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Abstract

Discovering pulsars is of great scientific value in the field of astronomy. Driven by
the huge volume of data from radio telescope survey projects, machine learning
(ML) methods have been proposed and widely adopted for this problem. However,
existing ML methods rely on a single data modality, either visual or numerical,
leading to suboptimal performance. In this paper, we first explore the usage of
multimodal large language models (MLLMs) for pulsar candidate classification.
Specifically, we propose a novel method called STARWHISPER-PULSAR that fine-
tunes pre-trained MLLMs using labeled data in visual, textual, and numerical
modalities to decide if a candidate is a real pulsar or a non-pulsar noise. We show
that STARWHISPER-PULSAR outperforms state-of-the-art ML methods for pulsar
candidate classification in a few training epochs. These results validate the potential
of MLLMs in data-driven astronomical research, paving the way for their broader
scientific applications.

1 Introduction

A pulsar is a highly magnetized, rotating neutron star that emits beams of electromagnetic radiation
out of its magnetic pole, often observed as pulsed signals. It plays a crucial role in various astro-
nomical and astrophysical problems, such as precise timing, gravitational wave detection, and the
understanding of high-energy physical phenomena, to name a few. Due to their great scientific value,
finding pulsars is an important task in astronomical research [7, 9]. The traditional method for pulsar
discovery is to collect observation data of radiation signals using radio telescopes, to pre-process
them into diagnostic plots, to ask human experts to manually check and determine whether these
plots are from real pulsars or non-pulsar noise, and to verify the results with further observations.

In the last two decades, large-scale radio telescope surveys [5, 11, 12] have collected a huge volume
of radiation signal observation data, from which millions of pulsar candidates have been extracted.
As such, manual methods to screen the candidates become infeasible. To achieve higher efficiency,
machine learning (ML) methods for automatic pulsar candidate classification have emerged in recent
years. Generally, existing ML methods can be categorized into feature engineering-based and end-
to-end methods. The first category of methods [2, 4, 18, 19] extracts the statistical characteristics
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of pulses, such as signal-to-noise ratio (SNR), pulse width, and periodicity, from the diagnostic
plots to train classification models. But these methods rely heavily on carefully designed features,
requiring in-depth astronomical knowledge, while having quite limited generalizability. To overcome
such limitations, several end-to-end deep learning methods [15, 25, 27, 28] were proposed for pulsar
candidate classification. Using plot images as input, these methods automatically extract hidden
features and capture complex patterns, achieving better performance than numerical feature-based
methods. However, they still suffer from two shortcomings. First, they focus only on visual features,
while ignoring numerical features that are also crucial for classification. Second, since data published
by different projects often contain various types of plots, an end-to-end method specific to one project
might not be applied directly to other projects.

Our Contributions To address the above issues, in this paper, we explore how to utilize multimodal
large language models (MLLMs), for pulsar discovery. Our work is inspired by the successful
adoption of MLLMs in the astronomical domain [13, 20, 21]. However, to the best of our knowledge,
none of these studies has considered the problem of pulsar candidate classification. We propose
STARWHISPER-PULSAR, a novel method to decide if a candidate is a real pulsar or a non-pulsar noise
based on visual, textual, and numerical inputs. Generally, our method is built on pre-trained MLLMs
such as DeepSeek-VL [17] and InternVL [3], which are fine-tuned to enhance their understanding
of pulsar data. To adapt flexibly to different types of plot images, it provides three modes, namely
single, multiple, and combined, for visual input. It takes well-designed prompts that include task
descriptions, instructions, pulsar statistical characteristics, and empirical rules as textual input. Then,
we compose labeled pulsar candidate instances from radio telescope surveys, which comprise pre-
processed diagnostic plot images, statistical characteristics, and ground-truth labels, as a visual
question-answering (VQA) data set [1, 14] and adopt LoRA [8] to perform the fine-tuning process on
the VQA data set.

Finally, we conduct comprehensive experiments on two real-world data sets, FAST [12] and HTRU
[11], to evaluate the performance of STARWHISPER-PULSAR for pulsar candidate classification. The
results demonstrate that STARWHISPER-PULSAR outperforms state-of-the-art ML methods in almost
all evaluation metrics. It has accuracy rates of over 97% and 99% on the FAST and HTRU data
sets within only six training epochs. These results validate the efficacy of MLLMs in data-driven
astronomical research.

2 Related Work

The existing ML methods for pulsar candidate classification can generally be divided into two classes:
feature engineering-based and end-to-end deep learning (DL) methods.

Eatough et al. [4] proposed a multi-layer perceptron model using 12 numerical features. Bates et
al. [2] proposed an artificial neural network model trained on an expanded set of 22 features. Morello
et al. [19] considered features with weak signal accommodation, robustness against noise, and reduced
inter-feature correlation. Lyon et al. [18] introduced new features with better discriminative ability
and reduced bias. They also proposed a decision tree-based algorithm to address class imbalances,
i.e., positive samples (resp. real pulsars) are much fewer than negative ones. Tan et al. [24] improved
upon the method in [18] by introducing time-phase and frequency-phase diagrams as new features
and leveraging ensemble learning. The above feature engineering-based methods require in-depth
astronomic knowledge and often show limited generalizability for different data sets.

Zhu et al. [28] utilized a convolutional neural network (CNN) to recognize image patterns in pulsar
search. Wang et al. [26] adopted ResNet [6] to optimize the CNN model in [28]. Zeng et al. [27]
proposed a concat CNN model to improve the performance of [26]. Tariq et al. [25] and Liu et al. [15]
proposed new methods to address class imbalances in pulsar candidates. The above DL methods treat
plots as images, totally ignoring numerical features. In addition, they cannot be easily adapted to
different plot types.

Recent studies have revealed the excellent capabilities of (multimodal) LLMs in astronomy. Nguyen
et al. [20] proposed AstroLLaMA, which is fine-tuned on LLaMA using more than 300,000 abstracts
of astronomical papers, and verified that AstroLLaMA could generate scientifically more relevant
texts than general-purpose LLMs. Parker et al. [21] proposed AstroCLIP, a cross-modal foundation
model to embed galaxy images and spectra into a shared, physically meaningful latent space, which
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(a) Pulsar diagnostic plots
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(b) Non-pulsar diagnostic plots

Figure 1: Examples of diagnostic plots of a pulsar and a non-pulsar noise, where the pulse profile,
DM profile, sub-integrations, and sub-bands plots are placed from left to right in each row.

could then be used for a variety of downstream tasks, such as photometric redshift estimation and
morphology classification. Li et al. [13] considered the combination of deep learning and LLM for
stellar light-curve classification. These attempts indicate that (multimodal) LLMs can serve as helpful
research assistants, initiating a new paradigm in the astronomical domain. However, to the best of our
knowledge, none of them considered using MLLMs for pulsar discovery.

3 The StarWhisper-Pulsar Model

Problem Formulation Each pulsar candidate is described by a set of four diagnostic plots Xv =
{x1, x2, x3, x4} in image format. These plots are (a) pulse profile x1 that indicates the variation
in the radiation signal over its period, (b) dispersion measure (DM) profile x2 that measures the
extent to which the signal deviates from white noise after dispersion correction, (c) sub-integrations
x3 that shows the persistence of the pulse signal over time, and (d) sub-bands x4 that illustrates
the distribution of the pulse signal across frequency channels. We provide two examples for the
diagnostic plots of a pulsar and a non-pulsar noise in Figure 1. The data published by a ratio telescope
survey project may not contain all four plots. However, we assume that each data set must contain at
least one of these plots. Our method is versatile on any data set that contains one or more of the above
four plots. Each pulsar candidate is also associated with a set F = {ft1, ft2, . . . , ftn} of n numeric
statistical features. As indicated in [2], a set of 22 features can be extracted from the diagnostic plots.
However, not all of them are equally important for pulsar characterization. In particular, we pick the
following four key features as input: (1) best period (i.e., the shortest interval between two subsequent
pulse signals); (2) best DM (i.e., the optimal dispersion measure); (3) best SNR (i.e., the optimal
ratio between the pulse signal and background noise); and (4) pulse width (i.e., the duration of the
pulse signal). Finally, we use y ∈ {0, 1} to denote the output of the model with y = 0 indicating a
non-pulsar noise and y = 1 representing a pulsar. The goal is to learn a function that maps the input
plot images Xv and numerical features F to the output y, i.e., (Xv, F ) 7→ {0, 1}.

Model Description The architecture of the STARWHISPER-PULSAR model is illustrated in Figure 2.
Specifically, it is built on a pre-trained MLLM and is fine-tuned to learn a more comprehensive
understanding of pulsar data. The visual module uses a set Xv of plot images as input. It uses a visual
encoder g(·) to extract the features of Xv, i.e., Zv = g(Xv). Next, it aligns visual features with
textual ones using a linear projection matrix W , i.e., Hv = W · Zv . Meanwhile, the textual module
uses a prompt Xq consisting of task descriptions, instructions, pulsar characteristics, and empirical
rules as input. It uses a word embedding f(·) for feature extraction, i.e., Hq = f(Xq). Finally, an
LLM Φ(·) produces the output based on visual and textual features denoted as T (y) = Φ(Hv, Hq).
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Given the radio astronomical images of
one object, identify any pulsar object.
Return the answer in an Assignment
Statement, containing ONE variable:
IDENTIFICATION. Only return the
IDENTIFICATION, not the Description.

What is a pulsar survey?

A pulsar survey is a systematic
search for and observation of
pulses of electromagnetic
radiation … …

IDENTIFICATION = 'PULSAR'

Word
Embedding

<Prompt>
Given the radio astronomical images of one object
and the feature value is <FEATURE1, FEATURE2,… …>.
<If the feature value is nega�ve there is a high
probability that it is noise>.
Now, iden�fy any pulsar objects based on the images

and feature. Return the answer in an Assignment
Statement, containing ONE variable: IDENTIFICATION.
Only return the IDENTIFICATION, not the Descrip�on CombinedMul�ple

…

SingleDialogue

Response: IDENTIFICATION=…

Large Language Model (LLM)

Visual
Encoder

Projec�on

Figure 2: Illustration of the architecture of STARWHISPER-PULSAR.

In the implementation, we use DeepSeek-VL [17] or InternVL [3] as the base model, as they are
open-source LLMs that can support both textual and visual modalities. As presented in the dialogue
of Figure 2, the fine-tuned model can follow the prompt instructions with plot images and numeric
attributes to distinguish pulsars from non-pulsar noise.

Existing DL methods for pulsar candidate classification are limited to processing one image at a time.
However, there may exist multiple images (up to four) in Xv . Therefore, the visual module should be
able to flexibly take one or more images as input. As such, we do not need to redesign it for different
plot types provided by various projects. In particular, we consider three different input modes for Xv:
single, multiple, and combined. In the single mode, we simply take a plot image as input. This mode
is used only when there is only one plot available. In the multiple mode, we input all available images
into the visual encoder one by one and concatenate their features for projection. In the combined
mode, we combine all available images into a single image as input to the visual encoder. The visual
encoder we use in STARWHISPER-PULSAR is the pre-trained ViT-L/14 model [22]. We then use a
linear layer with a trainable projection matrix to align visual features with the word embedding space.
After alignment, the visual features Hv have the same dimension as the textual features Hq in the
embedding space.

To build the prompt Xq in STARWHISPER-PULSAR, we provide explicit instructions and quali-
fications for the tasks to be performed and to restrict the output according to the specifications.
Furthermore, we embed numeric statistical features and relevant empirical rules in the prompt. In
this way, the statistical features can signify the physical properties of pulsars, while the empirical
rules are established based on expert experience to indicate what kinds of signals are not likely from
real pulsars. With empirical rules, domain knowledge can be effectively leveraged in classification.
In general, the procedure for building the prompt can be expressed as Xq = T (F,R), where T is
the instruction template, F is the set of features, and R is the set of constraint rules. The instruction
template in STARWHISPER-PULSAR is shown as follows:

[IMAGES Xv] Given the radio astronomical images of one object and the feature values are
[ft1, . . . , ftn]. [RULE1, . . . ,RULEm]. Now, identify any pulsar objects based on the images
and features. Return the answer in an Assignment Statement, containing ONE variable: IDENTI-
FICATION. Return only the IDENTIFICATION, not the Description.

We construct a visual question-answering (VQA) data set [1, 14] to fine-tune the model. The data set
is derived from training instances that include plot images, numerical features, empirical rules, and
ground-truth labels. We follow the instruction template to compose a question-answer pair based
on each training instance. We fine-tune the parameters in DeepSeek-VL, including those in the
visual encoder, projection layer, and LLM, ensuring that they are well adjusted for the task of pulsar
candidate classification. For InternVL2-40B, we adopt the LoRA (Low-Rank Adaptation) method
[8] to perform the fine-tuning process, as full fine-tuning is unaffordable due to the large number of
parameters.
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Table 1: Parameter settings for the fine-tuning process.
Base Model Method # Epochs Learning Rate Weight Decay

DeepSeek-VL-7B Full 6 1e-5 0.01
InternVL2-40B LoRA 3 1e-4 0.1

4 Experiments

4.1 Experimental Setup

Data Sets We used two real observation data sets, FAST [26] and HTRU [19], in the experiments.

The FAST data set contains 1,163 known pulsars and 14,319 non-pulsar candidates. Each instance in
the FAST data set is acquired by the PRESTO toolkit [23], which can effectively remove interference,
eliminate dispersion, and store the processed 3D data along with detailed data description in PDF
format. Then, it also generates time-phase and frequency-phase plots by summing the data along
the frequency channel and time interval. In addition, by summing up the data along the frequency
channel and time interval, a histogram of the pulse profile is also obtained. Finally, the DM profile
is generated to graphically show the relationship between DM trials and the corresponding reduced
(χ2) values. After the above processing procedure, each instance is associated with four plot images
with a resolution of 512×512 pixels but does not contain any numerical features. We randomly select
837 known pulsars and 1,593 non-pulsar candidates for training and the remaining instances for test.

The HTRU data set consists of 1,196 known pulsars and 89,996 non-pulsar candidates. The original
instances in the HTRU data set are stored in NumPy format. We use the Matplotlib library to read
each instance and draw the pulse profile, frequency-phase plot, and time-phase plot. Moreover, we
leverage the feature extraction methods proposed in [18] to calculate the features used in [2, 4, 19],
thereby obtaining a set of statistical features. Then, we only use the four key features in Section 3,
as they are known to be the most important for classification. To keep consistency with FAST, we
also randomly sampled 837 known pulsars and 1,593 non-pulsar candidates as the training set. We
used the remaining 359 known pulsars and sampled 8,406 non-pulsar candidates as the test set. Each
instance in HTRU is associated with three plot images except the DM profiles and four numerical
features.

Baselines We compared STARWHISPER-PULSAR to several state-of-the-art deep learning methods
in the experiments. In the FAST data set, we used the known results for PICS [28], PICS-RESNET
[26], and CCNN [27] in their original papers. In the HTRU data set, we implemented PICS-RESNET
[26] and H-CCNN [27] and ran them on the same training and test sets as STARWHISPER-PULSAR
for the results.

Implementation We used DeepSeek-VL-7B and InternVL2-40B as base models in STARWHISPER-
PULSAR and AdamW [16] as the default optimizer. Gradient clipping with a maximum norm of 1 was
used for stable training. A cosine learning rate schedule was adopted to achieve smooth convergence,
complemented by a warm-up ratio of 5%. Detailed parameter settings for the fine-tuning process
are presented in Table 1. All experiments were carried out on a sever running Ubuntu 20.04 LTS
with eight Nvidia RTX A6000 GPUs and eight Nvidia H100 GPUs. The code and data are publicly
available at https://github.com/ACMISLab/StarWhisper-Pulsar.

4.2 Experimental Results

Overall Performance We compare the performance of our methods with baselines for pulsar
candidate classification using five evaluation metrics, namely accuracy, precision, recall, F1-score,
and #misses, in Table 2. The first four metrics are standard for binary classification problems; the last
metric, #misses (i.e., the number of real pulsars that are incorrectly identified as non-pulsar noise),
is specific for pulsar discovery, as real pulsars are very rare among candidates, and thus missing
any of them leads to more losses than checking suspected candidates with observations. We can see
that STARWHISPER-PULSAR, using either DeepSeek-VL-7B or InternVL2-40B as the base model,
performs significantly better than the state-of-the-art deep learning methods on almost all metrics
on both data sets. In the FAST data set, STARWHISPER-PULSAR has significantly higher scores in
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Table 2: Overall performance of different methods for pulsar candidate classification in the experi-
ments. The best result for each measure on each data set is highlighted in bold font.

Data Set Method Accuracy ↑ F1-score ↑ Recall ↑ Precision ↑ # Misses ↓

FAST

PICS 0.936 0.415 0.954 0.265 16
PICS-RESNET 0.933 0.413 0.982 0.261 6

H-CCNN 0.963 0.557 0.963 0.392 12
V-CCNN 0.917 0.363 0.988 0.223 4

H-CCNN+V-CCNN 0.948 0.363 0.982 0.311 4
STARWHISPER-PULSAR-D-7B 0.970 0.616 0.975 0.450 8
STARWHISPER-PULSAR-I-40B 0.973 0.649 0.994 0.481 2

HTRU

PICS-RESNET 0.989 0.875 0.967 0.800 12
H-CCNN 0.969 0.710 0.933 0.573 24

STARWHISPER-PULSAR-D-7B 0.986 0.853 0.981 0.755 7
STARWHISPER-PULSAR-I-40B 0.989 0.884 0.992 0.798 3
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Figure 3: Results of numerical feature importance in pulsar candidate classification.

terms of precision and F1-score, indicating much fewer false positives. In the HTRU data set, it has
higher recall scores and greatly reduces the number of missed pulsars.

Furthermore, STARWHISPER-PULSAR based on InternVL2-40B outperforms that based on DeepSeek-
VL-7B. This validates the scaling law of LLMs [10]: Language models with more parameters
(40B vs. 7B) show stronger generalizability than those with fewer parameters. The fine-tuned
InternVL2-40B model achieves accuracy scores of nearly 0.97 and 0.99 on the FAST and HTRU data
sets, respectively. Moreover, its recall scores are above 0.99 on both data sets, only missing 2 of 326
real pulsars in the FAST data set and 3 of 359 pulsars in the HTRU data set.

Finally, as already shown in Table 1, the fine-tuning process is performed only in six and three epochs
on a training set of 2,430 samples, which takes around two hours. By analyzing the training loss
over epochs, we observe that the model converges in a few epochs and remains stable when more
fine-tuning epochs are performed. These results show the efficiency of STARWHISPER-PULSAR.

Feature Selection As shown in Figure 3, we analyze the importance of the four numerical features
to provide a basis for their usage in the subsequent binary classification task. To ensure the compre-
hensiveness and reliability of the selection results, multiple feature selection methods are employed.
These methods encompass linear, tree-based, and gradient-boosting models as follows:
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Table 3: Performance of STARWHISPER-PULSAR (DeepSeek-VL-7B) with different input formats
on the HTRU data set. The best results on each metric are also highlighted in bold font.

Input Format Accuracy F1-Score Recall Precision # Misses
S[1] 0.987 0.852 0.916 0.797 30

M[1, 2] 0.981 0.805 0.964 0.691 13
M[1–3] 0.987 0.860 0.969 0.773 11

M[1–3]+F[1] 0.990 0.887 0.969 0.817 11
M[1–3]+F[1–4] 0.987 0.864 0.969 0.779 11
M[1–3]+F[1]+R 0.986 0.853 0.981 0.755 7

C[1–3] 0.985 0.843 0.983 0.738 6

• Logistic Regression: A linear model that evaluates the importance of features by estimating
the feature coefficients. We used L1-regularization in our experiments to avoid overfitting.

• Ridge Regression: A linear model that stabilizes estimates and prevents multicollinearity
through L2-regularization. The importance of the feature is also determined by the regression
coefficients.

• Random Forest: An ensemble model based on decision trees that determines the importance
of the features by averaging their importance in all trees. The importance of the feature is
quantified by the reduction in the Gini impurity.

• Support Vector Machine (SVM): We assess the importance of the feature through the
coefficients of the linear SVM model. The coefficients in the SVM model reflect each
feature’s contribution to the decision boundary.

• LightGBM: An implementation of gradient-boosting decision trees (GBDT). The important
of the feature is calculated based on the number of times a feature is used for split in the
model and the gain brought by those splits.

• CatBoost: Another GBDT-based model where the importance of the feature is evaluated
using its feature importance score.

These methods cover a wide range of feature selection mechanisms, ensuring broad adaptability
and robustness in evaluating feature importance. By integrating the evaluation results of multiple
methods, we can more accurately identify key features, thus enhancing the predictive performance
of the model. The experimental results show that, except for the Random Forest method that ranks
Pulse Width as the second most important feature, all other methods evaluate Pulse Width as the most
important feature. Therefore, Pulse Width is considered the key feature in pulsar binary classification
in subsequent experiments.

Ablation Study We perform an ablation study for the effect of different input formats on the
performance of STARWHISPER-PULSAR. The results are shown in Table 3. Using a single pulse
profile image as input (“S[1]”), has achieved good accuracy but has a much lower recall score than any
other method, resulting in 30 missed pulsars. Meanwhile, we can observe that the high performance
achievable even with a single image is attributed to the extensive pre-training of MLLM and the rich
features inherent in the image. Then, when the sub-integrations and sub-bands plots are added as input
in the multiple mode (“M[1, 2]” and “M[1–3]”), the recall scores are obviously higher. This confirms
that multiple plot images can provide more comprehensive visual features from different views, thus
enhancing the capacity of the MLLM to understand pulsar data. Then, by further introducing one or
four key statistical features (“+F[1]” and “+F[1–4]”), we observe further reductions in false negatives.
Note that pulse width is the only key feature to use for “+F[1]”, which shows better performance
than when all the four features in F are used, i.e., “+F[1–4]”. Moreover, we find that incorporating
empirical rules on pulsar features (“+R”) into the prompt can further improve the recall score. This
result implies that domain knowledge can be effectively leveraged to improve the performance of
pulsar candidate classification. Finally, we can see that combining three plots into a single image for
input (“C[1–3]”) achieves the highest recall score at the expense of a lower precision score. In the
experiments, we opt for “M[1–3]+F[1]+R” by default, as it achieves a balance between precision and
recall scores, with the emphasis of avoiding missing real pulsars.

Missed Pulsars Analysis Despite the impressive performance of STARWHISPER-PULSAR, it still
misses several true pulsars in the test sets. Specifically, it misidentifies three pulsars from the HTRU
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Figure 4: Diagnostic plots of missed pulsars from the HTRU and FAST test sets.

test set and two from the FAST test set as non-pulsar noise. The diagnostic plots presented in Figure 4
provide a thorough insight into the characteristics of these missed pulsars. In fact, all these diagnostic
plots for missed pulsars still exhibit clear “pulsar-like” patterns, whereas containing various types of
misleading information:

• Signal Intensity Fluctuation: The intensity of the signal varies over time, and in certain
subplots it seems to disappear intermittently (e.g., the time-phase plot in Figure 4b). This
behavior might be related to the rotation of the beam pattern during observations.

• Presence of RFI: In the case of missing pulsars, RFI is most evident in the time- and
frequency-phase plots. Intense and continuous RFI, like the time-phase plots, nearly masks
the pulsar signal. Periodic interference creates diagonal lines in the time-phase plot, and
these diagonal lines are indicative of RFI with zero DM. Such misleading patterns can hinder
the ability of STARWHISPER-PULSAR to detect pulsar signals.

5 Conclusion

In this paper, we pioneer the application of MLLMs in the pulsed signal processing domain. We pro-
pose STARWHISPER-PULSAR, which fine-tunes pre-trained MLLMs using labeled pulsed signal data
in visual, textual, and numerical modalities for pulsar candidate classification. Through experiments
on two real data sets, we demonstrate that STARWHISPER-PULSAR significantly outperforms several
state-of-the-art deep learning methods for this problem. It can also achieve good performance in a few
training epochs, exhibiting fast convergence, high efficiency, and a good few-shot learning capability.
In future work, we will explore how to extend our method to handle other signal processing tasks in
astronomy, including fast radio burst identification and gravitational wave detection. Our ultimate
goal is to build a general-purpose MLLM-based AI agent for data-driven astronomical research.

8



Acknowledgments and Disclosure of Funding

This work was supported by the National Natural Science Foundation of China (Grant Num-
bers 62162010, 11988101, 11973054, and 11933004).

References
[1] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence

Zitnick, and Devi Parikh. VQA: Visual question answering. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 2425–2433, 2015.

[2] S. D. Bates, M. Bailes, B. R. Barsdell, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, D. J.
Champion, P. Coster, N. D’Amico, A. Jameson, S. Johnston, M. J. Keith, M. Kramer, L. Levin,
A. Lyne, S. Milia, C. Ng, C. Nietner, A. Possenti, B. Stappers, D. Thornton, and W. van Straten.
The high time resolution universe pulsar survey – VI. an artificial neural network and timing of
75 pulsars. Monthly Notices of the Royal Astronomical Society, 427(2):1052–1065, 2012.

[3] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qin-
glong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai.
InternVL: Scaling up vision foundation models and aligning for generic visual-linguistic tasks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 24185–24198, 2024.

[4] R. P. Eatough, N. Molkenthin, M. Kramer, A. Noutsos, M. J. Keith, B. W. Stappers, and A. G.
Lyne. Selection of radio pulsar candidates using artificial neural networks. Monthly Notices of
the Royal Astronomical Society, 407(4):2443–2450, 2010.

[5] A. J. Faulkner, I. H. Stairs, M. Kramer, A. G. Lyne, G. Hobbs, A. Possenti, D. R. Lorimer,
R. N. Manchester, M. A. McLaughlin, N. D’Amico, F. Camilo, and M. Burgay. The Parkes
multibeam pulsar survey – V. finding binary and millisecond pulsars. Monthly Notices of the
Royal Astronomical Society, 355(1):147–158, 2004.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[7] A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins. Observation of a rapidly
pulsating radio source. Nature, 217:709–713, 1968.

[8] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In The
Tenth International Conference on Learning Representations (ICLR), 2022.

[9] R. A. Hulse and J. H. Taylor. Discovery of a pulsar in a binary system. The Astrophysical
Journal, 195:L51–L53, 1975.

[10] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv:2001.08361, 2020.

[11] M. J. Keith, A. Jameson, W. van Straten, M. Bailes, S. Johnston, M. Kramer, A. Possenti, S. D.
Bates, N. D. R. Bhat, M. Burgay, S. Burke-Spolaor, N. D’Amico, L. Levin, Peter L. McMahon,
S. Milia, and B. W. Stappers. The high time resolution universe pulsar survey – I. system
configuration and initial discoveries. Monthly Notices of the Royal Astronomical Society, 409
(2):619–627, 2010.

[12] Yichao Li, Yougang Wang, Furen Deng, Wenxiu Yang, Wenkai Hu, Diyang Liu, Xinyang Zhao,
Shifan Zuo, Shuanghao Shu, Jixia Li, Peter Timbie, Reza Ansari, Olivier Perdereau, Albert
Stebbins, Laura Wolz, Fengquan Wu, Xin Zhang, and Xuelei Chen. FAST drift scan survey
for hi intensity mapping: I. preliminary data analysis. The Astrophysical Journal, 954(2):139,
2023.

9



[13] Yu-Yang Li, Yu Bai, Cunshi Wang, Mengwei Qu, Ziteng Lu, Roberto Soria, and Jifeng Liu. Deep
learning and LLM-based methods applied to stellar lightcurve classification. arXiv:2404.10757,
2024.

[14] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
Advances in Neural Information Processing Systems 36, pages 34892–34916, 2023.

[15] Yi Liu, Jing Jin, and Hongyang Zhao. Deep learning-based pulsar candidate identification
model using a variational autoencoder. New Astronomy, 106:102125, 2024.

[16] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In The Seventh
International Conference on Learning Representations (ICLR), 2019.

[17] Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng
Ren, Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong
Ruan. DeepSeek-VL: Towards real-world vision-language understanding. arXiv:2403.05525,
2024.

[18] Robert J. Lyon, B. W. Stappers, Sally Cooper, John Martin Brooke, and Joshua D. Knowles.
Fifty years of pulsar candidate selection: from simple filters to a new principled real-time
classification approach. Monthly Notices of the Royal Astronomical Society, 459(1):1104–1123,
2016.

[19] V. Morello, E. D. Barr, M. Bailes, C. M. Flynn, E. F. Keane, and W. van Straten. SPINN: a
straightforward machine learning solution to the pulsar candidate selection problem. Monthly
Notices of the Royal Astronomical Society, 443(2):1651–1662, 2014.

[20] Tuan Dung Nguyen, Yuan-Sen Ting, Ioana Ciuca, Charles O’Neill, Ze-Chang Sun, Maja
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