
Learning Multimodal Interaction Manager for Assistive Robots from
Human-Human Data

Anonymous Author

Abstract— This paper describes a Reinforcement Learning
(RL) framework for developing assistive robots capable of
multimodal interaction. The framework critically depends on
a neural network-based human user simulator trained on the
existing ELDERLY-AT-HOME corpus, accommodating multi-
ple modalities such as language, pointing gestures, and haptic-
ostensive actions. The simulator provides a multimodal interac-
tive environment for training the Reinforcement Learning (RL)
agents in collaborative tasks involving various modes of commu-
nication. In contrast to conventional dialog systems, our agent
is trained using a simulator developed with human data and
capable of handling multiple modalities, including language and
physical actions. The paper also presents a novel multimodal
data augmentation approach, which addresses the challenge
of using a dataset that is small due to the expensive and time-
consuming nature of collecting human demonstrations. Overall,
the study highlights the potential for using RL and multimodal
user simulators in developing and improving assistive robots.

I. INTRODUCTION

Assistive robots have the potential to transform the lives
of older adults, their caregivers, and people with disabilities.
They can be designed to help with activities of daily living
(ADLs) such as cooking and cleaning. In assistive robots, the
traditional sense-plan-act architecture can be realized through
three core components: the Perception Module, responsible
for comprehending sensory inputs from multiple modalities;
the Execution Module, carrying out the desired actions;
and the Interaction Manager, which is responsible for the
robot’s decision-making and thus perhaps most critical for
the human-robot interaction (see Figure 1).

The main focus of this work is on automatically learn-
ing the Interaction Manager. The main challenge to doing
so is the multimodal nature of a typical interaction that
includes high-level modalities such as language, and low-
level modalities such as haptic signals, and the difficulty
of obtaining training data with such interactions. Capturing
realistic interactions is time-consuming. Further, we lack
sensors that can adequately record haptic signals, which
are often the dominant modality during the shared task, in
unrestricted settings.

In [1], the focus is on the “Find” task, an interaction
scenario in which two partners work together to find an
object in the environment. The proposed framework for the
Interaction Manager for the Find task is Hierarchical Bi-
partite Action-Transition Networks (HBATNs). They model
both agents simultaneously to maintain the state of a task-
driven multimodal interaction and plan subsequent robot
moves. This framework was developed using a subcorpus
of the ELDERLY-AT-HOME corpus [2], a publicly available
corpus that captures real-world interactions between nursing

Fig. 1: The Sense-Plan-Act cycle in an assistive robot

students (HEL) and elderly individuals (ELD) engaged in
activities of daily living. Unfortunately, HBATNs are con-
structed by hand and thus difficult to scale up and adapt to
new tasks.

Our goal is to substitute manually crafted robot policies
with policies generated automatically through reinforcement
learning (RL), to improve assistive robot capabilities. Train-
ing RL agents for multimodal human-robot interaction (HRI)
is challenging because it requires interactive environments
that can provide RL agents with meaningful rewards. To
overcome this challenge, we’re introducing a novel neu-
ral network-based user simulator inspired by Behavioral
Cloning [3], [4]. Our user simulator is unique because it ac-
commodates multiple modalities such as language, pointing
gestures, and haptic-ostensive (H-O) actions [2]. This is an
important advance in developing domestic assistive robots as
there is currently no simulator that can provide a multimodal
interactive environment for RL training.

Developing and training such a user simulator is challeng-
ing due to the limited amount of data and its sparsity. Another
significant contribution of our work is a novel multimodal
data augmentation approach that addresses this challenge.
Our data augmentation approach effectively takes care of
all modalities involved in the data, reducing the need for
expensive and time-consuming human demonstrations.

Our proposed user simulator also simplifies the often chal-
lenging process of defining and fine-tuning reward functions
for multimodal HRI tasks. The simulator allows for greater
ease in creating reward functions that can be readily applied
to a variety of other tasks, enhancing their generalizability.

Overall, our study highlights the potential for using RL
and multimodal user simulators in developing and improving
domestic assistive robots.

II. RELATED WORK

Machine learning has become an indispensable tool in
robotics, enabling intelligent agents to interact with their
environment effectively. RL stands out as a promising ap-
proach for learning policies from sequential human-robot



interaction data. Since the seminal work on Q-learning in
the ’80s by Watkins and Dayan [5], RL algorithms have ad-
vanced significantly, incorporating deep learning techniques
such as Deep Q-Learning [6], Actor-Critic [7], and Trust
Region Policy Optimization [8]. Notably, RL agents have
demonstrated superhuman performance in diverse domains,
as exemplified by their success in Atari games [7].

Inverse reinforcement learning (Inverse-RL) has gained
prominence, particularly in scenarios where data is limited,
and human guidance can enhance the learning process.
Inverse-RL models seek to understand human preferences
and behaviors by observing their actions. For instance, [9]
introduced a preference-inference Inverse-RL model for as-
sistive robots, which learned user preferences during task ex-
ecution. In this work, we delve into the challenge of training
an intelligent assistive robot agent and propose a Deep Q-
Learning (DQL) framework enhanced with a DAGGER warm-
up [10]. This enhancement facilitates the efficient tuning of
the RL reward function.

Simulated users or interactive environments are indis-
pensable components in RL, serving as a crucial part of
the training feedback loop. In the context of human-robot
interaction, these simulated users should not only be reliable
but also capable of generating a diverse range of actions
to facilitate RL exploration. Thomaz and Breazeal [11]
investigated the compatibility of human-given rewards with
traditional RL reward signals.

In recent years, there has been a growing body of work
focusing on RL frameworks for training interactive dialogue
systems designed to assist users [12]–[14]. For instance, Li
et al. [14] proposed a Deep Q-learning network architecture
for a dialogue system aimed at assisting humans in accessing
information and accomplishing tasks. Notably, this dialogue
agent was trained with a language generation machine as
the user simulator. A key differentiator between this research
and ours is that we leverage actual human data to develop
our user simulator. Furthermore, while dialogue systems are
typically unimodal, focusing solely on language, our work
tackles the complexity of a multi-modal system encompass-
ing gestures, physical actions, and dialogue.

Another relevant study is that of Park et al. [15], which
employed Q-learning to learn a personalized policy based
on children’s facial reactions and pose data in a classroom
setting. However, this work solely relied on visual data
captured by cameras and did not encompass multi-modal
interactions. Our research takes a distinctive approach by
incorporating various modalities, such as gestures, physical
actions, and dialogue, into the training process based on
actual human data.

Our work builds upon the HBATNs framework introduced
in [1], [16]. This framework facilitates human-robot inter-
action by allowing the agent to manipulate objects in the
environment and engage with users through gestures, H-
O actions [2], and speech. The HBATNs model, roots in
data-driven techniques and informed by the human-human
interaction corpus [2], is particularly tailored to the collabo-
rative “Find” task. While HBATNs provide an interpretable

decision-making process, they are manually constructed and
lack scalability. Importantly, policy extraction is a labor-
intensive manual process. A primary contribution of this
paper is the automation of this policy extraction process
through RL.

Simulators play a vital role in advancing robot autonomy
through machine learning. In the context of HRI, developing
simulators that accurately model complex human behavior
is a significant challenge. Some approaches model human
movement through equations of motion [17], [18], while
others assume human agents have nearly identical reward
functions as robots [19]. These assumptions simplify simu-
lator design but may not fully capture human behavior. In
contrast, our approach models human agents based on real-
world data, relaxing some of these assumptions and allowing
for a more nuanced understanding of human behavior and
intentions.

Recent advancements in intelligent dialogue systems have
shown promise in modeling the dialogue aspect of human
agents [14], [20], [21]. While some of these systems focus
on end-to-end training, they typically operate within single-
modal domains, primarily language. In contrast, our work
extends to a multi-modal setting that encompasses gestures,
physical actions, and dialogue based on actual human data.
Our approach represents a valuable contribution to the field
of HRI, which currently lacks comprehensive studies consid-
ering multi-modal interactions in training intelligent agents
based on real human data.

III. USER SIMULATOR FRAMEWORK1

A detailed description of the background information
regarding this section is provided in Appendix A.

A. Feature Extraction

In this section, we introduce an end-to-end model to
predict the state of the world that includes the ELD state
as well as the ELD’s next move.

Our model is implicitly supposed to act as the ELD.
However, our analysis of the data revealed that HEL could
take consecutive moves. In order to address those cases
where the HEL is taking more than one move, the model
should determine whether or not the ELD will take an action
in the subsequent move. In summary, the model’s objective
is twofold: (1) To predict the ELD’s next action and whether
it will occur. The ELD’s move is determined by the ELD’s
Dialogue Act (DA) and the ELD’s action. (2) To determine
the state of the world. The state of the world is determined
by the ELD’s belief of the HEL’s knowledge of object type,
location, and object.

In order to effectively train our end-to-end model, we
must first determine what information can aid the model
to decide the ELD’s state and its action. The following
items summarize the important points that should be taken
into account when selecting the features and how we have
featurized and annotated our collected human-human data.

1This section has been previously presented at a conference.



Consecutive Moves and Previous Actor: To determine
whether the HEL will take consecutive moves, we need to
know the previous actor. This information can be represented
as a two-element vector. If the trial has not started and the
HEL initiates it, both elements are set to 0. If the HEL isn’t
going to take consecutive moves, the previous actor is the
ELD, and the first element of the vector is set to 1. Otherwise,
the second element is set to 1.

Object Type and Location Utterances: It is important to
know whether object types or locations have been mentioned.
These can be represented as binary features.

ELD’s Previous State: The model also needs to have
information on the ELD’s previous state. We propose the
following representation for it: (1) ELD’s belief of HEL’s
knowledge of OT , which can be one of three values (ELD
believes HEL does not know the target OT → 0, ELD
believes HEL knows the target OT → 1, or ELD believes
HEL is thinking of a different OT → 2), (2) ELD’s belief
of HEL’s knowledge of L, and (3) ELD’s belief of HEL’s
knowledge of O. We extracted all the meaningful possible
combinations of these three parameters which would give
us 13 distinct combinations as follows: (1) state (0, 0, 0),
(2) state (0, 1, 0), (3) state (0, 2, 0), (4) state (1, 0, 0), (5)
state (1, 0, 1), (6) state (1, 0, 2), (7) state (1, 1, 0), (8) state
(1, 1, 1), (9) state (1, 1, 2), (10) state (1, 2, 0), (11) state
(2, 0, 0), (12) state (2, 1, 0), (13) state (2, 2, 0). We use one-
hot encoding, a one-hot encoded vector of size thirteen,
for representing these states. The elaborated description for
obtaining these states is provided in section III-F.

Pointing Gesture by HEL: We consider whether the HEL
has performed a pointing gesture and if the target is an object
or a location. This categorical feature is represented as a
five-element vector. The first two elements indicate whether
a pointing gesture has occurred (0 if not). The first element
is 1 if the HEL points to a location, and the second element
is 1 if the HEL points to an object. The last three elements
determine whether the location or object pointed to by the
HEL matches the ELD’s location/object. If the third element
is 1, it indicates a match, while the fourth element represents
a mismatch. The fifth element being 1 means that the HEL
points to the correct object type but not the specific object.
For example, imagine that the ELD asks for a small bowl
and the HEL points to a large bowl in response; the vector
(0, 1, 0, 0, 1) is the indication of the HEL’s pointing gesture.

H-O Actions: Likewise, in the case of H-O actions,
we must ascertain whether the action has taken place and
whether it was directed toward an object or a location. In
addition, we also require the type of H-O (opening or closing
a location, touching a location or an object, taking out an
object, holding an object). This is a categorical feature, a
vector of size ten. The first five elements are interpreted
exactly the same as the pointing gesture vector. The second
half of the H-O action vector determines which of the
five different H-O actions has been performed by one-hot
encoding those action types.

Current HEL’s Action and Utterance: We also add the
current HEL’s action and the current HEL’s utterance (DA

tag), which are both categorical features represented by
vectors of size nine and fourteen respectively. The HEL
action classes are categorized as follows: (1) No action, (2)
Request OT , (3) Request L, (4) Verify OT , (5) Verify L, (6)
Verify O, (7) Acknowledge, (8) Yes, (9) No. The DA classes
are categorized as follows: (1) No utterance, (2) Instruct, (3)
Acknowledge, (4) Query-w, (5) Query-yn, (6) Reply-w, (7)
Reply-y, (8) Reply-n, (9) Check, (10) Explain, (11) Align,
(12) State-y, (13) State-n, (14) State. These were the DAs
chosen to annotate the ”ELDERLY-AT-HOME” corpus [2].

Previous ELD’s Action and Utterance: In addition to
the current HEL info, our model relies on the information
from the previous actions from the ELD. Here we use the
ELD’s action and ELD’s DA which are both categorical
features represented by vectors of size seven and fourteen
respectively. The ELD’s action classes are categorized as
follows: (1) No action, (2) Give OT , (3) Give L, (4) Give
OT , L, (5) Acknowledge, (6) Yes, (7) No. The ELD’s DA
classes are the same as HEL’s.

B. Data Annotation

The Find task data in the ELDERLY-AT-HOME corpus [2]
was previously transcribed and annotated for DAs, pointing
gestures, and H-O actions. As explained in section III-A,
we need to provide the network with additional features
for training our user simulator. We performed additional
annotations for ELD beliefs of HEL’s knowledge of OT ,
L, and O, and ELD and HEL actions based on the classes
introduced for each feature in the previous section.

ELD’s perceptions of HEL’s knowledge of OT , L, or O
were objectively determined based on the heuristic that ELD
updates its beliefs whenever HEL demonstrates knowledge
or lack thereof of these entities. For instance, ELD assumes
that HEL is unaware of the OT or L until HEL acknowledges
ELD’s description of it or takes action to confirm it. If
HEL selects the wrong OT or L when ELD has specified
a particular one, ELD assumes that HEL is thinking of a
different OT or L. For example, if ELD points to a small
bowl and says ”Get me that bowl,” but HEL asks ”That
bowl?” while pointing to a large bowl, ELD believes that
HEL is thinking of a different bowl.

Two annotators labeled the actions of ELD and HEL.
As the labeling of action did not follow a strict guideline
and was, therefore, more open to interpretation, the inter-
annotator agreement was measured for both types of actions
using Cohen’s kappa. To test the reliability of the annota-
tion, 40 random ELD actions and 40 random HEL actions
were chosen from the data set, and both annotators labeled
them independently before labeling the remaining actions.
The results showed a high level of agreement between the
annotators for both ELD actions (κ = 1.0) and HEL actions
(κ = 0.81), indicating that the action labels are reliable.

C. Multimodal Data Augmentation

The data collected during the Find task is suitable for
building a strong basis to train the user simulator; however,
there are no instances or few instances in which ELD



believed HEL had the wrong OT or L in mind or did not
know the OT . This lack of variation is not surprising, as
the interactions between the two humans were relatively
straightforward. However, since we propose this user sim-
ulator as the main component of the interactive environment
for the RL training, and as we expect the HEL agent,
trained with reinforcement learning, to make mistakes, we
need to augment the data to include examples of missing or
infrequent states.

To increase the number of instances in which ELD believes
HEL does not know the OT , states (0,0,0) and (0,1,0), we
sample instances in which ELD believes HEL knows the
OT and replace HEL’s utterance and action with an example
of requesting the OT (see Fig. 2a). The ELD then gives
instructions on OT again.

To increase the number of instances in which ELD believes
HEL has the wrong OT in mind, states (2, 0, 0) and (2, 1,
0), we sample instances in which HEL mentions the target
OT in their utterance and replace it with an incorrect one
(see Fig. 2b). The ELD then gives instructions on OT again.

We also increase the number of instances in which ELD
believes HEL is not thinking of the same L or O, states
(1, 2, 0) and (1, 1, 2), by sampling instances in which
HEL’s utterance or action includes an object or location and
replacing it with an incorrect one. In each case, ELD would
then give the correct OT or L again (see Fig. 2c). These
synthetic examples will help the user simulator respond
appropriately to mistakes made by the HEL agent.

(a) Generating “ELD believes HEL does not know OT ”

(b) Generating “ELD believes HEL has the wrong OT in mind”

(c) Generating “ELD believes HEL is not thinking of the same L or O”

Fig. 2: Examples of how we augment our data with unseen
or infrequent states

Early on for developing a Basic User Simulator (BUS
model), we conducted data augmentation exclusively for
ELD’s output states. However, after carefully examining the
data, we observed that only the first nine state combinations
mentioned previously are included in the input states whereas
all thirteen combinations could be seen in ELD’s output
states even if they are rare. That being said, state combi-
nations 10 to 13 are meaningful and highly likely to happen
during an interaction between the user simulator and the HEL
robot agent. Not seeing all possible meaningful inputs during
the training, causes the model to be too specific and not able
to handle all possible situations it may encounter. It also

makes the final accuracy evaluations not accurate because
the model has been trained, validated, and tested on inputs
that do not offer enough variation. Thus, we augment the data
points in such a way that all thirteen state combinations are
covered in inputs so that we make our model more accurate
and flexible.

To synthesize the input state where in the previous move
ELD believed HEL had the wrong O in mind, state (1,1,2),
we randomly choose some instances where the input state
is (1,1,1), i.e. in the previous move ELD believed HEL had
the correct O in mind, and change the ELD’s previous move
accordingly. For that, ELD would inform the HEL about
the object again. So we replace the previous ELD’s DA and
action with “Instruct” and “Give Specific OT ” respectively.
We should point out that later on, we combined actions ”Give
Specific OT ” and ”Give OT ” into one single class as during
the interaction with the HEL, these two actions convey the
same message and only the difference in ELD’s state matters
when ELD announces either the object type or the specific
object during the interaction with HEL.

To synthesize the input states where in the previous move
ELD believed HEL had the information about OT and L
but had wrong OT and/or wrong L in mind, states (1,2,0),
(2,1,0), (2,2,0), we randomly sample our data points where in
the previous move ELD believed HEL had the right OT and
L in mind and change the ELD’s previous move accordingly.
For state (1,2,0), ELD would inform the HEL about the
location again, so we replace the previous ELD’s DA and
action with “Instruct” and “Give L” respectively. Similarly,
for the state (2,1,0), ELD would inform the HEL about the
object type again, so we replace the previous ELD’s DA and
action with “Instruct” and “Give OT ” respectively. Lastly,
for the state (2,2,0), ELD would inform the HEL about both
object type and location again, so we replace the previous
ELD’s DA and action with “Instruct” and “Give OT , L”
respectively.

To synthesize the input states where in the previous move
ELD believed HEL had the wrong OT in mind and didn’t
have any other information about L and O, state (2,0,0),
we take random samples where in the previous move ELD
believed HEL had the correct OT in mind and change the
previous ELD’s DA and action to “Instruct” and “Give OT ”
respectively.

With this data augmentation scheme, we increase our data
points from 693 to 1932.

D. Model Architecture and Training

Our model is a neural network consisting of three fully
connected (dense) layers, and a dropout layer (ratio=0.2) to
prevent overfitting and improve the ability of the model to
generalize better. We utilized the Cross-Entropy loss function
and Adam optimizer during training. The training process
lasted for a maximum of 100 epochs, but we also evaluated
the model’s performance on the validation set while training
to allow for early stopping. The inputs to the neural network
were the features described earlier, while the outputs were
the ELD’s next state, dialogue act, and action, which were



manually annotated in the data. We implemented the model
using the PyTorch library [22].

E. Model Evaluation on Data

The model was trained on 80% of data (a total of 1548
data points). About 10% of the data (a total of 183 data
points) was used for validation purposes during the training
to early stop the training before over-fitting happens. The
rest of the data (a total number of 201 data points) was used
for evaluating the performance of the fully trained model. To
better capture the great performance of the GUS model, we
compare it to the BUS model.

In addition to overall accuracy, we evaluated the model on
the classification accuracy of each individual output of the
model; i.e. the classification accuracy for (1) the predicted
ELD’s action; (2) the predicted ELD’s DA; (3) the predicted
ELD’s state, the ELD’s belief of the HEL’s (OT , L,O).

Here, we report the accuracy results of BUS and GUS
models tested on the original and augmented test data sets.
The results are summarized in Table I.

Overall Acc. Action Acc. DA Acc. State Acc.

BUS, Org. Test Data 46.27% 52.22% 53.73% 83.58%
BUS, Aug. Test Data 45.83% 56.77% 51.04% 68.75%
GUS, Org. Test Data 66.67% 81.82% 72.73 93.94%
GUS, Aug. Test Data 70.85% 77.89% 75.38 89.44%

TABLE I: Classification Accuracy of BUS and GUS Models

The results in Table I show a great improvement from the
BUS model to the GUS model. This significant improvement
results from the changes we made to our feature extraction,
data augmentation, and the model architecture itself that can
be summarized as (1) changing the ELD’s state represen-
tation as explained in detail in section III-A, (2) Giving
information about ELD’s previous DA and action as input to
the model, (3) Augmenting ELD’s input states as explained
in detail in section III-C, (4) Adding layers to the network
architecture and removing nonlinear ReLU activation func-
tion from the network, (5) Not executing sample re-weighting
since the class imbalance issue is already resolved by proper
data augmentation and we don’t want to overdo re-weighting
because of the limited amount of data we have. Considering
the small amount of data, re-weighting actually affects the
performance of our model adversely.

To further analyze the evaluation results reported in Table
I, we investigate the corresponding confusion matrices. Be-
fore moving forward with the confusion matrices, one should
remember that as explained in section III-A, our trained
model is supposed to also decide whether or not the ELD
will take a move. If that’s the case when the HEL is taking
two consecutive moves, the model would output 0 and None
as the predicted ELD’s action and DA respectively.

The DA confusion matrix in Table B.1 brought in Ap-
pendix B shows that the main confusion is due to wrongly
classified “Instruct” DAs as “Reply-n”. One justification for
this confusion is the limited number of data, and on top
of that is the imbalanced classes. However, going over the
annotated data, we see that most of the time when the ELD

responds to a verification question or OT /L query (“Query-
yn/Cehck” and “Query-w” DAs respectively), s/he carries on
with giving further instructions. That means in many cases
where ELD’s utterances are labeled as “Reply-n”, they could
also be interpreted as “Instruct” and eventually convey the
same intent to the HEL. For instance, the HEL verifies the
OT by asking the ELD “Did you say a pot?”, and the ELD
replies with “No, get me a bowl.”. The ELD’s DA could be
labeled as either “Reply-n” or ”Instruct”, but what matters
here is that the HEL receives the same intent from ELD.

Going through the confusion matrix in Table B.1 in
Appendix B, we observe that the rest of the DA classes are
either classified very well or confused with classes that don’t
influence the overall outcome of the network. For instance,
the DA “Acknowledge” is correctly classified in 66.67% of
the cases and has been classified as “State-y” in 33.33% of
the cases. However, this misclassification doesn’t affect the
message that HEL receives.

Analysis of the action confusion (the results presented
in Table B.2 in Appendix B) shows that 22.06% of the
”Give OT ” samples are wrongly classified as “Yes”. This
is again due to the limited number of data points available
as well as imbalanced classes. However, analogous to our
explanation above, this misclassification could be because
of those cases where the ELD responds to a verification
question and continues by giving instructions. For example,
the HEL verifies the L by asking the ELD “Did you say
that cabinet?”, and the ELD replies with “Yes, get me the
silverware.”. The ELD’s action could be labeled as either
”Yes” or ”Give OT ”. In either case, the HEL would receive
the same message.

We also observe that 33.33% of the “Acknowledge”
classes are misclassified as “Yes” actions. Again, because
these two actions are inherently very similar, this misclassi-
fication doesn’t affect the message that HEL receives.

In summary, many wrong DA and action classifications
are due to the fact that distinguishing DA classes like
“Instruct”, “Reply-y”, “Reply-n”, “State-y”, “State-n”, and
action classes such as “Give OT ”, “Give L”, “Acknowledge”,
“Yes”, and “No” would be very difficult. This happens
because in our available data, most of the cases where the
ELD responds to a “Query-yn” question, start with saying
yes, no, acknowledging, and then guiding the HEL towards
a location and/or giving information about the object.

F. Model Evaluation on HBATN

To further investigate how realistic our model performance
is, we compare its performance to the previously developed
HBATN model. It is important whether or not the GUS model
acts similarly to HBATNs because HBATNs are carefully
hand-crafted by human annotators who based their insights
in the data. For the purpose of this comparison, we would
need to have the response of our trained model to variant
inputs.

To generate different meaningful inputs for the GUS
model, we employ an automatic approach. Before moving



to explain the approach itself, we need to lay some ground
rules as follows:

(1) For the ELD’s state representation, ELD’s belief of
HEL’s knowledge of OT cannot change from 0 to 1 or
2 before ELD utters the OT . (2) ELD’s belief of HEL’s
knowledge of L cannot change from 0 to 1 or 2 before
ELD utters the L. (3) ELD’s belief of HEL’s knowledge
of O cannot change from 0 to 1 or 2 before ELD’s belief
of HEL’s knowledge of OT turns to 1. (4) ELD’s belief of
HEL’s knowledge of O can change from 0 to 1 or 2 before
ELD’s belief of HEL’s knowledge of L turns to 1. (5) HEL
cannot verify OT and L before ELD announces them. (6)
HEL only performs pointing and H-O actions for OT /L/O
verifications.

The ground rules associated with the ELD’s state repre-
sentation would give us thirteen distinct meaningful combi-
nations which we explained in detail in section III-A. After
combining those states with other inputs, by applying the
rest of the ground rules to all combinations, we generate all
meaningful inputs automatically.

Subsequently, we put our GUS model in different states
that previously had ben extracted from the HBATNs [16] by
applying different inputs to the model and finally we compare
the GUS model outputs to those of HBATNs.

The results of comparing our GUS model to the HBATNs
are summarized in Tables II, III, IV. In the (a, b, c) tuple
which represents the input or the output, c stands for the
HEL DA (input) or ELD DA (output), a and b also determine
whether or not the OT and L have been uttered respec-
tively. Each input/output also includes ELD’s previous state,
“pointing/H-O” actions, ELD’s previous DA and action, and
HEL’s DA and action features. We omitted these parameters
in our table representations for simplicity. However, we care-
fully mapped our automatically generated inputs to different
HBATNs states for these comparisons.

Our comparisons illustrate that the GUS outputs greatly
match the HBATNs. There are only a few minor differences
that don’t affect the interaction between the ELD and the
HEL and their intents. For example, our GUS model confuses
“Instruct” and “Reply-w” DAs in some cases such as in
Table II, the primitive subtask “Establish(OT )” where it
only outputs “Reply-w” for all “Instruct/Reply-w”-labeled
outputs. For the HEL it doesn’t matter if the utterance is
labeled as either one because both DAs transfer the same
message.

In some other instances, such as in Table III, the
primitive subtask “Specify(OT )”, our GUS model outputs
“Instruct/Reply-y/Reply-n” DAs for “Instruct”-labeled out-
puts. This again is not a fatal error because the action the
GUS model outputs as the ELD’s action would provide
instructions about the OT or L. In Table IV, for the primitive
subtask “Finish(L)”, the GUS model confuses “Acknowl-
edge” DA with “Reply-y/State-y”. This is also negligible due
to the similar inherent that these DAs carry. Nevertheless, this
is the final action in the interaction and wouldn’t affect the
interaction at all.

We should also point out that our GUS model differs from

Input HBATN Output GUS Output
Establish(OT ) (0, 0, Inst)/(0, 0, Qw) (1, ∗, Inst)/(1, ∗, Rw) (1, 0, Rw)

Verify(OT ) (1, 0, Chk)/(1, 0, Qyn) (∗, 0, Ry)/(∗, 0, Rn)/(1, 0, Inst)/(1, 0, Rw) (1, 0, Ry)/(1, 1, Rn)/(1, 0, Inst)/(1, ∗, Rw)
Specify(OT ) (∗, 0, Qw) (∗, 0, Inst)/(∗, 0, Rw) (∗, 0, Rw)

TABLE II: GUS performance evaluations for Det(OT ) subtask. (∗)
represents 0 or 1.Input HBATN Output GUS Output

Establish(L) (∗, 0, Inst)/(∗, 0, Qw) (∗, ∗, Inst)/(∗, ∗, Rw) (∗, ∗, Inst)/(∗, ∗, Rw)/(∗, ∗, Ry)/(∗, ∗, Rn)
Verify(L) (0, 0,−)/(0, ∗, Chk)/

(0, ∗, Qyn)
(0, ∗, Ry)/(0, ∗, Rn)/(∗, ∗,−)/
(∗, ∗, Rw)/(∗, ∗, Inst)

(0, ∗, Sty)/(0, ∗, Ry)/(0, ∗, Rn)

Specify(L) (∗, 1, Qw) (∗, ∗, Inst)/(∗, ∗, Rw) (0, ∗, Inst)/(0, ∗, Rn)/(∗, ∗,−)

TABLE III: GUS performance evaluations for Det(L) subtask. (∗)
represents 0 or 1.

the HBATNs in some cases where the ELD in HBATNs utters
or doesn’t utter the OT or L. In a few cases, the GUS model
utters OT or L when the ELD in HBATNs doesn’t or vice
versa. This minor error is due to applying machine learning
approaches to build an artificial intelligence agent as our
user simulator. Although these minor errors could make the
interaction longer or unsuccessful in very few cases, our GUS
model would still be superior to the hand-crafted framework.
The next section demonstrates that our user simulator can be
successfully used in practice for the RL training of assistive
robots.

IV. REINFORCEMENT LEARNING FRAMEWORK

In this RL problem, we employ a Deep-Q-Network [23]
model to act as our assistive robot (HEL) agent by having
it interact with the interaction environment containing the
BUS model. To enhance the training, we warm up the agent
before starting the training loop using DAGGER, an Imitation
Learning (IL) algorithm [10]. The warm-up phase happens
before initiating the RL training cycles. This step is crucial
due to the fact that learning the appropriate agent behaviors
with a simple reward function is extremely difficult and
training such an agent from scratch is tedious.

The flow of the interactions between the HEL agent and
the user simulator while training the HEL agent is illustrated
in Fig. 3. The state of the HEL agent consists of three
variables: the state of HEL’s OT , HEL’s L, and HEL’s O.
The possible values for each variable are 0, 1, or 2. The
variable is encoded with 0 when it has not been determined
yet, with 1 when it matches the user simulator’s belief about
it, and with 2 when there is a mismatch between the HEL
value and user simulator’s belief.

As depicted in Fig. 3, the HEL agent takes the user
simulator’s action and the previous HEL’s state as input and
outputs a DA tag and an action vector encoding the HEL’s
utterance and physical action, respectively.

A. Model Architecture

The HEL agent network includes two fully connected
layers followed by a dropout layer (ratio=0.1). Then the
output of the dropout layer is fed to the output layer followed
by ReLU activation and gives a vector encoding HEL’s
(DA, action) output pair. For implementation, we used the
Pythorch library [22].

B. DAGGER Warm-up

First, we have our HEL agent interact with the user
simulator and run the DAGGER algorithm as a warm-up stage.
We don’t let the agent get fully trained, we only use it to
obtain a good initial guess for the subsequent RL training.



Input HBATN Output GUS Output
Specify(OT ) (∗, 0, Qw) (∗, 0, Inst)/(∗, 0, Rw) (∗, ∗, Inst)/(∗, ∗, Rw)/(∗, 0, Ry)/(∗, ∗, Rn)

Verify(O) (∗, 0,−)/(∗, 0, Chk)/
(∗, 0, Qyn)/(∗, ∗, St)

(∗, 0, Ry)/(∗, 0, Rn)/(∗, 0, Rw)/(∗, 0, Inst) (∗, 0, Ry)/(∗, 0, Rn)/(∗, ∗, Inst)

Finish(L) (∗, ∗, Sty)(∗, ∗, St)/
(∗, ∗, Stn)

(0, 0, Ack) (0, 0, Ry)/(0, 0, Sty)

TABLE IV: GUS performance evaluations for Det(O) subtask. (∗)
represents 0 or 1.

Fig. 3: The interaction between the User Simulator and the
HEL agent during RL

Using DAGGER only, without subsequent RL training, results
in poorer performance of the HEL agent.

The user simulator initiates the interaction, the state of
the HEL agent is updated according to the received input
and it picks an action according to its current state and the
user simulator’s action. An error module is deployed before
passing the HEL’s state to the HEL agent.

The error module is necessary due to the fact that in the
data when OT /L/O information is given to the HEL by
the ELD, most of the time the state corresponding to that
changes to 1, i.e. the HEL’s understanding of OT /L/O is
the same as what human has uttered. However, we would
like to generalize the framework better so that it also covers
the states when the HEL’s understanding of OT /L/O does
not match the human’s utterances. Thus, the error module in
25% of the cases where HEL’s understanding of OT /L/O is
1, changes that to 2.

For training the HEL agent using DAGGER algorithm,
we need to run the algorithm for N , (here, N = 25)
iterations. Here we call each iteration one Episode since
the interactions between the ELD and the HEL are defined
to be episodic. During each episode, one entire interaction
consisting of at most M , (here, M = 25), turns between
the HEL agent and the user simulator takes place. That
interaction is successful if the HEL agent finds the object the
user simulator requested before reaching turn M . Otherwise,
the interaction is unsuccessful.

During each episode, the HEL agent executes the current
learned policy. Throughout execution, at each turn, the
expert’s action, which we get from the roll-outs extracted
from our ELDERLY-AT-HOME data, is also recorded but
not executed. After sufficient data is collected, it is ag-
gregated together with all of the data that was previously
collected. Eventually, the cross-entropy algorithm generates
a new policy by attempting to optimize performance on the
aggregated data. This process of execution of the current
policy, correction by the expert, and data aggregation and
training is repeated.

Fig. 4 shows training loss, success rate, and average turns
during each episode for DAGGER training on the agent for
50 episodes. However, as mentioned before, we do not want
a fully DAGGER trained HEL agent. Therefore, the HEL
agent’s network weights are saved at episode 8 (a good mid-
point where the loss is not minimized and the success rate is
not maximized yet) to be used later on for training the HEL

agent using the Deep-Q-Learning (DQL) algorithm.

0 5 10 15 20 25
Episode (Iteration)

0

10

20

30

40

50

60

Tr
ai
ni
ng

 L
os

s

0.0

0.2

0.4

0.6

0.8

1.0

(a) Training Loss

0 5 10 15 20 25
Episode (Iteration)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Av
er
ag

e 
Tu

rn
s

Average Turns

0

20

40

60

80

100

Su
cc
es

s R
at
e

Success Rate

(b) Success Rate and Average Turns

Fig. 4: DAGGER Algorithm Training Evaluations

C. Deep-Q-Learning

For training our HEL agent in the RL cycle, we need
to initialize a Policy Network and a Target Network. The
former network’s weights will be optimized for obtaining the
optimal policy, and the latter network will be used to track
the target Q-values associated with each individual action
for input states [23]. The policy we extracted at episode
8 of DAGGER training is used to initialize the weights of
the Policy Network and the Target Network for DQL. The
model architectures for the Policy Network and the Target
Network are exactly the same as the model used previously
for DAGGER training due to the fact that we simply copy
the weights extracted from DAGGER network into these two
networks. This makes running the DQL algorithm on our
RL framework much more efficient in terms of time and
space. Another advantage of warming up the HEL agent
by DAGGER training is that by pushing the weights of the
policy toward the expert’s policy, we don’t need to hard code
complex human behavior in the Reward Function. A simple
Reward Function combined with DAGGER-half-trained HEL
agent makes the DQL algorithm on our HEL agent run much
faster.

For our reward function, we considered a small negative
reward, −r (here, r = 1), for each HEL agent’s move. This
is to motivate the agent to finish the task sooner than later.
If the interaction is unsuccessful and ends by getting to turn
M , the transition is penalized by −2 r. If the interaction
successfully ends before reaching turn M , (here, M = 25),
that transition is rewarded as 2 r. We also set some ground
rules as Preconditions. The Preconditions are as follows: (1)
the HEL agent must not take the action of verifying OT

before OT is uttered by the user simulator; (2) the HEL
agent must not take the action of verifying L before L is
uttered by the user simulator; (3) the HEL agent must not
take the action of verifying O before both OT and L are
uttered by the user simulator. If any of the Preconditions are
violated, that action is penalized with a very large negative
number −Z, (here, Z = 50).

The interactions between the HEL agent and the user
simulator while running the DQL algorithm also follow the
flow in Fig. 3. A tuple of (state, reward, action, next state) is
stored in the memory at each turn. Every C episodes, (here,
C = 100), the weights of the Policy Network are optimized
using the Mean-Squared-Error cost, and every mC episodes,



the weights of the Policy Network are copied into the Target
Network.

Fig. 5 shows training loss, average reward, success rate,
and average turns at each episode for the full DQL algorithm
training of the HEL agent. The reason that average turns
start to increase and the success rate gradually decreases
after about episode 1250 is that the memory of the agent
has been filled up, so part of the memory is emptied and
starts to get filled with new samples. Catastrophic forgetting
has happened at this point (the agent has been over-fitted).
We thus use the policy obtained just before this phenomenon
occurs.

0 500 1000 1500 2000 2500
Episode

600

700

800

900

1000

1100

Tr
ai
ni
ng

 L
os

s

Training Loss
Over-fitting

����

����

����

����

���

���

���

���

�

��
��
��
��
��

��
��

��������������

(a) Training Loss and Average Reward

0 500 1000 1500 2000 2500
Episode

10

12

14

16

18

20

22

24

Av
er
ag
e 
Tu
rn
s

Average Turns
Over-fitting 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc
es
s R

at
e

Success Rate

(b) Success Rate and Average Turns

Fig. 5: DQL Algorithm Training Evaluations

V. EXPERIMENTAL EVALUATIONS ON RL AGENT

To evaluate our framework in the real world, we designed
a user interface to have humans interact with the HEL
agent obtained through RL. For details on the user interface
implementation the reader may refer to Appendix C. In the
following section, we explain the details of our evaluation
procedure.

A. User Study

We performed a human user study where 9 healthy adults
were recruited to interact with our HEL agent. Each subject
performed 4 to 5 trials (entire interactions) with the HEL
agent adding up to a total of 42 trials.

The hypothetical experiment environment would be a
room with a drawer, a shelf, and a cabinet. The user can
choose between red, green, and yellow cups and red, green,
yellow, and white balls. At the beginning of each trial, objects
are randomly scattered in different locations. The user only
knows there are aforementioned locations and objects in the
room but doesn’t know which item is located where.

The subjects were instructed to choose the object of
interest at the beginning of the trial, and guide the agent
through different locations to find the object of interest.

The data collected in this user study is publicly available
2.

B. Results

Inspired by the study [24], we measured the performance
of the system by calculating the accuracy of each component
independently as well as the overall quality of the system. For
evaluating speech recognition we measured Speech-to-Text
(STT) accuracy which is the percentage of words transcribed

2Since the submission is anonymous, the link to data will be provided
after paper acceptance.

correctly. We report the average Speech-to-Text confidence
score as well.

To evaluate the DA classification, we calculated the accu-
racy based on the percentage of the DAs classified correctly.
For obtaining the ground-truth gold-standard DA labels, two
annotators annotated the texts that were previously extracted
from the Speech-to-Text component. We chose 40 random
sentences and had both annotators independently label them
prior to annotating the remaining sentences. We calculated
Cohen’s kappa and found a moderate level of agreement
between the two annotators (κ = 0.6). Although it’s not a
high level of agreement, the DA accuracy still is consistent
with the test accuracy (67.23%) we got from ELDERLY-AT-
HOME data before.

For evaluating the HEL agent itself, i.e. whether or not the
pair of (DA, action) outputs of the HEL agent makes sense
according to the DA tag and the action vector it gets as
inputs, we compare its actions to those of HBATN’s (as the
ground truth labels) and report the action accuracy. Moreover,
we calculate and report the percentage of the HEL’s non-
eligible actions with respect to the human’s original speech.
We had two human transcribers listen to the audio data
recorded from human subjects. Their transcriptions from
audio data matched about 99.2%. A non-eligible action is
one where the agent’s response does not correspond to the
human’s previous action. For example, if the human says:
“Please get a cup.” and the agent responds with: “Did you
say inside the cabinet?”, this is a non-eligible action. In other
words, non-eligible actions are those actions that do not make
sense to the human participants in the study based on the
speech they uttered. Non-eligible actions could result from
speech recognition errors, DA classification errors, and/or
wrong actions by the agent itself.

We also report the average length of interactions as well
as the success rate over all trials. A successful trial is a trial
in which the agent is able to find the human subject’s object
of interest in less than 15 turns. If the agent reaches the 15th
turn without finding the object, that trial is unsuccessful.

Eventually, we asked the participants to rate their ex-
perience on a Likert scale of 1-10. A score of 1 meant
“significantly worse than expected” and a score of 10 meant
“significantly better than expected”.

The results of our preliminary user study in Table V
show that our robot agent does very well in extracting and
performing the optimal policy. Two very important metrics
to evaluate how well our overall framework performs are
the average success rate of 92.86% and the number of
average turns of 8.38. There are a couple of reasons why
the success rate doesn’t reach 100%. The main reason is
that our framework is not solely the robot agent itself. The
user interface is implemented on top of the agent network
and each component of this user interface introduces errors
to the overall framework. These errors make our robot agent
take some wrong actions occasionally which leads to taking
more turns to complete the task.

The average non-eligible action rate shows that the HEL
agent in 30.57% of the cases takes an action that does not



Avg. Duration Avg. #Turns Success Rate STT Accuracy Avg. STT Conf. DA Accuracy Action Accuracy Avg. Non-Elig. Act. Rate Avg. Likert
90s 8.38 92.86% 85.76% 89.61% 69.82% 90.2% 30.57% 7.9

TABLE V: Results of the preliminary evaluation of the HEL agent

make sense to the human at that point. The action accuracy
of 90.2% indicates that 9.8% of the actions the robot agent
takes are wrong actions. This small rate of wrong actions
by the robot agent itself is due to the fact that compared
to HBATNs, our agent is trained through machine learning,
not rule-based. It covers a broader set of states while getting
trained and as a result when it comes to testing it, the process
of making decisions is more complicated. About 20% of
all actions are non-eligible actions resulting from errors in
other components. To investigate this more, we calculate the
contribution of each component to those wrong actions.

Table VI summarizes the contribution of each component
to those wrong actions taken by the robot agent. 46.73%
of non-eligible actions (corresponding to about 14% of all
actions) resulted from errors made by the speech recognition
component. The DA classifier also causes 21.49% of non-
eligible actions (corresponding to about 6% of all actions).

Wrong DA Wrong Transcribed Text Wrong Action by Agent
21.49% 46.73% 31.77%

TABLE VI: Contribution of each component to non-eligible
actions taken by the HEL agent

All in all, we argue that the success rate of 92.86% is
remarkable, the average number of turns of 8.38, and the
average Likert score of 7.9 leads us to conclude that our RL
framework for multimodal human-robot interaction performs
exceptionally well.

VI. CONCLUSION

In conclusion, our work addresses the critical challenge
of improving assistive robots to make a positive impact
on the lives of older adults and people with disabilities.
By focusing on the interaction manager, we’ve tackled the
complexity of multimodal human-robot interactions. Our
approach, including the novel neural network-based user
simulator, leads to more effective and efficient robot training.

We’ve recognized the difficulties in obtaining realistic
interaction data, especially when considering various modali-
ties like language and haptic signals. Our data augmentation
method helps bridge this gap, making our approach more
accessible and valuable for the community.

Overall, our study shows that using reinforcement learning
and a multimodal user simulator can make assistive robots
better at their jobs. We hope our work will contribute to the
development of more capable and helpful domestic assistive
robots in the future.

APPENDIX

A. Background

The previous studies [1], [16] are based on the ELDERLY-
AT-HOME corpus [2], a publicly available dataset containing

records of human-human interactions in a home setting.
These interactions revolve around assisting with daily activ-
ities like putting on shoes and cooking (ADLs). Specifically,
HBATNs framework is built using a subset of this corpus
that focused on a task known as the “Find” task. Our RL
framework uses the same data. In this task, an elderly person
(ELD) requested an object, and a helper (HEL) attempted to
locate it by asking additional questions.

In [1], the “Find” task is broken down into a set of
subtasks. The primary aim is to figure out two key pieces of
information: the object you’re looking for (O) and where
it can be found (L). This breakdown involves four main
subtasks, which are: determining the type of object desired
(Det(OT )), identifying a potential location to check (Det(L)),
opening that location (Open(L)), and finally, determining the
actual object (Det(O)). These subtasks are represented using
Action-Transition Networks (ActNets).

The ActNet is a bipartite graph that represents the states
of both participants (ELD and HEL) and the possible ac-
tions they can take using various forms of communication.
These actions are defined by a combination of linguistic
features (like the dialogue act (DA) [2], which reflects the
speaker’s intent and the words related to objects or locations)
and physical features (such as pointing gestures or haptic-
ostensive actions). The HBATNs framework incorporates
these ActNets, enabling a robot not only to understand
its partner’s current state but also to plan its own actions
accordingly.

In the subsequent paper [16], they expanded the model to
allow the robot to take on the roles of either the elderly
participant (ELD) or the helper (HEL). To achieve this,
they broke down each subtask into smaller, more detailed
sub-subtasks that is referred to as “primitive subtasks.” In
this revised approach, tasks like determining the object type
(Det(OT )) and identifying the location (Det(L)) were further
divided into establishing the object type (Estab) and, option-
ally, confirming it (Verify), or asking follow-up questions for
more details (Spec). Similarly, the task of determining the
actual object (Det(O)) included confirming the presence or
absence of the desired object (Finish) in the current location
or verifying a physical object with the partner. This study
demonstrated that the HBATN framework, coupled with a
trained classifier to determine the current subtask participants
are engaged in, can effectively model and perform both the
roles of the helper (HEL) and the elderly participant (ELD).

In this study, we introduce a reinforcement learning (RL)
approach to determine the best course of action in human-
robot interactions. This RL policy replaces the manually
designed HBATN policy for the helper (HEL) robot. As
outlined in section I, a significant challenge during the RL
training process is the need for an interactive environment



where the agent can learn. To address this challenge, we
create and utilize a simple user simulator that takes on the
role of the elderly participant (ELD) and interacts with the
RL agent during the training process.

We used a user simulator in our RL training, which we
named the Basic User Simulator Model (BUS Model). This
simulator effectively conveyed the intended actions to the
helper (HEL) agent, demonstrating the robustness of our RL
framework even in the presence of imperfect interactions.
However, enhancing the accuracy of such a user simulator
remains a challenging research task. The next section of this
paper discusses our efforts to create a more precise user
simulator, which we refer to as the Generic User Simulator
Model (GUS Model).

B. Tables
NoUtt Inst Ack Q-w Q-yn R-w R-y R-n Chk Exp Algn St-y St-n St

NoUtt 67.79% 0% 0% 0% 0% 1.69% 16.95% 0% 0% 0% 0% 6.78% 0% 0%
Inst 12% 46% 0% 0% 0% 12% 0% 30% 0% 0% 0% 0% 9.09% 0%
Ack 0% 0% 66.67% 0% 0% 0% 0% 0% 0% 0% 0% 33.33% 0% 0%
Q-w − − − − − − − − − − − − − −
Q-yn − − − − − − − − − − − − − −
R-w 0% 2.32% 0% 0% 0% 93.03% 4.65% 0% 0% 0% 0% 0% 0% 0%
R-y 0% 0% 0% 0% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0%
R-n 0% 20% 0% 0% 0% 0% 0% 80% 0% 0% 0% 0% 0% 0%
Chk − − − − − − − − − − − − − −
Exp − − − − − − − − − − − − − −
Algn − − − − − − − − − − − − − −
St-y 20% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 80% 0% 0%
St-n 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%
St − − − − − − − − − − − − − −

TABLE B.1: DA Classification Confusion Matrix. Cells with − indicate
that there were no such DA labels in the evaluation data set and the model
did not predict any of such DAs.

No Act Give OT Give L Give OT , L Ack Yes No
No Act 74.08% 0% 0% 0% 0% 25.92% 0%

Give OT 8.82% 69.12% 0% 0% 0% 22.06% 0%
Give L 10% 0% 83.33% 0% 0% 6.67% 0%

Give OT , L − − − − − − −
Ack 0% 0% 0% 0% 66.67% 33.33% 0%
Yes 0% 3.12% 0% 0% 0% 96.88% 0%
No 0% 11.11% 0% 0% 0% 0% 88.89%

TABLE B.2: Action Classification Confusion Matrix. Cells with −
indicate that there were no such Action labels in the evaluation data set
and the model did not predict any of such Actions.

C. RL Framework Evaluation, User Interface Implementa-
tion

Since our framework is trained on multi-modal human
data, it is capable of interpreting and executing multi-modal
actions, and in particular language and physical actions.
However, in this work, we focus on language and as a proof
of concept, we extract other modalities from utterances. So
the Perceived Human Intent vector that results from human
subjects is limited to their utterances. The HEL agent is
also capable of performing pointing and H-O actions in
addition to communicating through language. However, in
our evaluation, the agent generates the speech based on
its predicted DA, and then also informs the human about
the other modalities through speech. For instance, when
the agent is verifying if the human uttered “drawer” with
a pointing gesture it announces: “The agent points to the
drawer.”

For the human subjects to be able to have a smooth
interaction with our agent, we developed and implemented
a friendly user interface following the architecture for the
Perception Module and the Execution Module in Fig. 1.
Since the HEL agent is trained based on DA tags and the

action vector generated by the user simulator, it expects to
get DA tags and action vectors of the human subject in the
test phase as well. As a result, we need to extract the DA tags
and the action vectors from the human utterances. Therefore,
we have Speech-to-Text, Action Extractor, and DA Classifier
components which are explained in detail later on. And for
the agent to respond back to the human we first need to
transform its DA tag and action vector into a sentence and a
textual description of the action, respectively. To this end,
we developed a rule-based text generator inspired by the
ELDERLY-AT-HOME corpus. Finally, the Pyttsx3 Python
library [25] is used to transform the agent’s sentences into
speech.

Human speech is passed to the Google Cloud Speech-to-
Text API [26] for speech recognition. Then, the transcribed
text is passed to a DA classifier as well as an action extractor.
We developed our DA classifier by deploying Sentence-
BERT [27] and extracting embeddings from our data as the
input to the classifier. We then trained a two-layer (one
hidden layer followed by the output layer) feed-forward
Pythorch neural network, with a dropout layer (ratio=0.1),
and ReLU activation function after output layer. We used
the gold-standard DA tags as the ground-truth labels and
optimized the weights by employing the cross-entropy loss
function and Adam optimizer. The accuracy of our Sentence-
BERT-based DA classifier tested on 10% of ELDERLY-AT-
HOME data is 67.23%. Our action extractor module works
based on the objects and locations it extracts from human
utterances. For example, if it detects one of the objects in
the utterance, that’s labeled as “Give OT ” action; if it detects
one of the locations in the utterance, that’s labeled as “Give
L” action; if it detects one of the objects as well as one of
the locations in the utterance, that’s labeled as “Give OT , L”
action. For extracting these words of interest, we built a
dictionary based on NLTK dictionary [28] consisting of all
the words that could be pronounced similarly or close to our
words of interest (to compensate for the speech recognition
returning similarly sounding words that do not make sense
in the context).

REFERENCES

[1] B. Abbasi, N. Monaikul, Z. Rysbek, B. Di Eugenio, and M. Žefran,
“A multimodal human-robot interaction manager for assistive robots,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 6756–6762.

[2] L. Chen, M. Javaid, B. Di Eugenio, and M. Žefran, “The roles and
recognition of haptic-ostensive actions in collaborative multimodal
human–human dialogues,” Computer Speech & Language, vol. 34,
no. 1, pp. 201–231, 2015.

[3] I. Bratko, T. Urbančič, and C. Sammut, “Behavioural cloning: phe-
nomena, results and problems,” IFAC Proceedings Volumes, vol. 28,
no. 21, pp. 143–149, 1995.

[4] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from obser-
vation,” arXiv preprint arXiv:1805.01954, 2018.

[5] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
pp. 279–292, 1992.

[6] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning
from demonstrations,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.



[7] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[9] B. Woodworth, F. Ferrari, T. E. Zosa, and L. D. Riek, “Preference
learning in assistive robotics: Observational repeated inverse rein-
forcement learning,” in Machine learning for healthcare conference.
PMLR, 2018, pp. 420–439.

[10] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635.

[11] A. L. Thomaz, G. Hoffman, and C. Breazeal, “Reinforcement learning
with human teachers: Understanding how people want to teach robots,”
in ROMAN 2006-The 15th IEEE International Symposium on Robot
and Human Interactive Communication. IEEE, 2006, pp. 352–357.

[12] B. Liu, G. Tur, D. Hakkani-Tur, P. Shah, and L. Heck, “Dialogue
learning with human teaching and feedback in end-to-end trainable
task-oriented dialogue systems,” arXiv preprint arXiv:1804.06512,
2018.

[13] H. Chen, X. Liu, D. Yin, and J. Tang, “A survey on dialogue sys-
tems: Recent advances and new frontiers,” Acm Sigkdd Explorations
Newsletter, vol. 19, no. 2, pp. 25–35, 2017.

[14] X. Li, Y.-N. Chen, L. Li, J. Gao, and A. Celikyilmaz, “End-
to-end task-completion neural dialogue systems,” arXiv preprint
arXiv:1703.01008, 2017.

[15] H. W. Park, I. Grover, S. Spaulding, L. Gomez, and C. Breazeal,
“A model-free affective reinforcement learning approach to personal-
ization of an autonomous social robot companion for early literacy
education,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 687–694.

[16] N. Monaikul, B. Abbasi, Z. Rysbek, B. Di Eugenio, and M. Žefran,
“Role switching in task-oriented multimodal human-robot collabo-
ration,” in 2020 29th IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN). IEEE, 2020, pp.
1150–1156.

[17] L. Peternel, W. Kim, J. Babic, and A. Ajoudani, “Towards er-
gonomic control of human-robot co-manipulation and handover,” in
2017 IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids). Birmingham: IEEE, Nov. 2017, pp. 55–60.

[18] Z. Erickson, V. Gangaram, A. Kapusta, C. K. Liu, and C. C.
Kemp, “Assistive gym: A physics simulation framework for assistive
robotics,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 10 169–10 176.

[19] S. Nikolaidis, J. Forlizzi, D. Hsu, J. Shah, and S. Srinivasa, “Math-
ematical models of adaptation in human-robot collaboration,” arXiv
preprint arXiv:1707.02586, 2017.

[20] L. El Asri, J. He, and K. Suleman, “A sequence-to-sequence model
for user simulation in spoken dialogue systems,” Interspeech 2016, pp.
1151–1155, 2016.

[21] F. Kreyssig, I. Casanueva, P. Budzianowski, and M. Gasic, “Neural
user simulation for corpus-based policy optimisation of spoken dia-
logue systems,” in Proceedings of the 19th Annual SIGdial Meeting
on Discourse and Dialogue, 2018, pp. 60–69.

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[24] A. Mehri Shervedani, K.-H. Oh, B. Abbasi, N. Monaikul, Z. Rysbek,
B. Di Eugenio, and M. Zefran, “Evaluating multimodal interaction of
robots assisting older adults,” arXiv e-prints, pp. arXiv–2212, 2022.

[25] [Online]. Available: https://pyttsx3.readthedocs.io/en/latest/
[26] [Online]. Available: https://cloud.google.com/speech-to-text

[27] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available:
https://arxiv.org/abs/1908.10084

[28] S. Bird, E. Klein, and E. Loper, Natural language processing with
Python: analyzing text with the natural language toolkit. ” O’Reilly
Media, Inc.”, 2009.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://pyttsx3.readthedocs.io/en/latest/
https://cloud.google.com/speech-to-text
https://arxiv.org/abs/1908.10084

	Introduction
	Related Work
	User Simulator Framework
	Feature Extraction
	Data Annotation
	Multimodal Data Augmentation
	Model Architecture and Training
	Model Evaluation on Data
	Model Evaluation on HBATN

	Reinforcement Learning Framework
	Model Architecture
	DAGGER Warm-up
	Deep-Q-Learning

	Experimental Evaluations on RL Agent
	User Study
	Results

	Conclusion
	Appendix
	Background
	Tables
	RL Framework Evaluation, User Interface Implementation

	References

