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Abstract

The rapid advancement of large language models (LLMs) demands robust, unbiased, and
scalable evaluation methods. However, human annotations are costly to scale, model-based
evaluations are susceptible to stylistic biases, and target-answer-based benchmarks are vul-
nerable to data contamination and cheating. We propose StructTest, a novel benchmark that
evaluates LLMs on their ability to follow compositional instructions and generate structured
outputs, providing an unbiased, cost-effective, and difficult-to-cheat evaluation framework.
The tasks in StructTest require significant reasoning skills. Assessments are conducted
deterministically using rule-based evaluators, which can be easily extended to new tasks and
datasets. By testing structured outputs across diverse domains—including Summarization,
Code, HTML, and Math—and evaluating 17 popular LLMs, we demonstrate that StructTest
remains challenging even for top-performing models like Deepseek-V3/R1 and GPT-4o, estab-
lishing it as a robust proxy for measuring reasoning capabilities. We believe StructTest offers a
critical and complementary approach to achieving objective and comprehensive model evalua-
tion. Our code and data are available at https://anonymous.4open.science/r/Struct Test-EF37

1 Introduction

Since the launch of ChatGPT, the development of LLMs has accelerated dramatically—mnot only have
general-purpose models proliferated, but reasoning capabilities have also seen significant improvements. To
showcase advancements, many of these models have relied on established benchmarks like MMLU (Hendrycks
et al., 2020), GSM8K (Cobbe et al., 2021a), HLE (Phan et al., 2025), Mind2Web 2 (Gou et al., 2025),
GPQA (Rein et al., 2023), and LiveCodeBench (Jain et al., 2025). However, these benchmarks exhibit three
major limitations: (1) human annotations are expensive to obtain, maintain, and scale; (2) model-based
evaluations introduce biases inherent to the scoring model itself; and (3) answer-key—based datasets are
vulnerable to data contamination. Consequently, there are needs for benchmarks that can be implemented
with low cost, remain free of evaluation bias, and resist data contamination.

We introduce StructTest, a benchmark that evaluates compositional instruction-following by requiring
models to generate structured outputs. Each task within StructTest is a ( Domain Task, Format Rules ) pair.
The Domain Task sets the core objective (e.g., summarize a text, simulate code execution), while the Format
Rules impose precise structural constraints on the output (e.g., a hierarchical summary with a fized number
of points or a JSON object with predefined keys). While StructTest’s primary purpose is to assess a model’s
capability to interpret complex, multi-step instructions and produce correctly formatted outputs, by design,
succeeding at these tasks demands significant reasoning skills: models must decompose tasks into subtasks,
maintain internal states, enforce multiple constraints, perform abstract and meta-level reasoning, and execute
logical operations in sequence. Therefore, performance on StructTest not only measures faithfulness to
complex instructions but also serves as a strong proxy for a model’s underlying reasoning capabilities, a
correlation we demonstrate in Section 5.2.

StructTest is built on several key principles that make it an efficient, robust, and scalable benchmark:
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Figure 1: The construction process of StructTest is designed for adaptability, extendability, and scalability.
By creating compositional tasks that are independent of underlying data and using rule-based evaluation
programs, we can dynamically adjust difficulty levels and update assessments to handle new cases. This
flexible, data-decoupled design ensures that StructTest remains a robust and relevant benchmark over time.

Reasoning Difficulty: Tasks are inherently compositional,
allowing difficulty to be scaled by increasing instruction
depth. Successfully solving these tasks demands a range of
reasoning skills, including constraint satisfaction, procedural
reasoning, dynamic state tracking, and abstract or meta-level
reasoning. This design ensures the benchmark remains a
robust challenge for future generations of LLMs.

Programmatic Evaluation: Assessments are fully pro-
grammatic using rules, ensuring they are deterministic, un-
biased, cost-effective, and efficient.

Data Decoupling: The benchmark is decoupled from un-
derlying task data. This flexibility makes it robust to data
contamination and easy to extend with new test sets and
novel tasks (Section 5.1).
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Figure 1 outlines the workflow for building and maintaining
StructTest, which covers multiple task domains, including text
summarization, code, HTML, and math. Our evaluation of 17
popular LLMs using StructTest yields several key findings: (a)
Even Top Models Struggle: The most advanced models,
including DeepSeek-v3 and R1, show significant weaknesses,

Figure 2: Comparison of top models on
StructTest. DeepSeek-v3 and R1 consistently
outperform others, achieving the highest scores
across nearly all challenging benchmarks. How-
ever, the benchmark remains quite challeng-
ing even for these models (see Code-Hard and
HTML-Hard for example).

especially on difficult tasks like Code-Hard and HTML-Hard

(Figure 2). (b) Memorization Over Generalization: The reliance on underlying data from existing bench-
marks in some subtasks, coupled with notable performance drops, raises concerns about data memorization
rather than genuine reasoning generalization in current LLMs. (¢) Validated as a Reasoning Proxy:
Despite its uniqueness, StructTest is validated as a reliable proxy for general reasoning, achieving a Pearson
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correlation of over 92% with both ChatBot Arena (Chiang et al., 2024) and MMLU. Its design also ensures
strong extensibility and robustness against data contamination.

2 Literature Review

The evaluation of LLMs has emerged as a crucial research focus, especially as these models are applied to
diverse tasks demanding reasoning. Current evaluation methods can be categorized into three categories:
human-based, model-based, and target-answer-based. While each provides valuable insights, they also come
with significant limitations.

Human-Based Evaluation Benchmarks A prominent example of human-based evaluation is Chatbot
Arena (Chiang et al., 2024), which uses human voting to calculate model ELO scores. While it provides
reliable assessments, it faces significant limitations: high resource costs due to extensive human annotations,
limited scalability to only a few models, and challenges in sustaining community engagement for evaluating
the latest models.

Model-Based Evaluation Benchmarks Model-based evaluation frameworks leverage LLM-as-a-judge
to assess the capabilities of other models. Notable examples include MT-Bench (Zheng et al., 2023),
AlpacaEval (Dubois et al., 2024), Arena-Hard-Auto (Li et al., 2024), and Fofo (Xia et al., 2024). While
these frameworks offer flexibility in evaluating diverse tasks, they are prone to biases. Most notable biases
include: (1) Length Bias: A significant issue with LLM judges is a bias towards longer responses. For
example, Dubois et al. (2024) found that the GPT-4 based auto-evaluator for the popular AlpacaEval
benchmark unfairly favors verbose answers. They propose a length-controlled (LC) win rate to account for
this bias. (2) Positional Bias: It has been demonstrated that the order in which responses are presented
to LLM judges can influence their decisions in pairwise judgment tasks (Wang et al., 2023). Thus it is a
common practice to swap the position of the responses and measure judge consistency. (3) Cheating by
Null-Models: As demonstrated by Zheng et al. (2024), these benchmarks can be vulnerable to exploitation.
A simple “null-model" generating constant, uninformative responses can achieve a high ranking with LC win
rate in AlpacaFEval, raising significant concerns about the reliability of its GPT-4-based auto-evaluator. Park
et al. (2024) identify four additional biases that can affect LLM judges.

Target- Answer-Based Evaluation Benchmarks Target-answer-based evaluations assess model capabilities
by comparing directly with reference answers. Most conventional LLM benchmarks fall into this category,
including ARC (Clark et al., 2018), GSM8K (Cobbe et al., 2021a), BIG-Bench (Zhong et al., 2024),
AGIEval (Zhong et al., 2024) and MMLU (Hendrycks et al., 2020). For instance, MMLU evaluates LLMs’
reasoning abilities using curated datasets from various competitive exams. While these benchmarks are
unbiased, they face a significant limitation: data contamination. The extensive use of internet-sourced
datasets in pre-training LLMs often overlaps with benchmark datasets, leading to inflated performance
metrics and compromising the validity of evaluations (Ravaut et al., 2024a).

StructTest in Context To address the limitations of existing evaluation benchmarks, we introduce StructTest,
which evaluates compositional instruction-following and requires LLMs to generate structured outputs. The
formatted outputs are evaluated with rule-based programs. For instance, our work is related to benchmarks
that evaluate instruction following with rule-based verifications. Zhou et al. (2023) introduced a benchmark
with 25 easily verifiable constraints, though it features relatively shallow compositional structure and limited
domain diversity. Subsequent works like FollowBench (Jiang et al., 2023) and the benchmark from Wen et al.
(2024) introduced more complex constraints, but their focus remains primarily on the general text domain.
Concurrent to ours, CodelF (Yan et al., 2025) evaluates the ability of LLMs to follow instructions during code
generation. It focuses on evaluating how well LLMs adhere to task-specific instructions, encompassing diverse
tasks like function synthesis, debugging, refactoring, and code explanation. While several other studies have
explored how format instructions influence task performance (He et al., 2024; Do et al., 2024), StructTest
goes beyond simple formatting by incorporating compositional structured outputs across diverse domains.
Furthermore, we demonstrate that StructTest serves as a strong and cost-effective proxy for evaluating the
reasoning capabilities of LLMs.
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3 The StructTest Benchmark

The primary goal of StructTest is to assess an LLM’s ability to follow complex instructions and generate
programmatically verifiable, structured outputs that are decoupled from underlying data (Figure 1). By
decoupling tasks from underlying data, we minimize data contamination risks. The benchmark comprises
four main task domains—summarization, coding, HTML generation, and mathematical reasoning—each
designed to be adaptable, extensible, and scalable. Crucially, successful completion of these tasks requires
not just instruction following but also significant underlying reasoning capabilities.

3.1 Summarization

As the first task in StructTest, we focus on summarization, a well-established domain for evaluating LLMs.
Most existing research emphasizes the content of summaries, assessing aspects such as coherence (Chang
et al., 2023), faithfulness to the source (Laban et al., 2023), coverage of diverse information (Huang et al.,
2023), positional bias in context utilization (Ravaut et al., 2024b), and hallucination (Wan et al., 2024).
As LLMs advance, addressing complex user requirements for summaries becomes increasingly critical. For
instance, Liu et al. (2023) benchmark LLMs on content-specific instructions. However, an equally important
yet underexplored aspect is the style or format of summaries. We address this gap by introducing three
format-following summarization tasks. To succeed, a model must comprehend complex instructions and
satisfy all enforced formatting constraints. We will first present the primary format requirements, followed by
more complex and compositional versions. We provide examples for each task in Section 7.2 in the Appendix.

e Length Controlling summary length has been extensively researched (Liu et al., 2018; 2022). Users looking
for more granular details will prompt the system to output longer summaries. To measure length-following
ability, we verify whether the LLM’s output y contains the required number of sentences IV, which is sampled
uniformly from a fixed interval across data points. Formally:

1, ifl =N
Score =4 ' en(y') ’ (1)
0, otherwise.

e Bullet points Bullet points are a natural method to summarize and have yielded several of the most
widely used datasets in summarization research (Hermann et al., 2015; Mukherjee et al., 2022). This format
is appealing to users who wish to see a clear separation of ideas in the output summary. We prompt the
LLM to summarize through a list of either unnumbered bullet (or other symbol) points, or numbered points,
with a varying number of points (sampled uniformly from a fixed interval).

For unnumbered points, we check whether the output contains the specified symbol S in the correct number
of times N:

(2)

1, if count(S € y) = N,
Score = .
0, otherwise.

For numbered points, we verify that output lines (y;, .., yas) are of the appropriate count and start with the
correctly ordered sequence of numbers:

(3)

1, if (M =N)a(Vie[l,N],y;o = str(z))
Score = ) ’
0, otherwise.

o Questions Yet another approach to summarization consists in answering key questions about the source,
most notably the 5 Wh-questions of what/why/who/when/where. Question-answering is a popular paradigm
in summarization evaluation (Deutsch et al., 2021; Scialom et al., 2021; Fabbri et al., 2021), as it naturally
enables to review that key facts from the source are covered. To induce format following, we prompt the
LLM to structure its summary such that it is composed of the list of 5 Wh-questions, each followed by its
corresponding answer (see Figure 10 for an example). This process is akin to query-focused summarization
(Vig et al., 2022), where the Wh-questions form the query.
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To evaluate Wh-questions summary formatting, we check that summary lines start with the Wh-questions.
We also enforce that all questions are present, in any order. Formally, following the previous notation and
noting @ the set of Wh-questions:

(4)

0, otherwise.

{1, if (Qcy)a(Vie[l,N],y,o€Q)
Score = ’

Creating More Complex Tasks

StructTest instructions following one of the aforementioned summarization formats are referred to as Easy
Summarization. To evaluate the compositional reasoning capability of LLMs, we compose different format
instructions together. We use two types of combinations: first, we specify the number of bullet points or
numbered points and the desired length (in sentences) of each point; second, we ask the LLM to nest bullet
points within existing points, where nested points start with the tab symbol marking indentation. These
instructions combining two summarization formats are referred to as Hard Summarization. In this latter
case, evaluation metrics defined above are also combined together and the LLM needs to verify each property.

Data Synthesis We collect summarization source inputs from existing trusted long-input summarization
datasets. Namely, we use BigPatent (Sharma et al., 2019) and GovReport (Huang et al., 2021) from the
legal domain, Arxiv and PubMed (Cohan et al., 2018) from the scientific papers domain, SummScreen (Chen
et al., 2021) for screenplay summarization and QMSum (Zhong et al., 2021) for meeting summarization. In
all cases, we only consider the source document and discard the ground-truth summary. For each dataset, we
randomly sample 200 records from the training set, with a source length comprised between 1,500 and 15,000
words, and a ground-truth length between 75 and 750 words. Even though the ground-truth was discarded,
we enforce the length criteria on it to ensure a rich enough content to be summarized.

Remark Unlike prior work (Liu et al., 2023), our emphasis is on format-following and generating structured
output, rather than on the summary’s content. This design facilitates objective, rule-based evaluation.
Successfully completing these tasks requires more than just structural and syntactic reasoning; it
demands several sophisticated capabilities: (a) Compositional reasoning: The model must combine
multiple instructions, such as “format as a list AND create X points AND make each point Y sentences long."
(b) Multi-Constraint satisfaction: It must hold numerous constraints (e.g., counts, lengths, formats) in
its “working memory” and satisfy them all simultaneously. (¢) Procedural reasoning It needs to follow an
implicit algorithm, like the step-by-step process required for creating a nested list. (d) Meta-reasoning: In
some cases, it requires higher-level skills like self-verification to ensure its output matches all rules.

3.2 Code

Given the success and widespread adoption of Code-LLMs in real-world systems (Jimenez et al., 2024; Xie
et al., 2024), the ability to understand complex instructions in a language-and-code environment is critical.
Programming languages offer an ideal testbed for this, as their structured nature and rule-based syntax
provide a clear measure of an LLM’s instruction-following capabilities. The correctness of generated code can
be efficiently validated with compilers and interpreters, offering scalable, binary feedback. This makes coding
a practical benchmark for structured output generation. To specifically measure task decomposition and
program execution, we have developed the following tasks:

e Add ‘print’ statements We propose a code editing task where the LLM must add a print statement
each time a new variable is initialized. This task is more complex than simple code completion as it requires
the model to apply conditional logic across the entire input, also it probes the model’s ability to maintain
state—it must track which variables have already been declared in the current scope to identify only new
initializations. This combination of procedural logic and state management makes it a strong test of reasoning.

Since the instruction is fixed, we can programmatically generate the expected code snippet. Specifically, we
use the ast packagel to parse the abstract syntax tree and extract variable initializations. The expected

! https://docs.python.org/3/library/ast.html
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target code is then synthesized by inserting print statements using predefined templates. The evaluation
metric is exact match, comparing the predicted code snippet with the synthesized one.

¢ Replace variables Another edit-based task involves replacing variables. For data construction, we first
use the ast package to extract variables from a code snippet and randomly generate meaningless strings as
target variable names. We then create a mapping from the original variable names to the target ones and
include this mapping in the instruction, asking the LLM to replace all instances of the source variables with
the corresponding target variables. The expected code snippet is generated by performing string replacements
according to the mapping.

The LLM’s output is evaluated using exact match, comparing its prediction with the synthesized expected
program. This task evaluates an LLM’s ability to act like a programmatic refactoring tool, testing
whether it can go beyond generating plausible-looking code to perform precise, rule-based, and context-aware
modifications.

e Test case input generation As a fundamental aspect of software engineering, writing high-quality unit
tests (i.e., sample input-output pairs) is crucial for verifying program correctness. Given that predicting unit
test outputs remains challenging for current LLMs (Li et al., 2022; Jain et al., 2024; Jiao et al., 2024), we
simplify the task by asking LLMs to generate 5 distinct groups of test case inputs for a given programming
problem and its corresponding solution. Successfully generating these inputs requires the model to think like
a software tester — understand both the problem description and the provided solution and its constraints,
to reason abstractly about the problem’s logic (e.g., if the solution sorts a list of numbers, the LLM needs to
reason that [], [3], [1, 2], [2, 1], and [0, -10] are all conceptually different and important test cases).

We evaluate the validity by executing the program on the predicted test case inputs, and if no runtime error
is raised for all inputs, the generation is deemed correct. We use the averaged pass rate over all problems
as the evaluation metric.

e Simulate program execution Simulating program execution requires an LLM to behave like a meticulous,
rule-based machine. It must combine procedural execution with a dynamic internal “memory” that keeps
track of the current value of every variable to accurately predict the program’s output. This is closely tied to
reasoning and agent-based operations, making program simulation a valuable proxy for assessing the ability
to follow compositional instructions and perform reasoning. We prompt the LLM to simulate the step-by-step
execution of a given program with specific inputs and derive the expected output. The task is divided into
two difficulty levels—Easy and Hard—based on the length of the code snippet being simulated.

For the Easy level, we include multiple test cases from the original dataset for each question to ensure robust
evaluation. If all predicted outputs exactly match the ground-truth ones, the generation for the question is
considered as correct. For the Hard level, we evaluate using only one simple test case, as (1) the complexity of
the code snippets themselves is sufficiently challenging, and (2) scaling test cases uniformly is difficult—some
may involve millions of input numbers in a single line. The final metric is the average exact match rate
across all questions. For all tasks, the Easy set contains code snippets with 3 to 30 lines, while the Hard set
includes snippets with 50 to 200 lines.

Data Synthesis In order to be reliable, we collect the code snippets from existing verified code benchmarks.
However, any public code snippets with paired test cases can be used for constructing the test samples. For
Easy level problems, the snippets come from MBPP (Austin et al., 2021), which involves tiny segments with
number of lines less than 30. For the Hard split, the samples are sourced from APPs (Hendrycks et al., 2021a)
with more than 50 lines, which also comprises some much complex algorithms like recursion and dynamic
programming.

Remark Concurrent work, CodelF (Yan et al., 2025), evaluates how well LLMs can follow problem-specific
instructions when generating code. It uses GPT-4 to both generate code instructions in the form of constraints
(e.g., variable name and type) and act as an LLM-as-judge for evaluation. While comprehensive, this approach
is prone to inherent biases. StructTest differs fundamentally by focusing on higher-level, reasoning-intensive
tasks that are programmatically verifiable, thereby avoiding the subjectivity of LLM-based evaluation.
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3.3 HTML Generation

The use of LLMs in generating websites has been recognized as a valuable task, reducing the workload for web
designers and developers while democratizing web development for non-technical users (Calo & De Russis,
2023). In these applications, adhering to user-specified HTML structures is critical. Tang et al. (2023)
highlight that LLMs often struggle to generate structured HTML, though their study is limited to simple
structures and relies on content-based evaluation requiring human assessment.

In contrast, we formulate this task as to generate a specific number of standard HTML tags (“html”, “head”,
“title”, “div”, “body”, “h1”, “h2”, “p” “footer”) as instructed with the following structural constraints: “title”
should be nested inside “head”, “div” and “footer” are nested inside “body”, and the rest of the tags are
nested inside “div”; see Fig. 18 in the Appendix for an example. The counts of each tag to be generated are
sampled uniformly from a fixed interval. Based on the range of the interval, we create two sets, Easy where
the interval range is 2-5, and Hard where the range is 2-12.

We consider a generation to be successful if the count of the tags is equal to the ones provided in the prompt
taking into account their nested structure and all the tags are properly formatted, i.e., an opened HTML
tag has to be closed. To successfully complete this task, the LLM needs to understand the constraints and
properly manage its internal states so that the generation will satisfy the structural constraints.

3.4 Math Reasoning

Mathematical reasoning is a common task in LLM evaluations, with benchmarks like GSM8K and MATH
(Gao et al., 2024; Cobbe et al., 2021b; Hendrycks et al., 2021b). However, the influence of varying format
templates on these tasks is often overlooked, potentially leading to inconsistencies, as many studies may
not use impartial templates (Yu et al., 2023; Shao et al., 2024; Wei et al., 2022; Toshniwal et al., 2024).
The variability in solutions—ranging from numbers and fractions to LaTeX expressions—means extraction
methods may differ across studies, resulting in biased comparisons that favor models optimized for specific
frameworks. For instance, MetaMathQA (Yu et al., 2023) created a dataset where answers follow specific
phrases which their evaluation procedure uses to extract answers, disadvantaging models that do not adhere
to these phrases.

A reliable model should not only produce correct answers but also consistently present a chain of thought or
CoT (Wei et al., 2022) in a predefined format. Reliably extracting reasoning steps can be advantageous, such
as for generating thought chains for process supervision (Lightman et al., 2023). Therefore, we structure our
math evaluations around two key aspects: final answer parsing and CoT bullet point formatting.

e Final answer parsing We designed 7 distinct formats for final answer presentation and created prompts
to instruct models to follow these formats. We implemented evaluation rules to assess whether a model’s
response adheres to the assigned format. As the source of data, we used the GSM8K (Cobbe et al., 2021a)
benchmark, which is a set of high-school math questions. We assign each question a random format. This
allows us to measure format consistency accuracy, which, when combined with math accuracy, provides a fairer
and more comprehensive comparison across LLMs. Specifically, only answers that are both mathematically
correct and format-compliant are considered correct. In our setup, final answer parsing is categorized as
Easy.

e CoT bullet points. Solutions to math problems often involve multiple reasoning steps, and we designed 5
distinct presentation styles. These include Markdown formats like “**Step 1** .., and JSON structures. We
also defined a range for the number of steps, requiring models to adjust step granularity. For simpler solutions,
models should break down steps into finer details, while for complex solutions, they should consolidate
multiple steps into longer ones. By pairing each bullet point style with a unique final answer style, we created
20 formats, classified as Hard. We hypothesize that some LLMs may find these styles intuitive, while others
may struggle, potentially leading to significant performance variations (see Section 4). Although the number
of styles could theoretically be infinite, we rely on manually crafted styles to ensure accuracy and consistency.
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Average Summarization Code HTML Math
All Easy Hard . Easy Hard Easy Hard Easy Hard Easy Hard

DS-Dis-Qwen-1.56B  9.19 14.31 407 1 26.90 10.08 2458 421 0.00 0.00 5.76 1.97
Phi-3-mini-128k 19.97  32.65 7.30 : 55.83 11.39 51.56  13.33 0.00 0.00  23.20  4.47
Qwen-2-7B 17.55 28,58  6.53 1 48.79 9.50 50.63  13.27 0.33 0.00 1456  3.34
Mistral-7B 13.82  21.83 581 : 51.29 15.89 31.25 5.96 1.67 0.33 3.11 1.06
Llama-3.1-8B 37.20  46.05 28.35 1 87.23 52.50 50.42  17.29 12.00 0.33 3457 43.29

[

|

[

|

[

[

!

LLM

Mistral-nemo 2720 4376 10.64 ' 72.83 1836  63.13 17.81  6.33  0.00 3275  6.37
Mixtral-8x7B 1773 2893 654 | 67.38 1678 3333 3.97 333 033 1168  5.08
Llama-3.1-70B 65.93 82.75 49.10 ' 97.73  53.75 8021 28.20  84.67 5433 6839 60.05
DeepSeek-v3 73.52 85.16 GL.88 | 94.85 7428  87.40 3345 97.67 67.00 60.73 7278
DeepSeck-R1 7476 8242 67.10 | 8342  89.00 8185 37.11 86.67 5533 74.91 86.96

" GPT-3.5-turbo 3827 61.75 14.79 1 86.35 2233 7448 19.38  47.67  6.00 3851 11.45
GPT-40-mini 60.04 75.93 44.16 ' 98.83  75.58 8240 2567 4500  7.67 77.48 67.70
GPT-4o 73.16 89.04 57.29 9454  73.00 86.36 20934  99.00 57.67 7627  69.14
Gemini-1.5-pro 6344 8144 4544 | 8458  30.03 8219 38.01 8167 3133 77.33 73.39
Claude-3-haiku 36.15 5331  18.99 | 7219 2206 6625 2218  41.00 1033 33.81 21.38
Claude-3-opus 63.81 8914 4848 ' 9121 4619  85.00 36.04 100.00 56.67 80.36  55.04

|

Claude-3.5-sonnet 72.62 91.55 53.69

Table 1: Overview of results on StructTest. The best results under each task are in bold, and the second-best
are underlined. DS-Dis-Qwen-1.5B refers to DeepSeek-R1-Distill-Qwen-1.5B. DeepSeek-R1 demonstrates strong
performance, even surpassing some closed-source models on Hard. However, there remains significant room for
improvement, highlighting the challenging nature of StructTest.

In addition to the mathematical reasoning required for a correct answer, these tasks require an LLM to
employ: (a) compositional reasoning (combining final answer and CoT styles), (b) constraint satisfaction
(adhering to step counts), and (c) meta reasoning (adjusting step granularity based on its solution path).

Remark Our evaluation of math-related tasks assesses both the final answer and format correctness. This
dual-focus design allows us to compare a model’s performance on our benchmark against its original score (e.g.,
on GSMB8K). A performance degradation on our tasks indicates that the model struggles with format-following,
revealing a “format bias” (Do et al., 2024).

4 Experimental Results

We evaluated StructTest against a representative selection of open-source and closed-source models; Section 7.1
in the Appendix give details about the model versions. Table 1 summarizes the overall results across all
domains of StructTest for all LLMs. For open-source models, we used their instruction-tuned versions
rather than the base model. Notably, the top-performing LLM, DeepSeek-R1, achieves only 74.76% accuracy
on StructTest-All and 67.10% on StructTest-Hard, underscoring the benchmark’s high level of difficulty.
Additionally, GPT-4o is a close runner-up, and closed-source LLMSs generally outperform open-source ones.
In the following, we present detailed results for each domain.

e Summarization Results As seen in Table 1, overall, on summarization tasks, the Llama-3.1 and DeepSeek
series stand out among open-source models, delivering performance comparable to GPT-4 on the Easy subset
(e.g., 97.73 for Llama-3.1-70B vs. 98.83 for GPT-40-mini). On average, closed-source LLMs outperform
open-source models, especially on the Hard subset. The exception is DeepSeek-v3 and R1, which excel even
beyond closed-source models on the Hard split.

Open-source LLMs other than DeepSeek experience a 70% drop in accuracy on Hard tasks compared to Easy
ones, while closed-source models show a 55% relative decline. This performance gap showcases the significant
challenge that LLMs face in adhering to more complex formatting instructions.

When breaking down performance across the individual summarization tasks shown in Table 2, we notice
that generating numbered points is easier for LLMs than bullet points. Although all LLMs seemingly master
producing numbered points, adding a constraint on the length of each point proves much harder: performance
is divided by a factor of 4 for many open-source LLMs (e.g. Mistral-7B, DS-Dis-Qwen-1.5B). Indenting points
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Figure 3: Error rate of GPT-4o across different features of the Summarization Bullet Points+Length (Hard) task. As
specific organizational requirements are added, the error rate rises significantly.

proves to be the hardest task and half the LLMs (including closed-source GPT-3.5-turbo and Claude-3-haiku)
collapse to near-zero accuracy. This shows that these models lack compositional, procedural and meta
reasoning skills required to solve these tasks. DeepSeek-R1 shows a strong lead on all LLMs for all three
Hard summarization tasks.

A further analysis with GPT-40 in

Easy Hard
Flgure 3 shows error rate for binned LLM Bullet Numbered Wh- Bullets Numbers Indented
values of the Hard formatting condi- Length ;oints  points  questions + length + length points
tion Bullet points + length (COHtI“Ol- DS-Dis-Qwen-1.5B  1.00 9.33 87.92 9.33 8.25 21.75 0.25
ling the length of each bullet point) Phi-3-mini-128k 3225 30.25  88.08 72.75 9.58 23.92 0.67
ng the length ol each bullet poInt).  quen 078 2795 6825  99.67 0.00 20.00 8.42 0.08
Length control error rate jumps be-  Mistral-7B 27.67 5750  99.67 20.33 19.75 27.50 0.42
Llama-3.1-8B 93.83  99.67  99.00 56.42 62.25 61.75 33.50
yond 20 total sentences, or 4 sen- 0 5325 0458  08.92 4458 2608 2742 1.58
tences per point. This finding proves Mixtral-8x7B 33.33 7250  86.25 77.42 19.17 30.25 0.92
that longer outputs are hard to struc-  Llama-3.1-708 94.75 99.92  99.92 96.33 64.17 64.83 32.25
DeepSeck-v3 81.33  98.92  99.17 100.00 7258 73.08 7717
ture and format for LLMs. DeepSeek-R1 83.08 9450  99.17 76.92  89.33  92.08  85.58
‘GPT-3.5-turbo 4842 99.67  99.92 9742 2608 3258 833
e Code Results As we compare the GPT-40-mini 97.25 99.92  99.92 98.25 75.33  76.83 7458
. GPT-4o 82.92 100.00  95.25 100.00  70.25 76.33 72.42
models in Table _1’ we observe that Gemini-1.5-pro 66.50 99.42  99.50 72.92 41.00 23.08 53.00
DeepSeek-v3 achieves the best per-  Claude-3-haiku  67.25 9933 99.75 22.42 20.25 32,08 4.83
formance among open-source models, Claude-3-opus 6558 99.67  99.58 100.00  54.08 56.33 28.17
Claude-3.5-sonnet  85.58 99.83  99.92 100.00  66.50 66.17  80.92

which can be attributed to its larger
parameter size and higher-quality pre-

o g Table 2: Performance comparison across LLMs on the summarization
training. DeepSeek-R1 also delivers

tasks. On the Easy tasks, both strong open-source and closed-source

competitive results, closely followed
by Llama-3.1-70B. Among the closed-
source models, Claude-3.5-sonnet and

models achieve high performance. However, on the Hard split, DeepSeek-
V3 and R1 exhibit superior instruction-following capabilities, outperforming
all other models by a significant margin. Among closed-source models,

Claude-3-opus stand out as the top GPT-40-mini and GPT-40 show better performance than other models.

performers.

From the perspective of the individ-

ual tasks shown in Table 3, we observe that Hard-level problems are significantly more complex, as longer
code snippets increase the difficulty of comprehension and procedural reasoning. Additionally, tasks requiring
deeper understanding and dynamic state tracking present greater challenges. For instance, on the Easy level
of Add Print Statements and Replace Variables, even smaller open-source models like Llama-3.1-8B achieve
strong performance. However, only a few powerful closed-source models (e.g., the Claude series models,
Gemini-1.5-pro, and GPT-4o ) perform well on the Hard level of Replace Variables. Furthermore, nearly all
models struggle with Test Case Inputs Generation at the Hard level, as longer code snippets often involve
multiple complex operations, such as loops, recursion, and switch-case statements. On the Hard split Simulate
Ezecution, we find most smaller models fail to pass more than 20% questions. Among the close-sourced
models, Gemini-1.5-pro demonstrates significantly better performance but lags behind DeepSeek-R1.
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Tag Counts: Correct vs Incorrect Error Rate by Total Tag-counts - Hard Error rate by different Math bullet point formats - Hard (produced by gpt4o)
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Figure 4: Tag-counts for correct vs. incorrect HTML generations Figure 5: Error rates of GPT-40 in GSM8K
(left) and error rate by total tag counts (binned) (right) for the math reasoning across 20 Hard formats.

Hard task in GPT-4o.

e HTML Results From the re- LLM Add Print Replace Vars Input Gen Simulate Exec
sults in Table 1, we observe that Easy Hard FEasy Hard Easy Hard FEasy Hard
) del 1 der- DSDis-Qwen-15B 3250 0.0 _ 32.08 729 667 000 49.93 9055
open-source models generally under Phi-3mini-128k 7042  0.50 84.58 43.28 1250 0.00 3875  9.55
perform compared to closed-source Qwen-2-7B 60.83 1.0 7917 41.00 2292 000 39.58 11.05
. Mistral-7B 47.08 050  25.00 17.31 3375 0.00 1917  6.03

ones in both Easy and Hard HTML Llama-3.1-8B 7750 201 8583 53.08 1.66  3.52 3667  10.55
generation tasks, with higher ac- Mistral-nemo 7417 251 8208 5216 5042 0.00 4583  16.58
e i . ) Mixtral-8x7B 4042 050 1250  9.34  40.83 050  39.58 553
curacies 1 the Easy task than Llama-3.1-70B 95.00 2161 87.92 6492 66.67 402 7125 2261
in the Hard task. Among open- DecpSeck-v3 96.25 24.12 88.33 69.48 73.75 5.53 91.25  34.67

source models, DeepSeek-v3 leads,  DeepSeekRl 95.00 2211 89.58 6652 50.00 201 8417 57.79

. GPT-35-turbo 76.25 000 90427 57.40 7292 151 5833 1859

followed by DeepSeek-R1, while GPT-4o-mini 9000 10.55 9L25 66.51 6625 3.02 8208 2261
among closed-source models, Claude- GPT-40 85.00 9.55 86.67 70.62 79.58 452 94.17  32.66
. Gemini-1.5-pro 9417 3417 83.33 70.62 6583 402 8542  43.22

3.5-sonnet is the top performer, Claude-3-haiku 7542 503  86.67 60.59 40.00 553  62.92  17.59
closely trailed by Claude-3-opus and Claude-3-opus 96.25 40.20 91.67 78.82 69.58 201 8250 2312
-2 R, C ER [ EQ 3 3

GPT-4o. DeepSeek—V3, DeepSeek— Claude-3.5-sonnet 90.00 9.55 91.25 7859 7042 6.03 87.50 24.62

R1, Claude-3.5-sonnet, Claude-3-
opus, and GPT-40 also rank among
the highest in MMLU scores (Table
5). Additionally, larger models gen-
erally outperform smaller ones, as
seen with Llama-3.1-70B compared
to Llama-3.1-8B.

Table 3: Performance comparison across LLMs on code-related tasks
shows that among open-source models, DeepSeek-v3 and R1 excel, particu-
larly on the hard split. Among closed models, Gemini-1.5-pro, Claude-3-opus,
and Claude-3.5-sonnet achieve higher accuracy.

We further provide two analyses based on GPT-40’s performance on the Hard task in Figure 4: one examines
the distribution of cumulative tag-counts for each tag in both correct and incorrect HTML code generation
samples, and the other analyzes the distribution of all tag-counts in incorrect HTML code generation samples.
Both figures reveal a consistent trend of increasing error rates as the number of tag-counts grows, confirming
that LLMs struggle with structured HTML code generation, particularly when tasked with producing a larger
number of HTML tags. This issue is especially pronounced for deeply nested tags like “div”, “p”, “h1”, and
“h2” as these tags are generated multiple times more frequently than their parent containers due to their
nesting structure. This shows that even the best LLMs struggle with multiple constraints and state tracking.

e Math Results In Table 1 we present the math format-following percentage accuracy for the Easy (final
answer style) and Hard (final answer and bullet point style) categories, using GSM8K as the underlying
benchmark. To be considered correct, an answer must be both accurate and compliant with the corresponding
format requirement. As mentioned before, By evaluating both semantic and format correctness, we can
directly compare a model’s performance on our benchmark against its original score.

Most models perform significantly worse in both settings compared to their scores in standard benchmarks
(Gao et al., 2024). For instance, Gemini-1.5-pro achieves 77.33% in Easy and 73.39% in Hard, while scoring
91.7% in the original dataset. In fact, while most closed-source models in Table 1 exceed 90% in standard
benchmarks (Gao et al., 2024), they experience significant performance drops in our evaluations, with margins
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LIM Add Print Replace Vars Input Gen Simulate Exec
Obfuscation Normal |Obfuscated Normal|Obfuscated Normal|Obfuscated Normal
DS-Dis-Qwen-1.5B 40.00 32.50 26.67 32.08 5.83 6.67 16.67 49.93
Phi-3-mini-128k 44.58 70.42 62.08 84.58 1.67 12.50 35.00 38.75
Qwen-2-7B 62.92 60.83 75.00 79.17 16.25 22.92 32.92 39.58
Mistral-7B 47.08 47.08 31.67 25.00 33.75 33.75 14.17 19.17
Llama-3.1-8B 74.17 77.50 80.42 85.83 15.84 1.66 33.33 36.67
Mistral-nemo 72.08 74.17 80.83 82.08 43.75 50.42 42.92 45.83
Mixtral-8x7B 53.75 40.42 7.50 12.50 34.58 40.83 34.17 39.58
Llama-3.1-70B 95.00 95.00 85.42 87.92 65.42 66.67 69.58 71.25
DeepSeck-V3 97.08  96.25 | 93.33  88.33 | 70.00 73.75| 84.17  91.25
DeepSeek-R1 95.42 95.00 91.25 89.58 57.50 50.00 91.25 84.17

Table 4: Comparison between normal data with obfuscated data under the easy split of code task. Few
models exhibit significant performance degradation, e.g., Phi-3-mini-128k-instruct, deepseek-r1-1.5b, and the
relative rankings between different models remains stable.

as high as 70%. This indicates that these models are not as reliably or consistently proficient in math-related
formats and may have overfitted to specific formats and styles. Notably, smaller and older closed-source
models like GPT-3.5-turbo and Claude-3-haiku show considerable degradation, with scores below 40%. Most
open-source models, such as Mixtral-8x7B, perform even worse, dropping below 10% accuracy on the Hard
split. This indicates these models lack constraint satisfaction and meta reasoning skills required for these
Hard tasks. However, DeepSeek-R1 demonstrates stronger resilience in maintaining format compliance, likely
due to its deep reasoning process. Overall, these results suggest that existing math reasoning comparisons
between models are likely unreliable and unfair unless tested across a wide variety of diverse and impartial
formats. Our framework offers a more robust alternative for such evaluations.

To provide deeper insights, Figure 5 illustrates the error rates of GPT-40 on GSMS8K when tested across 20
Hard formats. Despite being a highly advanced frontier model, GPT-40 exhibits widely varying performance.
Specifically, it achieves perfect scores (zero error rate) in formats 1 to 4 but struggles in others, with error
rates as high as 84%. This suggests that the model may have overfitted to certain popular formats while
faltering with novel ones. We conducted manual inspection and found that the model actually often produces
accurate final answers but fails to adhere to the instructed formats, resulting in these samples being marked
as incorrect. In those cases, the format in which the model committed to, however, is inconsistent and
unpredictable, leading to parsing difficulty to conduct further checks.

5 Discussion and Further Analysis

5.1 Robustness to Contamination and Benchmark Scalability

A key challenge in benchmarking LLMs is data contamination, where models inadvertently train on test data.
StructTest mitigates this risk in two primary ways.

First, the design of StructTest inherently minimizes data contamination. By focusing on novel, compositional
tasks that demand higher-level reasoning (e.g., meta reasoning and state tracking), we create problems
unlikely to exist in training data. We verified this by creating an obfuscated version of our coding tasks
where we replaced variables with random strings and changed function names counterfactually (e.g., if a
prompt requests a function for quick sort, we would rename the function signature from quick_sort to
get_max) to eliminate any potential shortcuts. The results are shown in Table 4. The fact that most models
showed minimal performance degradation on this obfuscated data confirms that the original StructTest is
already robust against contamination and effectively evaluates reasoning rather than memorization.

Second, the benchmark is designed as a living, adaptable evaluation. Its flexible framework allows for the
periodic introduction of new tasks, domains, and complexity levels. To future-proof StructTest, we will
maintain a confidential, held-out test set that is regularly updated. This approach safeguards the benchmark
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0.98

LLM StructTest Arena MMLU 0.97 To%l—avg
Phi-3-mini-128k 18.81 1,037 68.10 ' Math
Mistral-7B 14.08 1,072 60.10 0.961 ——— ®®
Llama-3.1-8B 37.22 1175 73.00 30951 y-avg K
Mixtral-8x7B 18.12 1,114 70.60 § 0.94 1
Llama-3.1-70B 65.69 1,248 86.00 3 0,03
DeepSeek-V3 73.66 1,319 88.50 ' HTML
DeepSeek-R1 72.15 1,361 90.80 0.921 ) 1

CGPT-35-tutbo 3827 771068 7000 0.91| @°dng ¢ -mmarization
GPT-40-mini 60.04 1,272 82.00 0.90 . , | , | | ,
GPT-40 73.50 1,265 88.70 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96
Gemini-1.5-pro 63.44 1,302 85.90 w/ ChatBotArena
Claude-3-haiku 36.15 1,179 75.20
Claude-3-opus 68.81 1,247 86.80 Figure 6: Correlation of various StructTest setups with
Claude-3.5-sonnet 72.62 1,268 88.70

ChatBot Arena and MMLU. The Hard and Total splits
show strong correlation with both MMLU and ChatBot
Arena, with math demonstrating the highest correlation
among the four domains.

Table 5: Comparison of StructTest average accuracy with
ChatBot Arena scores and MMLU accuracy. ChatBot
Arena results are current as of March 13th, 2025.

against potential rule-hacking, ensures that performance reflects true generalization capabilities, and provides
a scalable, cost-efficient method for evaluating new models over time.

5.2 Correlation to General Reasoning

To determine if StructTest can serve as a cost-effective yet strong proxy for general reasoning in LLMs, we
compared its average accuracy with scores from two popular benchmarks: ChatBot Arena and MMLU. The
results are shown in Table 5. We include all the models for which we could find both Arena and MMLU
scores. The correlation (Pearson’s product-moment coefficient) between StructTest and Arena is 92.5%,
while the correlation with MMLU is 96.3%. These results highlight that StructTest—despite being unbiased,
inexpensive to evaluate, and robust to data contamination—yields results that are strongly correlated with
resource-intensive benchmarks.

A more detailed analysis, presented in the 2D scatter plot in Figure 6, breaks down this correlation by task
domain and difficulty. The results show that the Total and Hard splits maintain a high correlation with
both MMLU and Chatbot Arena, while the Math domain has the highest correlation. This suggests that
StructTest can effectively serve as a reliable proxy for general reasoning, with the added benefits of being
easily extendable and free from the risks of data contamination and evaluation bias.

5.3 Discussion about Updating StructTest On-the-fly

As LLMs rapidly advance, benchmarks must be dynamically updated to ensure their reliability and mitigate
data contamination. StructTest was designed from its inception for this kind of evolution, though its long-term
success will depend on collaborative community efforts. We envision updates across three key areas:

Rules Despite extensive efforts to scrutinize model predictions, some cases may still arise where models
exploit loopholes to artificially inflate scores. When such cases are identified, the corresponding evaluation
rules can be updated to enhance robustness.

Tasks Similar to rule updates, new tasks can be introduced by carefully designing evaluation rules. This
aspect relies more on community contributions. When failures are identified in powerful models, these
patterns can be analyzed to develop new tasks for StructTest, ensuring its continued relevance and challenge.

Data Most tasks in StructTest do not rely on annotated benchmark data, and they are decoupled from
underlying data by rule-based evaluation. This enables the seamless integration of newly collected raw
corpora, further minimizing the risk of data contamination.
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6 Conclusion

We have proposed StructTest, a programmatically verifiable benchmark for evaluating instruction-following
capabilities of LLMs through structured outputs. StructTest is a cheap-to-run and unbiased benchmark with
adjustable difficulty levels, which is especially robust to the prevailing issue of contamination among existing
LLM benchmarks. By conducting evaluation across 17 popular LLMs, we find that it remains challenging
even for the very best models like DeepSeek-R1, GPT-40 or Claude-3.5-sonnet, which all score below 70%
accuracy on the Hard subset of StructTest. Notably, the open-source DeepSeek-R1 shines in StructTest as
its performance is comparable to the top closed-source models. Besides, lower results on the math domain
compared with those on the standardized benchmarks reveal the potential overfitting to answer format of
existing LLMs. Our analysis of correlation with other benchmarks (i.e., MMLU and ChatBot Arena) shows
that StructTest serves as a good proxy for evaluating general reasoning ability in LLMs. We believe that
StructTest offers a critical, complementary approach to existing LLM evaluations.
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7 Appendix

7.1 Closed-Source Model Versions

We show the API version used in our evaluation results for close-source models in Section 7.1. The inference
for all closed-source models was performed during 27th November 2024 to 14th December 2024.

Model API Version
GPT-3.5-turbo gpt-3.5-turbo-0125
GPT-40-mini gpt-40-mini-2024-07-18
GPT-40 gpt-40-2024-08-06

Gemini-1.5-pro gemini-1.5-pro-002
Claude-3-haiku claude-3-haiku-20240307
Claude-3-opus claude-3-opus-20240229
Claude-3.5-sonnet  claude-3-5-sonnet-20241022

Table 6: Closed-source model versions used in Evaluation Results

7.2 Examples for Different Tasks

We show examples for each summarization task in Figures 7 to 13, and examples for each coding task in
Figures 14 to 17.
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Figure 7: Test example for length task in Summarization.
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Figure 8: Test example for bullet points task in Summarization.

Figure 9: Test example for numbered points task in Summarization.
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Figure 10: Test example for questions task in Summarization.

Figure 11: Test example for combination of bullet points and length task in Summarization.
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Figure 12: Test example for combination of numbered points and length task in Summarization.

Figure 13: Test example for indented bullet points task in Summarization.
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Figure 14: Test example for add ‘print’ statements task with one-shot prompting.
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Figure 15: Test example for replace variables task with one-shot prompting.
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Figure 16: Test example for test case input generation (easy) task with one-shot prompting. Easy level
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Figure 17: Test example for simulate execution task with one-shot prompting.
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Figure 18: Test example for html generation task with one-shot prompting.
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