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ABSTRACT

Evaluating the robustness of a defense model is a challenging task in adversar-
ial robustness research. Obfuscated gradients, a type of gradient masking, have
previously been found to exist in many defense methods and cause a false signal
of robustness. In this paper, we identify a more subtle situation called Imbal-
anced Gradients that can also cause overestimated adversarial robustness. The
phenomenon of imbalanced gradients occurs when the gradient of one term of the
margin loss dominates and pushes the attack towards to a suboptimal direction.
To exploit imbalanced gradients, we formulate a Margin Decomposition (MD)
attack that decomposes a margin loss into individual terms and then explores the
attackability of these terms separately via a two-stage process. We examine 12
state-of-the-art defense models, and find that models exploiting label smoothing
easily cause imbalanced gradients, and on which our MD attacks can decrease
their PGD robustness (evaluated by PGD attack) by over 23%. For 6 out of the 12
defenses, our attack can reduce their PGD robustness by at least 9%. The results
suggest that imbalanced gradients need to be carefully addressed for more reliable
adversarial robustness.

1 INTRODUCTION

Deep neural networks (DNNs) are vulnerable to adversarial examples, which are input instances
crafted by adding small adversarial perturbations to natural examples. Adversarial examples can
fool DNNs into making false predictions with high confidence, and transfer across different models
(Szegedy et al.l 2014; |Goodfellow et al., 2015). A number of defenses have been proposed to
overcome this vulnerability. However, a concerning fact is that many defenses have been quickly
shown to have undergone incorrect or incomplete evaluation (Carlini and Wagner, [2017; |/Athalye
et al.| 2018} [Engstrom et al.| [2018} Uesato et al., 2018 |Mosbach et al., 2018; [He et al.| 2018]). One
common pitfall in adversarial robustness evaluation is the phenomenon of gradient masking (Papernot
et al., 2017} Tramer et al.| [2018) or obfuscated gradients (Athalye et al., 2018)), leading to weak
or unsuccessful attacks and false signals of robustness. To demonstrate “real" robustness, newly
proposed defenses claim robustness based on results of white-box attacks such as PGD (Madry et al.|
2018), and at the same time, demonstrate that they are not a result of obfuscated gradients. In this
work, we show that the robustness may still be overestimated even when there are no obfuscated
gradients. Specifically, we identify a new situation called Imbalanced Gradients that exists in several
state-of-the-art defense models and can cause highly overestimated robustness.

Imbalanced gradients is a new type of gradient masking effect where the gradient of one loss term
dominates that of other terms. This causes the attack to move toward a suboptimal direction. Different
from obfuscated gradients, imbalanced gradients are more subtle and are not detectable by the
detection methods used for obfuscated gradients. To exploit imbalanced gradients, we propose a
novel attack named Margin Decomposition (MD) attack that decomposes the margin loss into two
separate terms, and then exploits the attackability of these terms via a two-stage attacking process.
We derive MD variants of traditional attacks like PGD and MultiTargeted (MT) (Gowal et al., 2019),
and deploy these MD attacks to re-examine the robustness of 12 adversarial training-based defense
models. We find that 6 of them are susceptible to imbalanced gradients, and their robustness originally
evaluated by the PGD attack drops significantly against our MD attacks. Our key contributions are:

e We identify a new type of subtle effect called imbalanced gradients, which can cause
highly overestimated adversarial robustness and cannot be detected by detection methods
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for obfuscated gradients. Especially, We highlight that label smoothing is one of the major
causes of imbalanced gradients.

e We propose Margin Decomposition (MD) attacks to exploit imbalanced gradients. MD
leverages the attackability of the individual terms in the margin loss in a two-stage attacking
process. We also introduce two variants of MD for existing attacks PGD and MT.

e We conduct extensive evaluations on 12 state-of-the-art defense models and find that 6 of
them suffer from imbalanced gradients and their PGD robustness drops by more than 9%
against our MD attacks. Our MD attacks exceed state-of-the-art attacks when imbalanced
gradients occur.

2 BACKGROUND

We denote a clean sample by x, its class by y € {1, - - , C'} with C the number of classes, and a DNN
classifier by f. The probability of x being in the i-th class is computed as p;(x) = e/ Z;’;l €%,
where z; is the logits for the i-th class. The goal of adversarial attack is to find an adversarial example
Xqdy that can fool the model into making a false prediction (e.g. f(Xqdv) # y), and is typically
restricted to be within a small e-ball around the original example x (e.g. ||Xady — X||co < €).

Adversarial Attack. Adversarial examples can be crafted by maximizing a classification loss ¢ by one
or multiple steps of adversarial perturbations. For example the one-step Fast Gradient Sign Method
(FGSM) (Goodfellow et al..[2015) and the iterative FGSM (I-FGSM) attack (Kurakin et al.,[2017)).
Projected Gradient Descent (PGD) (Madry et al., 2018)) attack is another iterative method that projects
the perturbation back onto the e-ball centered at x when it goes beyond. Carlini and Wagner (CW)
(Carlini and Wagner, |2017) attack generates adversarial examples via an optimization framework.
Whilst there exist other attacks such as Frank-Wolfe attack (Chen et al.| [2018al), distributionally
adversarial attack (Zheng et al.|[2019) and elastic-net attacks (Chen et al., 2018b), the most commonly
used attacks for robustness evaluations are FGSM, PGD, and CW.

Several recent attacks have been proposed to produce more accurate robustness evaluations than PGD.
This includes Fast Adaptive Boundary Attack (FAB) (Croce and Hein 2019), MultiTargeted (MT)
attack (Gowal et al.| 2019)), Output Diversified Initialization (ODI) attack (Tashiro et al.,[2020), and
AutoAttack (AA) (Croce and Heinl, [2020). FAB finds the minimal perturbation necessary to change
the class of a given input. MT (Gowal et al.l 2019)) is a PGD-based attack with multiple restarts and
picks a new target class at each restart. ODI provides a more effective initialization strategy with
diversified logits. AA attack is a parameter-free ensemble of four attacks: FAB, two Auto-PGD
attacks, and the black-box Square Attack (Andriushchenko et al.,|2019). AA has demonstrated to be
one of the state-of-the-art attacks to date (Croce and Hein, 2020).

Adversarial Loss. Many attacks use Cross Entropy (CE) as the adversarial loss: £..(x,y) =
— log p,. The other commonly used adversarial loss is the margin loss (Carlini and Wagner, [2017):
Unargin(X,Y) = Zmaz — Zy, With Zy,q, = max; 4, z;. Shown in (Gowal et al.,[2019), CE can be

written in a margin form (e.g. lee(X,y) = log(ZiC:1 e*) — z,), and in most cases, they are both
effective. While FGSM and PGD attacks use the CE loss, CW and several recent attacks such as
MT and ODI adopt the margin loss. AA has one PGD variant using the CE loss and the other PGD
variant using the Difference of Logits Ratio (DLR) loss. DLR can be regarded as a “relative margin”
loss. In this paper, we identify a new effect that causes overestimated adversarial robustness from the
margin loss perspective and propose new attacks by decomposing the margin loss.

Adpversarial Defense. In response to the threat of adversarial attacks, many defenses have been
proposed such as defensive distillation (Papernot et al.,[2016)), feature/subspace analysis (Xu et al.|
2017; Ma et al.| [2018), denoising techniques (Guo et al.| 2018} [Liao et al.,[2018; |Samangouei et al.|
2018)), robust regularization (Gu and Rigazio, [2014; Tramer et al., 2018}; |Ross and Doshi-Velez,
2018)), model compression (Liu et al., 2018; Das et al., 2018}; Rakin et al., 2018)) and adversarial
training (Goodfellow et al., 2015; Madry et al.,|2018). Among them, adversarial training via robust
min-max optimization has been found to be the most effective approach (Athalye et al., 2018). A
number of new techniques have been proposed to further enhance the adversarial training (Wang
et al., | 2019; Zhang et al., |2019;|Carmon et al.,2019; |Alayrac et al.,|2019; Wang and Zhang, [2019;
Zhang and Wangl 2019; Zhang and Xu, [2020; |Wang et al., [2020; [Kim and Wang, |2020; |Ding et al.,
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2018} |Chan et al.| |2020). We will discuss and evaluate these adversarial training-based defenses with
our proposed attacks in Section 4}

3 IMBALANCED GRADIENTS AND MARGIN DECOMPOSITION ATTACK

We first give a toy example of imbalanced gradients and show how regular attacks can fail in such a
situation. We then empirically verify their existence in deep neural networks, particularly for some
adversarially-trained models. Finally, we propose the Margin Decomposition attack to exploit the
imbalanced gradients. Since CE and margin loss are the two commonly used loss functions for
adversarial attack and CE can be written in a margin form (Gowal et al.,|2019), here we focus on the
margin loss to present the phenomenon of imbalanced gradients.

Imbalanced Gradients. The gradient of the margin loss (e.g. {imargin(X,Y) = Zmaz — Zy) is the
combination of the gradients of its two individual terms (e.g. Vx(Zmaz—2y) = VxZmaz+Vx(—2y)).
Imbalanced Gradients is the situation where the gradient of one loss term dominates that of other
term(s), pushing the attack towards a suboptimal direction.

Toy Example. Consider a one-dimensional classification task
and a binary classifier with two outputs z; and z (like logits
of a DNN), FigureE]illustrates the distributions of z;, z, and
zy — z1 around x = 0. The classifier predicts class 1 when

71 > Zo, otherwise class 2. We consider an input at x = 0
with correct prediction y = 1, and a maximum perturbation

o Fecisstid,

V, Z, bt o

correct

constraint € = 2 (e.g. perturbation § € [—2, +2]). The attack
is successful if and only if zo > z;. In this example, imbal-
anced gradients occurs at z = 0, where the gradients of the two
terms V,zs and V,(—z;) have opposite directions, and the
attack is dominated by the z; term as V. (—z) is significantly
larger than V,zs. Thus, attacking = with the margin loss will
converge to +2, where the sample is still correctly classified.
However, for a successful attack, = should be perturbed to-
wards -2. In this particular scenario, the gradient V,zs < 0
alone can provide the most effective attack direction. Note that
this toy example was motivated by the loss landscape of DNNs
when imbalanced gradient occurs.

-2 x=0 +2
Figure 1: A toy illustration of im-
balanced gradients at x 0: the
gradient of margin loss (z2 — z1) is
dominated by its —z; term, pointing
to a suboptimal attack direction to-
wards +2, where z is still correctly
classified.

3.1 IMBALANCED GRADIENTS IN DNNs

The situation can be extremely complex for DNNs with high-dimensional inputs, as imbalanced
gradients can occur at each input dimension. It thus requires a metric to quantitatively measure the
degree of gradient imbalance. Here, we propose such a metric named Gradient Imbalance Ratio
(GIR) to measure the imbalance ratio for a single input x, which can then be averaged over multiple
inputs to produce the imbalance ratio for the entire model.

Definition of GIR. To measure the imbalance ratio, we focus on the input dimensions that are
dominated by one loss term. An input dimension x; is dominated by a loss term (e.g. Z,q4,) means
that 1) the gradients of loss terms at x; have different directions (V,Zmaz - Vg, (—2,) < 0), and
2) the gradient of the dominant term is larger (e.g. |V, Zmaz| > |V, (—2y)]). According to the
dominant term, we can split these dimensions into two subsets x, and x4, where x;, are dominated
by the z,,,, term, while x,, are dominated by the —z, term. The overall dominance effect of each
loss term can be formulated as r; = Hvxs1 (Zmaz — zy)||1 and ry = HVXS2 (Zmaz — Zy)”1' Here,

we use the L-norms instead of Lg-norms (i.e. the number of dominated dimensions) to also take
into consideration the gradient magnitude. To keep the ratio larger than 1, GIR is computed as:

T2

GIRzmaX{r—l, (1)

T2 T
GIR is defined by the ratio between the L;-norms of the gradients of two groups:

Note that the GIR metric is not a general measure of imbalance. Rather, it is designed only for
assessing gradient imbalance for adversarial robustness evaluation. GIR focuses specifically on the
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Figure 2: (a): Gradient imbalance ratio of 5 models. (b): Attack success rate of PGD-20 with different
losses. (c): The margin loss of the AdvInterp defense model on points x* = x + « - sign(Vx(—2,)),
where x is a natural sample and sign(Vx(—z,)) is the signed gradient of loss term —z,. All these
experiments are conducted on test images of CIFAR-10.

imbalanced input dimensions, and uses the L; norm to also take into account the influence of these
dimensions to the final output. The ratio reflects how far away the imbalance towards one direction
than the other.

GIR of both Naturally- and Adversarial-trained DNNs. With the GIR metric, we next investigate
6 DNN models including a naturally-trained (Natural) model and 5 adversarially-trained models
using standard adversarial training (Madry et al.l|2018) (SAT), sensible adversarial training (Kim
and Wang, 2020) (Sense), feature scattering-based adversarial training (Zhang and Wang|, 2019)
(FeaScatter), bilateral adversarial training (Wang and Zhang} [2019) (Bilateral), and adversarial
interpolation training (Zhang and Xu, 2020) (AdvInterp). We present these defense models here
because they represent different levels of gradient imbalance (a complete analysis of more models
can be found in Appendix B) Natural, SAT and Sense are WideResNet-34-10 models, while others
are WideResNet-28-10 models. We train Natural and SAT following typical settings in (Madry et al.
2018)) while others use their officially released models. We compute the GIR scores of the 6 models
based on 1000 randomly selected test samples, and show them in Figure 2al One major observation
is that some defense models can have a much higher imbalance ratio than either naturally-trained or
SAT model. This confirms that gradient imbalance does exist in DNNs, and some defenses tend to
train the model to have highly imbalanced gradients. We will show, in Section[d] that this situation of
imbalanced gradients may cause highly overestimated robustness when evaluated using a traditional
PGD attack.

Imbalanced Gradients Reduce Attack Effectiveness. When there are imbalanced gradients, the
attack can be pushed by the dominant term to produce weak attacks, and the non-dominant term
alone can lead to more successful attacks. To illustrate this, in Figure @ we show the success
rates of PGD attack on the above 5 defense models (Natural has zero robustness against PGD) with
different losses: CE loss, margin loss, and the two individual margin terms. We consider 20-step PGD
(PGD-20) attacks with step size €/4 and e = 8/255 on all CIFAR-10 test images. Intuitively, the two
margin terms could lead to less effective attacks, as they only provide partial information about the
margin loss. This is indeed the case for the low gradient imbalance model SAT. However, for highly
imbalanced models Sense, FeaScatter, Bilateral and AdvInterp, attacking the z,,,, term produces
even more powerful attacks than attacking the margin loss. This indicates that the gradient of the
margin loss is shifted by the dominant term (e.g. —z,, in this case) towards a less optimal direction,
which inevitably causes less powerful attacks. Compared between attacking CE loss and attacking
—1z,, they achieve a very close performance on imbalanced models. This shows a stronger dominant

effect of —z, in CE loss ({ec(x,y) = log(zicz1 e*) — z,). It is worth mentioning that, while
both GIR and this individual term-based test can be used to check whether there are significantly
imbalanced gradients in a defense model, GIR alone cannot fully reflect the attack success rate.
Figure [2c|shows an example of how the —z, term leads the attack to a suboptimal direction: the
margin loss is flat at the V«(—z,) direction, yet increases drastically at an opposite direction. In this
example, the attack can actually succeed if it increases (rather than decreases) z,,.

Gradients can be Balanced by Attacking Individual Loss Terms. Here, we show that, interest-
ingly, imbalanced gradients can be balanced by attacking the non-dominant term. Consider the
AdvInterp model tested above as an example, the dominant term is —z,,. Figure |§| illustrates the
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Figure 3: Changes in gradient imbalance ratio when apply PGD-20 (e = %) attack with the margin
loss (a), only the z,,,4, term (b), or only the —z,, term (c), on the AdvInterp model for 5 CIFAR-10
test images. The imbalance ratio is effectively reduced by attacking a single z,,4, term.

GIR values of 5 randomly selected CIFAR-10 test images by attacking them using PGD-20 with
different margin terms or the full margin loss. As can be observed that, for all three losses, the GIRs
are effectively reduced after the first few steps. However, only the non-dominant term z,,,, manages
to stably reduce the imbalance ratio to around 2. This indicates optimizing the individual terms
separately can help avoid the situation of imbalanced gradients and the attack can indeed benefit from
more balanced gradients (see the higher success rate of z,,,,, in Figure @)

3.2 MARGIN DECOMPOSITION ATTACK

The above observations motivate us to exploit the individual terms in the margin loss so that the
imbalanced gradients situation can be circumvented. Specifically, we propose Margin Decomposition
(MD) attack that decomposes the attacking process with a margin loss into two stages: 1) alternately
attacking the two individual terms (e.g. Zpq. OF —2%,) at different restarts; then 2) attacking the full
margin loss. Formally, our MD attack and its loss functions in each stage is defined as follows:

Xk+1 = He (Xk +a- Slgn(vxgz (Xk7 y)))a (2)
Zmaz if k < % andr mod2=0
U (Xkyy) = { —2y if k <& andr mod 2 =1

Zmaw — 2y ik > 5,

where, II is the projection operation that projects the perturbed sample back within e-ball, & €

{1,..., K} is the perturbation step, r € {1, ...,n} is the r-th restart, mod is the modulo operation
for alternating optimization, and ¢}, defines the loss function used at the k-th step and r-th restart.
K

The loss function switches from the individual terms back to the full margin loss at step 5. The first
stage exploits individual loss terms to rebalance the imbalanced gradients, while the second stage
ensures that the final objective (e.g. maximizing the classification error) is achieved. Note that, not
all defense models have the imbalanced gradients problem. A model is susceptible to imbalanced
gradients if there is a substantial difference between robustness evaluated by PGD attack and that by
our MD attack. In addition, to help escape the flat loss landscape observed in Figure [2c| we initialize
the perturbation in the first stage by perturbing one step with size 2 - € along the opposite direction of

the other loss terms that are left unexplored.

We also propose a Margin Decomposition Multi-Targeted (MDMT) attack, a multi-targeted version
of our MD attack. The loss terms used by MDMT at different attacking stages are defined as follows:

Z; ifk<%andrmod2:0
(X, y) = S —2y if k <& andr mod 2 =1
7z, —z, ifk>%,

where, z, is the logits of the target class ¢ # y. Like the MT attack, MDMT will attack each possible
target class one at a time, then select the strongest adversarial example at the end. That is, the target
class t # y will be switched to a different target class at each restart. The complete algorithms of
MD and MDMT can be found in Appendix [A] and an ablation study can be found in Appendix [G]

Initialization Perspective Interpretation of MD Attacks. Previous works have shown that random
or logits diversified initialization are crucial for generating strong adversarial attacks (Madry et al.,
2018j [Tashiro et al.,[2020). Compared to random or logits diversified initialization, our MD attacks
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can be interpreted as a type of adversarial initialization, i.e., initialize at the adversarial sub-directions
defined by the two terms of the margin loss. Moreover, rather than a single step of initialization, our
MD attacks iteratively explore the optimal starting point during the entire first attacking stage.

4 EXPERIMENTS

We apply our MD attacks to evaluate the robustness of 12 state-of-the-art defense models. We
focus on adversarial training models, which are arguably the strongest defense approaches to date
(Athalye et al., 2018} |Croce and Heinl 2020). All the models are WideResNet variants (Zagoruyko
and Komodakis| [2016) and are trained against perturbation e = 8/255 on CIFAR-10. For each
defense model, we either download their shared models or retrain the models using the official
implementations, unless explicitly stated. Further details about the models can be found in Appendix
We apply current state-of-the-art attacks and our MD attacks to evaluate the robustness of these
models in a white-box setting.

Baseline Attacks and Settings. Following the current literature, we consider 6 existing attacks: 1)
FGSM, 2) PGD, 3) L, version of CW attack (Madry et al.,[2018; Wang et al.,|2019), 4) MultiTargeted
(MT) attack and two concurrently proposed attackss 5) AutoAttack (AA), and 6) Output Diversified
Initialization (ODI). The evaluation is done under the same maximum perturbation ¢ = 8/255 for
training. For AA and ODI, we use the official implementation and parameter setting. For regular
iterative attacks, we set the step size to o = €/4 and the total perturbation steps to K = 40. For
our MD and MDMT, we use a large step size o = 2 - € in the first stage for a better exploration and
a = €/4 in the second stage to ensure a stable optimization for the final objective. For regular attacks
PGD, CW and our MD, we use 2 random restarts, while for more powerful attacks ODI, MT and
MDMT, we use 20 restarts (MT attacks require more restarts to explore multiple target classes). A
parameter analysis of our MD attack can be found in Appendix[H} Adversarial robustness is measured
by the model accuracy on adversarial examples crafted by these attacks on CIFAR-10 test images.

4.1 EVALUATION RESULTS

Table E]reports the full evaluation result, where RST, UAT and TRADES are the top 3 best defenses.
The SAT defense demonstrates ~ 45% robustness consistently against either PGD or stronger attacks
such as MT, AA, ODI and our MD attacks. This indicates that SAT does not have imbalanced
gradients and indeed brings consistent robustness, which is in line with other studies about SAT
(Athalye et al., 2018};|Croce and Heinl 2020; |Uesato et al., 2018)). While the rest 11 defense models
are all developed based on SAT, they exhibit quite different robustness. Only 4 defenses including
RST, UAT, TARDES and MART are indeed improved over SAT, while the other 7 defense models are
actually not as robust as SAT, according to our MD or MDMT attacks. For the 4 improved defenses,
their PGD robustness (e.g. robustness evaluated by PGD attack) can still be reduced by stronger
attacks MT, AA, ODI or our MD attacks. Considering that their robustness drops against our MD
attacks are within 5%, their drops may be caused by sufficient explorations such as more random
restarts or better initialization rather than imbalanced gradients. Indeed, MT, AA, and ODI with more
random restarts, multiple target classes, and better initialization can also reduce their robustness to
the same level as our MD attacks.

Out of the 7 unimproved defenses, our MDMT attack can reduce the PGD robustness of 6 models
(e.g. MMA, Bilateral, Adv-Interp, FeaScatter, Sense, and JARN-AT11) by at least 9%. On all 7
unimproved defenses, our MD attacks are always the most effective attacks compared to either classic
attacks FGSM, PGD, CW, or more recent attacks MT, AA and ODI. Note that, for 4 (e.g. MMA,
Bilateral, Adv-Interp, and Sense) out of the 7 unimproved defenses, even state-of-the-art attacks
MT or AA evaluate them to be more robust than SAT, which is not necessarily the case according
to our MD attacks. Particularly, against the MT attack, the robustness of SAT is 45.34%, while the
robustness of Bilateral, Adv-Interp and Sense are 55.07%, 61.22% and 46.22%, respectively. For
the MMA defense, AA attack evaluates its robustness to be 45.69%, which is slightly higher than
SAT’s 45.26%. However, under our MD attacks, all 4 models show much lower robustness than SAT
(3%-10% lower). Next, we will investigate the imbalanced gradients problem in the unimproved
defenses.

The PGD results with grid searched step size are reported in Appendix [I| where it shows larger step
size can help PGD when there are imbalanced gradients, yet is still far less effective than our MD
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Table 1: Robustness (%) of 12 defense models evaluated by different attacks. The attacks are divided
into 2 groups: 1) traditional attacks for robustness evaluation and our MD (column 3-6); and 2) more
recent attacks and our MDMT (column 7-10). The defenses are also divided into 2 groups: 1) SAT or
improved defenses (top rows); and 2) those that are not improved over SAT (bottom rows). Results in
(+) in the MDMT column show the robustness decrease compared to the PGD attack.

Defense | Clean | FGSM PGD CW MD | MT AA  ODI MDMT

RST 89.69 | 69.60 62.09 60.87 60.17 | 59.80 59.66 59.93 59.86(-2.23)
UAT 86.46 | 6831 61.08 62.11 59.36 | 56.72 5694 5798  56.65 (-4.43)
TRADES 8492 | 60.87 5500 53.69 53.10 | 52.67 53.18 52.68 52.78(-2.22)
MART 83.09 | 6143 56.10 53.02 51.84 | 51.12 51.05 51.15 51.07(-5.03)
SAT 86.83 | 56.88 4594 4573 45.64 | 4534 4517 4526 45.25(-0.69)
Dynamic 8535 | 55.19 4636 4553 4393 | 4275 4288 43.03  42.69 (-3.67)
MMA 84.62 | 61.85 51.09 52.05 45.63 | 42.62 45.69 43.00 41.92(-9.17)

Bilateral 90.73 | 71.10 60.95 57.82 39.82 | 55.07 37.96 38.65 37.21(-23.74)
Adv-Interp | 90.25 | 77.94 7248 6792 4533 | 61.22 3858 4143 37.59(-34.89)
FeaScatter | 89.98 | 77.40 68.64 57.10 43.12 | 43.10 38.79 39.61 36.86 (-31.78)
Sense 91.51 | 7271 59.86 57.67 40.64 | 4622 36.10 38.15 35.25(-24.61)
JARN-AT1 | 81.96 | 61.48 4250 2746 15.03 | 16.01 30.11 1490 14.60 (-27.90)

attacks. A comparison of our MDMT attack to the 4 individual attacks in the AA ensemble can be
found in Appendix [J] where it shows our MD attack is superior to any of the 4 individual attacks on 6
out of the 12 tested defense models, and our MD attack is the best across all defense models. More
evaluation results on 3 defense models trained on CIFAR-100 can be found in Appendix K]

Efficiency Analysis. We compare the efficiency of the two best attacks identified in Table I} our
MDMT attack and AA attack. Ensemble attacks like AA are generally more powerful than standalone
attacks, yet are also more time-consuming. To test this, here we also include the AA attack, which
is an updated version of AA with an ensemble of 6 different attacks. We repeat the attack for 5 times
on the entire CIFAR10 test set and report the average time cost in Table|2| The time cost is measured
with respect to a single 2080TT GPU. As can be observed, our MDMT attack is at least 8 times more
efficient than AA. Having two more attacks in the ensemble, AA+ is notably more time-consuming
that the AA attack. The adaptation of our method to existing attacks only needs to replace the loss
used in the first half of the iteration steps to the decomposed loss terms following Equation[2] thus
does not increase the time complexity of the original attacks.

Table 2: Average time cost (in hours) of MTMD, AA and AA+ attacks on defense models Adv-Interp,
FeaScatter and Sense over 5 repeats on the entire CIFAR-10 test set. The best results are in bold.

Defense | MDMT AA AA+

Adv-Interp | 2.01hrs 16.36hrs  20.71hrs
FeaScatter | 1.97hrs 15.97hrs  20.44hrs
Sense 2.28hrs  18.35hrs  23.44hrs

4.2 DEFENSE TECHNIQUES THAT MAY CAUSE IMBALANCED GRADIENTS

Here, we focus on 6 unimproved (compared to SAT) defenses: MMA, Bilateral, Adv-Interp, FeaScat-
ter, Sense, and JARN-AT1. Their PGD-evaluated robustness has been reduced for > 9% by our
MDMT attack.

Label Smoothing Causes Imbalanced Gradients. The PGD robustness of Bilateral, FeaScatter,
and Adv-Interp decrease the most (e.g. 23% — 34%) against our MDMT attack. This indicates that
these defenses may have caused imbalanced gradients, as also indicated by their high GIR values
in Figure All three defenses use label smoothing as part of their training scheme to improve
adversarial training, which we suspect is one common cause of imbalanced gradients. Given a
sample x with label y, label smoothing encourages the model to learn an uniform logits or probability
distribution over classes j # y. This tends to smooth out the input gradients of x with respect to these

'https://github.com/fra3 1/auto-attack
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Table 3: Robustness (%) of WideResNet-34-10 m—vanila
models trained with/without label smoothing. 6 Label Smoothing
5
o

Defense FGSM PGD MD e

SAT 56.88  46.47 45.71 :

+ Label Smoothing 59.10  51.15 44.54 0

Natural Madry
Natural 2641  0.00 0.00 i ) ]
+ Label Smoothing ~ 48.09 10.86  0.00 Figure 4: Gradient Imbalance Ratio (GIR) of

models trained with/without label smoothing.

classes, resulting in smaller gradients. In order to confirm label smoothing indeed causes imbalanced
gradients, we train a WideResNet-34-10 model using natural training (‘Natural’) and SAT with or
without label smoothing (smoothing parameter 0.5). We report their robustness in Table 3] and show
their gradient imbalance ratios (GIRs) in Figure[d] According to GIRs, adding label smoothing into
the training process immediately increases the imbalance ratio, especially in natural training. The
PGD robustness of the naturally-trained model also “increases" to 10.86%, which is still 0% under
our MD attack. Using smoothed labels in SAT defense also “increases" PGD robustness by almost
5%, which in fact, decreases by 1%. These evidences confirm that label smoothing indeed causes
imbalanced gradients, leading to overestimated robustness if evaluated by regular attacks like PGD.
Interestingly, it appears that adversarial training can inhibit moderately the imbalanced gradients
problem of label smoothing. This is because the adversarial examples used for adversarial training
are specifically perturbed to the j # y classes, thus helping avoid uniform logits over classes j # y
to some extent.

Other Defense Techniques that may Cause Imbalanced Gradients. The other 3 unimproved
defenses MMA, Sense and JARN-AT1 adopt different defense techniques to improve robustness.
MMA is a margin-based defense that maximizes the shortest successful perturbation for each data
point. MMA only perturbs correctly classified clean examples, and the perturbation stops immediately
at misclassification (into a j # y class). In other words, MMA focuses on examples that are around
the decision boundary (e.g. Zqe = Z,) between class y and all other classes j # y. During training,
the decision boundary margin is maximized by pulling the boundary away from these examples. This
process tries to maximize the distance to the closest decision boundary (e.g. towards the weakest
class) and finally results in equal distances to all other classes. This tends to generate a uniform
prediction over classes j # ¥, a similar effect of label smoothing, and causes imbalanced gradients.

Similar to MMA, Sense perturbs training examples until a certain loss threshold is satisfied. While
in MMA the threshold is misclassification, in Sense, it is the loss value with respect to probability
(e.g. py = 0.7). This type of training procedures with a specific logits or probability distribution
regularization has caused the imbalanced gradients problem for both MMA and Sense. Note that,
Sense causes much severe imbalanced gradients than MMA. We conjecture it is because optimizing
over a probability threshold is much easier than moving the decision boundary.

JARN-AT1 is also a regularization-based adversarial training method. Different from MMA or Sense,
it regularizes the model’s Jacobian (e.g. input gradients) to resemble natural training images. Such an
explicit input gradients regularization tends to reduce the input gradients to a much smaller magnitude
and only keep the salient part of input gradients. The input gradients associated with other j # y
classes will be minimized to cause an imbalance to that associated with class y. This has caused PGD
to produce 27.90% more robustness than our MDMT attack. Note that, even the recent AA attack
still produces 15.51% overestimated robustness compared to our MDMT.

Correlation between GIR and Robustness. According to the GIR scores shown in Figure[2aland
Figure [6] (Appendix [F), models exhibit high GIR scores (e.g. Adv-Interp, FeaScatter and Bilateral)
are generally more prone to imbalanced gradients and are potentially more vulnerable to our MD
attacks. However, GIR is not a measure for robustness nor should be used as an exact metric to
determine whether one defense is more robust than the other. For example, MART demonstrates a
higher GIR score than Sense or JARN-AT1, however, according to our MDMT attack, it is 15.82%
and 36.47% more robust than Sense and JARN-AT, respectively. This is because the GIR score of a
model only measures the gradient situation of the model at its current state, which could decrease
during the attack as shown in Figure [3]and [5| (Appendix [C)). Our MD attacks iteratively exploit and
circumvent imbalanced gradients during the first attacking stage, thus can produce reliable robustness
evaluation at the end.
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4.3 AN ATTACK VIEW OF IMBALANCED GRADIENTS

As shown in Table[T] recent attacks ODI and AA are more effective than traditional attacks PGD and
CW against imbalanced gradients. Here, we provide some insights into why these techniques are
effective against imbalanced gradients. We consider attacking AdvInterp as an example and show
how the gradient imbalance ratio (GIR) changes in different attacking processes.

Logits Diversified Initialization Helps Avoid Imbalanced Gradients. ODI randomly initializes
the perturbation by adding random weights to logits at its first 2 steps. The random weights change
the gradients’ size, thus can also mitigate imbalanced gradients, as shown in Figure [5a)in Appendix [C|
However, initialization only helps the first 2 steps, and the imbalance ratio still jumps in the following
steps. Our attack provides a more direct and efficient exploration of imbalance gradients, thus can
maintain a low imbalance ratio even after the first few steps (see Figure [5c|in Appendix [C)). As also
shown in Table|l} our MDMT attack is consistently more effective than ODI.

Exploration Beyond the e-ball Helps Avoid Imbalanced Gradients. AA is an ensemble of four
attacks: two Auto-PGD attacks and two existing attacks FAB and Square. By inspecting the individual
attacks, we found that the most effective method is FAB. FAB first finds a successful attack using
unbounded perturbation size (e.g. > €), then minimizes the perturbation to be within the e-ball. As
shown in Figure [5b|in Appendix[C] the first few steps of exploration outside the e-ball can effectively
avoid imbalanced gradients. This is also why our MD attacks use a large step size in the first stage.
However, the imbalance ratio tends to increase when FAB attempts to minimize the perturbation
(steps 10 - 16). We believe FAB can be further improved following our decomposition strategy.

Imbalanced Gradients are not Easily Detected or Circumvented by Existing Methods. We also
show, in Appendix [B] that defense models with imbalanced Gradients can still pass the five checking
rules of obfuscated gradients, and that many times of restarts with random initialization or momentum
method does not help escape imbalanced gradients in Appendix [D] This makes imbalanced gradients
more subtle and should be carefully checked to avoid overestimated robustness.

Black-box Attacks can be Improved by Circumventing Imbalanced Gradients. Here we show
gradient estimation based black-box attacks can also benefit from our MD method when there are
imbalanced gradients. We take SPSA as an example, and use the two-stage losses of our MD attack
for SPSA. This version of SPSA is denoted as SPSA+MD. For both SPSA and SPSA+MD, we use
the same batch size of 8192 with 100 iterations, and run on 1000 randomly selected CIFAR-10 test
images. The attack success rates on Adv-Interp, FeaScatter and Sense models are reported in Table
Compared to SPSA, SPSA+MD can lower the robustness by at least 5.9%. This indicates that
imbalanced gradient also has a negative impact on back-box attacks, and our method can be easily
applied to produce more queries-efficient and successful black-box attacks.

Table 4: Attack success rate (ASR) of the SPSA attack with or without our MD on three CIFAR-10
defense models. The ASRs are tested on the entire CIFAR-10 test set. The best results are in bold.

Attack \ Adv-Interp  FeaScatter Sense

SPSA 24.80% 28.29 37.90
SPSA+MD 40.30% 45.60% 48.80%

5 CONCLUSION

In this paper, we identify Imbalanced Gradients, a new situation where traditional attacks such as PGD
can fail and produce overestimated adversarial robustness. We proposed a new metric to investigate
the imbalanced gradients problem in current defense models. We also proposed a new attack called
Margin Decomposition (MD) attack to leverage imbalanced gradients via a two-stage attacking
process. By evaluating 12 state-of-the-art defense models, we find that 6 of them are susceptible to
imbalanced gradients and their PGD robustness suffers a significant drop against our MD attacks.
We identified a set of possible causes of imbalanced gradients, and effective countermeasures. Our
results indicate that future defenses should avoid causing imbalanced gradients to obtain more reliable
adversarial robustness.
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A  ALGORITHMS OF MT AND MDMT ATTACKS

Algorithm [T and Algorithm [2] below describe the complete attacking procedure of our Margin
Decomposition (MD) attack and its Multi-Targeted (MDMT) version.

Algorithm 1 Margin Decomposition Attack

: Input: clean sample x, label y, model f.
: Output: adversarial example X4,
: Parameters: Perturbation bound e, step size o, number of restarts n, number of steps K.
D Xadv & X
sforre{l,..,n}do
Initialize xo by one step of perturbation along the opposite direction of gradients.
fork € {1,..., K} do
Update xy, by Eq.
if {(Xqdv) < £(x%) then
10: Xadv & Xk
11: end if
12:  end for
13: end for
14: return x,q,

R

Algorithm 2 Margin Decomposition MultiTargeted attack

: Input: clean sample x, class label y, class set 7, model f.
. Output: adversarial example X, g,
: Parameters: Perturbation bound ¢, PGD step size o, number of restarts n, number of steps K.
ne < [n/|T1], Xado < X
: forr e {1,...,n} do
fort € T do
Initialize x( by one step of perturbation along the opposite direction of gradients.
forke{1,...,K}do
Update x;, by Eq. (??)
if E(Xadv) < Z(Xk) then
Xadv < Xk
end if
13: end for
14:  end for
15: end for
16: return x4,

PRDID RN

—_— =
Mo Y

B IMBALANCED GRADIENTS ARE DIFFERENT FROM OBFUSCATED
GRADIENTS

Imbalanced gradients occur when one loss term dominating the attack towards a suboptimal gradient
direction, which does not necessarily block gradient descent like obfuscated gradients. Therefore, it
does not have the characteristics of obfuscated gradients, and can not be detected by the five checking
rules for obfuscated gradients (Athalye et al., [2018)). Here, we test all the five rules on the four
defense models that exhibited significant imbalanced gradients: Adv-Interp, FeaScatter, Bilateral,
and Sense. Note that all these models were trained and tested on CIFAR-10 dataset.

One-step attacks perform better than iterative attacks. When gradients are obfuscated, iterative
attacks are more likely to get stuck in a local minima. To test this, we compare the success rate of
one-step attack FGSM and iterative attack PGD in Table[5] We see that PGD outperforms FGSM
consistently on all the four defense models, i.e., no obvious sign of obfuscated gradients.

Unbounded attacks do not reach 100% success. Increasing distortion bound does not increase
success. Larger distortion bound gives the attacker more ability to attack. So, if gradients are not
obfuscated, unbounded attack should reach 100% success rate. To test this, we run an “unbounded"
PGD attack with € = 1. As shown in Table[5] all models are completely broken by this unbounded

13
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attack. This again indicates that the overestimated robustness is caused by a different effect rather
than obfuscated gradients.

Black-box attacks are better than white-box attacks. If a model is obfuscating gradients, it should
fail to provide useful gradients in a small neighborhood. Therefore, using a substitute model should be
able to evade the defense, as the substitute model was not trained to be robust to small perturbations.
To test this, we run black-box transferred PGD attack on naturally trained substitute models. We find
that all four defenses are robust to transferred attacks (“Transfer" in Table[5). We also attack the four
defense models using gradient-free attack SPSA (Uesato et al., 2018). For SPSA, we use a batch size
of 8192 with 100 iterations, and run on 1000 randomly selected CIFAR-10 test images. We confirm
that SPSA cannot degrade their performance. None of these results indicate obfuscated gradients.

Random sampling finds adversarial examples. Brute force random search within some e-ball
should not find adversarial examples when gradient-based attacks do not. Following (Athalye et al.,
2018), we choose 1000 test images on which PGD fails. We then randomly sample 10° points for
each image from its ¢ = 8/255-ball region, and check if any of them are adversarial. The results (e.g.
“Random") shown in Table[5|confirms that random sampling cannot find an adversarial example when
PGD does not.

All the above test results lead to one conclusion that the robustness of the four defenses is not a result
of obfuscated gradients. This indicates that imbalanced gradients does not share the characteristics
of obfuscated gradients, thus cannot be detected following the five test principles for obfuscated
gradients. This makes adversarial robustness evaluation more difficult. Therefore, imbalanced
gradients should be carefully addressed for more accurate robustness evaluation.

Table 5: Test of obfuscated gradients for four defense models that have significant imbalanced
gradients following (Athalye et al 2018)): attack success rate (%) of different attacks. None of the
above results indicates a clear sign of obfuscated gradients.

Defense ‘ FGSM PGD Unbounded Transfer SPSA Random
Adv-Interp (Zhang and Xul[2020) 23.06 27.52 100.00 10.89 24.80 0.00
FeaScatter (Zhang and Wang}, 2019) | 22.60 31.36 100.00 11.11 28.20 0.00
Bilateral (Wang and Zhang] |2019) 28.90 39.05 100.00 9.23 36.00 0.00
Sense (Kim and Wang, 2020) 27.29  40.14 100.00 9.90 37.90 0.00

C CAN LOGITS DIVERSIFIED INITIALIZATION HELP CIRCUMVENT
IMBALANCED GRADIENTS?

Figure[5]shows the GIR values of 5 randomly selected CIFAR-10 test images at the first 20 steps of
ODI, FAB, or our MDMT attack. The FAB attack is the most effective attack in the AA ensemble.
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Figure 5: Gradient imbalance ratio at the first 20 steps of ODI (a), FAB (b) and our MDMT (c) attacks
on the AdvInterp model for 5 randomly selected CIFAR-10 test images.
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D CAN RANDOM RESTART OR MOMENTUM HELP CIRCUMVENT
IMBALANCED GRADIENTS?

As we discussed in Section[3] many times of random starts can potentially increase the probability
of finding an adversarial example. Momentum method is another way to help escape overfitting
to local gradients (Sutskever et al 2013). Here, we test whether random restart or momentum
can help avoid imbalanced gradients. For random restart, we run 400-step PGD attack with 100
restarts (PGD100X400). For momentum, we use momentum iterative FGSM (MI-FGSM) (Dong
et al., 2018)) with 40 steps, 2 restarts and momentum 1.0. For both attacks, we set ¢ = 8/255 and
step size o = 2/255. We apply the two attacks on 1000 randomly chosen CIFAR-10 test images,
and report the robustness in Table [6|for the four defense models checked in Sectiong} Compared
to traditional PGD with 40 steps, the robustness can indeed be decreased by PGD'"?*4% except
Bilateral, an observation consistent with our analysis in Section [3|that more restarts can lower model
accuracy. However, the robustness is still highly overestimated compared to that by our MDMT
attack. This indicates that imbalanced gradients can exist in wide-spanned input regions, resulting in
a low probability for random restart to find successful attacks. To our surprise, MI-FGSM performs
even worse than traditional PGD. On three defense models (eg. Adv-Interp, FeaScatter, and Sense), it
produces even higher robustness than PGD. This implies that accumulating velocity in the gradient
direction can make the overfitting even worse when there are imbalanced gradients. This again
confirms that the imbalanced gradients problem should be explicitly addressed to obtain more reliable
adversarial robustness.

Table 6: Robustness (%) of four defense models that have significant imbalance gradients against
PGD'?9"4% and MI-FGSM attack.

Defense | PGD MDMT | PGD'"**°  MI-FGSM

Adv-Interp | 72.48 37.59 70.70 73.25
FeaScatter | 68.64 36.86 64.10 70.79
Bilateral 60.95 37.21 64.08 51.52
Sense 59.86  35.25 56.00 62.41

E 12 EXAMINED DEFENSE MODELS

We focus on adversarial training models, which are arguably the most effective defense models to date.
The 12 selected defense models are as follows. The standard adversarial training (SAT) (Madry et al.|
2018)) trains models on adversarial examples generated by PGD attack. Dynamic adversarial training
(Dynamic) (Wang et al.,|2019) trains on adversarial examples with gradually increased convergence
quality. Max-Margin Adversarial training (MMA) (Ding et al., 2018]) trains on adversarial examples
with gradually increased margin (e.g. the perturbation bound €). For MMA, we evaluate the released
“MMA-32” model. Jacobian Adversarially Regularized Networks (JARN) adversarially regularize
the Jacobian matrices, and can be combined with 1-step adversarial training (JARN-AT1) to gain
additional robustness (Chan et al., [2020). For JARN, we only evaluate the JARN-AT1 as JARN
has already been completely broken in (Croce and Heinl, |2020). We implement JARN-AT1 on the
basis of their released implementation of JARN. Sensible adversarial training (Sense) (Kim and
‘Wang|, 2020) trains on loss-sensible adversarial examples (perturbation stops when loss exceeds
certain threshold). Bilateral Adversarial Training (Bilateral) (Wang and Zhang, 2019) trains on
PGD adversarial examples with adversarially perturbed labels. For Bilateral, we mainly evaluate
its released strongest model “R-MOSA-LA-8”. Adversarial Interpolation (Adv-Interp) training
(Zhang and Xu, 2020) trains on adversarial examples generated under an adversarial interpolation
scheme with adversarial labels. Feature Scattering-based (FeaScatter) adversarial training (Zhang and
‘Wang,, |2019)) crafts adversarial examples using latent space feature scattering, then trains on these
examples with label smoothing. TRADES (Zhang et al.,[2019) replaces the CE loss of SAT by the
KL divergence for a better trade-off between robustness and natural accuracy. Based on TRADES,
RTS (Carmon et al.|[2019) and UAT (Alayrac et al.,[2019) improve robustness by training with 10 x
more unlabeled data. Misclassification Aware adveRsarial Training (MART) (Wang et al., [2020)
further improves the above three methods with a misclassification aware loss function.
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F GRADIENT IMBALANCED RATIO OF MORE DEFENSE MODELS

In this Section, we provide a complete analysis on the gradient imbalance ratios (GIRs) of all 12
examined defense models and a naturally trained model. The GIR values of these models are shown in
Figure[] One immediate observation is that the GIR value of a defense model is positively correlated
with its robustness drop against our MDMT attack in Table[T] Slightly imbalanced defense models
SAT, TRADES and RST demonstrate minimum robustness drop, while the PGD-evaluated robustness
of highly imbalanced defense models FeaScatter, Bilateral and AdvInterp can drop drastically against
our MD attacks. This verifies that higher gradient imbalance can indeed causes more overestimated
robustness by regular PGD attack.
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Figure 6: Gradient imbalance ratios (GIRs) of 12 defense models and a naturally trained model
(“Natural”). All models are trained on CIFAR-10 dataset.

G ABLATION OF THE PROPOSED MD ATTACKS

In this section, we investigate the influence of three factors to our MD attack: 1) initialization method,
2) the second attacking stage, and 3) the stage ordering. We use AdvInterp as our target model, and
conduct the following attack experiments on CIFAR-10 test data.

Initialization Method. We compare the success rates of our MD attacks using random initialization
versus the opposite direction initialization (see Algorithm[I|and Algorithm[2). The results are reported
in Table[7} As can be observed, the opposite direction initialization demonstrates a clear advantage
over random initialization. Particularly, for MD attack, using opposite direction initialization can
improve the attack success rate by 8%, while for MDMT attack, the success rate can also be improved.

The Second Attacking Stage. We further investigate the importance of the second stage of attacking
with the full margin loss in our MD attacks. Here, we fix the initialization method to the opposite
direction initialization. The attack success rates with or without the second stage are also reported in
Table[7} We highlight that attacking the full margin loss via the second attacking stage can consistently
increase the success rate. Especially for MD attack, a 4.99% improvement can be achieved by the
second attacking stage.

The Ordering of the Stages. To verify that the ordering of the two stages is suitable for MD attacks,
we evaluate a new version of our MD attacks with the two stages are switched: the first stage optimizes
the full margin loss and the second stage explores the individual loss terms. The results are reported
in Table |Z| (the last two columns). As can be observed, MD attacks become much less effective when
the two stages are switched. This is because
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Table 7: Attack success rates (%) of our MD and MDMT attacks with 1) different initialization
methods, 2) with/without the second attacking stage, and 3) with/without stages being switched.
Experiments are conducted on defense model AdvInterp and dataset CIFAR-10.

Attacks Initialization Second Attacking Stage ~ Switching Stage
Random  Opposite | without with ‘ Yes No
MD 46.32 54.67 49.68 54.67 4841  54.67
MDMT ‘ 61.07 62.41 ‘ 61.82 62.41 60.62 6241

H PARAMETER ANALYSIS OF THE PROPOSED MD ATTACK

We further investigate the sensitivity of our MD attack to two parameters: 1) the number of perturba-
tion steps, and 2) the step size. Here, we focus on the first attacking stage as the second stage is a
typical PGD attack, which has been thoroughly investigated in (Wang et al.,[2019)).

Number of Steps for the First Stage. The total number of perturbation steps is set to K = 40.
When we vary the perturbation steps of the first stage, the remaining steps will be given to the second
stage. MD attack will reduce to the regular PGD attack if the perturbation steps of the first stage
is set to 0. Here, we vary the steps from 5 to 40 in a granularity of 5. The step size is set to 8/255
and 2/255 for the first and second attacking stage, respectively. The robustness of 4 defense models
including Bilateral, Adv-Interp, FeaScatter and Sense are illustrated in Figure As can be observed,
the performance of our MD attack tends to drop at both ends, and the best performance is achieved
at [20, 30]. Therefore, we suggest to simply use half of the perturbation steps for the first stage (e.g.
switching to the second stage at the %-th step).

Step Size for the First Stage. We vary the step size used for the first stage from 2/255 to 16/255 in
a granularity of 2/255. Following the above experiments, here we fix the number of steps in each
stage to 20. The evaluated robustness (or model accuracy on the generated attacks) of defense models
Bilateral, Adv-Interp and FeaScatter are illustrated in Figure[7b] A clear improvement of using large
step size in the first stage can be observed. Therefore, we suggest to use a large step size for the first
stage of exploration.
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Figure 7: Parameter analysis of MD attack: (a) the accuracies of 5 defense models under MD attacks
with different number of perturbation steps in the first stage; (b) the accuracies of 5 defense models
under MD attacks with different step sizes in the first stage.

I PARAMETER TUNING FOR PGD ATTACK

In this section, we compare the attack success rates of the PGD attack with different step sizes. We
vary the step size from 2/255 to 16/255 in a granularity of 2/255. Note that we only change the
step size for the first half of the attacking iterations. The results on 4 defense models including
Bilateral, Adv-Interp, FeaScatter and Sense are reported in Table[] As has also been confirmed in
other works (Croce and Hein, |2020; [Tashiro et al., 2020), larger step size does help obtain stronger
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attacks, especially there are imbalanced gradients (e.g. Adv-Interp, FeaScatter and Sense). However,
these finetuned PGD attacks are still far less effective than our MD attacks (see Table[T). On SAT
model, the best step size for PGD is 4/255, and larger step size than 4/255 even harms the attack.

Table 8: Adversarial robustness (%) of PGD attack with different step sizes on defense models
Adv-Interp, FeaScatter, Sense and SAT trained on CIFAR-10. The results are computed on the entire
CIFAR-10 test set. The lowest robustness (i.e. strongest attack) of each defense model is highlighted
in bold.

Defense | 2/255 4/255 6/255 8/255 10/255 12/255 14/255 16/255

Adv-Interp | 72.48 7220 71.87 7124 7052  69.34  67.41 65.20
FeaScatter | 68.64 67.59 66.75 6659 64.69 63.66 61.96 59.78
Sense 59.86 58.86 58.11 57.13 56.61 5544 5447  53.22
SAT 4594 4590 46.02 46.15 4640 46775 4725 4774

J COMPARISON TO THE FOUR INDIVIDUAL ATTACKS IN AUTOATTACK

In this section, we compare the model robustness evaluated by the individual attacks in the AA
ensemble with our MD attacks. These experiments follow the same setting as in Section 4 The
results are shown in Table E} As can be observed, our MDMT attack demonstrates a superior
performance across all the defense models. Moreover, our MD attack which is as efficient as PGD
attack can even achieve better performance than all individual attacks on 6 out of 12 models.

Table 9: Attack success rates (%) of the 4 individual attacks (column 2-6) in AA attack and our MD
attacks (column 6-7). The best results are highlighted in bold. The second best results are highlighted
in underline

Defense | APGDcr APGDprr FAB  Square | MD  MDMT

RST 61.47 60.64 60.62 66.63 | 60.17 59.86
UAT 59.86 62.03 58.20 6637 | 59.36  56.65
TRADES 55.08 54.04 53.82 5948 | 53.10 52.78
MART 55.52 52.51 51.55 57.45 | 51.84 51.07
SAT 46.40 46.56 46.38 53.13 | 45.64 45.25
Dynamic 45.81 45.86 43.64 53.49 | 4393  42.69
MMA 49.40 50.18 4738 5548 | 45.63 41.92
Bilateral 58.26 43.11 4136 59.07 | 39.82 37.21
Adv-Interp 69.36 49.43 40.60 66.87 | 4533  37.59
FeaScatter 62.03 48.96 40.84 59.12 | 43.12  36.86
Sense 54.80 48.41 38.88 6131 | 40.64  35.25
JARN-AT1 37.25 67.55 6740 7532 | 15.03 14.60

Table 10: Robustness (%) of 3 defense models trained on CIFAR100 data against PGD, AA and our
MDMT attacks. The best results (lowest evaluation robustness) are highlighted in bold.

Defense | PGD AA  MDMT

AT-AWP (Preact ResNet-18) | 30.70  25.35 25.37
AT-PT (WideResNet-34-10) 335 2842 28.45
AT-ES (Preact ResNet-18) 28.1  19.07 19.12

K EVALUATION RESULTS ON CIFAR-100 DATASET

Here, we run our MD attacks on 3 defense models trained on CIFAR-100 dataset: 1) Adversarial
Training with Adversarial Weight Perturbation (AT-AWP) (Wu et al., |2020), 2) Adversarial Training
with Pre-Training (AT-PT) (Hendrycks et al.,|2019), and 3) Adversarial Training with Early Stopping
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(AT-ES) (Rice et al.,[2020). For AT-AWP and AT-ES, we use their Preact ResNet-18 model, while
for AT-PT, we use their WideResNet-34-10 model. The results are reported in Table @} Our
MDMT attack achieved a similar robustness evaluation to the AA ensemble attack, lowering the PGD
evaluated robustness by at least 5%. While being as effective as AA attack, our MDMT attacks are
more than 8 times faster than AA attack, as we have shown in Table 2}
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