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Abstract

Continual learning aims to sequentially learn from different tasks without catas-1

trophic forgetting. With no assumptions of task dependence, the knowledge learned2

from observed tasks may not align with that required for future tasks. This may re-3

sult in models’ disruptive updates for learning future tasks, causing abrupt changes4

to previously learned knowledge (e.g. representation drift [7]) which induces5

catastrophic forgetting. To reduce such disruptive updates, we connect knowledge6

for observed and unknown tasks by learning task data representations properly7

related to a set of global prototypes, which have general-purpose connections and8

are shared across all tasks. We derive global prototypes and the corresponding9

objective for NLP tasks. For those tasks, the correlated global prototypes can be10

obtained from a model pre-trained by masked language modeling. And the data11

representations that have proper relationships to global prototypes can be learned12

by specific adaptations of the pre-trained model. We investigate existing adaptation13

models and propose a neighbor attention model which combines different advan-14

tages of existing models for our objective. Experiments show that models learning15

data representations well related to global prototypes can induce significantly less16

catastrophic forgetting, without memorizing information from past tasks.17

1 Introduction18

In the continual learning paradigm, models progressively learn a sequence of tasks. This paradigm19

supports real-world applications which face continuous streams of data and tasks [35, 20]. In practice,20

models may be under storage constraints to use a fixed structure and under privacy considerations that21

restrict revisiting of previous tasks’ data. These introduce the challenge of catastrophic forgetting,22

where models lose knowledge of previously learned tasks after learning new tasks.23

Most prior works address catastrophic forgetting using models that integrate the knowledge of the24

past and present tasks, i.e. the observed tasks. For example, regularization-based models constrain25

the deviation of current parameters from the previous ones [27, 56, 2, 29]; replay-based models26

memorize samples from past tasks and rehearse when learning present tasks [35, 9, 46, 26]. However,27

since there are no assumptions on task dependence in continual learning, models learned from a28

set of observed tasks may not contain knowledge needed for unknown future tasks [28, 16]. To29

learn such a future task, these models may have disruptive changes on previously learned knowledge30

(e.g. representation drift [7]), which still induces catastrophic forgetting. One way to reduce such31

disruptive updates is to make models consider potential knowledge connections to future tasks.32

Our key idea is to build connections between observed and unknown tasks by connecting task-specific33

data representations to a general-purpose representation base that is shared across all tasks. In many34

domains, task-specific information about classes can be represented by specific combinations of35

general units. For example, consider the data instance ‘A boy in a red hooded top is smiling. The36
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Figure 1: Representations learned with or without global prototypes. The shaded regions cover data
representations for each class. In (a), with knowledge only learned for observed supervised tasks,
models may have disruptive updates that cause data representation drift when learning a new task. In
(b), with reference to correlated global prototypes (dots) in each task learning, representations for
different tasks (shaded regions) can properly connect to each other which reduces representation drift.

boy is upset.’ from ‘contradiction’ class in an entailment classification task. The set {smiling, upset}37

conveys the task-specific information of ‘contradiction’ using the general (i.e. not task-specific)38

semantics of the token units ‘smiling’ and ‘upset’. Based on this, we construct a general-purpose39

representation base consisting a set of unit representations, which we call global prototypes. These40

global prototypes are pre-learned to reflect semantic connections between them. Then we learn41

data representations with appropriate task-specific connections to global prototypes. This allows42

knowledge learned from observed tasks to connect to that of future tasks via the interconnection43

of global prototypes, which is beyond the scope of task supervision from observed tasks. Our idea44

mimics mechanism in the brain, a biological continual learning system [56] which rewires existing45

neurons instead of creating new neurons to learn new tasks [17]. Here, global prototypes mimic46

the neurons, and learning different connections between data representations and global prototypes47

mimic the rewiring process. A figure of the idea is shown in Figure 1.48

We address two main challenges in realizing this idea: (1). constructing the representation base with49

correlated global prototypes; (2). learning data representations with task-specific connections to50

global prototypes. We investigate the above challenges for NLP tasks. For text, the non-contextual51

token representations are a natural choice for global prototypes, as any text information can be52

represented by sets of tokens from a fixed vocabulary. For the first challenge, we obtain the global53

prototypes from a pre-trained language model which learns semantic connections between tokens54

through self-supervised learning [11]. For the second challenge, we learn data representations by55

lightly adapting a pre-trained model to obtain task-specific connections to the global prototypes56

(Section 3). We investigate existing adaptation models with learnable projections (Adapters [21]),57

learnable embeddings (Prompt Tuning [30]), and propose a neighbor attention module combining58

properties of these two (Section 4). Results show that catastrophic forgetting can be significantly59

mitigated with models that can learn representations well connected to global prototypes. In addition,60

our neighbor attention model combines the advantages of existing adaptation models, and achieves61

superior performance in both vanilla and replay settings.62

In conclusion, our contributions in this paper are:63

1. We propose to learn task-specific information over a general-purpose base with global64

prototypes to address general task connections in continual learning. Specifically, we derive65

the construction of the base and the corresponding objective for NLP tasks.66

2. We investigate existing adaptation models and propose a new neighbor attention model to67

learn data representations that have proper relationships to global prototypes.68

3. We conduct experiments on different adaptation models and continual learning frameworks.69

Results show our model can significantly reduce forgetting without replay.70
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2 Related Work71

Continual Learning Continual learning aims to sequentially learn new tasks while not forgetting72

previously learned tasks. Models for continual learning can be divided into three main categories: (1).73

regularization-based models which constrain the deviation of new parameters from the older ones74

[27, 56, 2, 29]; (2) replay-based models which reduce catastrophic forgetting by rehearsing on real or75

pseudo samples from previous tasks [35, 9] or generative models [46, 26]; (3). architecture-based76

models which learn evolving architectures for sequential tasks, with their capacities for each task77

carefully assigned [44, 53]. Most works above focus on knowledge based on observed tasks.78

Some recent works show that knowledge only from observed task supervision is insufficient for79

continual learning. Knoblauch et al. [28] claim that optimal continual learning requires perfect80

memory and is NP-hard; Guo et al. [16] suggest preservingholistic information which may not benefit81

current task but help future tasks. With biased knowledge, models can have disruptive updating82

when learning a new task, causing problems like representation drift [7, 36, 24]. In this paper, we83

propose to consider knowledge beyond observed task supervision through a general-purpose base84

with pre-learned global prototypes. Unlike previous works [39, 4] which use a pre-defined classifier85

to help class separation [38], our global prototypes are pre-learned with general semantic connections86

and thus can build connections between tasks. Some works use self-supervised learning to learn more87

general representations for continual learning [36, 14, 15]. However, those representations do not88

necessarily connect to specific global prototypes, which is different from our objective.89

Continual learning for NLP is an emerging area [3]. Liu et al. [32] introduce a sentence encoder90

with matrix conceptors; MBPA++ [10] uses an episodic memory with replay and local adaptation to91

mitigate catastrophic forgetting; LAMOL [49] learns to generate training samples for replay based92

on pre-trained knowledge; IDBR [23] disentangles hidden spaces to distinguish task-agnostic and93

task-specific information. Most of them require a memory of past task information, or converting94

data to a question-answering format along with text-to-text models [6, 42]. Our model does not have95

such restriction. There are also works [25] focusing on knowledge transfer in continual learning.96

Adaptation Models In this work, we use adaptation models to learn representations connected to97

global prototypes. Prior works using pre-trained model with light adaptation for target tasks were98

originally aimed at parameter efficient tuning. Different methods include adding limited trainable99

parameters on the frozen transformer layer [21, 40, 18, 22]; or selectively updating existing parameters100

during training [41, 55]. Recent prompt tuning works [31, 30, 34] learn target tasks by trainable101

prompt embeddings for generalization purposes as well.102

Most closely related work are adaptation models used for continual learning [51, 13, 43]. However,103

most use the models’ parameter efficiency to construct progressive memory. Whether utilizing the104

pre-trained knowledge can help continual learning, why and how they help remain unexplored. Our105

approach is based on a fixed model without progressive memory of parameters. We use the adaptation106

model for our desiderata, which also provides a metric to interpret whether the model can benefit107

continual learning. We believe our work can inspire further utilization of adaptation models for CL.108

3 Learning over Global Prototypes109

We consider the following continual learning setting: the model learns from a sequence of tasks,110

where each task consists of data Dτ = {(x(i)
τ , y

(i)
τ )nτ

i=1}. xτ is the input data and yτ is the class label.111

A task identifier τ is provided at the training time. We consider two scenarios: task-incremental and112

class-incremental learning, where models are task-aware or task-agnostic at the inference time [37].113

Without replay, we use the same training objective for both task-incremental and class-incremental114

learning while evaluating them in different ways.115

Notation Cτ represents a set of all classes for each task τ , C = [C1, ...Cτ , ...] represents all116

classes for all tasks. For NLP tasks, V represents the set of tokens with global prototypes in the117

representation base. wi is the i-th column of a matrix w. Our main model consists of two components:118

an encoder fθ to generate representation fθ(xτ ) for each data instance xτ ; and a classifier with matrix119

wγ ∈ Rd×|C| for class prediction, where d represents the dimension of data representations. At the120

inference time, the class label is predicted by argmaxi∈Ccandidate fθ(xτ ) ·wi
γ . For task-incremental121

inference we have Ccandidate = Cτ , while for class-incremental inference we have Ccandidate = C1:τ .122
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3.1 The Learning Objective123

Classification Loss For a task τ , the typical classification objective is to minimize the cross-entropy124

loss Lc(xτ ; θ, γ) over the training data for the task, as shown below:125

Lc(xτ ; θ, γ) = − log
exp

(
wyτ

γ · fθ(xτ )
)∑

c∈Cτ
exp

(
wc

γ · fθ(xτ )
) . (1)

After learning task τ , models have knowledge about data x1:τ and class vectors wc∈C1:τ
γ from126

observed tasks 1 : τ . However, the knowledge may not align with that required for the unknown127

future task (τ +1). Specifically, after adjusting θ in task (τ +1), the alignment between wyτ
γ learned128

from task τ and fθ(xτ ) with adjusted θ may shift and degrade. In other words, to learn a future task,129

models may have disruptive updates which make abrupt changes to previously learned knowledge130

(e.g. representation drift [7]), and induce forgetting.131

Prototype Loss To mitigate models’ disruptive updates, we consider potential connections between132

observed and unknown tasks. The connection is built by learning task-specific data representations133

connected to a general-purpose representation base, which is shared across all tasks. The base consists134

of global token prototypes (denoted proto[v] for token v) which reflect semantic connections between135

them. In particular, we want the data representation fθ(xτ ) to be connected to the task-relevant global136

prototypes. Given a reference probability distribution p(v|xτ ,yτ ) which indicates the strength of137

connection between data representation and proto[v], we push the data representations towards the138

prototypes in proportion to their reference probability. Formally, we define the prototype loss as:139

Lv(xτ ; θ) = −
∑

v∈V
p(v|xτ , yτ ) log

exp
(
proto[v] · fθ(xτ )

)∑
v′∈V exp

(
proto[v′] · fθ(xτ )

) . (2)

In Eq.(2), the softmax is calculated over all global prototypes, i.e. proto[v] for any v ∈ V , regardless140

of task difference. Such calculation is task-agnostic, while the referenced probability p(v|xτ ,yτ )141

gives task-specific guidance for representation learning. By doing this, Eq. (2) learns representations142

with task-specific connections to global prototypes. Since global prototypes are pre-learned to reflect143

semantic connections, representations learned by Eq. (2) can connect across tasks via connections of144

global prototypes. This can reduce abrupt representation change caused by disruptive updating.145

The reference probability p(v|xτ ,yτ ) gives task-specific guidance for representation learning, where146

tokens with task-specific information of xτ should have high probabilities. Considering both task-147

specific and holistic information of the data [16, 36], we set p(v|xτ , yτ ) = 1/rτ when v is one of148

data’s rτ rationale tokens, i.e. tokens in the data that are essential for class prediction [8], otherwise149

p(v|xτ , yτ ) = 0. Using multiple rationale tokens as task-specific guidance brings extra benefits to150

the expressiveness of data representations and global prototypes. First, different data representations151

from the same class have different guidance. Second, a small number of global prototypes can convey152

rich information when connecting representations to different sets of global prototypes.153

Learning Objective Based on the above analysis, our learning objective is to learn data representa-154

tions that can correctly predict class labels (Eq. (1)); and properly connect to global prototypes (Eq.155

(2)). The optimal parameters θ∗, γ∗ for task τ should satisfy the desiderata below:156 r Task performance. Lc(xτ ; θ
∗, γ∗) ≤ Lc(xτ ; θ, γ) for any θ ̸= θ∗, γ ̸= γ∗ (3)r Global alignment. Lv(xτ ; θ
∗) ≤ aτ (4)

where aτ > 0 is a threshold value of the prototype loss. Task performance desiderata (Eq. (3)) can be157

satisfied by optimization on classification loss in Eq. (1). In the rest of this section, we discuss two158

questions that are necessary for our desiderata: (1). How to get the semantically connected global159

prototype proto[v] for Eq. (2)? (2). How to get feasible models for the second desiderata in Eq. (4)?160

3.2 Pre-trained Models for Prototypes and Data Representations161

To get correlated global prototypes and learn data representations with reference to them, we utilize a162

model pre-trained by masked language modeling (MLM). The MLM objective is to predict masked163
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Figure 2: Layers of the transformer and different adaptation models. Shaded blocks are learnable.

token vm from a masked input x̃, with the following loss:164

Lm(x̃; δ, ϕ) = −
∑

v∈V
p(v|x̃) log

exp
(
wv

δ · fϕ(x̃)
)∑

v′∈V exp
(
wv′

δ · fϕ(x̃)
) , (5)

where fϕ denotes the encoder for MLM, wδ consists of the token vector wv
δ for each token v. The165

probability p(v|x̃) = 1 if v is the masked token vm, and 0 otherwise.166

Pre-Trained Model for Global Prototypes The MLM objective learns token vectors wδ that reflect167

semantic connections between tokens, which suits our requirement for global prototypes. Therefore,168

we can get the global prototype proto[v] as the v-th token vector (proto[v] = wv
δ ) from a model169

pre-trained by MLM. Extending to cases when pre-trained models are unavailable, we can first train170

a model by self-supervised learning which learns global prototypes. Global prototypes are fixed once171

learned. We leave improving them during continual task learning for future study.172

Adapting Pre-Trained Models for Feasibility To get feasible models for the desiderata in Eq.(4),173

we have two options: (a). learning with the prototype loss in Eq.(2); (b). designing a model which174

can satisfy the desiderata without direct supervision of probabilities p(v|xτ , yτ ). Option (a) needs175

rationale tokens to get p(v|xτ , yτ ), which requires expensive human annotations. In this work, we176

investigate models for option (b). Specifically, we investigate whether adapting a pre-trained model177

where we get global prototypes can satisfy our desiderata. Comparing Eq.(5) and Eq.(2), when178

having proto[v] = wv
δ , models for Eq.(5) learn representations that have task-agnostic connections179

to global prototypes, which is a variant of Eq.(2). When lightly adapting a pre-trained encoder fϕ to180

task encoder fθ, data representations are learned with reference to those task-agnostic connections.181

Therefore, the adapted representations may have better connections to global prototypes.182

In general, our learning includes two stages: first training a model by self-supervised learning183

for global prototypes (can be skipped if starting from a pre-trained language model); then lightly184

adapting this model for target tasks while satisfying the desiderata in Eq. (4). We investigate different185

adaptation models and whether they satisfy our desiderata in the following sections.186

4 Adaptation Models for Global Alignment187

We investigate the potential of different adaptation models for our desiderata of global alignment in188

Eq.(4). In this section, we first introduce existing adaptation models (Section 4.1) and propose a new189

neighbor attention model for the desiderata (Section 4.2). A comparison of models is shown in Fig. 2.190

4.1 Existing Adaptation Models191

For a transformer model, representations are calculated by the self-attention mechanism. Given input192

representations H = [h1, ...,hn], each output representation oi after self-attention is:193

oi = f
(
MHA

(
Qϕ(hi),Kϕ(H),Vϕ(H)

))
, (6)

where MHA is the multi-head attention function (Appendix A), f is the feed-forward function,194

Qϕ, Kϕ, Vϕ are linear functions for query, key and value. Adaptation models utilize pre-trained195

parameters for self-attentions, while adding extra components to adapt the model for target tasks.196

According to He et al. [18], different adaptations can be viewed as combining different modification197

vectors ∆θoi to pre-trained representation oi. We investigate two types of modifications below.198

Learnable Projections Models like Adapters [21] insert adaptation modules between transformer199

layers. The module applies linear projections to the self-attention output oi, with the non-linear200
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activation between them. With a residual connection [19], the adapted output o(new)
i is:201

o
(new)
i ← oi +∆θoi, ∆θoi := Wθoi. (7)

Wθ ∈ Rd×d represents the linear projections. (We omit the non-linear activation for simplicity).202

Learnable Embeddings Models like Prompt Tuning [30] add learnable embeddings in the input.203

Then self-attention is performed based on the input with prompts. The adapted output is [18]:204

o
(new)
i ← (1− λ(hi))oi + λ(hi)∆θoi, ∆θoi := MHA

(
Qϕ(hi),Kϕ(Pθ),Vϕ(Pθ)

)
. (8)

Pθ are learnable prompt embeddings in Rp×d, p is the number of prompts. λ(hi) is a gate value205

computed from self-attention which decides the ratio of pre-trained and modified representations.206

Choices for Global Alignment Both of the adaptations show effectiveness in single-task perfor-207

mance for our desiderata Eq. (3) [21, 31]. For global alignment in Eq. (4), Prompt Tuning has a gate208

λ(hi) to mix pre-trained and modified representations. With a small gate value, this may generate209

representations close to pre-trained representations, and thus better connect to global prototypes.210

However, the gate λ(hi) in Eq. (8) is decided by self attention over inputs and prompts, thus can lean211

to modified representations ∆θoi. Also, the learned prompts Pθ may convey information far away212

from the original data. These may degrade the models’ capacity for global alignment. Because of213

this, we propose a model that has a controlled gate value and relies on neighbors of tokens instead of214

searching from random prompts for task adaptation. In addition, the training for prompt embeddings215

is not as easy as that for linear projections [30, 22], which may cause efficiency issues when adapting216

multiple tasks. We also introduce learnable projections in our model for fast adaptations.217

4.2 Transformer with Neighbor Attentions218

We design a neighbor attention module added to the pre-trained model for task adaptations. The mod-219

ule has three properties: (1). utilizing learnable linear projections to learn modified representations;220

(2). acquiring neighbor representations for extra information; (3). using a controlled gate to mix221

pre-trained and modified representations. The adapted output of the neighbor attention module is:222

o
(new)
i ← (1− λ)oi + λ∆θoi, ∆θoi := MHA

(
Qϕ(hi),Kθ(Mi||hi),Vθ(Mi||hi)

)
. (9)

where λ is the ratio of modified representations in the mix-up, || denotes the concatenation operation.223

Kθ, Vθ are learnable linear functions for key and value. Mi = [mi1, ...,mik] are k neighbor224

representations of the input representation hi.225

Comparing Eq. (9) to Eq. (8), neighbor attention has learnable linear functions for key and value.226

Moreover, we manually control the gate by setting λ = 0.1 to push the module to focus more on the227

pre-trained representations. This is for our desiderata to have representations close to pre-trained228

ones which are trained over global prototypes. Finally, we introduce neighbor representations Mi for229

information out of the inputs, which can improve the model’s expressivity. Details are shown below.230

Neighbor Representations Before the first neighbor attention layer, we find the initial neighbor231

representations Mi for a hidden representation hi. Neighbors of hi can be obtained by comparing the232

dot product between hi and token embeddings from the pre-trained embedding layer, then selecting233

k tokens which have top-K scores as neighbors. K decides the range of the neighborhood.234

Then we transform neighbor embeddings to the space of hi. We disentangle hi’s j-th neighbor235

representation mij into two parts: one related to the hidden representation hi; and the other related to236

neighbor information out of hi. The latter can be obtained by deviating neighbor embedding eij from237

hi’s token embedding ei. Then the transformed neighbor representation is: mij = α(eij−ei)+βhi,238

where 0 < α, β < 1 are scalars. In this paper, we set α = β = 0.2.239

After that, the neighbor representation Mi is updated at each neighbor attention layer. For the j-th240

neighbor representation mij , the updated representation m
(new)
ij for the next layer is:241

m
(new)
ij ←mij +∆θmij , ∆θmij := f

(
MHA(Qϕ(mij),Kθ(Mi||hi),Vθ(Mi||hi))

)
.

Adding neighbor attention on more layers will increase the model capacity, but also cause more risk242

of over-smoothing [45], i.e., neighbor tokens all have the same representations. In practice, we add243
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neighbor attention to less than half of the transformer layers, and leave the last layer untouched for244

guidance. In continual learning, the optimal layer selections for different tasks may vary.245

5 Experimental Settings246

Single Task Evaluation for Desiderata We first evaluate the models’ capacities for our desiderata Eq.247

(3) and Eq. (4) on single tasks. We test classification accuracies for desiderata of task performance on248

tasks from the GLUE benchmark [50] and SNLI data [5]. For the desiderata of global alignment, we249

predict top-20 tokens from the learned representation by the pre-trained decoder (global prototypes),250

and compute the ratio of rationle tokens in the top-20 predictions (i.e. Recall@20). We evaluate this251

on e-SNLI dataset [8], where data’s rationale tokens [5] are highlighted by human annotators.252

Continual Learning (CL) Evaluation We evaluate four sequences of tasks: (1) Yahoo 1: a split of253

Yahoo dataset for news question-answer categorization [57] with 5 disjoint tasks containing 2 classes254

each; (2) Yahoo 2: a Yahoo sequence with the same split as (1) but with more data; (3) DB: a split of255

DBPedia data for Wikipedia article classification [57] with 7 disjoint tasks containing 2 classes each;256

(4) News Series: a sequence of tasks on news-related data, including AG_news (news classification,257

4 classes), MRPC (paraphrase detection, 2 classes) [12], RTE (text entailment, 2 classes) [52] and258

SST (sentiment analysis, 2 classes) [47]. For the above sequences except (2), we randomly sample259

1245 samples per class, which is the least number of class samples in our datasets. For (2), we260

sample 10000 samples per class. We measure the average accuracy and forgetting (Appendix C) with261

standard deviations. For each sequence, we test five random orders of tasks.262

We evaluate for both task-incremental and class-incremental learning. Task identifiers are available263

at inference time for task-incremental learning but not for class-incremental learning [37]. For264

class-incremental learning, the original cross-entropy loss over all seen classes will cause significant265

forgetting [54, 1]. Since our work does not focus on the problem of cross-entropy, we apply the266

asymmetric strategy (ACE) [7]: the current task’s classification loss is calculated over in-task classes,267

while the replay loss is calculated over all seen classes in the memory (if applicable).268

Models and CL Frameworks We compare different adaptation models on BERT-base. Data269

representation is from a [MASK] token added to the beginning of input to match the pre-training270

format. Models for comparison are: (1) NeiAttn: our standard neighbor attention model. (2) NeiReg:271

our neighbor attention model with extra regularization for holistic information (Appendix B). (3)272

Fine-tuning (FT): a model in which all parameters are learnable. (4) Prompt Tuning (ProT) [30]:273

the model adding learnable embeddings only to data inputs. (5) Prefix Tuning v2 (PT2) [33]: an274

adaptation model adding learnable embeddings to inputs of all attention layers. (6) Adapter [21]:275

an adaptation model with learnable linear projections injected in each layer. (7) BitFit [55]: an276

adaptation model tuning only bias terms in the pre-trained model. More settings are in the appendix.277

We consider different frameworks (methods) for continual learning: (1) Vanilla: the vanilla online278

learning framework; (2) MBPA: an episodic memory framework retrieving stored samples to locally279

adapt the model at inference time [48]. (3) ER: an episodic memory framework storing all seen280

examples and performs sparse (1%) experience replay; (4) A-GEM: an episodic memory framework281

constraining on gradients to prevent degrading performance of previous tasks [9]; (5) Probing: a282

framework which learns the encoder with Vanilla setting while tunes the classifier for each task283

using all task data. This is used to evaluate the discrimination of data representations; (6). MTL: a284

muti-task framework that jointly trains on all tasks (not continual learning). For class-incremental285

cases, we have the above replay-based methods combined with the ACE strategy. The baseline286

performance for each continual learning framework is that on FT model.287

6 Experimental Results288

Models for Desiderata in Eq.(3) and Eq.(4) Figure 3 shows models’ capacities for our desiderata.289

We compare the classification accuracy for desiderata in Eq.(3) and Recall@20 of rationale tokens for290

desiderata in Eq.(4). The higher scores on both metrics, the better model capacities for our desiderata.291

Overall, NeiAttn and PT2 consistently achieve a superior balance between classification and recall292

scores on different NLI tasks. However, Adapter and FT achieve high classification scores but do293

not generate representations well related to global prototypes (low recall scores). This supports our294

intuition that mixing pre-trained and modified representations with a gate can result representations295

better connected to global prototypes. With explicit regularization on holistic information, NeiReg296
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Figure 3: Results for single-task learning. Dashed lines split figure regions based on scores of NeiAttn.
Results with higher accuracy and recall (upper right corner) are better. We test on three random seeds.
Table 1: Results for task-incremental learning. We report average accuracy (Acc) and forgetting
(Forget) with their standard deviations (std) on five random seeds. Bold scores are the best scores and
underline scores are the second best. Models in blue have prototype loss larger than the threshold.
Models in red satisfy the desiderata Eq. (4). Models with (*) are baselines for each CL framework.

CL Framework Model Yahoo 1 Yahoo 2 DB News Series

Acc std Forget std Acc std Forget std Acc std Forget std Acc std Forget std

Pretrained 82.95 3.64 7.34 3.64 83.70 4.16 7.71 4.15 95.38 2.34 4.08 2.37 66.66 4.47 5.35 3.06

Vanilla FT (*) 73.07 5.32 18.67 5.41 79.82 4.29 13.27 4.25 73.15 5.36 24.90 5.17 59.98 8.94 21.13 7.44

Adapter 79.85 1.83 11.86 1.83 71.90 2.45 20.92 2.47 98.70 1.10 1.19 1.10 65.43 4.73 15.53 4.29

PT2 88.62 0.80 3.04 0.79 90.64 0.76 2.38 0.71 99.83 0.04 0.07 0.04 75.03 0.97 6.13 0.98

NeiAttn 88.96 1.14 2.80 1.12 89.84 0.70 3.24 0.69 97.34 3.41 2.54 3.41 71.95 2.20 9.89 2.29

MBPA
FT (*) 72.40 4.42 19.34 4.49 78.71 3.29 14.38 3.26 73.01 5.45 25.04 5.27 60.60 8.30 20.52 6.67

Adapter 78.50 2.12 13.13 2.09 73.66 2.95 19.15 2.95 99.09 1.10 0.80 1.10 65.28 4.74 15.67 4.11

PT2 90.69 0.78 0.97 0.75 91.70 0.51 1.33 0.58 99.90 0.06 -0.01 0.06 76.16 0.81 4.99 1.46

NeiAttn 90.69 1.36 1.67 1.35 91.18 0.90 1.90 0.88 97.53 3.28 2.35 3.28 73.28 2.53 8.56 2.11

ER
FT (*) 70.77 6.72 20.92 6.72 90.31 0.72 2.67 0.67 91.05 8.74 8.75 8.69 70.44 5.87 10.93 4.85

Adapter 77.44 3.39 14.13 3.42 75.79 3.44 17.08 3.39 98.92 1.54 0.97 1.54 68.11 1.96 13.16 2.10

PT2 88.91 0.42 2.76 0.35 91.02 0.50 2.19 0.78 99.84 0.04 0.03 0.03 69.60 3.06 11.58 2.96

NeiAttn 84.02 3.10 7.87 3.12 91.54 0.22 1.52 0.24 99.68 0.18 0.20 0.18 75.05 0.94 7.31 0.48

A-GEM
FT (*) 87.56 1.32 4.11 1.40 89.98 0.71 3.17 0.68 84.45 10.16 15.34 10.12 75.06 6.17 5.48 4.01

Adapter 80.86 2.36 10.65 2.26 77.47 3.20 15.37 3.24 99.52 0.23 0.38 0.24 73.80 1.16 6.72 1.61

PT2 90.40 0.21 1.39 0.16 90.84 0.19 2.22 0.21 99.88 0.01 0.01 0.01 73.31 0.73 4.29 1.02

NeiAttn 90.47 0.26 1.38 0.21 91.35 0.43 1.81 0.47 98.22 3.48 1.66 3.49 77.07 1.56 4.43 0.85

Probing
(classifier non-CL)

FT (*) 90.18 0.41 1.56 0.49 92.16 0.14 0.93 0.14 97.73 3.58 0.31 0.04 77.17 2.09 3.94 1.98

Adapter 91.11 0.25 0.51 0.25 88.98 7.25 3.84 7.28 99.87 0.01 0.02 0.01 78.47 0.76 2.49 1.70

PT2 91.49 0.12 0.17 0.09 92.81 0.11 0.21 0.11 99.89 0.01 0.01 0.01 77.62 0.32 3.53 1.06

NeiAttn 91.47 0.16 0.29 0.16 92.72 0.11 0.37 0.11 99.87 0.01 0.01 0.02 78.83 0.51 3.01 1.02

MTL (non-CL) FT (*) 91.69 0.26 — 92.67 0.71 — 99.61 0.41 — 79.67 1.99 —

performs best in in-task (SNLI→E-SNLI) rationale recalls, while losing its superiority in cross-task297

(GLUE→E-SNLI) rationale recalls. This may suggest the explicit regularization may not generalize298

well across tasks. With prompts only in the input, ProT has insufficient capacity for task performance.299

For desiderata Eq.(4), NeiAttn and PT2 perform much better than Adapter and FT. We set aτ to make300

NeiAttn and PT2 satisfy Eq.(4) while Adapter and FT fail to, then we evaluate them for CL scenarios.301

Task-Incremental Learning We test models’ capacities for task-incremental learning under different302

CL frameworks. Results are shown in Table 1. Models are split into two categories according to our303

desiderata (Eq.(4)) experiment above: (NeiAttn, PT2) which satisfy it and (FT, Adapters) in opposite.304

In the vanilla setting, both PT2 and NeiAttn significantly outperform other models with minor305

forgetting. Adapter on most CL frameworks performs worse than PT2 and NeiAttn, marginally306

better than FT. This supports our claim that models learning representations better connected to307

global prototypes perform better in continual learning. Combined with ER and A-GEM, NeiAttn can308

improve more than PT2 in most cases. FT has significant improvement with replay but can also suffer309

from overfitting to the replay buffer (ER for Yahoo 1). We also evaluate on a probing framework with310

only the classifier retrained over task data to evaluate whether the forgetting will cause representations311

to lose separation. PT2 and NeiAttn also preserve the most separation of representations in this case.312

In general, (NeiAttn, PT2) consistently outperform (FT, Adapter) under different CL frameworks.313

This supports that our desiderata Eq. (4) helps improve models’ continual learning ability. NeiAttn314

performs better with replay. The capacity of models also depends on different data distributions in315
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the sequence. On News Series, when with replay, FT can even outperform PT2. This may happen316

because News Series includes data from similar distributions related to the news. And models should317

have the capacity to deal with knowledge transfer besides catastrophic forgetting.318

Figure 4: Results on class incremental learning. Dashed lines
show scores of a pre-trained model in the vanilla setting.

Results for Class-Incremental319

Learning Figure 4 shows models’320

performance on class-incremental321

learning. PT2 and NeiAttn perform322

well in the vanilla case, where the323

training is the same as that for task-324

incremental learning. This indicates325

that they can address connections326

between classes from different tasks327

even without supervision. On the328

other side, Adapter and FT perform much worse in this case. Then we evaluate three frameworks329

with replay: one is the full ER-ACE [7] with experience replay at each step; one is the ER-ACE330

(sparse) with sparse experience replay; the other is the ACE strategy with only previous task’s data331

stored in the replay (AGEM-ACE). We observe that performance on class-incremental learning332

heavily relies on the quality of replay. In most cases, FT, Adapter and NeiAttn can benefit more from333

the replay. We hypothesize that it is related to the fast adaptation ability related to linear projections.334

Table 2: The ratio of models’ learnable
parameters compared to FT.

Models FT Bitfit Adapter ProT PT2 NeiAttn

Parameters (%) 1 0.5 2.3 0.5 0.8 4.9

Influence of Parameter-Efficiency With limited param-335

eters, adaptation models have less risk of deviating fast336

from previously learned knowledge compared to FT, and337

thus may perform better in CL. However, different models’338

improvements come not just from having fewer trainable339

parameters. Table 2 shows the comparison of parameters in each model. NeiAttn has better perfor-340

mance in most cases compared to Adapter and Pre-trained models, which have fewer or no trainable341

parameters in the encoder. Even with more parameters, NeiAttn performs on par with PT2 with342

Vanilla and outperform PT2 with replay. NeiAttn also requires much less time to train (5 vs 20343

epochs). These suggest the adaptation model structure will highly influence its performance on CL.344

Figure 5: T-SNE plot of FT, NeiAttn rep-
resentations. Triangles are class vectors.

Visualization of Representations In Figure 5, we vi-345

sualize NeiAttn and FT’s data representations for class-346

incremental DB under Vanilla and ER-ACE frameworks.347

Even trained with in-task classes, Vanilla NeiAttn can well348

disperse data representations. Learning a model includes349

learning the encoder (representations) and classifier (class350

vectors). The learned class vectors may not well align with351

representations even with replay (left bottom). We hypoth-352

esize this may result from different training paces for the353

encoder and classifier. For FT, the encoder quickly learns354

representations close to single class centroids, which may355

degrade the function of the classifier. However, with con-356

nections to multiple different global prototypes, NeiAttn representations may not quickly move to357

one centroid. Therefore, it can better balance the training of the encoder and classifier (right bottom).358

7 Conclusion359

In this paper, we investigate models which consider potential connections between observed and360

unknown tasks to reduce disruptive updating in CL. Specifically, we learn task-specific data repre-361

sentations appropriately connected to a general-purpose representation base with global prototypes.362

For NLP tasks, the global prototypes can be obtained from a pre-trained language model. And the363

representation connected to global prototypes can be obtained by lightly adapting the pre-trained364

model. We investigate existing adaptation models and propose a neighbor attention model which365

combines advantages of existing models. Experimental results show that models learning representa-366

tions appropriately connected to global prototypes have significantly less catastrophic forgetting in367

CL, even without using experience replay. Specifically, when neighbor attention is used, we suffer368

from less catastrophic forgetting than FT and Adapter, and surpass PT2 when experience replay is369

applied. We consider the main limitations of our work as: (1) requiring extra memory to compute370

neighbor attentions; (2) the optimal number of neighbor attention layers may vary for different tasks.371
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