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Abstract

Continual learning aims to sequentially learn from different tasks without catas-
trophic forgetting. With no assumptions of task dependence, the knowledge learned
from observed tasks may not align with that required for future tasks. This may re-
sult in models’ disruptive updates for learning future tasks, causing abrupt changes
to previously learned knowledge (e.g. representation drift [7]) which induces
catastrophic forgetting. To reduce such disruptive updates, we connect knowledge
for observed and unknown tasks by learning task data representations properly
related to a set of global prototypes, which have general-purpose connections and
are shared across all tasks. We derive global prototypes and the corresponding
objective for NLP tasks. For those tasks, the correlated global prototypes can be
obtained from a model pre-trained by masked language modeling. And the data
representations that have proper relationships to global prototypes can be learned
by specific adaptations of the pre-trained model. We investigate existing adaptation
models and propose a neighbor attention model which combines different advan-
tages of existing models for our objective. Experiments show that models learning
data representations well related to global prototypes can induce significantly less
catastrophic forgetting, without memorizing information from past tasks.

1 Introduction

In the continual learning paradigm, models progressively learn a sequence of tasks. This paradigm
supports real-world applications which face continuous streams of data and tasks [35, 20]. In practice,
models may be under storage constraints to use a fixed structure and under privacy considerations that
restrict revisiting of previous tasks’ data. These introduce the challenge of catastrophic forgetting,
where models lose knowledge of previously learned tasks after learning new tasks.

Most prior works address catastrophic forgetting using models that integrate the knowledge of the
past and present tasks, i.e. the observed tasks. For example, regularization-based models constrain
the deviation of current parameters from the previous ones [27, 56, 2, 29]; replay-based models
memorize samples from past tasks and rehearse when learning present tasks [35, 9, 46, 26]. However,
since there are no assumptions on task dependence in continual learning, models learned from a
set of observed tasks may not contain knowledge needed for unknown future tasks [28, 16]. To
learn such a future task, these models may have disruptive changes on previously learned knowledge
(e.g. representation drift [7]), which still induces catastrophic forgetting. One way to reduce such
disruptive updates is to make models consider potential knowledge connections to future tasks.

Our key idea is to build connections between observed and unknown tasks by connecting task-specific
data representations to a general-purpose representation base that is shared across all tasks. In many
domains, task-specific information about classes can be represented by specific combinations of
general units. For example, consider the data instance ‘A boy in a red hooded top is smiling. The
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(a) Continual Learning with Knowledge only from Observed Tasks
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(b) Continual Learning with Knowledge of Global Prototypes
Figure 1: Representations learned with or without global prototypes. The shaded regions cover data
representations for each class. In (a), with knowledge only learned for observed supervised tasks,
models may have disruptive updates that cause data representation drift when learning a new task. In
(b), with reference to correlated global prototypes (dots) in each task learning, representations for
different tasks (shaded regions) can properly connect to each other which reduces representation drift.

boy is upset.’ from ‘contradiction’ class in an entailment classification task. The set {smiling, upset}
conveys the task-specific information of ‘contradiction’ using the general (i.e. not task-specific)
semantics of the token units ‘smiling’ and ‘upset’. Based on this, we construct a general-purpose
representation base consisting a set of unit representations, which we call global prototypes. These
global prototypes are pre-learned to reflect semantic connections between them. Then we learn
data representations with appropriate task-specific connections to global prototypes. This allows
knowledge learned from observed tasks to connect to that of future tasks via the interconnection
of global prototypes, which is beyond the scope of task supervision from observed tasks. Our idea
mimics mechanism in the brain, a biological continual learning system [56] which rewires existing
neurons instead of creating new neurons to learn new tasks [17]. Here, global prototypes mimic
the neurons, and learning different connections between data representations and global prototypes
mimic the rewiring process. A figure of the idea is shown in Figure 1.

We address two main challenges in realizing this idea: (1). constructing the representation base with
correlated global prototypes; (2). learning data representations with task-specific connections to
global prototypes. We investigate the above challenges for NLP tasks. For text, the non-contextual
token representations are a natural choice for global prototypes, as any text information can be
represented by sets of tokens from a fixed vocabulary. For the first challenge, we obtain the global
prototypes from a pre-trained language model which learns semantic connections between tokens
through self-supervised learning [11]. For the second challenge, we learn data representations by
lightly adapting a pre-trained model to obtain task-specific connections to the global prototypes
(Section 3). We investigate existing adaptation models with learnable projections (Adapters [21]),
learnable embeddings (Prompt Tuning [30]), and propose a neighbor attention module combining
properties of these two (Section 4). Results show that catastrophic forgetting can be significantly
mitigated with models that can learn representations well connected to global prototypes. In addition,
our neighbor attention model combines the advantages of existing adaptation models, and achieves
superior performance in both vanilla and replay settings.

In conclusion, our contributions in this paper are:
1. We propose to learn task-specific information over a general-purpose base with global

prototypes to address general task connections in continual learning. Specifically, we derive
the construction of the base and the corresponding objective for NLP tasks.

2. We investigate existing adaptation models and propose a new neighbor attention model to
learn data representations that have proper relationships to global prototypes.

3. We conduct experiments on different adaptation models and continual learning frameworks.
Results show our model can significantly reduce forgetting without replay.
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2 Related Work

Continual Learning Continual learning aims to sequentially learn new tasks while not forgetting
previously learned tasks. Models for continual learning can be divided into three main categories: (1).
regularization-based models which constrain the deviation of new parameters from the older ones
[27, 56, 2, 29]; (2) replay-based models which reduce catastrophic forgetting by rehearsing on real or
pseudo samples from previous tasks [35, 9] or generative models [46, 26]; (3). architecture-based
models which learn evolving architectures for sequential tasks, with their capacities for each task
carefully assigned [44, 53]. Most works above focus on knowledge based on observed tasks.

Some recent works show that knowledge only from observed task supervision is insufficient for
continual learning. Knoblauch et al. [28] claim that optimal continual learning requires perfect
memory and is NP-hard; Guo et al. [16] suggest preservingholistic information which may not benefit
current task but help future tasks. With biased knowledge, models can have disruptive updating
when learning a new task, causing problems like representation drift [7, 36, 24]. In this paper, we
propose to consider knowledge beyond observed task supervision through a general-purpose base
with pre-learned global prototypes. Unlike previous works [39, 4] which use a pre-defined classifier
to help class separation [38], our global prototypes are pre-learned with general semantic connections
and thus can build connections between tasks. Some works use self-supervised learning to learn more
general representations for continual learning [36, 14, 15]. However, those representations do not
necessarily connect to specific global prototypes, which is different from our objective.

Continual learning for NLP is an emerging area [3]. Liu et al. [32] introduce a sentence encoder
with matrix conceptors; MBPA++ [10] uses an episodic memory with replay and local adaptation to
mitigate catastrophic forgetting; LAMOL [49] learns to generate training samples for replay based
on pre-trained knowledge; IDBR [23] disentangles hidden spaces to distinguish task-agnostic and
task-specific information. Most of them require a memory of past task information, or converting
data to a question-answering format along with text-to-text models [6, 42]. Our model does not have
such restriction. There are also works [25] focusing on knowledge transfer in continual learning.

Adaptation Models In this work, we use adaptation models to learn representations connected to
global prototypes. Prior works using pre-trained model with light adaptation for target tasks were
originally aimed at parameter efficient tuning. Different methods include adding limited trainable
parameters on the frozen transformer layer [21, 40, 18, 22]; or selectively updating existing parameters
during training [41, 55]. Recent prompt tuning works [31, 30, 34] learn target tasks by trainable
prompt embeddings for generalization purposes as well.

Most closely related work are adaptation models used for continual learning [51, 13, 43]. However,
most use the models’ parameter efficiency to construct progressive memory. Whether utilizing the
pre-trained knowledge can help continual learning, why and how they help remain unexplored. Our
approach is based on a fixed model without progressive memory of parameters. We use the adaptation
model for our desiderata, which also provides a metric to interpret whether the model can benefit
continual learning. We believe our work can inspire further utilization of adaptation models for CL.

3 Learning over Global Prototypes

We consider the following continual learning setting: the model learns from a sequence of tasks,
where each task consists of data D, = {(x@7 yg))?:*l}. x, is the input data and .- is the class label.
A task identifier 7 is provided at the training time. We consider two scenarios: fask-incremental and
class-incremental learning, where models are task-aware or task-agnostic at the inference time [37].
Without replay, we use the same training objective for both task-incremental and class-incremental

learning while evaluating them in different ways.

Notation C. represents a set of all classes for each task 7, C' = [C,...C,...] represents all
classes for all tasks. For NLP tasks, V' represents the set of tokens with global prototypes in the
representation base. w is the i-th column of a matrix w. Our main model consists of two components:
an encoder fp to generate representation fy(x,) for each data instance x,; and a classifier with matrix
w, € R for class prediction, where d represents the dimension of data representations. At the
inference time, the class label is predicted by arg max;cc, o Jo (X7) - WZ'/. For task-incremental
inference we have Clangigare = C, While for class-incremental inference we have Ceangigate = C1.7-



123

124
125

126
127
128
129
130
131

132
133
134
135
136
137
138
139

140
141
142
143
144
145

146
147
148
149
150
151
152
153

154

156

157
158
159
160

161

162
163

3.1 The Learning Objective

Classification Loss For a task 7, the typical classification objective is to minimize the cross-entropy
loss L.(x-;60,~) over the training data for the task, as shown below:

exp (W Ju(x)
Y eco. oxp (WS- fo(x,))

After learning task 7, models have knowledge about data x;.. and class vectors wﬁechf from
observed tasks 1 : 7. However, the knowledge may not align with that required for the unknown
future task (7 + 1). Specifically, after adjusting 6 in task (7 + 1), the alignment between w¥~ learned
from task 7 and fy(x,) with adjusted 6 may shift and degrade. In other words, to learn a future task,
models may have disruptive updates which make abrupt changes to previously learned knowledge
(e.g. representation drift [7]), and induce forgetting.

Ec(x'r; 05 7) = - IOg

ey

Prototype Loss To mitigate models’ disruptive updates, we consider potential connections between
observed and unknown tasks. The connection is built by learning task-specific data representations
connected to a general-purpose representation base, which is shared across all tasks. The base consists
of global token prototypes (denoted proto[v] for token v) which reflect semantic connections between
them. In particular, we want the data representation fy(x,) to be connected to the task-relevant global
prototypes. Given a reference probability distribution p(v|x,,y,) which indicates the strength of
connection between data representation and proto[v], we push the data representations towards the
prototypes in proportion to their reference probability. Formally, we define the prototype loss as:

exp (proto[v] - fo(x7))
Zv'ev exp (proto[v’] . fg(XT)) ’

In Eq.(2), the softmax is calculated over all global prototypes, i.e. proto[v] for any v € V, regardless
of task difference. Such calculation is task-agnostic, while the referenced probability p(v|x,,y,)
gives task-specific guidance for representation learning. By doing this, Eq. (2) learns representations
with task-specific connections to global prototypes. Since global prototypes are pre-learned to reflect
semantic connections, representations learned by Eq. (2) can connect across tasks via connections of
global prototypes. This can reduce abrupt representation change caused by disruptive updating.

Lo(xri0) == pvlxr,yr)log by

The reference probability p(v|x,,y.) gives task-specific guidance for representation learning, where
tokens with task-specific information of x, should have high probabilities. Considering both task-
specific and holistic information of the data [16, 36], we set p(v|x,,y,) = 1/r, when v is one of
data’s r, rationale tokens, i.e. tokens in the data that are essential for class prediction [8], otherwise
p(v|X+,y-) = 0. Using multiple rationale tokens as task-specific guidance brings extra benefits to
the expressiveness of data representations and global prototypes. First, different data representations
from the same class have different guidance. Second, a small number of global prototypes can convey
rich information when connecting representations to different sets of global prototypes.

Learning Objective Based on the above analysis, our learning objective is to learn data representa-
tions that can correctly predict class labels (Eq. (1)); and properly connect to global prototypes (Eq.
(2)). The optimal parameters 6, v* for task 7 should satisfy the desiderata below:

o Task performance. L.(x,;0%,v*) < L.(x,;0,7) for any 0 # 6%, v £ ~* 3)
¢ Global alignment. £, (x;0%) < a, 4)
where a, > 0 is a threshold value of the prototype loss. Task performance desiderata (Eq. (3)) can be
satisfied by optimization on classification loss in Eq. (1). In the rest of this section, we discuss two

questions that are necessary for our desiderata: (1). How to get the semantically connected global
prototype proto[v] for Eq. (2)? (2). How to get feasible models for the second desiderata in Eq. (4)?

3.2 Pre-trained Models for Prototypes and Data Representations

To get correlated global prototypes and learn data representations with reference to them, we utilize a
model pre-trained by masked language modeling (MLM). The MLM objective is to predict masked
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Figure 2: Layers of the transformer and different adaptation models. Shaded blocks are learnable.

token v,,, from a masked input x, with the following loss:

Lo(%0,6)= -3 p(v]%)log exp (W§ - fo(%)) )

vev > ey exp (Wi - fo(%))’

where f, denotes the encoder for MLM, w consists of the token vector wj for each token v. The
probability p(v|X) = 1 if v is the masked token v,,,, and 0 otherwise.

Pre-Trained Model for Global Prototypes The MLM objective learns token vectors w that reflect
semantic connections between tokens, which suits our requirement for global prototypes. Therefore,
we can get the global prototype proto[v] as the v-th token vector (proto[v] = w§) from a model
pre-trained by MLM. Extending to cases when pre-trained models are unavailable, we can first train
a model by self-supervised learning which learns global prototypes. Global prototypes are fixed once
learned. We leave improving them during continual task learning for future study.

Adapting Pre-Trained Models for Feasibility To get feasible models for the desiderata in Eq.(4),
we have two options: (a). learning with the prototype loss in Eq.(2); (b). designing a model which
can satisfy the desiderata without direct supervision of probabilities p(v|x, y.). Option (a) needs
rationale tokens to get p(v|X, y, ), which requires expensive human annotations. In this work, we
investigate models for option (b). Specifically, we investigate whether adapting a pre-trained model
where we get global prototypes can satisfy our desiderata. Comparing Eq.(5) and Eq.(2), when
having proto[v] = w¥, models for Eq.(5) learn representations that have task-agnostic connections
to global prototypes, which is a variant of Eq.(2). When lightly adapting a pre-trained encoder f to
task encoder fy, data representations are learned with reference to those task-agnostic connections.
Therefore, the adapted representations may have better connections to global prototypes.

In general, our learning includes two stages: first training a model by self-supervised learning
for global prototypes (can be skipped if starting from a pre-trained language model); then lightly
adapting this model for target tasks while satisfying the desiderata in Eq. (4). We investigate different
adaptation models and whether they satisfy our desiderata in the following sections.

4 Adaptation Models for Global Alignment

We investigate the potential of different adaptation models for our desiderata of global alignment in
Eq.(4). In this section, we first introduce existing adaptation models (Section 4.1) and propose a new
neighbor attention model for the desiderata (Section 4.2). A comparison of models is shown in Fig. 2.

4.1 Existing Adaptation Models

For a transformer model, representations are calculated by the self-attention mechanism. Given input
representations H = [hy, ..., h,], each output representation o; after self-attention is:

0; = f(MHA(Qq(hi), Ky (H), V,(H))), 6)

where MHA is the multi-head attention function (Appendix A), f is the feed-forward function,
Q¢, Ky, V4 are linear functions for query, key and value. Adaptation models utilize pre-trained
parameters for self-attentions, while adding extra components to adapt the model for target tasks.
According to He et al. [18], different adaptations can be viewed as combining different modification
vectors Ago; to pre-trained representation o;. We investigate two types of modifications below.

Learnable Projections Models like Adapters [21] insert adaptation modules between transformer
layers. The module applies linear projections to the self-attention output o;, with the non-linear
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activation between them. With a residual connection [19], the adapted output o; is:

(new)

o, < 0; + Ago;, Ayo; := Wyo,. 7)

Wy € R4 represents the linear projections. (We omit the non-linear activation for simplicity).

Learnable Embeddings Models like Prompt Tuning [30] add learnable embeddings in the input.
Then self-attention is performed based on the input with prompts. The adapted output is [18]:

0" < (1 — A(ly))o; + A(hi)Ago;,  Ago; := MHA(Qy(hy), Ky (Po), Vs (Pp)).  (8)

Py are learnable prompt embeddings in RP*9, p is the number of prompts. A(h;) is a gate value
computed from self-attention which decides the ratio of pre-trained and modified representations.

Choices for Global Alignment Both of the adaptations show effectiveness in single-task perfor-
mance for our desiderata Eq. (3) [21, 31]. For global alignment in Eq. (4), Prompt Tuning has a gate
A(h;) to mix pre-trained and modified representations. With a small gate value, this may generate
representations close to pre-trained representations, and thus better connect to global prototypes.
However, the gate A(h;) in Eq. (8) is decided by self attention over inputs and prompts, thus can lean
to modified representations Agyo;. Also, the learned prompts Py may convey information far away
from the original data. These may degrade the models’ capacity for global alignment. Because of
this, we propose a model that has a controlled gate value and relies on neighbors of tokens instead of
searching from random prompts for task adaptation. In addition, the training for prompt embeddings
is not as easy as that for linear projections [30, 22], which may cause efficiency issues when adapting
multiple tasks. We also introduce learnable projections in our model for fast adaptations.

4.2 Transformer with Neighbor Attentions

We design a neighbor attention module added to the pre-trained model for task adaptations. The mod-
ule has three properties: (1). utilizing learnable linear projections to learn modified representations;
(2). acquiring neighbor representations for extra information; (3). using a controlled gate to mix
pre-trained and modified representations. The adapted output of the neighbor attention module is:

0" (1= N)o; + AAgo;, Ago; := MHA(Qy(h;), Kg(M;|hy), V(M| |hy)).  (9)

where A is the ratio of modified representations in the mix-up, || denotes the concatenation operation.
Ky, Vy are learnable linear functions for key and value. M; = [m;y, ..., m;;] are k neighbor
representations of the input representation h;.

Comparing Eq. (9) to Eq. (8), neighbor attention has learnable linear functions for key and value.
Moreover, we manually control the gate by setting A = 0.1 to push the module to focus more on the
pre-trained representations. This is for our desiderata to have representations close to pre-trained
ones which are trained over global prototypes. Finally, we introduce neighbor representations IM; for
information out of the inputs, which can improve the model’s expressivity. Details are shown below.

Neighbor Representations Before the first neighbor attention layer, we find the initial neighbor
representations M; for a hidden representation h,. Neighbors of h; can be obtained by comparing the
dot product between h; and token embeddings from the pre-trained embedding layer, then selecting
k tokens which have top-K scores as neighbors. K decides the range of the neighborhood.

Then we transform neighbor embeddings to the space of h,. We disentangle h;’s j-th neighbor
representation my; into two parts: one related to the hidden representation hy;; and the other related to
neighbor information out of h;. The latter can be obtained by deviating neighbor embedding e;; from
h;’s token embedding e;. Then the transformed neighbor representation is: m;; = a(e;; —e;)+ Sh;,
where 0 < «, 8 < 1 are scalars. In this paper, we set « = § = 0.2.

After that, the neighbor representation M, is updated at each neighbor attention layer. For the j-th

neighbor representation my;, the updated representation mg?“” for the next layer is:

m(qew) < mij + Agmij, Agmij = f(MHA(Q¢(mU), K@(Mluhz),Vg(MZth)))

)

Adding neighbor attention on more layers will increase the model capacity, but also cause more risk
of over-smoothing [45], i.e., neighbor tokens all have the same representations. In practice, we add
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neighbor attention to less than half of the transformer layers, and leave the last layer untouched for
guidance. In continual learning, the optimal layer selections for different tasks may vary.

S Experimental Settings

Single Task Evaluation for Desiderata We first evaluate the models’ capacities for our desiderata Eq.
(3) and Eq. (4) on single tasks. We test classification accuracies for desiderata of task performance on
tasks from the GLUE benchmark [S0] and SNLI data [5]. For the desiderata of global alignment, we
predict top-20 tokens from the learned representation by the pre-trained decoder (global prototypes),
and compute the ratio of rationle tokens in the top-20 predictions (i.e. Recall@20). We evaluate this
on e-SNLI dataset [8], where data’s rationale tokens [5] are highlighted by human annotators.

Continual Learning (CL) Evaluation We evaluate four sequences of tasks: (1) Yahoo 1: a split of
Yahoo dataset for news question-answer categorization [57] with 5 disjoint tasks containing 2 classes
each; (2) Yahoo 2: a Yahoo sequence with the same split as (1) but with more data; (3) DB: a split of
DBPedia data for Wikipedia article classification [57] with 7 disjoint tasks containing 2 classes each;
(4) News Series: a sequence of tasks on news-related data, including AG_news (news classification,
4 classes), MRPC (paraphrase detection, 2 classes) [12], RTE (text entailment, 2 classes) [52] and
SST (sentiment analysis, 2 classes) [47]. For the above sequences except (2), we randomly sample
1245 samples per class, which is the least number of class samples in our datasets. For (2), we
sample 10000 samples per class. We measure the average accuracy and forgetting (Appendix C) with
standard deviations. For each sequence, we test five random orders of tasks.

We evaluate for both rask-incremental and class-incremental learning. Task identifiers are available
at inference time for task-incremental learning but not for class-incremental learning [37]. For
class-incremental learning, the original cross-entropy loss over all seen classes will cause significant
forgetting [54, 1]. Since our work does not focus on the problem of cross-entropy, we apply the
asymmetric strategy (ACE) [7]: the current task’s classification loss is calculated over in-task classes,
while the replay loss is calculated over all seen classes in the memory (if applicable).

Models and CL Frameworks We compare different adaptation models on BERT-base. Data
representation is from a [MASK] token added to the beginning of input to match the pre-training
format. Models for comparison are: (1) NeiAttn: our standard neighbor attention model. (2) NeiReg:
our neighbor attention model with extra regularization for holistic information (Appendix B). (3)
Fine-tuning (FT): a model in which all parameters are learnable. (4) Prompt Tuning (ProT) [30]:
the model adding learnable embeddings only to data inputs. (5) Prefix Tuning v2 (PT2) [33]: an
adaptation model adding learnable embeddings to inputs of all attention layers. (6) Adapter [21]:
an adaptation model with learnable linear projections injected in each layer. (7) BitFit [55]: an
adaptation model tuning only bias terms in the pre-trained model. More settings are in the appendix.

We consider different frameworks (methods) for continual learning: (1) Vanilla: the vanilla online
learning framework; (2) MBPA: an episodic memory framework retrieving stored samples to locally
adapt the model at inference time [48]. (3) ER: an episodic memory framework storing all seen
examples and performs sparse (1%) experience replay; (4) A-GEM: an episodic memory framework
constraining on gradients to prevent degrading performance of previous tasks [9]; (5) Probing: a
framework which learns the encoder with Vanilla setting while tunes the classifier for each task
using all task data. This is used to evaluate the discrimination of data representations; (6). MTL: a
muti-task framework that jointly trains on all tasks (not continual learning). For class-incremental
cases, we have the above replay-based methods combined with the ACE strategy. The baseline
performance for each continual learning framework is that on FT model.

6 Experimental Results

Models for Desiderata in Eq.(3) and Eq.(4) Figure 3 shows models’ capacities for our desiderata.
We compare the classification accuracy for desiderata in Eq.(3) and Recall@20 of rationale tokens for
desiderata in Eq.(4). The higher scores on both metrics, the better model capacities for our desiderata.

Overall, NeiAttn and PT2 consistently achieve a superior balance between classification and recall
scores on different NLI tasks. However, Adapter and FT achieve high classification scores but do
not generate representations well related to global prototypes (low recall scores). This supports our
intuition that mixing pre-trained and modified representations with a gate can result representations
better connected to global prototypes. With explicit regularization on holistic information, NeiReg



297
298
299

300
301

303
304

305
306
307
308
309
310
311
312

313
314
315

RTE MNLI-m QNLI QQrP SST

50 NeiReg o
NeAttn
40 P12 ® NeiAttn
® oroT Bitfit PT2 . NeiAttn NeiReg. . gNeiAttn
30 Bitfit ® NeiReg Bitfit o ProT sttt ® NeiReg ® PT2
D e —— T L o Bitfit
®
=3 Adapter o ProT iReg ® Adapter® Adapter
S 1o]eProT ¢ m, Adaptery Te NeiReg N ’ oFroT oioap -
3 Adapter @ | Fle FT
o {
2 60 6 64 66 7 70 80 81 8 88 88 89 9 87 88 89 90 88 8 90 a1 92
o SNLI 1% SNLI 10% SNLI 30% SNLI 50% SNLI 100%
8 ProT  pleiReg
o o NeiAttn ProT, oNNeiReg ProT
= . NeiReg ProT
@ [4F) Vo SPT2 ] L e NeiReg ProT
Bitfit Neittii NeiAtto_ 3. P12 O & pr@NeiR
B 30 ] Bitfit Bitfit | NeiAttn e NeiAtt?S 9
i
oAdapter Bitfit
20 1
T Adapter
10 M ofT o
. Adapter
, FT Adapter! o Adapter @ %

75 80 85 90 75 80 85 90 75 80 85 920 75 80 85 90 e 80 85 90
Classification Accuracy

Figure 3: Results for single-task learning. Dashed lines split figure regions based on scores of NeiAttn.
Results with higher accuracy and recall (upper right corner) are better. We test on three random seeds.

Table 1: Results for task-incremental learning. We report average accuracy (Acc) and forgetting
(Forget) with their standard deviations (std) on five random seeds. Bold scores are the best scores and
underline scores are the second best. Models in blue have prototype loss larger than the threshold.
Models in red satisfy the desiderata Eq. (4). Models with (¥) are baselines for each CL framework.

CL Framework Model Yahoo 1 Yahoo 2 DB News Series

Accsa Forget s Accsiu Forget su Acc su Forget su Accsa  Forget s
Pretrained  82.95 364 734361 83.704.16 771415 95.38234 4.08237  66.664.47 5.35300
Vanilla FT (*) 73.07s53  18.67s541  79.82420 13.27425  73.1553 2490517  59.98s04  21.13744
Adapter 7985183 11.86183 71.90245 20.92247  98.701.10 1.19110 6543473 15.5342
PT2 88.62 050 3.04079  90.640.76 2.380.71 99.83 .04 0.07 004 75.03097 6.13 0098
NeiAttn 88.96 1.14 28012 89.84070 324060 973434 2.54341  71.95220 9.892.29
FT (%) 7240442 1934440 7871320 1438320  73.01545  25.04527  60.60830  20.52667
MBPA Adapter 78.50212 1313200 73.66295  19.15205  99.09 110 0.80110 6528474  15.67 411
PT2 90.69 0.5 0.97075  91.70051 133058 99.900.06 -0.01006  76.1605 4.99 1 46
NeiAttn 90.69 1 36 1.67 135 91.180.90 1.9008s  97.53 328 235328 73.28253 8.562.11
FT (%) 7077672 2092672 9031072 2.67067  91.05874 875560 7044557  10.93 435
ER Adapter 774453 1413340 7579344 17.0833  98.92 151 097150 681119 13.162.10
PT2 88.910.4 276035  91.02050 2.1907  99.84 004 0.03003  69.60306 11.582.96
NeiAttn 84.025.10 7.87312  91.54022 1.52024  99.680.8 0.200.18  75.050.94 731048
FT (%) 87.56 1.3 411140  89.98071 317068 84451016 15341012 75.066.17 5.48 401
A-GEM Adapter 80.86236  10.65206 7747320 1537304 99.52023 0.38024  73.801.16 6.72 161
PT2 90.40 0.1 1.390.16  90.840.19 2.22021 99.880.01 0.01001 7331073 4.29 1.0
NeiAttn 90.47 0.26 1.38021  91.35043 1.8104 98.22 348 1.66340  77.07 156 443035
Probin FT (*) 90.18 0.41 1.56049  92.160.14 0.93014  97.73358 031004 7717200 3.94 198
(classifier no% cL) Adapter 91.11025 0.5T025  88.98725 384728  99.87001 0.02001  78.47076 2.49 1.0
s B PT2 91.490.1 0.17000 9281011 0.210.11 99.89 0.01 0.01001  77.62032 3.53 106
NeiAttn 91.470.16 0.290.16  92.720.11 0.370.11 99.87 0.01 0.0100>  78.8305: 3.011.02

MTL (non-CL) FT (%) 91.69 0.26 — 92.67 071 — 99.61 0.41 — 79.67 1.99 —

performs best in in-task (SNLI—E-SNLI) rationale recalls, while losing its superiority in cross-task
(GLUE—E-SNLI) rationale recalls. This may suggest the explicit regularization may not generalize
well across tasks. With prompts only in the input, ProT has insufficient capacity for task performance.

For desiderata Eq.(4), NeiAttn and PT2 perform much better than Adapter and FT. We set a.- to make
NeiAttn and PT2 satisfy Eq.(4) while Adapter and FT fail to, then we evaluate them for CL scenarios.

Task-Incremental Learning We test models’ capacities for task-incremental learning under different
CL frameworks. Results are shown in Table 1. Models are split into two categories according to our
desiderata (Eq.(4)) experiment above: (NeiAttn, PT2) which satisfy it and (FT, Adapters) in opposite.

In the vanilla setting, both PT2 and NeiAttn significantly outperform other models with minor
forgetting. Adapter on most CL frameworks performs worse than PT2 and NeiAttn, marginally
better than FT. This supports our claim that models learning representations better connected to
global prototypes perform better in continual learning. Combined with ER and A-GEM, NeiAttn can
improve more than PT2 in most cases. FT has significant improvement with replay but can also suffer
from overfitting to the replay buffer (ER for Yahoo 1). We also evaluate on a probing framework with
only the classifier retrained over task data to evaluate whether the forgetting will cause representations
to lose separation. PT2 and NeiAttn also preserve the most separation of representations in this case.

In general, (NeiAttn, PT2) consistently outperform (FT, Adapter) under different CL frameworks.
This supports that our desiderata Eq. (4) helps improve models’ continual learning ability. NeiAttn
performs better with replay. The capacity of models also depends on different data distributions in
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the sequence. On News Series, when with replay, FT can even outperform PT2. This may happen
because News Series includes data from similar distributions related to the news. And models should
have the capacity to deal with knowledge transfer besides catastrophic forgetting.

Results for Class-Incremental
Learning Figure 4 shows models’
performance on class-incremental
learning. PT2 and NeiAttn perform
well in the vanilla case, where the
training is the same as that for task-
incremental learning. This indicates " Nanila
that they can address connections
between classes from different tasks
even without supervision. On the
other side, Adapter and FT perform much worse in this case. Then we evaluate three frameworks
with replay: one is the full ER-ACE [7] with experience replay at each step; one is the ER-ACE
(sparse) with sparse experience replay; the other is the ACE strategy with only previous task’s data
stored in the replay (AGEM-ACE). We observe that performance on class-incremental learning
heavily relies on the quality of replay. In most cases, FT, Adapter and NeiAttn can benefit more from
the replay. We hypothesize that it is related to the fast adaptation ability related to linear projections.

DB Class Incremental Learning

Yahoo-1 Class Incremental Learning

i

¥ % 5 3 8

Averaged Accuracy
Averaged Accuracy

o
AGEM-ACE  ER-ACE (sparse)  ER-ACE Vanilla AGEM-ACE  ER-ACE (sparse)  ER-ACE

Figure 4: Results on class incremental learning. Dashed lines
show scores of a pre-trained model in the vanilla setting.

Influence of Parameter-Efficiency With limited param- Table 2: The ratio of models’ learnable
eters, adaptation models have less risk of deviating fast parameters compared to FT.

from previously learned knowledge compared to FT, and Models  FT Bitfit Adapter ProT PT2 NeiAttn
thus may perform better in CL. However, different models’  parameters (%) 1 05 23 05 08 49
improvements come not just from having fewer trainable
parameters. Table 2 shows the comparison of parameters in each model. NeiAttn has better perfor-
mance in most cases compared to Adapter and Pre-trained models, which have fewer or no trainable
parameters in the encoder. Even with more parameters, NeiAttn performs on par with PT2 with
Vanilla and outperform PT2 with replay. NeiAttn also requires much less time to train (5 vs 20
epochs). These suggest the adaptation model structure will highly influence its performance on CL.

FT NeiAttn
Visualization of Representations In Figure 5, we vi- T e N
sualize NeiAttn and FT’s data representations for class- « R i
incremental DB under Vanilla and ER-ACE frameworks. & ta0 | ¥ ¥ v

Even trained with in-task classes, Vanilla NeiAttn can well . A i x

. . . . i ok
disperse data representations. Learning a model includes
learning the encoder (representations) and classifier (class  w T . _
vectors). The learned class vectors may not well align with I T T P ‘

w A A

representations even with replay (left bottom). We hypoth-
esize this may result from different training paces for the .
encoder and classifier. For FT, the encoder quickly learns . .
representations close to single class centroi((lls, Whiych may Figure 5.: T_SNE. plot of FT, NeiAdtn rep-
degrade the function of the classifier. However, with con- resentations. Triangles are class vectors.
nections to multiple different global prototypes, NeiAttn representations may not quickly move to
one centroid. Therefore, it can better balance the training of the encoder and classifier (right bottom).

7 Conclusion

In this paper, we investigate models which consider potential connections between observed and
unknown tasks to reduce disruptive updating in CL. Specifically, we learn task-specific data repre-
sentations appropriately connected to a general-purpose representation base with global prototypes.
For NLP tasks, the global prototypes can be obtained from a pre-trained language model. And the
representation connected to global prototypes can be obtained by lightly adapting the pre-trained
model. We investigate existing adaptation models and propose a neighbor attention model which
combines advantages of existing models. Experimental results show that models learning representa-
tions appropriately connected to global prototypes have significantly less catastrophic forgetting in
CL, even without using experience replay. Specifically, when neighbor attention is used, we suffer
from less catastrophic forgetting than FT and Adapter, and surpass PT2 when experience replay is
applied. We consider the main limitations of our work as: (1) requiring extra memory to compute
neighbor attentions; (2) the optimal number of neighbor attention layers may vary for different tasks.
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