other tasks
due to similar degradation parameters that may not strictly represent similar tasks. (2) To further
show the superiority of our TGSR, we fine-tune the RealESRGAN model on each group to obtain
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Table 3: Ablation experiments on the performance upper bound.
We fine-tune RealESRGAN directly on each task group to
get the corresponding performance upper bound, denoted as
RealESRGAN-SG.

Metrics Model Group0 Group1 Group2 Group3 Group4

PSNR (↑)
RealESRGAN 23.85 24.58 24.00 22.07 20.10
RealESRGAN-SG 23.63 24.58 24.39 22.67 20.46
RealESRGAN-TG (ours) 23.88 25.08 24.62 23.11 21.06

LPIPS (↓)
RealESRGAN 0.4325 0.3970 0.4147 0.4701 0.5355
RealESRGAN-SG 0.4242 0.3792 0.3929 0.4478 0.4990
RealESRGAN-TG (ours) 0.4291 0.3845 0.3981 0.4524 0.5087

their empirical performance upper bound for these degradation groups, and the results are denoted
as RealESRGAN-SG. As presented in Tab. 3, the fine-tuned models exceed the baseline models
and obtain significant performance improvement on LPIPS. Although RealESRGAN-TG cannot
surpass the empirical upper bound performance on LPIPS, it still achieves comparable performance.
Moreover, our RealESRGAN-TG obtains higher PSNR compared to RealESRGAN-SG. This further
shows the superiority of our method and suggests that multi-task learning enhances the performance
of the specific task.

Table 4: Quantitative results of different methods on DIV2K8G. Group0 denotes the validation set
with satisfactory degradation tasks, and Group1-7 represents the validation sets with unsatisfactory
degradation tasks. The ESRGAN trained on the non-blind setting and RDSR trained on the MSE-
based setting are marked in gray.

Metrics ESRGAN RDSR BSRGAN Real-SwinIR DASR MM-RealSR RealESRGAN RealESRGAN
-TG (ours)

Group0 PSNR (↑) 21.39 25.12 24.19 23.61 23.97 23.61 24.08 24.10
LPIPS (↓) 0.6251 0.5181 0.4567 0.4430 0.4697 0.4335 0.4297 0.4262

Group1 PSNR (↑) 19.81 20.99 19.96 19.52 19.77 19.52 19.92 20.97
LPIPS (↓) 0.6812 0.6325 0.6151 0.5954 0.6012 0.5572 0.5584 0.5249

Group2 PSNR (↑) 21.10 22.55 21.91 21.16 21.77 21.39 21.67 22.72
LPIPS (↓) 0.6636 0.5755 0.5091 0.4988 0.5175 0.4814 0.4823 0.4652

Group3 PSNR (↑) 21.02 23.82 23.24 22.66 23.06 22.54 22.94 23.93
LPIPS (↓) 0.6301 0.5225 0.4657 0.4528 0.4795 0.4445 0.4390 0.4188

Group4 PSNR (↑) 22.10 24.64 23.96 23.37 24.05 23.20 23.63 24.41
LPIPS (↓) 0.6221 0.5171 0.4617 0.4429 0.4596 0.4335 0.4294 0.4097

Group5 PSNR (↑) 22.78 25.30 24.64 23.99 24.49 23.61 24.36 25.14
LPIPS (↓) 0.5705 0.4873 0.4248 0.4113 0.4245 0.4072 0.4043 0.3821

Group6 PSNR (↑) 22.42 25.32 24.58 23.87 24.52 23.71 24.38 24.86
LPIPS (↓) 0.5849 0.4917 0.4255 0.4153 0.4269 0.4060 0.4039 0.3889

Group7 PSNR (↑) 22.49 25.37 24.50 23.85 24.43 23.74 24.37 24.76
LPIPS (↓) 0.5868 0.4958 0.4337 0.4227 0.4398 0.4110 0.4083 0.3976

Impact of the number of task groups. In Tab. 4, we group the unsatisfactory tasks into more
compact new groups using new thresholds of [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2], with the corresponding
number of degradation tasks being [14, 15, 14, 31, 53, 116, 258]. The results demonstrate that our
TGSR method exhibits steady improvement on the unsatisfactory tasks in Groups 1-7, while achieving
comparable performance on the satisfactory tasks in Group 0. This indicates that our approach can be
applied with a more fine-grained division of unsatisfactory tasks based on user requirements.

6 Conclusion

We have re-examined the real-SR problem through the lens of multi-task learning and introduced a
novel approach, TGSR, to address task competition in real-SR. TGSR aims to identify and enhance
the degradation tasks where a real-SR model underperforms. It involves a task grouping method
and a simple fine-tuning approach using the identified task groups. Comprehensive evaluation
confirms the effectiveness of our approach in producing high-quality super-resolution results in
real-world scenarios. One potential limitation of our method is the need for adequate sampling from
the degradation space.

10



Acknowledgments and Disclosure of Funding

This work was supported in part by the National Natural Science Foundation of China under Grant
(62276251,62272450), the Joint Lab of CAS-HK, the National Key RD Program of China (NO.
2022ZD0160100), and in part by the Youth Innovation Promotion Association of Chinese Academy
of Sciences (No. 2020356).

References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:

Dataset and study. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, volume 3, page 2, 2017.

[2] Sefi Bell-Kligler, Assaf Shocher, and Michal Irani. Blind super-resolution kernel estimation
using an internal-gan. Advances in Neural Information Processing Systems, 32, 2019.

[3] Felix JS Bragman, Ryutaro Tanno, Sebastien Ourselin, Daniel C Alexander, and Jorge Cardoso.
Stochastic filter groups for multi-task cnns: Learning specialist and generalist convolution
kernels. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
1385–1394, 2019.

[4] Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single
image super-resolution: A new benchmark and a new model. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3086–3095, 2019.

[5] Xiangyu Chen, Xintao Wang, Wenlong Zhang, Xiangtao Kong, Yu Qiao, Jiantao Zhou, and Chao
Dong. Hat: Hybrid attention transformer for image restoration. arXiv preprint arXiv:2309.05239,
2023.

[6] Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong. Activating more pixels in
image super-resolution transformer. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 22367–22377, 2023.

[7] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gra-
dient normalization for adaptive loss balancing in deep multitask networks. In International
conference on machine learning, pages 794–803. PMLR, 2018.

[8] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai,
and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039–2050, 2020.

[9] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional
network for image super-resolution. In European conference on computer vision, pages 184–199.
Springer, 2014.

[10] Chris Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, and Chelsea Finn. Efficiently
identifying task groupings for multi-task learning. Advances in Neural Information Processing
Systems, 34:27503–27516, 2021.

[11] Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-nas: Task-agnostic
neural architecture search towards general-purpose multi-task learning. In Proceedings of the
IEEE/CVF Conference on computer vision and pattern recognition, pages 11543–11552, 2020.

[12] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. Nddr-cnn: Layerwise feature
fusing in multi-task cnns by neural discriminative dimensionality reduction. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 3205–3214, 2019.

[13] Jinjin Gu, Hannan Lu, Wangmeng Zuo, and Chao Dong. Blind super-resolution with iterative
kernel correction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1604–1613, 2019.

11



[14] Yuchao Gu, Xintao Wang, Liangbin Xie, Chao Dong, Gen Li, Ying Shan, and Ming-Ming
Cheng. Vqfr: Blind face restoration with vector-quantized dictionary and parallel decoder. In
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XVIII, pages 126–143. Springer, 2022.

[15] SHI Guangyuan, Qimai Li, Wenlong Zhang, Jiaxin Chen, and Xiao-Ming Wu. Recon: Reducing
conflicting gradients from the root for multi-task learning. In The Eleventh International
Conference on Learning Representations.

[16] Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task
prioritization for multitask learning. In Proceedings of the European conference on computer
vision (ECCV), pages 270–287, 2018.

[17] Weidong Hu, Wenlong Zhang, Shi Chen, Xin Lv, Dawei An, and Leo Ligthart. A deconvolution
technology of microwave radiometer data using convolutional neural networks. Remote Sensing,
10(2):275, 2018.

[18] Yan Huang, Shang Li, Liang Wang, Tieniu Tan, et al. Unfolding the alternating optimization
for blind super resolution. Advances in Neural Information Processing Systems, 33:5632–5643,
2020.

[19] Adrián Javaloy and Isabel Valera. Rotograd: Gradient homogenization in multitask learning. In
ICLR, 2022.

[20] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7482–7491, 2018.

[21] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very
deep convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1646–1654, 2016.

[22] Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-,
and high-level vision using diverse datasets and limited memory. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 6129–6138, 2017.

[23] Xiangtao Kong, Xina Liu, Jinjin Gu, Yu Qiao, and Chao Dong. Reflash dropout in image
super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6002–6012, 2022.

[24] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew P Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic
single image super-resolution using a generative adversarial network. In CVPR, volume 2,
page 4, 2017.

[25] Jie Liang, Hui Zeng, and Lei Zhang. Efficient and degradation-adaptive network for real-world
image super-resolution. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XVIII, pages 574–591. Springer, 2022.

[26] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
Image restoration using swin transformer. In IEEE International Conference on Computer
Vision Workshops, 2021.

[27] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890,
2021.

[28] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Philip S Yu. Learning multiple tasks
with multilinear relationship networks. Advances in neural information processing systems, 30,
2017.

12



[29] Andreas Lugmayr, Martin Danelljan, Radu Timofte, Manuel Fritsche, Shuhang Gu, Kuldeep
Purohit, Praveen Kandula, Maitreya Suin, AN Rajagoapalan, Nam Hyung Joon, et al. Aim
2019 challenge on real-world image super-resolution: Methods and results. In 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW), pages 3575–3583. IEEE,
2019.

[30] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks
for multi-task learning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3994–4003, 2016.

[31] Chong Mou, Yanze Wu, Xintao Wang, Chao Dong, Jian Zhang, and Ying Shan. Metric learning
based interactive modulation for real-world super-resolution. In Computer Vision–ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVII,
pages 723–740. Springer, 2022.

[32] Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[33] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard. Latent multi-
task architecture learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 4822–4829, 2019.

[34] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances
in neural information processing systems, 31, 2018.

[35] Jiayi Shen, Xiantong Zhen, Marcel Worring, and Ling Shao. Variational multi-task learning with
gumbel-softmax priors. Advances in Neural Information Processing Systems, 34:21031–21042,
2021.

[36] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. ICLR, 2015.

[37] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese.
Which tasks should be learned together in multi-task learning? In International Conference on
Machine Learning, pages 9120–9132. PMLR, 2020.

[38] Longguang Wang, Yingqian Wang, Xiaoyu Dong, Qingyu Xu, Jungang Yang, Wei An, and
Yulan Guo. Unsupervised degradation representation learning for blind super-resolution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10581–10590, 2021.

[39] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world
blind super-resolution with pure synthetic data. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1905–1914, 2021.

[40] Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy. Recovering realistic texture in image
super-resolution by deep spatial feature transform. arXiv preprint arXiv:1804.02815, 2018.

[41] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Chen Change Loy,
Yu Qiao, and Xiaoou Tang. Esrgan: Enhanced super-resolution generative adversarial networks.
2018.

[42] Zhang Wenlong, Liu Yihao, Chao Dong, and Yu Qiao. Ranksrgan: Generative adversarial
networks with ranker for image super-resolution. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

[43] Yanze Wu, Xintao Wang, Gen Li, and Ying Shan. Animesr: Learning real-world super-resolution
models for animation videos. In Advances in Neural Information Processing Systems.

[44] Liangbin Xie, Xintao Wang, Chao Dong, Zhongang Qi, and Ying Shan. Finding discriminative
filters for specific degradations in blind super-resolution. Advances in Neural Information
Processing Systems, 34:51–61, 2021.

13



[45] Liangbin Xie, Xintao Wang, Shuwei Shi, Jinjin Gu, Chao Dong, and Ying Shan. Mitigating
artifacts in real-world video super-resolution models. arXiv preprint arXiv:2212.07339, 2022.

[46] Fanghua Yu, Xintao Wang, Mingdeng Cao, Gen Li, Ying Shan, and Chao Dong. Osrt:
Omnidirectional image super-resolution with distortion-aware transformer. arXiv preprint
arXiv:2302.03453, 2023.

[47] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

[48] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3712–3722, 2018.

[49] Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
representations. In International conference on curves and surfaces, pages 711–730. Springer,
2010.

[50] Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation
model for deep blind image super-resolution. arXiv preprint arXiv:2103.14006, 2021.

[51] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Learning a single convolutional super-resolution
network for multiple degradations. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3262–3271, 2018.

[52] Wenlong Zhang, Xiaohui Li, Xiangyu Chen, Yu Qiao, Xiao-Ming Wu, and Chao Dong.
Seal: A framework for systematic evaluation of real-world super-resolution. arXiv preprint
arXiv:2309.03020, 2023.

[53] Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao. Ranksrgan: Generative adversarial
networks with ranker for image super-resolution. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3096–3105, 2019.

[54] Wenlong Zhang, Guangyuan Shi, Yihao Liu, Chao Dong, and Xiao-Ming Wu. A closer look
at blind super-resolution: Degradation models, baselines, and performance upper bounds. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
527–536, 2022.

[55] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-
resolution using very deep residual channel attention networks. In ECCV, 2018.

[56] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for
image super-resolution. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

14



7 Appendix

7.1 More Details of TGSR

In this section, we provide more training details of our TGSR. As mentioned in the main paper,
we follow the RealESRGAN setting to train the real-SR network by standard GAN-based SR loss,
including GAN loss LGAN , L1 loss L1, and perceptual loss Lper. The total loss can be defined as
follows:

L = w1 × LL1 + w2 × Lper + w3 × LGAN, (6)

The loss weights w1, w2, and w3 are set to 1, 1, and 0.1, respectively. Specifically, for LL1
, we

calculate the pixel loss as the L1 distance |ŷ − y|, where ŷ and y denote the reconstructed HR image
and the ground-truth HR image respectively. For the perceptual loss Lper, we extract the conv1, conv2,
conv3, conv4, conv5 feature maps of ŷ and y using the pre-trained VGG19 network [36], and the loss
is calculated as the weighted sum of the respective L1 distances between the feature maps of ŷ and y,
with weights set to [0.1, 0.1, 1, 1, 1] for each layer. For the adversarial loss LGAN, we use a U-Net
discriminator with spectral normalization.

7.2 More Ablation Studies and Additional Experimental Results

7.2.1 Impact of the Increased Task Volume

In the main paper, we conducted experiments with a total of 4,000 (4k) degradation tasks. In this
subsection, we have increased the number of tasks to 10,000 (10k) by sampling from the degradation
space, in order to investigate the impact of the increased task volume on the results. In Fig. 9, we
draw the histograms of the performance indicators computed with 4k (a) and 10k (b) degradation
tasks respectively. It can be seen that their distributions are quite similar.
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Figure 9: The histograms of the performance indicators with 4k (a) and 10k (b) degradation tasks
respectively.

Furthermore, we use the same setup as in the main paper to do task grouping with the 10k degradation
tasks and generate the test set for each group. We then compare the performance of TGSR trained
with the 10k degradation tasks (TGSR_10k) and the 4k degradation tasks (TGSR_4k). In Tab. 5, we
observe that the performance of TGSR_4k on the dataset DIV2K5G_10K is comparable to that of
TGSR_10k. This finding suggests that increasing the number of tasks from 4,000 to 10,000 does not
lead to significant improvements in performance for TGSR.

7.2.2 Necessity of Iterative Task Grouping

In Tab. 6, we provide the changes in performance improvement scores for various tasks across four
training loops in the task grouping process in Alg. 1. It can be observed that many tasks show
variations in their performance improvement scores across different training loops. For example,
degradation task 5 exhibits a performance improvement of 0.57dB in the first training loop and
0.72dB in the third loop. This suggests that certain tasks are given priority during training in each
loop, which leads to limited performance improvement for other tasks due to task competition. The
observation supports the necessity of iterative task grouping as outlined in Alg. 1.
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Table 5: Quantitative results of TGSR trained with the 4k and 10k degradation tasks, respectively.
Group0 denotes the validation set with satisfactory degradation tasks, and Group1-4 represents
the validation sets with unsatisfactory degradation tasks. The suffix 4k and 10k represent groups
generated with the 4k and 10k degradation tasks, respectively.

Metrics Group0_4k Group1_4k Group2_4k Group3_4k Group4_4k

RealESRGAN PSNR (↑) 23.85 20.11 22.08 24.00 24.59
LPIPS (↓) 0.4325 0.5355 0.4701 0.4147 0.3970

RealESRGAN-TG_4k PSNR (↑) 23.98 21.10 23.15 24.62 25.03
LPIPS (↓) 0.4286 0.5056 0.4494 0.3975 0.3851

RealESRGAN-TG_10k PSNR (↑) 23.91 21.03 22.98 24.50 24.97
LPIPS (↓) 0.4299 0.5064 0.4525 0.4002 0.3859
Metrics Group0_10k Group1_10k Group2_10k Group3_10k Group4_10k

RealESRGAN PSNR (↑) 23.81 19.85 20.95 23.77 24.38
LPIPS (↓) 0.4324 0.5495 0.5073 0.4237 0.4019

RealESRGAN-TG_4k PSNR (↑) 24.12 20.90 21.85 24.38 25.03
LPIPS (↓) 0.4272 0.5187 0.4890 0.4046 0.3875

RealESRGAN-TG_10k PSNR (↑) 24.05 20.94 21.85 24.31 24.93
LPIPS (↓) 0.4285 0.5171 0.4907 0.4052 0.3886

Table 6: Performance improvement score of some degradation tasks across four training loops. NA
means that the task is not available, since it has been grouped in the previous loop.

Training loop Deg.1 Deg.2 Deg.3 Deg.4 Deg.5 Deg.6 Deg.7 Deg.8 Deg.9 Deg.10

Train1 0.45 1.50 0.60 0.66 0.57 0.75 0.55 0.60 0.61 0.46
Train2 0.47 NA 0.63 0.67 0.41 0.76 0.49 0.59 0.64 0.48
Train3 0.48 NA NA NA 0.72 NA 0.65 0.63 NA 0.48
Train4 NA NA NA NA NA NA NA NA NA NA

Degradation Deg.11 Deg.12 Deg.13 Deg.14 Deg.15 Deg.16 Deg.17 Deg.18 Deg.19 Deg.20

Train1 0.43 0.60 0.47 0.27 0.66 0.53 0.22 0.31 0.63 0.20
Train2 0.42 0.59 0.47 0.33 0.51 0.52 0.18 0.31 0.67 0.21
Train3 0.48 0.63 0.50 0.31 0.73 0.54 0.18 0.37 NA 0.25
Train4 NA NA NA 0.35 NA NA 0.23 0.46 NA 0.26

7.2.3 Comparison with Single-task Network

It is commonly believed that a single-task network fine-tuned specifically for a particular degradation
task can achieve the upper bound of performance for that task. However, in Fig. 10, we compare
the PSNR improvement over RealESRGAN between our TGSR and the single-task network on a
set of randomly selected tasks. Interestingly, we observe that the performance of the single-task
network even decreases for tasks 1 and 4 in terms of PSNR, while our TGSR, which utilizes task
grouping for multi-task learning, consistently improves performance across all tasks. On average,
TGSR achieves a PSNR improvement of 0.74dB and an LPIPS improvement of 0.04, whereas the
single-task network only achieves a PSNR improvement of 0.30dB and an LPIPS improvement of
0.03. This demonstrates the effectiveness of the task grouping and multi-task learning strategy in
TGSR, which leverages the shared information across tasks to improve the generalization ability of
the model and achieve better overall performance.

7.2.4 Impact of the Increased Volume of Unsatisfactory Tasks

Tab. 7 presents the results of TGSR with additional unsatisfactory tasks. We categorize the unsatisfied
tasks into 9 groups based on thresholds [0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1] (0.15 and 0.1 are
used to include more unsatisfactory tasks compared to Tab. 4), with the corresponding number of
degradation tasks as [14, 15, 14, 31, 53, 116, 258, 190, 206]. We can observe that TGSR consistently
achieves performance improvement on the unsatisfactory tasks in Groups 1-9 while maintaining
comparable results on the satisfactory tasks in Group 0. It is worth noting that as the threshold for
dividing the groups decreases, the performance gain becomes gradually smaller.
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Figure 10: Performance comparison of single-task network and TGSR in (a) PSNR and (b) LPIPS.

Table 7: Quantitative results of different methods on DIV2K10G. Group0 denotes the validation set
with satisfactory degradation tasks, and Group1-9 represents the validation sets with unsatisfactory
degradation tasks.

Metrics ESRGAN RDSR BSRGAN RealSwinIR DASR MM-RealSR RealESRGAN RealESRGAN-TG (ours)

Group0 PSNR (↑) 21.15 24.80 23.66 22.97 23.66 23.28 23.65 23.78
LPIPS (↓) 0.6268 0.5255 0.4616 0.4503 0.4743 0.4403 0.4358 0.4344

Group1 PSNR (↑) 20.01 21.13 20.07 19.62 19.85 19.63 20.01 21.07
LPIPS (↓) 0.6708 0.6267 0.6051 0.5834 0.5923 0.5552 0.5563 0.5188

Group2 PSNR (↑) 21.08 22.38 21.82 20.97 21.53 21.06 21.36 22.47
LPIPS (↓) 0.6687 0.5821 0.5177 0.5092 0.5200 0.4910 0.4922 0.4735

Group3 PSNR (↑) 20.94 23.58 23.06 22.40 22.82 22.30 22.72 23.58
LPIPS (↓) 0.6421 0.5410 0.4809 0.4671 0.4940 0.4564 0.4553 0.4393

Group4 PSNR (↑) 22.10 24.80 24.27 23.56 24.31 23.46 23.82 24.40
LPIPS (↓) 0.6098 0.5082 0.4470 0.4326 0.4496 0.4257 0.4238 0.4047

Group5 PSNR (↑) 22.84 25.58 24.89 24.27 24.91 23.85 24.56 25.07
LPIPS (↓) 0.5626 0.4843 0.4208 0.4057 0.4187 0.4009 0.3974 0.3768

Group6 PSNR (↑) 22.50 25.11 24.39 23.72 24.42 23.64 24.10 24.63
LPIPS (↓) 0.5895 0.4979 0.4400 0.4254 0.4410 0.4161 0.4130 0.3993

Group7 PSNR (↑) 22.41 25.54 24.72 24.03 24.44 23.80 24.50 24.90
LPIPS (↓) 0.5884 0.4892 0.4248 0.4146 0.4341 0.4048 0.4016 0.3897

Group8 PSNR (↑) 20.94 25.08 24.19 23.57 23.77 23.44 24.10 24.52
LPIPS (↓) 0.6223 0.5057 0.4492 0.4354 0.4568 0.4226 0.4211 0.4112

Group9 PSNR (↑) 19.86 24.89 23.85 23.29 23.65 23.44 23.97 24.29
LPIPS (↓) 0.6340 0.5140 0.4624 0.4485 0.4820 0.4333 0.4302 0.4209

7.3 More Visual Results

Fig. 11 presents additional sample images from our validation datasets, including some unsatisfactory
degradation tasks from Groups 1-4 and some satisfactory degradation tasks from Group 0. These
images are accompanied by the corresponding ground-truth images. Fig. 12 presents an additional
qualitative comparison of competing methods on DIV2K5G. Fig. 13 presents an additional qualitative
comparison of competing methods on real-world images. Through the grouping and handling of
unsatisfactory degradation tasks, our TGSR exhibits enhanced generalization ability when applied to
real-world images.

7.3.1 More Sample Images in DIV2K5G
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Figure 11: Sample images from different degradation task groups in our DIV2K5G datasets.
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7.3.2 More Qualitative Comparisons on DIV2K5G

ESRGAN RDSR MM-RealSR BSRGAN

Input RealSwinIR DASR RealESRGAN RealESRGAN-TG
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Figure 12: Qualitative comparison of competing methods on DIV2K5G.
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7.3.3 More Qualitative Comparisons on Real-world Images

ESRGAN RDSR MM-RealSR BSRGAN
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Figure 13: Qualitative comparison of competing methods on real-world images.
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