
(How) Do Language Models Track State?

Belinda Z. Li 1 Zifan Carl Guo 1 Jacob Andreas 1

Abstract
Transformer language models (LMs) exhibit
behaviors—from storytelling to code generation—
that seem to require tracking the unobserved state
of an evolving world. How do they do this? We
study state tracking in LMs trained or fine-tuned
to compose permutations (i.e., to compute the or-
der of a set of objects after a sequence of swaps).
Despite the simple algebraic structure of this prob-
lem, many other tasks (e.g., simulation of finite
automata and evaluation of boolean expressions)
can be reduced to permutation composition, mak-
ing it a natural model for state tracking in gen-
eral. We show that LMs consistently learn one of
two state tracking mechanisms for this task. The
first closely resembles the “associative scan” con-
struction used in recent theoretical work by Liu
et al. (2023) and Merrill et al. (2024). The second
uses an easy-to-compute feature (permutation par-
ity) to partially prune the space of outputs, and
then refines this with an associative scan. LMs
that learn the former algorithm tend to general-
ize better and converge faster, and we show how
to steer LMs toward one or the other with inter-
mediate training tasks that encourage or suppress
the heuristics. Our results demonstrate that trans-
former LMs, whether pre-trained or fine-tuned,
can learn to implement efficient and interpretable
state-tracking mechanisms, and the emergence
of these mechanisms can be predicted and con-
trolled. Code and data are available at https:
//github.com/belindal/state-tracking.

1. Introduction
Language models (LMs) are trained to model the surface
form of text. A growing body of work suggests that model
internals contain a latent, decodable state of the world—e.g.,
situations described by language and results of program

1MIT EECS and CSAIL. Correspondence to: Belinda Z. Li
<bzl@mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

execution—to support prediction (Li et al., 2021; Nanda
et al., 2023; Li et al., 2023). However, the mechanisms
that LMs use to construct these representations are not un-
derstood. Do LMs simulate state evolution step by step
across successive hidden layers or token representations
(Yang et al., 2024)? Are states approximated through a com-
plex collection of heuristics (jylin04 et al., 2024)? Is state
tracking an illusion (Bender & Koller, 2020)?

This paper studies the implementation and emergence of
state tracking mechanisms in language models using per-
mutation composition as a model system: given a fixed set
of objects, we train or fine-tune LMs to predict the final
position of each object after a sequence of rearrangements.
Previous work has used versions of this task to evaluate
LMs’ empirical state tracking abilities (Li et al., 2021; Kim
& Schuster, 2023; Li et al., 2023). Additionally, as shown
by Barrington (1989), many complex, natural, state-tracking
tasks—including simulation of finite automata and evalua-
tion of Boolean expressions—can be reduced to permutation
tracking with five or more objects. This makes it a natural
model for studying state tracking in general.

Our analysis proceeds in several steps. §2 provides technical
preliminaries: §2.1 and §2.2 introduce state tracking prob-
lems and the permutation composition task we use to model
them (Figure 1A), and §2.3 reviews the set of interpretabil-
ity tools we use to analyze LM computations. Next, §3
lays out a family of algorithms that past work has suggested
LMs might, in principle, use to solve the state tracking
task (Figure 1D), and describes the signatures—expected
readouts from different interpretability methods—that we
would expect to find if a given algorithm is implemented
(Figure 1B-C).

Finally, §4 and §5 present experimental findings. Across a
range of sizes, architectures, and pretraining schemes, we
find that LMs consistently learn one of two state tracking
mechanisms. The first mechanism, which we call the “as-
sociative algorithm” (AA), resembles the associative scan
construction used by Liu et al. (2023) and Merrill & Sabhar-
wal (2024) to establish theoretical lower bounds on the ex-
pressive capacity of Transformers. The second mechanism,
which we call the “parity-associative algorithm” (PAA), first
rules out a subset of final states using an easy-to-compute
permutation parity heuristic, then uses an associative scan

1

https://github.com/belindal/state-tracking
https://github.com/belindal/state-tracking

(How) Do Language Models Track State?

Parity

How much of prefix must be
modified at each layer to change
outputs?

Probing Signature
What percentage of the state/
state parity sequence can be
accurately probed from LMs'
intermediate layers?

Correctly predicts final state when
prefix up to this cell is patched.

Rules out a subset of states, but does not
uniquely identify the correct state, when
prefix up to this cell is patched.

Predicts final state with chance accuracy.

State Probe

State Parity Probe
(chance accuracy is 0.5)

Layers

Probe
Accuracy

Parity-Associative
Algorithm (PAA)

"Clean"
output s

"Corrupt"
output s

Patch prefix up to this token on this layer

Train linear probe to decode nth state
in sequence from nth position in each
layer's representations

Layers

Transformer-Implementable Algorithms

Parallel Algorithm
[S3 only]

Permutation Composition

Associative Algorithm
(AA)

Layers

Probe
Accuracy

Sequential Algorithm

Layers

Probe
Accuracy

"Parity
Complement"

p()

State

A B C

D

Prefix Patching Signature

Layers

Probe
Accuracy

2 possible
outcomes

2 possible
outcomes

Probe
Acc.

Parity

Legend

s0 s1 s2

a0 a1 a2Input actions

Output states

First layer

Last layer

Transformer

Figure 1. We use permutation word problems as a simple model of state tracking. Actions are permutations, and states are the products of
those permutations; the current state can be tracked by taking the cumulative product from left to right (§2). We identify several possible
algorithms that Transformers may use to solve permutation word problems: sequential, parallel, associative, and parity-associative (§3).
Above, we depict the “signatures” of each algorithm under two types of interpretability analysis: prefix patching, where we create pairs of
prompts differing only on the first token, then substitute all activation except the prefix up to a token at a particular layer, and probing,
where we train a linear probe to map from last-token representations across the layers to either the final state or the final state parity (§2.3).
Note: the dotted lines indicate two different probing signatures consistent with this algorithm (see Appendix C.3 for more details).

to obtain a final prediction. Notably, we fail to find evidence
for either step-by-step simulation or fully parallel composi-
tion, despite their being theoretically implementable by LMs.
We support our findings with evidence from representation
interventions (Meng et al., 2022; Zhang & Nanda, 2024;
§4.2), probes (Shi et al., 2016; §4.3), patterns in prediction
errors (Zhong et al., 2024; §4.4), attention maps (Clark et al.,
2019; §4.5), and training dynamics (McCoy et al., 2020;

Olsson et al., 2022; Hu et al., 2023; §5.1).

The scan operation for PAA appears difficult for LMs to im-
plement robustly, and the choice of mechanism sometimes
significantly impacts model performance on long sequences
(§5.1). Whether a given LM learns AA or PAA is highly
stochastic (§5.2). However, each is associated with a char-
acteristic set of phase transitions in the training loss (Chen
et al., 2024), and LMs can be steered toward one solution or

2

(How) Do Language Models Track State?

the other by training on an intermediate task that encourages
or discourages LMs from learning a parity heuristic (§5.3).

As pretrained LMs sometimes re-use circuits when fine-
tuned on related tasks (Prakash et al., 2024; Merullo et al.,
2024), our results suggest a possible mechanism by which
real-world LMs might perform state tracking when mod-
eling language, code, and games. We show preliminary
evidence of these algorithms on a version of our permuta-
tion composition tasks expressed in natural language (Ap-
pendix E). Looking beyond state tracking, these findings
underscore both the complexity and variability of LM so-
lutions to complex tasks, which may involve both heuristic
features and structured solutions.

2. Background and Preliminaries
2.1. State Tracking

Inferring common ground in discourse (Li et al., 2021),
navigating the environment (Vafa et al., 2024), reasoning
about code (Merrill et al., 2024), and playing games (Li
et al., 2023; Karvonen, 2024) all require being able to track
the evolving state of a real or abstract world. There has been
significant interest in understanding whether (and how) LMs
can perform these tasks. In theoretical work, researchers
have observed that many natural state-tracking problems
(including the ones listed above) are associated with the
complexity class NC1, but Transformers cannot track the
state of arbitrarily long inputs (Merrill et al., 2022; Huet
et al., 2025; Bhattamishra et al., 2020; Delétang et al., 2023;
Strobl et al., 2024). However, prior work has shown that
Transformers with O(log n) depth can model inputs of up
to length n (Liu et al., 2023; Merrill & Sabharwal, 2024).
Empirical work, meanwhile, has found that large LMs learn
to solve state tracking problems (Kim & Schuster, 2023) and
encode state information in their representations (Li et al.,
2021; Li et al., 2023). But a mechanistic understanding of
how trained LMs infer these states has remained elusive.

2.2. Permutation Group Word Problems

Toward this understanding, the experiments in this paper
focus on one specific state tracking problem, permutation
composition. At a high level, this problem presents LMs
with a set of objects and a sequence of reshuffling operations;
LMs must then compute the final order of the objects after
all reshufflings have been applied (Figure 1A). Though less
familiar than discourse tracking or program evaluation, Kim
& Schuster (2023) used a version of this task to evaluate
LM state tracking. More importantly, as shown by Bar-
rington (1989) and recently highlighted by Merrill et al.
(2024), permutation tracking (with five or more objects) is
NC1-complete, meaning any other state tracking task in this
family can be converted into a permutation tracking class.

This, combined with its simple structure, makes it a natural
model system for studying state tracking in general.

More formally, the finite symmetric group Sn comprises
the set of permutations of n objects equipped with a com-
position operation. For example, 42315 denotes the permu-
tation of 5 objects (i.e. in S5) that moves the first object to
the fourth position, the second object to the second position,
etc. Importantly for our findings in this paper, every per-
mutation can be expressed as a composition of two-element
swaps (in Figure 1A, a0, but not a1, is an example of a
swap). The parity of a permutation (even or odd) is the
parity of the number of swaps needed to create it.

The composition of two permutations, standardly denoted
a1 ◦ a0, is the result of applying a1 after a0. Inputs to
sequence models in machine learning are typically written
with earlier inputs before later inputs (i.e., left-to-right), so
for consistency with this convention, we will write a0a1 to
denote the application of a0 then a1. Figure 1A shows the
result of composing 42315 and 12534 in sequence.

Finally, the word problem on Sn is the problem of comput-
ing the product of a sequence of permutations. This product
itself corresponds to a single permutation (32514 in Fig-
ure 1). But, following the intuition given at the beginning of
the section, it may equivalently be interpreted as the final or-
dering of the objects being rearranged (DBAEC in Figure 1A).
Following this intuitive explanation (and by analogy to other
state tracking problems), we will use at to denote a single
permutation (“action”) in a sequence, and st = a0 · · · at to
denote the result of a sequence of permutations (a “state”).

Given a sequence of permutations, we use ϵ(at) to denote
the parity of the tth permutation, so:

ϵ(st) = ϵ(a0 · · · at) =
∑
i

ϵ(ai) mod 2 (1)

(where ϵ is 0 for even permutations and 1 for odd ones).

All experiments in this paper train transformer language
models to solve the word problem: they take as input a
sequence of actions [a0, . . . , at], and output a sequence of
state predictions [s0, . . . , st]. We also validate our findings
on a natural language version of this task in Appendix E,
where permutations are expressed as instructions like swap
positions 2 and 3.

2.3. Interpretability Methods

Our experiments employ several interpretability techniques
to understand how LMs solve permutation word problems,
which we briefly describe below. Throughout this paper, we
use ht,l to denote the internal LM representation at token po-
sition t after Transformer layer l, with T and L denoting the
maximum input length and number of layers respectively.

3

(How) Do Language Models Track State?

Probing In probing experiments (Shi et al., 2016), we fix
the target LM, then train a smaller “probe” model (e.g. a
linear classifier) to map LM hidden representations h to
quantities z hypothesized to be encoded by the LM (Fig-
ure 1C). Our experiments specifically evaluate whether (1)
the state st, and (2) the final state parity is linearly encoded
in intermediate-layer representations. For each layer l, we
train (1) a state probe to predict p(st | ht,l)and (2) a parity
probe to predict p(ϵ(st) | ht,l). Given a trained LM, we
collect representations on one set of input sequences to train
the probe, then evaluate probe accuracy on a held-out set.

Activation Patching Probing experiments reveal what in-
formation is present in an LM’s representations, but not
that this information is used by the LM during prediction.
Activation patching is a method for determining which rep-
resentations play a causal role in prediction. Portions of the
LM’s internal representations are overwritten (“patched”)
with representations derived from alternative inputs; if pre-
dictions change, we may conclude that the overwritten rep-
resentations was used for prediction (Meng et al., 2022;
Zhang & Nanda, 2024; Heimersheim & Nanda, 2024).

Let p(y | x;h ← h′) denote the probability that an LM
assigns to the output y given an input x, but with the repre-
sentation h replaced by some other representation h′. In a
typical experiment, we first construct a “clean” input x that
we wish to analyze, and a “corrupted” input x′ that alters or
removes information from x (e.g. by adding noise or chang-
ing its semantics). Next, we compute the most probable
outputs from clean and corrupted inputs:

ŷ = arg max
y

p(y | x)

ŷ′ = arg max
y

p(y | x′)

We then re-run the LM on the corrupted input x′, but sub-
stitute a hidden representation from the clean input x, and
measure how much prediction shifts toward the clean output
ŷ using the normalized logit difference (Wang et al., 2023):

NLD =
LD(x′;ht,l ← hclean

t,l)− LD(x′)

LD(x)− LD(x′)
(2)

where
LD(·) = log p(ŷ | ·)− log p(ŷ′ | ·)

and the representation hclean
t,l is taken from the clean run of

the model. A value of NLD close to 1 indicates that we have
restored a part of the circuit that computes ŷ.

In this paper, we evaluate which representations are in-
volved in prediction by presenting models with a clean
sequence [a0, a1, . . . , at] associated with a final state st.
We then produce a corrupted sequence differing only in
the first token, [a′0, a1, . . . , at], associated with a final state

s′t. We then identify the hidden states that, when patched
in, cause the model to output st rather than s′t with high
probability. Our main experiments specifically perform
prefix patching, where all hidden representations up to in-
dex t (h1:t,l ← hclean

1:t,l) are patched at a particular layer l
(Figure 1B). Prefix patching allows us to localize how in-
formation gets progressively transferred to the final token
as we move deeper into the network. A value close to 1
means that some part of the prefix representation was used
for prediction; a value close to 0 means that no part was.

We also experiment with other types of localization tech-
niques (including suffix and window patching), as well as
zero-ablating certain activations in Appendix B.

3. What Algorithms Can Transformers
Implement in Theory?

To use the methods described in §2.3 to interpret model be-
havior, we must first establish a phenomenology for LM state
tracking—identifying candidate state tracking algorithms
that might be implemented by the model, along with the
empirical probing and activation patching results we would
expect to find if these algorithms are implemented. Below,
we describe a set of state tracking mechanisms suggested
by the existing literature.

For each mechanism, we first present a sketch of an im-
plementation, in the form of rules for computing the value
stored in the hidden state for each layer and timestep. We
then describe the “signature” of each algorithm—the result
we would expect from the application of prefix patching and
probing techniques described in the preceding section.

3.1. Sequential Algorithm

The sequential algorithm composes permutations one at a
time from left to right (analogous to a mechanism some
LMs use to solve multi-hop reasoning problems; Yang et al.,
2024). Signatures of this algorithm would provide evidence
that LMs implement step-by-step “simulation” in their hid-
den states to solve state tracking tasks. In this algorithm,
each hidden state ht,l stores the associated action at until st
can be computed, maintaining ht,t = st. As shown in the
first row of Figure 1D, this computation depends only on
hidden states with l ≤ t.

ht,0 = at ∀t // initialize actions
(h0,0 = st) // by definition; see §2.2
for t = 1..T, l = 1..L do

if l < t then ht,l = ht,l−1 = at // propagate actions
if l = t then ht,l = ht−1,l−1ht,l−1

= st−1at = st // update states
if l > t then ht,l = ht,l−1 = st // propagate states

end for

4

(How) Do Language Models Track State?

Patching Signature Because of this dependency, any
patching experiment that replaces only hidden states with
l > t will not affect the final model predictions, leading to
the upper triangular patching signature shown in the first
row of Figure 1B.

Probing Signature Because st can only be predicted at
layer l = t, we expect a state probe to show a linear de-
pendence on depth: for sequences of maximum length T , a
probe at layer l will correctly label an l/T fraction of states.
If these state representations linearly encode parity, then
the accuracy of the parity probe will also increase linearly;
otherwise, it will remain constant.1

3.2. Parallel Algorithm

As noted in §2.2, the word problem on S5 belongs to NC1

(and thus requires a circuit depth that scales logarithmi-
cally with sequence length). The word problem on S3,
however, belongs to TC0, the class of decision problems
with constant-depth threshold circuits. See discussion in Ap-
pendix A and Merrill & Sabharwal (2023). A constant-depth
circuit will give rise to a set of hidden-state dependencies
like the second row of Figure 1D.

Patching Signature Let lP denote the number of layers
needed to implement the constant-depth circuit for this task.
For patching interventions conducted at or earlier than layer
lP , we expect the model’s predictions to change; at deeper
layers than lP , interventions will have no effect at all, re-
sulting in the L-shaped pattern shown in the second row of
Figure 1B.

Probing Signature We expect the probe to obtain perfect
accuracy within a constant number of layers. Because the
algorithm described in Appendix A computes state parity as
an intermediate quantity, the parity probe will also obtain
perfect accuracy within a constant number of layers.

3.3. Associative Algorithm

In the associative algorithm (AA), Transformers compose
permutations hierarchically: in each layer, adjacent se-
quences of permutations are grouped together and their
product is computed. This is analogous to recursive scan
in Liu et al. (2023) and flattened expression evaluation
in Merrill et al. (2024). This algorithm takes advantage
of the associative nature of the product of permutations,
whereby a0a1a2a3 = (a0a1)(a2a3). It ensures that ht,l =
at−2l+1 · · · at, and thus that ht,log(t+1) = a0 · · · at. Signa-
tures of this algorithm would provide evidence that LMs
perform state tracking not by encoding states, but rather by
mapping between states, for prefixes of increasing length.

1See Appendix C.3 for a representative model in which parity
is not linearly decodable.

ht,0 = at ∀t // initialize actions
for t = 0..T, l = 1..L do

if l ≤ log(t+ 1) then
ht,l = ht−2l−1,l−1ht,l−1

= at−2l+1 · · · at // compose actions
else ht,l = ht,l−1 = st // propagate actions

end for

(Defining ht<0,l = h0,l for notational convenience.)

As seen in the third row of Figure 1D, the model’s prediction
for st depends on the hidden representation ht/2 in the layer
before the final state is computed, the representation at ht/4

in the layer before that, etc.

Patching Signature Consequently, for AA, the length of
the prefix that must be modified to alter model behavior
increases exponentially in depth, resulting in the signature
in the third row of Figure 1B.

Probing Signature We similarly expect to see an exponen-
tially increasing state probe accuracy (because st becomes
predictable at layer l = log t, a probe at layer l will correctly
label a 2l/T fraction of states). If state parity is encoded in
state representations, then parity probe accuracy will also
increase exponentially.

3.4. Parity-Associative Algorithm

In this algorithm (PAA), LMs compute the final state in
two stages: first computing the parity of the state (which
can be performed in a constant number of layers using a
subroutine from the Parallel algorithm); then separately
computing the remaining information needed to identify
the final state (the “parity complement”) using a procedure
analogous to AA. (Unlike the preceding algorithms, we are
not aware of any previous proposals for solving permutation
composition problems in this way; but as we will see, it
is useful for understanding interactions between “heuristic”
and “algorithmic” solutions in real LMs.)

We model implementation of PAA with hidden states com-
prising two “registers” ϵ and κ (i.e. ht,l = (ϵt,l, κt,l) which
store the parity and complement respectively.

κ0,t = at ∀t // initialize actions
ϵ0,t = par(st) ∀t // compute parities (App. A)
for t = 0..T, l = 1..L do

ϵt,l = ϵt,l−1 // propagate parities
if l ≤ log(t+ 1) then

κt,l = comp(κt−2l−1,l−1κt,l−1) // compose
else κt,l = κt,l−1 // propagate complements

end for

In this algorithm, the hidden state at position i holds that

5

(How) Do Language Models Track State?

position’s state parity and parity complement (if computed
at this point). Parity, like S3, may be computed with a con-
stant number of layers. The algorithm sketch given above
is deliberately vague about the implementation of the par-
ity complement composition operation (comp). In practice,
different representations of this complement appear to be
learned across different runs; see Figure 10 for evidence
that these representations are computed using a brittle (and
perhaps heuristic- or memorization-based) mechanism.

Patching Signature If the corrupted input has a different
parity from the clean input, then in layers deeper than those
used to compute parity, it is necessary to restore the entire
prefix to cause the LM to assign full probability to the clean
prediction. On these inputs, prefix patching will show a
signature similar to the parallel algorithm (see Figure 8B).
However, if the corrupted input has the same parity as the
clean input, the portion of the hidden state computed in par-
allel remains the same, while its complement is computed
using the same mechanism as the associative algorithm
(see Figure 8A). These inputs will thus exhibit an AA-like
(exponentially-shaped) patching pattern. When averaged
together, parity-matched and parity-mismatched patching
will produce a pattern with two regions, one shaped like the
associative algorithm (associated with a 50% restoration in
accuracy) and one shaped like the parallel algorithm (associ-
ated with a 100% restoration in accuracy). Again, this may
be most easily understood graphically (Figure 1).

Probing Signature We expect state probes to improve
exponentially with depth, while parity probes converge to
100% at a constant depth.

4. What Mechanisms do Transformers Learn?
In this section, we compare these theoretical state track-
ing mechanisms to empirical properties of LMs trained for
permutation tasks. It is important to emphasize that the vari-
ous signatures described above provide necessary, but not
sufficient, conditions for implementation of the associated
algorithm; the exact mechanism that LMs use in practice is
likely complex and dependent on other input features not
captured by the algorithms described above.

Nevertheless, our experiments successfully rule out some
possible state tracking mechanisms and identify algorithmic
features likely to be shared between the idealized mecha-
nisms above and the true behavior learned by transformers.
Specifically, our experiments yield evidence consistent with
the associative algorithm (AA) in some models and the
parity-associative algorithm (PAA) in other models, across
architectures, sizes, and initializations.

4.1. Experimental Setup

We generate 1 million unique length-100 sequences of per-
mutations in both S3 and S5. We split the data 90/10 for
training/analysis, and fine-tune these models (using a cross-
entropy loss) to predict the state corresponding to each prefix
of each action sequence:

L = −
99∑
t=0

log pLM(st | a0 . . . at) , (3)

where pLM (sn | a0 . . . at) is the probability the language
model places on state token sn when conditioned on the
length-n prefix of the document.

Except where noted, we begin with Pythia-160M models
pre-trained on the Pile dataset (Biderman et al., 2023). Re-
gardless of initialization scheme, we fine-tune models for
20 epochs on Equation (3) using the AdamW optimizer with
learning rate 5e-5 and batch size 128. For larger models
(above 700M parameters), we train using bfloat16.

4.2. Activation Patching

For both the S3 and S5 tasks, across training runs, we find
that activation patching results exhibit two broad clusters of
behavior. For some trained models, they match the activa-
tion patching signature associated with AA; in others, they
match the signature of PAA—even when the only source
of variability across training runs is the order in which data
is presented. Results for prototypical AA- and PAA-type
models, on both S3 and S5, are shown in Figure 2. Addi-
tional patching results in Appendix B confirm that patching
intermediate representations of PAA-type models (the light-

Pythia on S3

AA

PAA

Pythia on S5

Normalized Logit Difference

Figure 2. Activation patching on the residual stream for various
Pythia models trained on S3 and S5. Each cell at layer l and token
t represents the probability of the correct final state when the entire
prefix up to t at layer l is restored. We find signatures matching the
AA and PAA algorithms from Figure 1, with both models ignoring
exponentially longer prefixes as we traverse down the layers, and
PAA models containing intermediate representations that encode
some information about the final state, but not its parity.

6

(How) Do Language Models Track State?

Pythia on S3 (PAA) Pythia on S3 (AA) Pythia on S5 (AA)Pythia on S5 (PAA)

Figure 3. Accuracy of state probe and state parity probe across layers on S3 and S5 models sometimes match signatures for AA, and
sometimes PAA. In all models, the state probe accuracy increases roughly exponentially with model depth. We find that in PAA models,
the parity of the state is linearly decodable from earlier intermediate layers, while in the AA models shown above, the parity is never
linearly encoded in any layer of the model. (In other AA models, the parity can only be linearly decoded at the final layer.)

Y
(Cluster)

Y (Cluster) X (Cluster)

X
(Cluster)

X (Cluster)

Figure 4. In models that learn PAA on S3, representations of the
final product can be geometrically decomposed into two orthogonal
directions, corresponding to the parity of the product (represented
as the Z-axis in the above graph) and cluster identity of the product
(represented by the X-Y plane). Note that the clusters are at 60
degrees to each other, and products of different parities within a
cluster are equidistant from each other, with odd-parity products
in one plane, and even-parity products in another plane.

colored cells in Figure 2) results specifically in predictions
with incorrect parity. We find standard deviations to be low
in Figure 9, confirming the robustness of our signatures.

4.3. Probing

Test set accuracies of linear probes across LM layers l are
plotted in Figure 3. We report standard deviations of these
accuracies in Table 1, which are all less than 10−3. We
again find empirical signatures consistent with those pre-
dicted by AA and PAA, on both S3 and S5. Models with
AA-type probing signatures always have AA-type patching
signatures, and vice versa. Throughout the rest of this paper,
we refer to models (and state-tracking mechanisms) as “AA-
type” or “PAA-type” based on which cluster of signatures
they exhibit. Results in Appendix C break down probe ac-
curacies by sequence length, confirming that models solve
sequences of exponentially longer length at deeper layers.

What exactly is the “non-parity residual” for PAA models?
We visualize the linear components of representations near
the final layer(s) of PAA models trained on S3. The rep-

resentations of states can be cleanly decomposed into two
orthogonal parts: the parity of the product and a residual
cluster identity, forming a triangular prism. In Figure 4, we
project representations from the PAA model for each of the
six states onto these components. Even-parity states (darker
colors) and odd-parity states (lighter colors) are symmetric.
The three cluster “spokes” are spaced 60 degrees apart.2

4.4. Generalization by Sequence Length

We next evaluate the state and parity accuracy of AA- and
PAA-type models for held-out inputs of varying length. In
general, we find that models learn to generalize perfectly
to sequences of up to the length of their training data, then
face a steep accuracy dropoff after (which we refer to as the
“cutoff length”), rather than generalizing uniformly across
all sequence lengths.

In Figure 5, where we plot the cutoff lengths at which each
accuracy dips below 98%. We find that for models that learn
PAA, the parity accuracy cutoff length is much longer than
the state accuracy cutoff length, whereas, for models that
learn an AA-type mechanism, the two cutoff lengths are
equal. Furthermore, models that learn an AA-type mecha-
nism tend to generalize better overall.

4.5. Attention Patterns

We look at attention patterns of LMs and check whether
they can be used to differentiate between PAA models and
AA models. Specifically, we find that in the early layers,
PAA models exhibit parity heads, heads that place attention
to odd-parity actions. Recall that the parity of a state can be
determined by counting the number of odd-parity actions,
and taking the parity of the count (Equation (1)). Examples
of the parity head attention pattern are shown in Figure 15.
We find no evidence of parity heads in any layer of AA
models. (See Appendix F for a formal metric measuring
how much an attention head behaves like a parity head.)

2Further details, including an analysis of S5, can be found
in Appendix D.

7

(How) Do Language Models Track State?

Pythia-160M on S3 (PAA) Pythia-160M on S3 (AA) Pythia-160M on S5 (PAA) Pythia-160M on S5 (AA)

Figure 5. Generalization curves showing state and parity prediction accuracy as sequence lengths vary. Models are trained on length-100
sequences and asked to generalize to varying lengths of sequences. We plot generalization curves for AA and PAA models on S3 and
S5. In each plot, we show the 98% cutoff threshold, the sequence length at which accuracy dips below 98%. In the models that learned
PAA, the parity cutoff is larger than the state cutoff, while in models that learned AA, the parity cutoff equals the state cutoff. Generally
speaking, models that learned AA generalize better than ones that learned PAA.

Phase 1: Converge on parity

Phase 2: Converge on state

Converge on state &
parity simultaneously

Figure 6. Annotated training curves for models that learn the AA and PAA algorithms. In PAA models (blue), we find that convergence
happens in two phases: in the first phase, they learn to generalize parities up to sequence length 100, and in the second, they learn to
generalize the states. In AA models (orange), parities and states are learned simultaneously. Note that AA models also tend to converge
faster to (ultimately) a lower loss than PAA models.

We also find evidence that attention patterns in AA models
sparsify in later layers of the network, forming a tree-like
pattern expected of AA, shown in Figure 16.

5. Why do Transformers Learn One
Mechanism or Another?

Having determined that trained models consistently exhibit
AA- or PAA-like signatures, we next study the factors that

determine which mechanism emerges during training.

5.1. When in Training Do Distinct Mechanisms Arise?

We find that an LM’s eventual mechanism can be identified
very early in training, based on the pattern of prediction er-
rors. As in Figure 6, LMs that eventually learn AA improve
the quality of their parity and state predictions in lockstep,
while LMs that learn PAA learn in two phases: they first
converge on learning parity over the entire length of the

8

(How) Do Language Models Track State?

training sequence; and only then do they learn to accurately
predict the state itself.3

Because it is possible to identify these patterns early in train-
ing, our subsequent experiments classify LMs as AA-type or
PAA-type based on generalization curves (Section 4.4) after
10k training steps, rather than waiting for the full probing
and patching signatures to emerge.

5.2. What Factors Affect Which Mechanism is Learned?

Whether an LM learns AA or PAA is a deterministic func-
tion of four factors: model architecture, size, initialization
scheme, and fine-tuning data order. Our next experiments
evaluate each of these factors in turn. We explore two dif-
ferent model architecture families of various sizes (GPT-2,
Radford et al., 2019, and Pythia, Biderman et al., 2023),
several different model initializations (pre-trained on the
Pile and trained from scratch with different random initial-
izations), and up to 12 different data ordering seeds.

We find that model architecture and initialization, rather
than model size, are the biggest determining factors of what
mechanism the model chooses to learn. Figure 7 shows
the ratio of LMs that learn each mechanism, aggregated
by model architecture and initialization. The low variance
indicates a minimal effect of model size.4 GPT-2 models,
pre-trained or not, are split roughly evenly between the two
mechanisms, while Pythia models tend to learn AA when
pre-trained on the Pile, and PAA when not.

Figure 7. Proportion of GPT-2 and Pythia models that learn an
AA-type mechanism, a PAA-type mechanism, or neither under
different training regimes described in Section 5.

5.3. How Does Pre-training Affect Mechanism Choice?

We show that appropriately designed intermediate tasks can
encourage models to learn one mechanism or the other.

Topic Modeling As a controlled way of studying how
the next-token-prediction (NTP) objective affects which

3Experimental details can be found in Appendix G.
4A finer-grained breakdown of the ratio over each model size

can be found in Figure 17.

mechanism LMs converge to, we generate length-100 doc-
uments with only S3 elements as vocabulary items, and
pre-train (randomly initialized) LMs with NTP on these
documents, before training them on S3. Specifically, the
documents are generated from a topic model with parame-
ters: # of topics = 4, α = 0.3, and β = 0.1, where α is the
density of topics in each document and β is density of words
in each topic. As shown in Figure 7, when from-scratch
LMs are trained with our topic modeling NTP objective,
they always learn an AA-type mechanism.

Parity Prediction We first train the entire model on pre-
dicting the state parity of the sequence to output token
1 if odd and 0 if even, before transitioning to training on
the actual S3 objective. In Figure 7, we show that we can
induce GPT-2 and Pythia models to learn PAA when trained
from scratch on parity. Notably, from-scratch Pythia models
already tend to learn PAA as a baseline behavior. Therefore,
we also apply this curriculum on Pythia models pre-trained
on the Pile, and find that it consistently converts the mecha-
nism learned from AA-type to PAA-type.5

Control: Random Next-Token-Prediction As a control,
we train LMs on length-100 documents of random S3 ele-
ments sampled from a uniform distribution. We confirm that
the control fine-tuning did not affect the ratio with which
LMs learned each mechanism.

6. Conclusion
We have shown that LMs trained on permutation tracking
tasks learn one of two distinct mechanisms: one consistent
with an “associative algorithm” (AA) that composes action
subsequences in parallel across successive layers; and an-
other with a “parity-associative algorithm” (PAA) which
first computes a shallow parity heuristic in early layers and
then computes a residual to the parity using an associative
procedure. LMs that learn an AA-type mechanism tend
to generalize better and converge faster; different choices
of model architecture and training scheme encourage the
discovery of one mechanism over another.

While a large number of other state tracking tasks can be
reduced to the more complex permutation task we study
(S5), our experiments leave open the question of whether the
specific mechanisms LMs use to solve S5 are also deployed
for these other tasks.

Impact Statement
The S3 and S5 tasks we choose to study in this paper can be
generalized to many different state tracking scenarios funda-

5We discuss another parity curriculum using an extra parity
loss term in Appendix H.3.

9

(How) Do Language Models Track State?

mental to many aspects of reasoning capabilities. Methods
for identifying mechanisms that LMs implement, especially
when these differ from human-designed algorithms, can
provide crucial insights on how to build more robust LMs,
control their behavior, and predict their failures. Our experi-
ments focus on small-scale models, and we do not anticipate
any immediate ethical considerations associated with our
findings.

Acknowledgments
This work was supported by the OpenPhilanthropy foun-
dation, the MIT Quest for Intelligence, and the National
Science Foundation under grant IIS-2238240. BZL is addi-
tionally supported by a Clare Boothe Luce fellowship, and
JA is supported by a Sloan fellowship. This work benefited
from many conversations during the Simons Institute Pro-
gram on Language Models and Transformers. The authors
would also like to thank Reuben Stern, Sebastian Zhu, and
Gabe Grand for feedback on drafts of the paper.

References
Barrington, D. A. Bounded-width polynomial-size

branching programs recognize exactly those lan-
guages in NC1. Journal of Computer and Sys-
tem Sciences, 38(1):150–164, 1989. ISSN 0022-
0000. doi: https://doi.org/10.1016/0022-0000(89)
90037-8. URL https://www.sciencedirect.com/
science/article/pii/0022000089900378.

Bender, E. M. and Koller, A. Climbing towards NLU: On
meaning, form, and understanding in the age of data.
In Jurafsky, D., Chai, J., Schluter, N., and Tetreault, J.
(eds.), Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 5185–5198,
Online, July 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.acl-main.463. URL
https://aclanthology.org/2020.acl-main.463/.

Bhattamishra, S., Ahuja, K., and Goyal, N. On the Ability
and Limitations of Transformers to Recognize Formal
Languages. In Webber, B., Cohn, T., He, Y., and Liu, Y.
(eds.), Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP),
pp. 7096–7116, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-main.576. URL https://aclanthology.org/
2020.emnlp-main.576/.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.

In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Chen, A., Shwartz-Ziv, R., Cho, K., Leavitt, M. L., and
Saphra, N. Sudden Drops in the Loss: Syntax Acquisi-
tion, Phase Transitions, and Simplicity Bias in MLMs. In
The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/
forum?id=MO5PiKHELW.

Clark, K., Khandelwal, U., Levy, O., and Manning, C. D.
What does BERT look at? an analysis of BERT’s at-
tention. In Linzen, T., Chrupała, G., Belinkov, Y., and
Hupkes, D. (eds.), Proceedings of the 2019 ACL Work-
shop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pp. 276–286, Florence, Italy, August
2019. Association for Computational Linguistics. doi:
10.18653/v1/W19-4828. URL https://aclanthology.
org/W19-4828/.

Delétang, G., Ruoss, A., Grau-Moya, J., Genewein, T., Wen-
liang, L. K., Catt, E., Cundy, C., Hutter, M., Legg, S.,
Veness, J., and Ortega, P. A. Neural Networks and the
Chomsky Hierarchy. In 11th International Conference
on Learning Representations, 2023.

Heimersheim, S. and Nanda, N. How to use and interpret
activation patching. arXiv preprint arXiv:2404.15255,
2024.

Hu, M. Y., Chen, A., Saphra, N., and Cho, K. Latent state
models of training dynamics. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=NE2xXWo0LF.

Huet, A., Houidi, Z. B., and Rossi, D. Episodic memo-
ries generation and evaluation benchmark for large lan-
guage models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=6ycX677p2l.

jylin04, JackS, Karvonen, A., and Can. OthelloGPT
learned a bag of heuristics, 2024. URL https:
//www.lesswrong.com/posts/gcpNuEZnxAPayaKBY/
othellogpt-learned-a-bag-of-heuristics-1.

Karvonen, A. Emergent World Models and Latent Variable
Estimation in Chess-Playing Language Models. In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=PPTrmvEnpW.

Kim, N. and Schuster, S. Entity Tracking in Language
Models. In Rogers, A., Boyd-Graber, J., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 3835–3855, Toronto, Canada,
July 2023. Association for Computational Linguistics.

10

https://www.sciencedirect.com/science/article/pii/0022000089900378
https://www.sciencedirect.com/science/article/pii/0022000089900378
https://aclanthology.org/2020.acl-main.463/
https://aclanthology.org/2020.emnlp-main.576/
https://aclanthology.org/2020.emnlp-main.576/
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=MO5PiKHELW
https://aclanthology.org/W19-4828/
https://aclanthology.org/W19-4828/
https://openreview.net/forum?id=NE2xXWo0LF
https://openreview.net/forum?id=NE2xXWo0LF
https://openreview.net/forum?id=6ycX677p2l
https://openreview.net/forum?id=6ycX677p2l
https://www.lesswrong.com/posts/gcpNuEZnxAPayaKBY/othellogpt-learned-a-bag-of-heuristics-1
https://www.lesswrong.com/posts/gcpNuEZnxAPayaKBY/othellogpt-learned-a-bag-of-heuristics-1
https://www.lesswrong.com/posts/gcpNuEZnxAPayaKBY/othellogpt-learned-a-bag-of-heuristics-1
https://openreview.net/forum?id=PPTrmvEnpW
https://openreview.net/forum?id=PPTrmvEnpW

(How) Do Language Models Track State?

doi: 10.18653/v1/2023.acl-long.213. URL https://
aclanthology.org/2023.acl-long.213/.

Li, B. Z., Nye, M., and Andreas, J. Implicit Represen-
tations of Meaning in Neural Language Models. In
Zong, C., Xia, F., Li, W., and Navigli, R. (eds.), Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 1813–1827, On-
line, August 2021. Association for Computational Lin-
guistics. doi: 10.18653/v1/2021.acl-long.143. URL
https://aclanthology.org/2021.acl-long.143/.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H., and
Wattenberg, M. Emergent World Representations: Ex-
ploring a Sequence Model Trained on a Synthetic Task. In
The Eleventh International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/
forum?id=DeG07 TcZvT.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers Learn Shortcuts to Automata. In The
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?
id=De4FYqjFueZ.

McCoy, R. T., Min, J., and Linzen, T. BERTs of a feather
do not generalize together: Large variability in general-
ization across models with similar test set performance.
In Alishahi, A., Belinkov, Y., Chrupała, G., Hupkes, D.,
Pinter, Y., and Sajjad, H. (eds.), Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP, pp. 217–227, Online, Novem-
ber 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.blackboxnlp-1.21. URL https:
//aclanthology.org/2020.blackboxnlp-1.21/.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in GPT. Advances in Neu-
ral Information Processing Systems, 35:17359–17372,
2022.

Merrill, W. and Sabharwal, A. The Parallelism Tradeoff:
Limitations of Log-Precision Transformers. Transactions
of the Association for Computational Linguistics, 11:531–
545, 2023. doi: 10.1162/tacl a 00562. URL https:
//aclanthology.org/2023.tacl-1.31/.

Merrill, W. and Sabharwal, A. A Little Depth Goes a Long
Way: The Expressive Power of Log-Depth Transformers.
In NeurIPS 2024 Workshop on Mathematics of Modern
Machine Learning, 2024.

Merrill, W., Sabharwal, A., and Smith, N. A. Saturated
Transformers are Constant-Depth Threshold Circuits.

Transactions of the Association for Computational Lin-
guistics, 10:843–856, 2022. doi: 10.1162/tacl a 00493.
URL https://aclanthology.org/2022.tacl-1.49/.

Merrill, W., Petty, J., and Sabharwal, A. The Illusion of
State in State-Space Models. In Forty-first International
Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=QZgo9JZpLq.

Merullo, J., Eickhoff, C., and Pavlick, E. Circuit Component
Reuse Across Tasks in Transformer Language Models. In
The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/
forum?id=fpoAYV6Wsk.

Nanda, N., Lee, A., and Wattenberg, M. Emergent Linear
Representations in World Models of Self-Supervised Se-
quence Models, 2023. URL https://arxiv.org/abs/
2309.00941.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark,
J., Kaplan, J., McCandlish, S., and Olah, C. In-context
Learning and Induction Heads. Transformer Circuits
Thread, 2022. https://transformer-circuits.pub/2022/in-
context-learning-and-induction-heads/index.html.

Prakash, N., Shaham, T. R., Haklay, T., Belinkov, Y., and
Bau, D. Fine-Tuning Enhances Existing Mechanisms: A
Case Study on Entity Tracking. In Proceedings of the
2024 International Conference on Learning Representa-
tions, 2024. arXiv:2402.14811.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Shi, X., Padhi, I., and Knight, K. Does string-based neural
MT learn source syntax? In Su, J., Duh, K., and Carreras,
X. (eds.), Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 1526–
1534, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1159.
URL https://aclanthology.org/D16-1159/.

Strobl, L., Merrill, W., Weiss, G., Chiang, D., and An-
gluin, D. What Formal Languages Can Transformers
Express? A Survey. Transactions of the Association
for Computational Linguistics, 12:543–561, 2024. doi:
10.1162/tacl a 00663. URL https://aclanthology.
org/2024.tacl-1.30/.

11

https://aclanthology.org/2023.acl-long.213/
https://aclanthology.org/2023.acl-long.213/
https://aclanthology.org/2021.acl-long.143/
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://aclanthology.org/2020.blackboxnlp-1.21/
https://aclanthology.org/2020.blackboxnlp-1.21/
https://aclanthology.org/2023.tacl-1.31/
https://aclanthology.org/2023.tacl-1.31/
https://aclanthology.org/2022.tacl-1.49/
https://openreview.net/forum?id=QZgo9JZpLq
https://openreview.net/forum?id=QZgo9JZpLq
https://openreview.net/forum?id=fpoAYV6Wsk
https://openreview.net/forum?id=fpoAYV6Wsk
https://arxiv.org/abs/2309.00941
https://arxiv.org/abs/2309.00941
https://aclanthology.org/D16-1159/
https://aclanthology.org/2024.tacl-1.30/
https://aclanthology.org/2024.tacl-1.30/

(How) Do Language Models Track State?

Vafa, K., Chen, J. Y., Rambachan, A., Kleinberg, J.,
and Mullainathan, S. Evaluating the World Model Im-
plicit in a Generative Model. In The Thirty-eighth An-
nual Conference on Neural Information Processing Sys-
tems, 2024. URL https://openreview.net/forum?
id=aVK4JFpegy.

Wang, K. R., Variengien, A., Conmy, A., Shlegeris, B.,
and Steinhardt, J. Interpretability in the wild: a circuit
for indirect object identification in GPT-2 small. In The
Eleventh International Conference on Learning Represen-
tations, 2023. URL https://openreview.net/forum?
id=NpsVSN6o4ul.

Yang, S., Gribovskaya, E., Kassner, N., Geva, M., and
Riedel, S. Do Large Language Models Latently Per-
form Multi-Hop Reasoning? In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 10210–10229, Bangkok,
Thailand, August 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.acl-long.550. URL
https://aclanthology.org/2024.acl-long.550/.

Zhang, F. and Nanda, N. Towards best practices of activation
patching in language models: Metrics and methods. In
The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/
forum?id=Hf17y6u9BC.

Zhong, Z., Liu, Z., Tegmark, M., and Andreas, J. The clock
and the pizza: Two stories in mechanistic explanation
of neural networks. Advances in Neural Information
Processing Systems, 36, 2024.

12

https://openreview.net/forum?id=aVK4JFpegy
https://openreview.net/forum?id=aVK4JFpegy
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://aclanthology.org/2024.acl-long.550/
https://openreview.net/forum?id=Hf17y6u9BC
https://openreview.net/forum?id=Hf17y6u9BC

(How) Do Language Models Track State?

A. A Constant-Depth Algorithm Exists for S3

S5 is the smallest non-solvable permutation group. S3 is isomorphic to D3, the symmetry group of an equilateral triangle,
which can be generated by a transposition a = (23) and a 3-cycle b = (123).6 These generators satisfy the relation
ab = ba−1, which allows any word problem in S3 to be reduced by tracking (1) the cumulative parity of transpositions and
(2) the count of 3-cycles modulo 3. Since both parity checking and modular counting can be computed using constant-depth
threshold circuits, the word problem for S3 belongs to TC0.

B. Full Activation Patching Results
In the activation patching experiments, we overwrite (“patch”) portions of the LM’s internal representations and compute
how much the resulting logits have changed. As discussed in Section 2.3, we perform prefix patching to localize important
token positions. However, in addition to prefix patching, we also explore the following types of localization methods:

1. In suffix patching, all tokens starting from t up to one before the last token of the sequence (ht:|A|−1,l) are patched at a
particular layer l.7

2. In window patching, all tokens in a w-width window starting from t (ht:t+w−1,l) are patched at layer l.

For each of the above localization techniques, we patch the representation with several different types of content:

1. In representation deletion, we overwrite target representation(s) entirely with a zero vector,

ht,l = 0

and measure the NLD as follows:

NLD =
LD(a1 . . . at)− LD(a1 . . . at;ht,l ← 0)

LD(a1 . . . at)

2. In representation substitution, we overwrite the representation(s) with those derived from running the LM on a
minimally different (corrupted) representation Pcorrupt. This is the setting described in Section 2.3.

Full results are shown in Figure 8. In general, we discover the following:

In PAA models, parities are computed in parallel in early-mid layers We use prefix substitution patching described
in Section 2.3, but plot pairs that have same parity final states (ϵ(ŷ) = ϵ(ŷ′)) separately from pairs that have opposte parity
final states (ϵ(ŷ) ̸= ϵ(ŷ′)).

Results are shown in Figure 8A (for same parity) and 8B (for opposite parity). We find that in AA models, parities are
computed with the state – with both the same-parity and opposite-parity patching patterns displaying the same exponential
curve. However, in PAA models, the patching patterns for same- and opposite-parities differ drastically. When parities are
the same, only the parity complement must be computed to infer the final state; the patching pattern in this case indicates
that the parity complement is computed in an associative manner. When the parities are different, the patching signature
has a component that resembles a parallel patching signature, which is where the parity is computed. Restoring prefixes of
layers before the parity is computed results in the entire prediction being of the correct parity, while restoring prefixes of
layers after that results in the entire prediction being of the incorrect parity. We see that parities are computed roughly in
parallel at early layers (around layers 3-5). Note that there is a middle region where restoring the prefixes shifts the logits
towards the correct prediction, but not 100%: when prefixes in these regions are restored, the LM does not know the parity
of the final answer, but does know some aspects of the parity complement, which was computed in an associative manner.

6https://proofwiki.org/wiki/Symmetric Group on 3 Letters is Isomorphic to Dihedral Group D3
7We do not patch the last token as the last token residual contains the current accumulated information necessary for computing the

final product, and almost always will destroy the prediction when patched, making this method uninformative as localization tool. We
wish to see what other tokens the final token uses when constructing its representation.

13

https://proofwiki.org/wiki/Symmetric_Group_on_3_Letters_is_Isomorphic_to_Dihedral_Group_D3

(How) Do Language Models Track State?

Suffix Deletion Patching

Prefix Substitution Patching
(Same Parity)

Window Deletion Patching

Prefix Substitution Patching
(Opposite Parity)

Normalized Logit Difference

A B

C D

S3 S5

PAA

AA

S3 S5

PAA

AA

S3 S5 S3 S5

Figure 8. Activation patching results across different types of localization (prefix, suffix, window patching) and different types of patching
content (substitution, deletion). (A): Prefix-substitution results on only sequences with the same parity. We see the same exponential
patching pattern in both AA and PAA models, showing that parity complements are computed in the same associative manner. (B):
Prefix-substitution results on only sequences with opposite parities. We see the exponential patching pattern in AA models, meaning that
in AA models, parities are computed with the state. In PAA models, however, the patching pattern is roughly parallel, meaning parities
are computed roughly in parallel in early layers. (C): Suffix-deletion results show that we can ignore progressively longer sequences of
suffixes as we go down the layers of the network, consistent with how we believe AA and PAA work. (D): Window-deletion results show
that important activations are arranged hierarchically, again consistent with how we believe AA and PAA work.

Increasingly longer suffixes are ignored for AA and PAA models in later layers In Figure 8C, we show suffix deletion
patching results, finding that we can swap out exponentially longer both AA and PAA models without affecting the prediction.
This is in line with how the associative algorithm in either model works: suffixes of progressively longer lengths are collected
into the final token as we go down the layers.

Important activations are arranged hierarchically In Figure 8D, we show window deletion patching results, with a
window size of 1. We find a patching pattern consistent with the associative algorithm: deleting any single token in the early
layers is extremely important, but the spacing of important tokens gets sparser as we go down the layers, consistent with the
depiction of AA/PAA in Figure 1. At the bottom layers, deleting any single token is unimportant for the final computation
of the state.

Patching signatures are relatively consistent across examples In Figure 9, we plot the standard deviations across
200 pairs of S3 inputs for the following three sets of results: (A) prefix substitution patching of AA models, (B) prefix

14

(How) Do Language Models Track State?

AA algorithm

PAA algorithm

Same Parity Opposite Parity

All InputsA

B C

Figure 9. Standard deviations of the prefix substitution activation patching results across 200 S3 input pairs, for (A) AA models, (B) PAA
models on pairs with the same parity, and (C) PAA models on pairs with opposite parity. We find generally low standard deviations across
examples.

substitution patching of PAA models (opposite parity inputs), (C) prefix substitution patching of PAA models (same parity
inputs). We find relatively low standard deviations in all three cases, showing that these signatures hold across different
examples.

C. Full Probing Results
C.1. Probing signatures are relatively consistent across examples

We investigate the sensitivity of our probing signatures to the data on which the probe was trained. We focus on Pythia
models trained on S3. For each model type (PAA vs. AA) and each probe type (parity vs. state probe), we train 10 different
probes across 10 different random subsets of the S3 dataset, and report the standard deviations of their accuracies across the
10 runs. Results can be found in Table 1. We find low standard deviations (less than 10−3) in all four cases, indicating that
our probe signatures are robust to different subsets of the data and to randomness in probe training.

C.2. Probe accuracies over sequence lengths

How do the probe accuracies in Figure 3 decompose over sequence lengths? We sweep over S3 sequences a1 . . . ai of lengths
ranging from i = 5 to 100, and train a linear probe that takes in input ht,l|a1 . . . at —the layer-l, position-t representation of
the model on input sequence a1 . . . ai with t < i — and aims to predict the final state si from the hidden representation.

The mean probability the probe put on the correct answer is plotted in Figure 10. We find that, generally speaking, both AA
and PAA linearly encode states of exponentially longer sequences as they go down the layers. We find evidence that the
PAA models use their intermediate layers to compute parity in parallel: at around the second residual layer, PAA models
place 1

3 probability on the correct answer (there are three actions of each parity in S3).

C.3. Examples of Associative Algorithm Representations that Do or Do Not Linearly Encode Parity

As shown in Figure 1, models that learn AA sometimes encode parity linearly at the final layer but sometimes do not. The
examples shown in Figure 3 all do not linearly encode parity at the final layer. We show a 3D visualization of the S3 AA
model’s final hidden representations along the three principal components of the representation (which explain 41.8% of the
variance in the data) in Figure 11. As we can see, parity is not linearly encoded at the final layer. In Figure 12, we show

15

(How) Do Language Models Track State?

Layer Pythia on S3 (PAA) Pythia on S3 (AA)
State Probe Parity Probe State Probe Parity Probe

0 4.16× 10−6 3.03× 10−6 6.33× 10−6 2.71× 10−6

1 3.36× 10−6 3.31× 10−6 2.62× 10−6 2.82× 10−6

2 4.52× 10−6 5.45× 10−6 1.46× 10−6 8.97× 10−7

3 4.31× 10−5 5.59× 10−4 5.00× 10−6 1.38× 10−6

4 1.58× 10−5 3.72× 10−5 4.16× 10−6 1.11× 10−6

5 1.70× 10−5 5.38× 10−6 1.97× 10−6 1.11× 10−6

6 1.87× 10−5 7.02× 10−6 4.73× 10−6 1.59× 10−6

7 1.29× 10−5 1.34× 10−5 7.79× 10−6 3.05× 10−6

8 3.18× 10−5 3.08× 10−5 1.18× 10−5 2.64× 10−6

9 2.96× 10−4 6.85× 10−5 2.36× 10−5 3.53× 10−6

10 3.10× 10−4 7.98× 10−5 2.60× 10−5 2.96× 10−6

11 1.86× 10−4 8.22× 10−5 8.83× 10−6 2.77× 10−6

12 7.05× 10−5 4.01× 10−5 1.20× 10−6 2.75× 10−6

Table 1. Standard deviations across probe accuracies. We focus our analysis on S3 Pythia models and train 10 probes on different subsets
of the S3 dataset. Standard deviations are tiny in all cases, indicating robust signatures.

AA (S3)

PAA (S3)

Figure 10. We plot the average accuracy of a linear probe trained to predict the final state of an action sequence A, given the corresponding
final-token hidden representation of AA and PAA models on A. We find that both types of models can handle longer sequence lengths as
we go down the network, and that PAA models compute the parities of sequences at roughly layer 2, after which they can get the parity of
the state correct but not the exact state.

final-layer hidden representations from an AA model that does linearly encode the parity (from-scratch GPT2-base on S3).
When projected onto three components that explain 49.9% of the variance in the data, we find a clear linear separation
between the odd and even parity representations.

D. Full Linear Decomposition Results
D.1. S3

We visualize the linear decomposition of the last-layer or penultimate-layer representations across various PAA models. We
find the triangular prism shape similar to Figure 4 in all of them, but there was no consistency in which states were paired to
form the clusters.

One interpretation is that PAA models may be learning various presentations of S3, with each clustering configuration
corresponding to a different presentation. Generally speaking, Sn can be generated by a 2-cycle and an n-cycle: any
permutation of Sn can be created by composing these two permutations. For example, S3 can be generated by the 2-cycle
1↔ 2 and 3-cycle 1→ 2→ 3→ 1, which corresponds to the clustering {(123, 213), (312, 132), (231, 321)}: the states

16

(How) Do Language Models Track State?

Figure 11. Example activations from an AA model that does not linearly encodes parity at the final layer, projected on three principal
components with a total explained variance of 41.8%. Blue points have even parity, while orange points have odd parity.

Figure 12. Example activations from an AA model that does linearly encode parity at the final layer. Blue points have even parity, while
orange points have odd parity. (Left) State and state parity probe signatures of this model. (Right) projection of hidden representations
onto three components with a total explained variance of 49.9%.

within the cluster can be transformed into each other by applying 1↔ 2, while states between clusters are related to each
other by 1→ 2→ 3→ 1. PAA models that cluster according to this pattern may have learned these generators.

D.2. S5

What happens in models that learn PAA in S5? We visualize the penultimate-layer representation of a Pythia-160M model
that learned PAA on S5 in 3D space, with parity along one axis and two orthogonal directions along the other two. We find 4
distinct clusters, corresponding to the position of 1 in the state (states having 1 in position 4 and 1 in position 5 are clustered
together).

E. Simulating State Tracking in Natural Language
To emulate a more practical scenario, we train pre-trained and from-scratch Pythia models on a version of the S3 permutation
composition task expressed in natural language. For example, the permutation “132” would be expressed as “swap positions
2 and 3,” while “312” would be “rotate the last item to the front.” We train LLMs to predict the final state (e.g., 231) from
the final period token of the sequence. For example, the following sequence:

17

(How) Do Language Models Track State?

Figure 13. Projecting models that learn PAA on S5 into 3D space. Unlike PAA models on S3 (Figure 4), the state cannot be fully
represented by a clean decomposition into 3 directions (notice the colors superimposed on each other). However, we do still find symmetry
across the parity axis, similar to S3. Moreover, there are 4 neat clusters, one at the center, and three outward protruding “prongs”. We find
that the clusters correspond to the position of 1 in the state.

Swap positions 2 and 3. Rotate the last item to the front. Swap positions 1 and 2.

would map to permutation sequence “132, 312, 213” and finally correspond to the state “123” after the swaps. We then
conduct a similar style of probing and activation patching experiments on models trained on this task.

E.1. Probing experiments

We train probes to map from the activation of each layer at the position of the final “.” token to the final state. Shown in
Figure 14, as in our results on synthetic data, probing results are consistent with associative mechanisms – the state probe
improves exponentially over layers. In pre-trained Pythia, we see the model represent the state parity much earlier (in terms
of layer) than the actual state representation, a signature of the PAA algorithm. For non-pre-trained Pythia, the accuracy of
the state and state parity probes increases at a similar rate, indicating that it is more likely learning an associative algorithm;
whether it is the strict AA algorithm we identified in the synthetic case is unclear.

E.2. Activation patching experiments

We patch prefixes up to a fixed token position.8 As shown in Figure 14, both models display a distinctly associative signature
with exponentially longer prefixes being disregarded for the final state prediction as depth increases. Furthermore, the
pre-trained Pythia model possesses a light blue middle section – a sign of the PAA algorithm. Interestingly, the pre-trained
Pythia results are significantly more “compressed” over the layers – the LLM computes the state very early on. We
suspect this may be due to the pre-trained LLM taking advantage of its innate natural language understanding (and perhaps
pre-trained state tracking abilities!) to quickly solve the task in an early layer.

F. Full Attention Heads Analysis
F.1. Formalizing Parity Heads

To formalize a metric for whether an attention head behaves like a parity head, we define a parity head score as the
percentage of sequence lengths (ranging from 5 to 80) over which the head places significantly more attention on odd-parity
permutations than even-parity permutations, measuring significance using a 95% confidence interval.

Definition F.1. Let α(H)
i,ℓ (x) be the attention weight of the Hth attention head in layer ℓ at position i for input x where x is

the list of actions [a1 . . . at].

8Note that token positions may no longer be aligned in natural language: “swap” actions have 5 tokens, and “rotate” actions have 7.
Thus, we may not be replacing the activations of the same number of actions between prompts. Nonetheless, we still believe the activation
patching results serve as a good proxy for estimating how information gets propagated through the layers.

18

(How) Do Language Models Track State?

Pretrained
Pythia-160M

Non-pretrained
Pythia-160M

Activation Patching Probing

Figure 14. Patching and probing result for Pythia models trained on natural language permutation composition task. We plot the signature
of a pre-trained Pythia model (top) and a non-pre-trained Pythia model (bottom). In both cases, the signatures are consistent with the state
being learned associatively (both the patching signature and state probe have an exponential curve). The signature of the pre-trained model
is consistent with a PAA signature, with the parity probe converging in early layers, and the activation patching signature containing a
light-blue middle section.

Define the sets of attention weights on odd and even tokens of x as:

Aℓ,H,odd(x) = {αH
i,ℓ(x) : ai is odd},

Aℓ,H,even(x) = {αH
i,ℓ(x) : ai is even}.

We find heads that respond to parity can be local: for example, attention head 5 in layer 1 responds to odd-parity permutations
in the midpoint of the sequence, while attention head 4 responds to ones late in the sequence.

Thus, we record the parity head score σℓ,H,parity, which measures the proportion of the sequence for which more attention
is placed on odd-parity actions compared to even-parity actions:

σℓ,H,parity =
1

L− 5
·

L∑
t=5

σℓ,H,parity,t, where

σℓ,H,parity,t = 1 (E[Aℓ,H,odd([a1 . . . ai])]− 0.95 · CIℓ,H,odd([a1 . . . ai]) > E[Aℓ,H,even([a1 . . . ai])]) .

Here, [a1 . . . ai] denotes the first i elements of the sequence x, and CIℓ,H,odd refers to the confidence interval around the
average attention weights on odd-parity tokens. We use sequence lengths of up to L = 80 for S3 and L = 50 for S5.

We find no evidence of parity heads in any layer of AA models. However, we find at least two attention heads with σ
significantly exceeding 50% in the first few layers of PAA models, highlighted in Table 2.

F.2. AA Attention Patterns

What sorts of attention patterns appear in AA models? Because attention is dense, we visualize only the top-K attention
traces from and to each position at each layer. Specifically, we plot the attentions of an LM on an input as a graph with:

19

(How) Do Language Models Track State?

Figure 15. Examples of parity heads in a PAA model. We plot heatmaps showing attention weights on each source token at each target
token location (we show up to only 60 source tokens for heads 4 and 5 for the sake of space). We draw arrows / yellow lines at source
tokens corresponding to odd-parity actions. Note that parity heads attend almost exclusively to odd-parity tokens.

Algorithm Layer Head Parity Head Score

S3 (PAA) 1 1 90.1%±3.0%

1 4 86.4%±8.2%

0 5 67.1%±5.1%

S3 (AA) 0 4 3.3%±4.5%

2 7 3.0%±6.1%

11 0 2.0%±4.0%

S5 (PAA) 3 3 83.6%±9.6%

3 2 80.6%±6.2%

2 6 50.3%±22.4%

S5 (AA) 0 7 5.9%±8.2%

0 3 3.8%±5.4%

0 0 3.2%±4.3%

Table 2. Top-3 parity head scores across all attention heads in each type of model. We report average parity head scores (%) over 100
examples, as well as their standard deviations. Informally, this metric captures the proportion of the sequence over which more attention is
placed on odd-parity actions than even-parity actions.

20

(How) Do Language Models Track State?

Figure 16. Attention patterns in AA models form a tree-like pattern, with tokens in successive layers attending to larger windows of
downstream tokens. This is in line with how we expect the associative algorithm to function. We plot only the most salient attention
weights by pruning edges for which the attention weight is < 0.95, the target token is not in the top-3 attended-to tokens from the source
token, or the source token is not in the top-10 attended-from tokens for the target token. We expect that the attention patterns visualized
here do not form a single clean tree, but the superimposition of multiple trees.

1. Nodes (t, l) for each token position t and layer l,

2. Edges between two nodes (t1, l − 1) and (t2, l) if position t2 at layer l attends to position t at layer l − 1. We define
“attends to” as follows:

Let α(l)
t1→t2 denote the maximum attention weight (across all attention heads at layer l) from position t1 at layer l − 1

to position t2 at layer l.

We say (t2, l) attends to (t1, l − 1) if all of the following conditions are met:

21

(How) Do Language Models Track State?

(a) α
(l)
t1→t2 > 0.95

(b) α
(l)
t1→t2 ∈ top-3({α(l)

i→t2
: i ∈ [1, n]}): t1 is among the top-3 attended-to tokens for t2 at layer l

(c) α
(l)
t1→t2 ∈ top-10({α(l)

t1→j : k ∈ [1, n]}): t2 is among the top-10 attended-from tokens for t1 at layer l − 1

We show example attention patterns for an AA model on three sample prompts in Figure 16. We only plot the attention
subgraph directly connected to the final token position at the final layer (which is used to predict the state). We find that
attention in AA models forms a tree-like pattern where successive layers attend to wider and wider context windows, with
nodes that are more and more spaced apart. This is in line with how we believe the associative algorithm works: adjacent
pairs of actions are grouped together at each layer in a hierarchical manner.

Note that the tree is not entirely clean: there are redundant edges and edges that cross over each other. We suspect that
the subgraph we’ve picked up on is not a single tree, but rather the superimposition of multiple trees, each potentially
contributing to not just the prediction for the final token, but also the predictions of the previous tokens.

G. How are these algorithms learned over the course of training?
We conduct a more detailed analysis of the training phases for two Pythia models trained on the S5 task: one that learned
AA and one that learned PAA. The training curves are shown in Figure 6, and we investigate the generalization behavior at
different points along these curves. Both models improve over training by progressively generalizing to longer sequence
lengths, rather than making uniform gains across all lengths. In the case of the PAA model, convergence appears to occur in
two distinct phases: first, the model learns the parity of states across the entire length-100 sequence, followed by learning
how to predict the state. By contrast, the AA model learns to generalize parity and state simultaneously.

H. Additional Factors Influencing Learned Algorithm
H.1. Model Size

We have investigated whether model size influences which algorithm the models learn to implement. As shown in Figure 17,
model size empirically does not seem to have much effect on the choice of learned algorithm, with model architecture and
initialization having a much bigger effect. Some notable differences between the GPT-2 and Pythia architecture are the
use of rotary embeddings, parallelized attention, and feedforward layers rather than sequential, and untied embedding and
unembedding.

H.2. Topic Modeling

The topic model used in Section 5.3 is parameterized as follows: We generate the distribution of the 4 topics in
each document using a random Dirichlet distribution with α = 0.3. The distribution p(token | topic) for each token
123, 132, 213, 231, 312, 321 is:

3.06 · 10−2, 1.11 · 10−1, 5.79 · 10−4, 6.45 · 10−3, 6.58 · 10−3, 8.45 · 10−1

3.36 · 10−1, 1.69 · 10−4, 6.63 · 10−1, 8.05 · 10−7, 1.68 · 10−7, 7.81 · 10−4

7.92 · 10−5, 1.41 · 10−2, 9.44 · 10−1, 4.53 · 10−4, 4.13 · 10−2, 3.27 · 10−11

2.85 · 10−3, 1.29 · 10−9, 7.06 · 10−1, 6.37 · 10−7, 2.58 · 10−3, 2.89 · 10−1


We also trained LMs using a topic model with a second token-topic distribution, aiming to distinguish the effect of this
particular topic distribution from the effect of topic modeling pretraining in general. On the second distribution, we also find
that both randomly initialized GPT-2 and Pythia models learn AA in Figure 18. The p(token | topic) distribution for this
model is listed below:


9.31 · 10−1 2.32 · 10−3 1.38 · 10−8 5.86 · 10−10 4.62 · 10−5 6.63 · 10−2

2.10 · 10−4 3.12 · 10−4 9.32 · 10−7 9.07 · 10−6 2.53 · 10−1 7.47 · 10−1

4.95 · 10−1 1.18 · 10−3 4.55 · 10−1 2.17 · 10−2 1.86 · 10−8 2.71 · 10−2

6.55 · 10−1 4.92 · 10−4 3.44 · 10−1 2.28 · 10−7 1.94 · 10−4 2.14 · 10−8



22

(How) Do Language Models Track State?

Figure 17. Proportion of S3 algorithms learned by models of various sizes from the GPT-2 and Pythia families. Model architecture and
initialization are much bigger factors in influencing the algorithms learned than model size.

H.3. Parity Loss Curriculum

We explored an additional procedure that encourages models to learn parity via an extra loss term. We train an extra linear
classifier that takes in the residual activations of an early layer (e.g., layer 3) in which we find parity to be typically computed
through probing. We train with this additional loss term to induce the representation to linearly encode parity early on. The
classifier is trained to output (1) parity or (2) a (parity, action) tuple, to ensure that the residual also encodes the original
action, and not just the parity. After training, we evaluate the model on the original S3 task. Both procedures induce the
model to learn PAA consistently, though the (parity, action) classifier typically allows the model to generalize better.

H.4. Length Curriculum

We implemented a curriculum training approach where the model was progressively exposed to documents of increasing
length. We first trained on only the initial 10 tokens, then expanded to 25 tokens, 50 tokens, and finally the complete
100-token sequences. Each stage of the curriculum was trained for a fixed number of epochs (data). The goal of such a
curriculum is to push the model to learn the associative algorithm (AA), as the parity heuristic, we hypothesize, might be
less useful for shorter sequences. However, empirically, such a curriculum has no obvious effect on the kind of algorithm
the model learns. Of the 5 trials, 2 trials of GPT-2 learn AA, and the other 3 trials learn PAA.

We discovered that all five models can perfectly generalize both parity and state when trained on the first 25 tokens. It is only
when trained to generalize to sequence length 50 that the distinction between PAA and AA emerges. Models learning the
PAA algorithm do not generalize, while models learning AA can generalize from length 25 to 50, as illustrated by Figure 19.
This further confirms our finding that the model learns the S3 algorithm early on.

23

(How) Do Language Models Track State?

Figure 18. Proportion of S3 algorithms learned by models first pre-trained on the two topic models compared to the randomly initialized
baselines. Topic modeling, regardless of the specific distributions, pushes the model to learn AA.

Trained on 10 Tokens (AA) Trained on 25 Tokens (AA) Trained on 50 Tokens (AA) Trained on 100 Tokens (AA)

Trained on 25 Tokens (PAA) Trained on 50 Tokens (PAA) Trained on 100 Tokens (PAA)Trained on 10 Tokens (PAA)

Figure 19. Model generalization curves when trained using a length curriculum after training on 10, 25, 50, and 100 tokens, respectively.
While the length curriculum doesn’t push the model to learn one algorithm or the other, it shows that the model learns these algorithms
early on, as indicated by whether the model can generalize well from training on 25 tokens to 50 tokens.

24

