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Abstract
Whole-slide image (WSI) classification methods play a crucial role
in tumor diagnosis. Most of them use hematoxylin and eosin (H&E)
stained images, while Immunohistochemistry (IHC) staining pro-
vides molecular markers and protein expression information that
highlights cancer regions. However, obtaining IHC-stained images
requires higher costs in practice. In this work, we propose a multi-
modal denoising diffusion pre-training framework that harnesses
the advantages of IHC staining to learn visual representations.
The framework is trained with the H&E-to-IHC re-staining task
and IHC-stained image reconstruction task, which helps capture
the structural similarity and staining difference between two im-
age modalities. The trained model can then provide IHC-guided
features, by taking only H&E-stained images as inputs. Besides,
we build a new class-constraint constrastive loss to achieve the
semantic consistency between dual-modal features from our pre-
training framework. To integrate with WSI classifiers based on
multi-instance learning, we further propose a bag feature augmen-
tation strategy to extend bags with the features extracted by our
pre-trained model. Experimental results on three datasets show that
our pre-training framework effectively improves WSI classification
and surpasses the state-of-the-art pre-training approaches. Code
and model are released via https://github.com/lhaof/MDDP

CCS Concepts
• Computing methodologies→ Image representations.
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1 Introduction
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Figure 1: (a) Typical contrastive learning based pre-training
framework. 𝑥1 and 𝑥2 are different views of input image 𝑥 .
(b) Denoising diffusion pre-training on image reconstruc-
tion task. 𝜖 is the added noise. 𝑧𝑡→𝑡 / 𝑥𝑠→𝑠 denotes the re-
constructed feature / image. (c) The proposed multi-modal
denoising diffusion pre-training framework. 𝑧𝑠→𝑡 and 𝑥𝑠→𝑡

denote the re-stained feature and image generated in the
re-staining task, respectively. 𝑧𝑡→𝑡 / 𝑥𝑡→𝑡 is the reconstructed
feature / image in the reconstruction task.

Histopathology images are widely used formedical diagnosis and
research, facilitating objective assessments of diseases. Whole-slide
images (WSIs) are high-resolution digital histopathology images
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that visualize an entire tissue section. The creation of WSIs in-
volves tissue fixation, cleaning, infiltration, sectioning, staining,
and digital scanning. WSI classification including cancer classifica-
tion [14, 50], grading [45, 55] and subtyping [7, 16], are important
in tumor diagnosis and treatment planning. Hematoxylin and eosin
(H&E) staining is widely used to visualize WSIs for its simplicity
and affordability. However, H&E staining mainly emphasizes tissue
structures and cell morphology, and its capability to detect specific
cells and proteinmarkers is limited [1, 62]. Hence, the assessment ac-
curacy of disease through H&E-stained images is limited [30, 35, 62].
Immunohistochemistry (IHC) staining [10, 26, 27] labels specific
antigens or proteins, offering molecular markers and protein ex-
pression levels for disease diagnosis. However, IHC-stained slides
require extra labor, time, and specialized laboratory equipment for
preparation [30, 62]. Therefore, it is an interesting challenge to
leverage multi-modal training images to infer the labels of WSIs
with some missing modality.

Some studies [11, 30, 35, 62] generate IHC-stained images from
H&E-stained images using image-to-image translation. These meth-
ods typically employ generative adversarial networks (GANs) on
paired H&E-IHC stained images to create virtual IHC-stained sam-
ples. However, their focus is limited to image generation and does
not incorporate re-stained images or generated features to improve
the performance of WSI analysis. Most WSI classification meth-
ods [37, 48, 58, 63] employmulti-instance learning (MIL) by dividing
WSIs into patches and extracting patch features, which are then
combined into a bag. Feature selection and classification are per-
formed on the bag to obtain the category of the bag as the predicted
WSI label. These methods are based solely on a single H&E staining
modality, and few approaches have exploited the knowledge from
multiple image modalities (such as IHC-stained images).

Self-supervised pre-training is widely used in learning visual rep-
resentation, providing high-quality image features for downstream
tasks. Masked image modeling [17, 21, 53, 57] recovers missing
parts of input images for feature learning. Some methods based
on contrastive learning [3, 5, 18, 32] learn to draw the features of
positive samples (such as different views of an image) closer to each
other (Figure 1(a)). Recent studies discovered that denoising diffu-
sion models exhibit visual representation capabilities by estimating
the added noise on input noisy images (Figure 1(b)) [6, 54, 56].
However, most diffusion-based pre-training methods mainly focus
on the reconstruction task, overlooking the potential visual repre-
sentation from multi-modal generation tasks, such as cross-modal
image-to-image translation.

Inspired by the aforementioned observations, we propose a novel
multi-modal denoising diffusion pre-training framework for whole-
slide image classification (Figure 1(c)). First, to address the high
acquisition costs of IHC-stained images, we introduce a re-staining
task that generates IHC-modality images from H&E-modality in-
puts using a denoising diffusion model. Through the learning of
shared structural features between H&E and IHC stained images
and capturing the differences in staining appearance, the re-staining
task enables the trained model to extract cross-modal visual rep-
resentations. These representations can serve as supplementary
multi-modal information for WSI analysis models in the absence
of the IHC modality. Second, to enhance the generalization abil-
ity of the model and enable it to capture visual patterns across

different modalities, we take IHC-stained images as input during
the training to tune the model on an extra IHC-stained image re-
construction task. The reconstruction task helps the framework
to harvest specific antigen and protein expression features associ-
ated with IHC staining. To ensure semantic consistency between
reconstructed and re-stained features, we propose to apply a con-
trastive loss between the features of the above two generative tasks.
Furthermore, we observe that the presence of brown regions in
IHC-stained samples correlates with the expression level of specific
antibodies as well as the type of WSIs. Therefore, we can estimate
binary pseudo-labels for each IHC-stained sample by quantifying
the proportion of brown regions. To better guide the contrastive
learning, we propose a class-constraint contrastive loss to encour-
age similarity between re-stained images and reconstructed images
with the same pseudo labels, while ensuring lower feature similarity
across different pseudo labels. The pseudo label based constraint is
promising to preserve the similar clinical information between the
reconstructed and re-stained representations.

For applying the multi-modal pre-trained model to WSI analy-
sis, we develop a MIL-based WSI classification framework that is
integrated with a new bag feature augmentation strategy. Within
this MIL framework, we initially extract features from WSI patches
using an ImageNet-trained encoder, forming a bag representation.
Subsequently, we augment the bag with the features obtained from
our pre-trained diffusion model. By doing so, we maintain the gen-
erality of the ImageNet pre-trained features while incorporating
the IHC-guided features learned by our model.

To summarize, our main contributions have four folds:

• A multi-modal denoising diffusion pre-training framework
that integrates image re-staining and reconstruction tasks
for representation learning of histopathology images.

• A class-constraint contrastive loss that uses the prior image-
level labels estimated from IHC-stained images to align global
semantics of the two generative tasks..

• A bag feature augmentation strategy that equips existing
multi-instance learning basedWSI classifier with the features
from our multi-modal pre-training framework.

• Experimental results indicate that ourmethod not only boosts
the classification performance of existing WSI classifiers but
also achieves the state-of-the-art performance among exist-
ing pre-training algorithms.

2 Related Work
Most whole-slide image (WSI) classification methods [13, 28, 33,
37, 49, 63] are based on multiple-instance learning, which can be
further divided into two groups: 1. using instance-level predictions
directly, 2. using aggregation of instance-level features for bag-
level classification. In the former group, Top-K MIL [8] employs
the top-K instances for bag prediction. For the latter group, AB-
MIL [23] calculates attention scores for all instances and computes
the weighted average of instance features to obtain bag-level rep-
resentations. HAG-MIL [58] utilizes multi-magnification images
of WSIs, extracting features from higher magnification levels and
distilling them to lower magnification levels to obtain bag-level
representations. However, all these methods primarily focus on
visual representations from H&E-stained images, which may be



Multi-modal Denoising Diffusion Pre-training for Whole-Slide Image Classification MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

improved when adding more specialized information from other
staining techniques.

Image-to-image translation is the process of establishing a map-
ping between two image domains [22, 36, 46, 60, 61, 67]. Isola et al.
[24] proposed Pix2Pix, a conditional generative adversarial net-
work (GAN) for image-to-image translation using paired samples.
Zhu et al. [66] proposed CycleGAN, which uses two GANs and
allows the models to learn from unpaired images. However, due to
their adversarial mechanism, GAN-based methods often encounter
training difficulties and mode collapse issues. Recently, denoising
diffusion models have been applied to image generation and trans-
lation due to their exceptional generative capabilities [9, 20, 38, 64].
BBDM [29] utilizes the Brownian bridge process to generate noisy
images that resemble the target domain, rather than generating
pure noise. In the area of histopathology, re-staining is an image-to-
image task that involves translating the staining on histopathology
images while preserving tissue structures and cell shapes. Current
re-staining methods [11, 30, 35, 62] mainly employ GAN-based
approaches trained on paired or unpaired images with different
staining. However, these methods primarily focus on generating
samples and do not thoroughly study the features learnt from the
re-staining task for downstream image understanding tasks.

Vision representation learning involves pre-training a neural
network to generate features or initialize model weights for down-
stream tasks. One type of visual pre-training method learns features
based on the image itself using pretext tasks such as predicting
transformations [15], inpainting [31, 41] or recovering masked re-
gions [17, 21, 57]. Another type of visual pre-training method is
based on contrastive learning [5, 40, 52, 65]. These methods utilize
different views of the same sample or different samples as con-
trastive components for feature discrimination. Recently, several
studies [6, 39, 54, 56, 59] have investigated the features learnt from
diffusion denoising models (DDMs). However, current methods
mainly rely on uni-modal image reconstruction tasks for denoising
diffusion model pre-training, and it remains unclear whether cross-
modal generative tasks can further enhance the representation
ability of DDMs.

3 Methodology
3.1 Multi-modal Image Registration and Label

Assignment.
As shown in Figure 2 (a), in our data acquisition process, an un-
stained tissue section is initially stained with H&E, and then stained
with IHC after removing the H&E stains. This sequential staining
approach ensures the maximum preservation of the positional and
structural correspondence between the two images with different
stains. However, the staining process may still undergo unavoid-
able transformations such as translation or rotation in digitization,
resulting in misalignment. To address this, we first employ a rigid
registration method [42] to align the H&E and IHC stained WSIs
from the same tissue slide. Subsequently, we use a technique called
Yottixel [25] to select the valid image patches from the registered
H&E-stained WSIs based on the tissue segmentation results and
RGB histograms. In Yottixel, the square regions of size 1000 × 1000
are cropped from the segmented tissue areas and resized to 256×256
image patches. The corresponding IHC-stained regions are cropped

and resized at the same positions as their paired H&E-stained image
patches. After the above patch selection procedure, a large number
of paired H&E-IHC stained samples (𝑥ℎ𝑒 , 𝑥𝑖ℎ𝑐 ) are generated.

3.1.1 Pseudo Label Assignment. In IHC staining, specific protein
expression is visualized as brown regions, while normal tissues tend
to appear more white. For example, as the row of 𝑥𝑖ℎ𝑐 in Figure 2 (a)
shows, the left patch is a ‘negative’ sample and the right one with
larger brown regions is a ‘positive’ sample. Therefore, the presence
of specific protein expression can be evaluated by analyzing the
proportion of brown areas in an IHC sample [62]. In our method,
we define samples with brown regions larger than 1% as positive
and those with less than 0.1% as negative, discarding the remaining
samples. Each H&E-IHC pair is assigned a binary pseudo label 𝜌
(positive/negative) indicating the level of protein expression.

3.2 Multi-modal Denoising Diffusion
Pre-training Framework

The proposed multi-modal denoising diffusion pre-training frame-
work learns to extract IHC-staining guided representation with
only H&E-stained images as inputs. The framework is trained with
two tasks. The first one is a multi-modal image-to-image trans-
lation task, where the denoising diffusion model learns to map
H&E-stained images to their IHC-stained counterparts. The sec-
ond one is a uni-modal image reconstruction task, requiring the
denoising diffusion model to recover IHC-stained images from their
noisy version. As Figure 2 (b) shows, given a pair of H&E-stained
and IHC-stained patch 𝑥ℎ𝑒 and 𝑥𝑖ℎ𝑐 , we first employ a pre-trained
encoder 𝜏 to extract their latent features 𝑧ℎ𝑒0 and 𝑧𝑖ℎ𝑐0 . Then, we
add noise to these latent features separately, resulting in the noisy
features 𝑧ℎ𝑒𝑡 and 𝑧𝑖ℎ𝑐𝑡 . Subsequently, a U-Net takes 𝑧ℎ𝑒𝑡 and 𝑧𝑖ℎ𝑐𝑡 as
inputs to perform the re-staining and reconstruction tasks, respec-
tively. Depending on the input features, the denoising U-Net model
not only converts the latent features of H&E-stained patches into
those of IHC-stained patches but also recovers the original fea-
tures of IHC-stained patches from the noisy features. Let 𝑓𝑡 denotes
the generated features of the image-to-image translation task, we
could use a pre-trained decoder D to output synthetic IHC-stained
images by using 𝑓𝑡 as input.

3.2.1 Latent Feature Extraction. We describe how to obtain the
above-mentioned pre-trained encoder and decoder in the following.
Latent diffusion models (LDMs) [2, 43, 47] move the diffusion pro-
cess into latent space and perform denoising diffusion process on
latent features, which effectively reduces the time and memory cost.
In particular, LDMs utilize an autoencoder architecture comprising
an encoder and a decoder. The encoder 𝜏 maps an input image 𝑥
to a latent feature map 𝑧 = 𝜏 (𝑥), while the decoder D converts
the latent feature map back into an image. Prior to training the
denoising U-net, we first train an autoencoder named VQGAN [12]
on the H&E-IHC stained dataset. Then, during the training of our
proposed framework, the weights of encoder 𝜏 and decoder D are
frozen. The encoder takes paired H&E and IHC stained patches
(𝑥ℎ𝑒 and 𝑥𝑖ℎ𝑐 ) with the shape of ℎ ×𝑤 × 3 as inputs and outputs
two latent features 𝑍ℎ𝑒

0 and 𝑍 𝑖ℎ𝑐
0 of shape ℎ′ × 𝑤 ′ × 𝑐′. The two

latent features will be used in the diffusion process.
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Figure 2: (a) Multi-modal image registration and label assignment. The IHC staining based label assignment is to assign a
positive/negative pseudo label for eachH&E-IHC stained patch pair based on the percentage of brown regions in the IHC-stained
patch. (b) Multi-modal denoising diffusion pre-training framework. We employ a denoising-diffusion model to accomplish the
re-staining task and the reconstruction task on two staining modalities at the feature level. 𝑓𝑡 represents the generated features
of the re-staining task, while 𝑔𝑡 represents the generated features of the reconstruction task.

3.2.2 Diffusion Process. The diffusion process in our framework
introduces noise to input features in each time step 𝑡 , resulting in
noisy features after a long time. Our framework follows an image-to-
image translation network called BBDM [29] to perform diffusion
processes. In the diffusion process, noise is added to two latent
features for different tasks. The forward diffusion process of the
two tasks can be defined as:

𝑞ℎ𝑒−>𝑖ℎ𝑐
(
𝑧ℎ𝑒𝑡 | 𝑧ℎ𝑒0 , 𝑧𝑖ℎ𝑐0

)
= N

(
𝑧ℎ𝑒𝑡 ; (1 −𝑚𝑡 ) 𝑧ℎ𝑒0 +𝑚𝑡𝑧

𝑖ℎ𝑐
0 , 𝛿𝑡 𝐼

)
,

(1)

𝑞𝑖ℎ𝑐−>𝑖ℎ𝑐
(
𝑧𝑖ℎ𝑐𝑡 | 𝑧𝑖ℎ𝑐0

)
= N

(
𝑧𝑖ℎ𝑐𝑡 ; 𝑧𝑖ℎ𝑐0 , 𝛿𝑡 𝐼

)
, (2)

where 𝑞ℎ𝑒−>𝑖ℎ𝑐 represents the forward transition probability for
the H&E feature to IHC feature translation task, and 𝑞𝑖ℎ𝑐−>𝑖ℎ𝑐
denotes the forward transition probability for the IHC feature re-
construction task. N is the Gaussian distribution. 𝑡 is a time step
between 0 and 𝑇 .𝑚𝑡 = 𝑡/𝑇 denotes the proportion of the added
noise. 𝛿𝑡 is designed as 2(𝑚𝑡 −𝑚2

𝑡 ) following the best setting of
BBDM [29]. In the 𝑡𝑡ℎ time step, the diffused features for two tasks
are computed as:

𝑧ℎ𝑒𝑡 = (1 −𝑚𝑡 ) 𝑧ℎ𝑒0 +𝑚𝑡𝑧
𝑖ℎ𝑐
0 +

√︁
𝛿𝑡𝜖𝑡 , (3)

𝑧𝑖ℎ𝑐𝑡 = 𝑧𝑖ℎ𝑐0 +
√︁
𝛿𝑡𝜖𝑡 , (4)

where 𝑧ℎ𝑒𝑡 and 𝑧𝑖ℎ𝑐𝑡 denote the features of H&E-stained and IHC-
stained images after adding noises at time step 𝑡 . 𝜖𝑡 ∼ N(0, 𝑰 ) is
Gaussian noise from a standard normal distribution.

3.2.3 Denoising Process. In the denoising process, given 𝑧ℎ𝑒𝑡 , 𝑧𝑖ℎ𝑐𝑡

and 𝑡 , a U-net model 𝜇𝜃 is deployed to predict the noise that is added
on these two input noisy features respectively. It is important to
notice that 𝜇𝜃 learns to predict noise for different tasks (image-
to-image translation/image reconstruction) purely relying on the
input features. The denoised features can be calculated as 𝑓𝑡 = 𝑧ℎ𝑒𝑡 −
𝜇𝜃 (𝑧ℎ𝑒𝑡 , 𝑡) and 𝑔𝑡 = 𝑧𝑖ℎ𝑐𝑡 − 𝜇𝜃 (𝑧𝑖ℎ𝑐𝑡 , 𝑡). 𝑓𝑡 ∈ Rℎ

′×𝑤′×𝑐′ represents a
synthetic IHC virtual-stained feature map from the noisy feature
map of its paired H&E-stained image patch.𝑔𝑡 ∈ Rℎ

′×𝑤′×𝑐′ denotes
the reconstructed feature map of the input noisy feature map of
the original IHC-stained patch.

3.3 Training Scheme
3.3.1 Reconstruction and Re-staining losses. In our proposed multi-
modal pre-training network, there are two generation losses that
measure the synthesis quality for reconstruction and re-staining
tasks, respectively. One is to evaluate whether the denoised IHC
features generated through a reconstruction task are consistent
with their original features extracted by the encoder 𝜏 . This recon-
struction loss helps the denoising U-net better learn the distribution
of the original features of IHC-stained slides. The other generation
loss is to assess whether the features converted by the denois-
ing diffusion model using H&E-stained image patches through a
re-staining task are similar to features of their corresponding IHC-
stained patches. This loss enables the denoising U-Net to predict
cross-modal IHC-staining guided representations with uni-modal
H&E-stained inputs. We use L1 loss for generation losses, and they
are defined as Lℎ𝑒→𝑖ℎ𝑐

rec = | |𝑍 𝑖ℎ𝑐
0 − 𝑓𝑡 | | and L𝑖ℎ𝑐→𝑖ℎ𝑐

rec = | |𝑍 𝑖ℎ𝑐
0 −𝑔𝑡 | |,
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classifier. The encoder E is a ResNet pre-trained on ImageNet.

where L𝑖ℎ𝑐→𝑖ℎ𝑐
rec and Lℎ𝑒→𝑖ℎ𝑐

rec denote the losses for reconstruction
task and re-staining task, respectively.

3.3.2 Class-constraint Contrastive Loss. As mentioned in Section
3.1, each IHC-stained image patch can be categorized into ‘posi-
tive’ or ‘negative’ based on the percentage of brown regions. The
H&E-stained image patches share the same categories with their
paired IHC-stained image patches. Therefore, we propose a class-
constraint contrastive loss to maintain the semantic consistency
between re-stained features 𝑓𝑡 and reconstructed features 𝑔𝑡 . For a
batch of re-stained features 𝐹 =

{
𝑓 0𝑡 , 𝑓

1
𝑡 , ..., 𝑓

𝑏
𝑡

}
and a batch of corre-

sponding reconstruction features𝐺 =
{
𝑔0𝑡 , 𝑔

1
𝑡 , ..., 𝑔

𝑏
𝑡

}
, they share the

same pseudo labels 𝜌 =
{
𝜌0, 𝜌1, ..., 𝜌𝑏

}
. The features of the same

label should be similar in the latent space. Therefore, we define a
CLIP [44] -style contrastive loss to perform class-constraint feature
alignment:

L𝑐𝑜𝑛 = −
𝑏∑︁
𝑖=0

[
𝜌𝑖 · log ©« 𝑒 (𝜙 (𝑓 𝑖𝑡 ) ·𝜙 (𝑔𝑖𝑡 )/𝜎 )∑

𝑗≠𝑖 𝑒
(𝜙 (𝑓 𝑗

𝑡 ) ·𝜙 (𝑔 𝑗𝑡 )/𝜎 )
ª®¬

+ (1 − 𝜌𝑖 ) · log ©« 𝑒 (−𝜙 (𝑓 𝑖𝑡 ) ·𝜙 (𝑔𝑖𝑡 )/𝜎 )∑
𝑗≠𝑖 𝑒

(−𝜙 (𝑓 𝑗
𝑡 ) ·𝜙 (𝑔 𝑗𝑡 )/𝜎 )

ª®¬
]
,

(5)

where𝑏 is the batch size. 𝑓 𝑖𝑡 and𝑔𝑖𝑡 denote the re-stained feature and
reconstructed feature of the 𝑖th pair in an input batch, respectively.
𝑓
𝑗
𝑡 and 𝑔 𝑗𝑡 represent the other features in the batch. 𝜙 is a global
average pooling operation that converts all the features in 𝐹 and 𝐺
to feature vectors of shape 1 × 𝑐′. 𝜎 is the temperature factor. The
overall loss function has three terms:

L(𝑋ℎ𝑒 , 𝑋 𝑖ℎ𝑐 , 𝜌) = 𝜆1Lℎ𝑒→𝑖ℎ𝑐
rec + 𝜆2L𝑖ℎ𝑐→𝑖ℎ𝑐

rec + 𝜆3L𝑐𝑜𝑛, (6)

where𝑋ℎ𝑒 ,𝑋 𝑖ℎ𝑐 and 𝜌 denote a batch of H&E-stained image patches,
IHC-stained image patches and their correspoding pseudo labels,
respectively. 𝜆1, 𝜆2 and 𝜆3 are set 10, 1 and 0.1, respectively. The
study of hyper-parameters is in Supplementary Materials.

3.4 Bag Feature Augmentation for Downstream
Tasks

For the pre-trained denoising diffusion network, we employ it as
a feature extractor for H&E-stained images, rather than an image

generator. Considering that the denoising U-Net has learned to
transform the features of H&E-stained images into the representa-
tions of IHC-stained images, we assume that it can provide not only
the morphological and textural features of H&E-stained images but
also the IHC-staining guided features indicating the level of specific
protein expression.

As depicted in Figure 3, for the task of classifying whole-slide
images (WSI), an H&E-stained WSI of shape 𝐻 ×𝑊 × 3 is cropped
into 𝑛 image patches, which form a bag B for multi-instance learn-
ing. This bag is then sent into an ImageNet pre-trained encoder E
to extract universal instance-level features 𝑓𝑢𝑛𝑖 ∈ R𝑛×𝐶 . Simulta-
neously, the bag is also input into the other feature extractor that is
pre-trained using our proposed multi-modal framework, aiming to
extract IHC-guided representations. The feature extractor consists
of the pre-trained encoder 𝜏 , a single-step diffusion process Ψ, and
the denoising U-net 𝜇𝜃 . For each image patch 𝑥ℎ𝑒 in B, a feature
map 𝑧ℎ𝑒0 is initially computed using 𝜏 . Then, given a time step 𝑡 , a
noised feature 𝑧ℎ𝑒𝑡 can be obtained through a single-step diffusion
process: 𝑧ℎ𝑒𝑡 = 𝑧ℎ𝑒0 +

√
𝛿𝑡𝜖𝑡 , where 𝛿𝑡 and 𝜖𝑡 are the same as those

in Eq. (3). The difference between Eq. (3) and the single-step diffu-
sion process is that 𝑧𝑖ℎ𝑐0 in Eq. (3) is replaced by 𝑧ℎ𝑒0 since we aim
to solve the downstream tasks with only uni-modal H&E-stained
images. Subsequently, the denoising U-net model takes the noised
features and time step 𝑡 as input, and outputs feature representa-
tions 𝑓𝑑𝑒 ∈ R𝑛×ℎ′′×𝑤′′×𝑐′′ .

To align features of different latent spaces from two pre-trained
models, we apply a global average pooling operator and a linear
layer (see ‘GAP+Linear’ in Figure 3) to the features of our pre-
trained model. Then, we concatenate 𝑓𝑑𝑒 and 𝑓𝑢𝑛𝑖 to build the
augmented bag-level features 𝑓𝑏𝑎𝑔 ∈ R2𝑛×𝐶 . The extraction of the
bag-level features can be formulated as follows:

𝑓𝑏𝑎𝑔 = 𝐹𝐶 (𝜙 (𝜇𝜃 (Ψ(𝜏 (B), 𝑡), 𝑡))) | |E(B), (7)

where 𝜙 denotes the global average pooling operation and 𝐹𝐶 is the
linear layer (Fully-Connected layer). 𝜏 , Ψ and 𝜇𝜃 represent the pre-
trained encoder, the single-step diffusion process and the denoising
U-Net in our proposed multi-modal framework, respectively. E
represents the ImageNet pre-trained encoder. | | means the con-
catenating operation. Then, the resulting bag-level features can be
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Table 1: Comparison between existing WSI classification approaches without and with our pre-trained features (+Ours) on
three datasets. The subscript in each cell is the standard derivation.

Methods Camelyon16 TCGA-COAD TCGA-NSCLC
AUC F1 Acc AUC F1 Acc AUC F1 Acc

CLAM-SB 0.8310.051 0.7620.055 0.8520.028 0.8810.035 0.6200.074 0.8740.058 0.9030.022 0.8330.031 0.8230.011
CLAM-SB + Ours 0.8680.043 0.7930.042 0.8720.033 0.8980.031 0.7100.045 0.9180.028 0.9250.042 0.8500.021 0.8410.033

CLAM-MB 0.8480.046 0.7570.055 0.8410.028 0.8530.051 0.5340.088 0.8790.013 0.9250.019 0.8530.021 0.8510.024
CLAM-MB + Ours 0.8720.047 0.7860.052 0.8570.031 0.8820.047 0.6500.063 0.9020.021 0.9410.026 0.8780.043 0.8750.046

DTFD-MIL 0.9230.032 0.8400.028 0.8740.021 0.8510.025 0.5300.077 0.8540.055 0.9020.021 0.8310.032 0.8470.043
DTFD-MIL + Ours 0.9340.023 0.8630.010 0.9050.020 0.8630.020 0.6740.043 0.8900.010 0.9220.030 0.8430.033 0.8570.031

HAG-MIL 0.9360.012 0.8870.021 0.8800.011 0.7620.013 0.6450.011 0.8830.017 0.9400.022 0.8670.034 0.8670.034
HAG-MIL + Ours 0.9530.013 0.9050.022 0.8930.023 0.8020.052 0.7030.044 0.8980.063 0.9510.017 0.8810.020 0.8830.020

employed in a wide range of MIL-based WSI classifiers [37, 58, 63]
to obtain the final predictions.

The denoising U-Net model offers multi-scale feature represen-
tations. Previous studies [6, 56] have shown that utilizing features
from different decoder layers can affect the performance of down-
stream tasks. Hence, we conducted experiments to study how to
select the decoder layer of the denoising U-Net to extract features.
We select the optimal feature from these layers to be the final out-
put representations of our pre-trained model. Besides, the different
choices of 𝑡 can also affect the strength of extracted features. There-
fore, like former studies, we search for the best 𝑡 that achieves the
superior performance for downstream tasks. The details are in the
experimental section.

4 Experiments
4.1 Implementation Details
For pre-training, we built an In-house paired H&E-IHC stained
dataset, which has 184 pairs of H&E-stained and IHC-stained WSIs
of Colon cancer from a local hospital. After registration, we ex-
tracted 13,248 pairs of image patches at a magnification of 20x.
Each image patch was cropped and resized to 256 × 256. Subse-
quently, we divided the dataset into training and validation sets
in an 8:2 ratio for pre-training. For downstream tasks, we use the
following dataset. Camelyon16 [34] is a public WSI classification
dataset of breast cancer, including 270 trainingWSIs and 129 testing
WSIs. The training set contains 159 normal WSIs and 111 tumor
WSIs. For each method, we perform 10-fold cross-validation on
the training set of Camelyon16 to obtain 10 models of different
weights, and average their results on the official testing set. TCGA-
COAD is a WSI subtyping dataset of Colon cancer from the TCGA
database [51], collected by us. The dataset consists of 392 WSIs cate-
gorized as adenomas and adenocarcinomas (adenomas) and 65WSIs
categorized as cystic, mucinous, and neoplasms (non-adenomas).
We further divided the dataset into training, validation, and test
sets in a ratio of 6:1.5:2.5. 5-fold cross-validation is adopted, and
the mean value of performance metrics of the 5 testing folds are
reported. TCGA-NSCLC is a public WSI subtyping dataset from
the TCGA database [51], and has two kinds of Lung tumor: 541
Lung Squamous Cell Carcinoma WSIs (TGCA-LUSC) and 512 Lung
Adenocarcinoma WSIs (TCGA-LUAD). We split the dataset into

training, validation, and test sets by a ratio of 6:1.5:2.5. For eval-
uation, we employ 5-fold cross-validation and report the average
result across the 5 testing folds.

We use AUC, F1 score, and accuracy (Acc) as evaluation metrics.
The thresholds for F1 score and accuracy are 0.5 [37, 58, 63]. To
train our framework, the number of time steps𝑇 , the batch size, the
number of epochs are set to 1000, 96, and 100, respectively. Adam
optimizer is used with a learning rate of 1 × 10−4. For WSI classifi-
cation, the Encoder E in the bag feature augmentation is ResNet-50
[19]. We extract 9 feature maps (𝑢1-𝑢9) from the denoising U-net
𝜇𝜃 and the synthetic IHC virtual-stained feature map 𝑓𝑡 to search
for the optimal feature. The sizes of these extracted feature maps
are 1024 × 4 × 4 (𝑢1-𝑢3), 512 × 8 × 8 (𝑢4-𝑢6), 128 × 16 × 16 (𝑢7-𝑢9),
and 256× 16× 16 (𝑓𝑡 ). For the Camelyon16 / TCGA-COAD / TCGA-
NSCLC dataset, we adopt the feature map 𝑢4 / 𝑢3 / 𝑢5 and a time
step of 40 / 20 / 20.

4.2 Comparison with Existing Methods
4.2.1 Comparison with previousWSI classificationmodels. We study
if the features from our pre-training framework can enhance ex-
isting WSI classifiers with the proposed bag feature augmentation
strategy. In Table 1, we evaluate four WSI classifiers (CLAM-SB
[37], CLAM-MB [37], DTFD-MIL [63], and HAG-MIL [58]), and
compare their results without using and with our pre-trained fea-
tures (+Ours) on three datasets. The approaches without ‘+Ours’
only use ImageNet pre-trained features from a ResNet to achieve
multi-instance learning as their original setting. As Table 1 presents,
the best classification results on the Camelyon16, TCGA-COAD,
and TCGA-NSCLC datasets are obtained by our pre-trained fea-
tures and bag augmentation strategy with HAG-MIL, CLAM-SB,
and HAG-MIL, respectively. Our learned features and augmentation
strategy improve HAG-MIL by 1.8% F1 score on the Camelyon16
dataset, CLAM-SB by 9% F1 score on the TCGA-COAD dataset, and
HAG-MIL by 1.6% accuracy on the TCGA-NSCLC dataset, respec-
tively. Note that our proposed method consistently improves the
four baseline models across three datasets and in all three metrics.
The observed improvements range from 1.1% to 4% in AUC, 1.2%
to 14.4% in F1 score, and 1.0% to 4.4% in accuracy. That shows the
generalization ability of our method.
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Table 2: Comparison between the state-of-the-art visual pre-
training approaches and our proposed framework. All the
experiments use HAG-MIL [58] as the WSI classifier.

Methods Camelyon16 TCGA-COAD
AUC F1 Acc AUC F1 Acc

Baseline 0.9360.01 0.8870.02 0.8800.01 0.7620.01 0.6450.01 0.8830.02
DINO 0.9450.03 0.8830.01 0.8910.03 0.7880.07 0.7010.08 0.8790.03
Simmim 0.9350.04 0.8870.03 0.8780.06 0.7540.08 0.6210.07 0.8400.09
HIPT 0.9050.03 0.8320.02 0.8510.03 0.772 0.05 0.5910.10 0.8490.02

DINOv2 0.9510.03 0.8880.06 0.8800.05 0.7120.09 0.6190.02 0.8710.09
Ours 0.9530.01 0.9050.02 0.8930.02 0.8020.05 0.7030.04 0.8980.06

4.2.2 Comparison with the state-of-the-art pre-training methods.
In Table 2, our pre-training framework is compared with the state-
of-the-art methods on the Camelyon16 and TCGA-COAD datasets.
Among these methods, Simmim [57] is based on masked image
modeling, while DINO [3], DINOv2 [40] and HIPT [4] are built on
contrastive learning. HIPT is proposed for histopathology images.
For fair comparison, we integrate their pre-trained encoder directly
into our bag feature augmentation strategy, replacing our feature
extractor. HAG-MIL is chosen as the WSI classifier. ‘Baseline’ is
the HAG-MIL classifier that only uses ImageNet pre-trained fea-
tures without our proposed bag augmentation strategy. For HIPT,
we directly use its released weights trained on a large amount of
histopathology images. For Simmim, DINO, and DINOv2, we com-
pare their results using their ImageNet pre-trained weights and
those using the weights re-trained on our in-house dataset and the
training set of CAMELYON16 / TCGA-COAD, reporting the best
results. Specifically, the reported results for Simmim and DINO are
based on the re-trained models, while for DINOv2, the best result
is based on its ImageNet pre-trained model. In Table 2, our frame-
work surpasses the state-of-the-art pre-training methods in WSI
classification. Specifically, on the Camelyon16 dataset, our frame-
work achieves 1.7% higher F1 score compared to the second best
DINOv2. For the TCGA-COAD dataset, our framework outperforms
the second best DINO by 1.4% AUC and 1.9% accuracy.

4.3 Ablation Study
We study the effectiveness of the H&E to IHC re-staining task,
the IHC-stained image reconstruction task, the class-constraint
contrastive loss in our pre-training framework and the bag feature
augmentation strategy. The results are obtained on the Camelyon16
dataset with CLAM-SB as the WSI classifier.

4.3.1 Re-staining task: In Table 3 (a), ‘M1’ denotes the WSI classi-
fier takes only ImageNet pre-trained features as inputs. ‘M2’ means
that our pre-training framework only performs H&E to IHC re-
staining task. The comparison of ‘M1’ and ‘M2’ validates that the
features learned from the re-staining task can enhance the WSI
classification by 0.9% AUC on Camelyon16 dataset.

4.3.2 Reconstruction task: To show the strength of the IHC-stained
image reconstruction task, a model ‘M3’ is built by removing the
reconstruction task from our framework. In the training stage of
‘M3’, 𝑔𝑡 in L𝑐𝑜𝑛 is not set to generated feature maps, but set to

Table 3: Ablation study on the Camelyon16 dataset using
CLAM-SB [37] as the WSI classifier.

E Lℎ𝑒→𝑖ℎ𝑐
rec L𝑐𝑜𝑛 L𝑖ℎ𝑐→𝑖ℎ𝑐

rec
Camelyon16

AUC F1 Acc
M1 ✓ 0.8310.05 0.7620.06 0.8520.03
M2 ✓ ✓ 0.8400.03 0.7700.03 0.8590.01
M3 ✓ ✓ ✓ 0.8610.04 0.7820.05 0.8680.04
M4 ✓ ✓ ✓ 0.8200.08 0.7530.03 0.8410.07
M5 ✓ ✓ ✓ ✓ 0.8680.04 0.7930.04 0.8720.03

(a)

Methods Camelyon16
AUC F1 Acc

Ours without 𝜌 0.8370.01 0.7810.05 0.8580.04
Ours with 𝜌 0.8680.04 0.7930.04 0.8720.03

(b)

𝑧𝑖ℎ𝑐0 that is extracted by the encoder 𝜏 using IHC-stained images.
By comparing ‘M3’ and ‘M5’, we show that the IHC-stained image
reconstruction task enhances the pre-trained features and increases
the WSI classification results by 0.7% AUC and 1.1% F1 score.

𝑃1
𝑃2

𝑃3

Figure 4: Hyper-parameter investigation of different time
steps and different feature maps on the Camelyon16 dataset
using CLAM-SB[37] as the classifier.

4.3.3 Class-constraint contrastive loss: In Table 3 (a), we present
the effectiveness of the proposed class-constraint contrastive loss
by comparing the models from ‘M2’ to ‘M5’. First, comparing ‘M2’
to ‘M3’, the class-constraint contrastive loss improves the features
of our pre-training framework and increases the classification per-
formance by 2.1% AUC, 1.2% F1 score, and 1.1% accuracy on Came-
lyon16 dataset. Besides, comparing ‘M4’ and ‘M5’ reveals that the
proposed contrastive loss helps improve the semantic consistency
between multi-modal representations, significantly enhancing the
classification results by 4.8% AUC, 4.0% F1 score, and 3.1% accuracy.
We further study the pseudo label 𝜌 in Table 3 (b). ‘Ours without 𝜌’
denotes the contrastive loss of our framework and is only applied
to narrow the difference between paired H&E-IHC features without
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HE Generated IHCIHC
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Figure 5: Visualization of the generated IHC virtual-stained image patches.

any constraints from the pseudo labels. The results show that the
pseudo label constraints can enhance the feature representations
and boost the classification performance by 3.1% AUC, 1.2% F1
score, and 1.4% accuracy.

4.3.4 Bag feature augmentation: Comparing ‘M1’ to ‘M2’, ‘M3’,
and ‘M5’ in Table 3 (a) shows that if high-quality representations
are learned, our bag feature augmentation strategy can bring in
substantial improvements in the performance of WSI classification.

4.4 Hyperparameter Investigation
We investigate how different extracted feature maps and various
time steps (𝑡 ) in our pre-trained model affect the WSI classification.
To select the optimal feature maps, we evaluate the classification
performance using each of the multi-scale feature maps (𝑢1 − 𝑢9)
from the decoder of the denoising U-net and the synthetic IHC
virtual-stained feature map 𝑓𝑡 . In Figure 4, the height of each point
on the 3Dmesh represents the AUC value of aWSI classifier trained
based on a specific feature map and time step 𝑡 . We observe that the
feature maps from intermediate decoder layers (𝑢4 − 𝑢8) are more
likely to achieve better performance, exhibiting improved stability
and reduced variance. For time steps, we selected six different
values (0,10,20,40,80,160) as the inputs to the single-step diffusion
process and the denoising U-net. The results in Figure 4 suggest
that the different choices of time step have limited influence on
the representation quality for WSI classification task. There are
three peaks in the 3D-mesh: P1 (u4,40,0.868), P2 (u6,10,0.857) and P3
(u7,10,0.857). For the three WSI classification datasets, we conduct
experiments similar to Figure 4 to determine the feature map and
time step on the validation sets.

4.5 Visual Results
Figure 5 shows the synthetic IHC-stained images generated by
our pre-training framework in the re-staining task. Figure 5(a)-
(c) display the H&E-IHC stained image pairs with pseudo labels
as ‘positive’, along with the generated IHC virtual-stained images
(‘Generated IHC’). Figure 5(d)-(f) show the image pairs with pseudo
labels as ‘negative’ and the generated IHC virtual-stained images.
Note that the generated IHC images in (a)-(c) do show some darker
regions that are consistent with the IHC images with positive labels.
The results verify that our multi-modal pre-training framework can
well capture the IHC-related information using only H&E images
as inputs and generate corresponding brown/white IHC-stained
regions.

5 Conclusion
In this paper, we present a novel multi-modal denoising diffusion
pre-training framework for solving the task of histopathology image
analysis. Firstly, we train a denoising diffusion model on the H&E-
to-IHC image translation task and IHC-stained image reconstruc-
tion task, allowing the model to provide multi-modal information
from even an image modality. Next, we introduce a class-constraint
contrastive loss that ensures semantic consistency between the re-
stained features and the reconstructed ones, utilizing prior pseudo
labels estimated from IHC-stained images. Moreover, to integrate
our synthetic multi-modal features with existing MIL-based WSI
classifiers, we propose a new bag feature augmentation strategy
to expand bag features with the generated features from our pre-
training framework. Experimental results demonstrate that our
proposed framework effectively improves the performance of exist-
ingWSI classification methods and outperforms the state-of-the-art
pre-training approaches.
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