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Abstract

This paper presents a comprehensive performance eval-
uation and scalability analysis of three prominent open-
source IoT platforms: FIWARE, ThingsBoard, and
EdgeX Foundry. Using systematic load testing with
JMeter at three distinct scales (10×100, 100×1000,
1000×1000), we evaluate platform performance across
single-node and multi-node deployments. Our experi-
mental results demonstrate significant scalability differ-
ences: FIWARE achieves 20-25% system CPU utiliza-
tion in multi-node deployments compared to 37-50%
in single-node configurations but experiences complete
failure under maximum load; ThingsBoard shows coun-
terintuitive scaling behavior with multi-node deploy-
ments consuming 105% CPU versus 75% in single-node
setups; while EdgeX Foundry maintains exceptional sta-
bility with error rates below 1% and optimal resource
utilization across all tested scenarios.

Key findings reveal measurable performance im-
provements in multi-node FIWARE deployments which
reduce system CPU usage from 37-50% to 20-25% un-
der low load while maintaining zero error rates. Things-
Board demonstrates limited horizontal scaling benefits
with error rates improving marginally from 8% to 5%
at medium load but shows concerning resource utiliza-
tion patterns. EdgeX Foundry achieves superior cache
performance with >90% Redis hit rates and sustained
throughput while maintaining stability even under ex-
treme 1000×1000 load conditions. Database perfor-
mance analysis shows FIWARE MongoDB replica sets
exhibit suboptimal behavior with I/O operations increas-
ing from 30 to 190 ops/sec in multi-node configurations,
while EdgeX Foundry’s Redis implementation main-
tains consistent high performance. These quantitative
results provide critical insights for IoT platform selec-
tion and deployment strategies in large-scale environ-
ments.
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scalability analysis, FIWARE, ThingsBoard, EdgeX
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1 Introduction

The Internet of Things (IoT) ecosystem has experienced
unprecedented growth, with billions of connected de-
vices generating massive volumes of data requiring effi-
cient processing, storage, and analysis. As smart cities,
industrial automation, and connected healthcare systems
expand, the selection and deployment of appropriate IoT
platforms becomes critical for ensuring system reliabil-
ity, scalability, and performance under varying load con-
ditions.

Contemporary IoT platforms must address several
key challenges: handling massive device connectivity,
processing high-frequency data streams, maintaining
low-latency responses, and scaling horizontally to ac-
commodate growing device populations. Open-source
IoT platforms have emerged as preferred solutions due
to their flexibility, cost-effectiveness, and community-
driven development approaches.

This paper presents a systematic performance evalu-
ation of three leading open-source IoT platforms: FI-
WARE, ThingsBoard, and EdgeX Foundry. Our re-
search addresses fundamental questions regarding plat-
form scalability, resource utilization efficiency, and fail-
ure points under increasing load conditions. Through
controlled experimental testing using industry-standard
load testing methodologies, we provide quantitative in-
sights into platform behavior across different deploy-
ment architectures and load scenarios.

2 Literature Review

2.1 IoT Platform Performance Evaluation
and Benchmarking

IoT platform performance evaluation has emerged as a
critical research area with substantial academic atten-
tion. Rabl et al. (2015) established foundational bench-
marking methodologies with the IoTAbench benchmark
toolkit for IoT analytics platforms [1]. Their work re-
mains influential in establishing standardized evalua-
tion approaches for IoT systems, providing systematic
frameworks for performance assessment in big data sce-
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narios.
The definitive performance evaluation of FIWARE

was conducted by Araujo et al. (2019), analyzing ver-
tical and horizontal scaling effects on FIWARE IoT
platform performance in cloud-based deployments [2].
Their comprehensive analysis revealed specific scaling
limitations and optimization strategies that directly in-
form contemporary platform evaluation methodologies.
The study demonstrated that FIWARE’s microservices
architecture provides clear benefits in distributed de-
ployments while identifying bottlenecks in extreme load
scenarios.

Ismail et al. (2018) conducted a seminal com-
parative analysis of ThingsBoard and SiteWhere plat-
forms, evaluating scalability and stability metrics across
HTTP and MQTT protocols [3]. Their results indicated
ThingsBoard’s superior REST performance while Site-
Where demonstrated better MQTT handling, highlight-
ing protocol-dependent performance characteristics that
remain relevant for platform selection decisions.

2.2 Comparative Analysis of Open-Source
IoT Platforms

Systematic comparative studies of IoT platforms have
gained prominence across top-tier venues. The com-
prehensive survey by Babun et al. (2021) in Computer
Networks analyzed IoT platforms from communication,
security, and privacy perspectives, establishing bench-
marking frameworks for platform evaluation across dif-
ferent application domains [4].

The systematic mapping study by Di Felice and
Paolone (2024) mentioning ThingsBoard, establishing it
as the highest-rated platform among seven open-source
alternatives with a score of 30.5/42 across 14 evaluation
criteria [5]. Their quantitative analysis revealed Things-
Board’s superior performance in connectivity, security,
scalability, and data processing capabilities, while iden-
tifying analytics as the primary limitation.

Zyrianoff et al. (2021) published comprehensive in-
teroperability analysis comparing FIWARE and Web
of Things (WoT) architectures [6]. Their performance
evaluation demonstrated that conceptual design choices
significantly impact application performance, with FI-
WARE’s platform-specific IoT Agent solution requiring
new implementations for different data models.

2.3 Edge Computing and Industrial IoT
Platform Performance

Industrial Internet of Things (IIoT) platform perfor-
mance evaluation has become critical for edge-to-cloud
computing paradigms. Jamil et al. (2024) published
a comprehensive survey examining how ThingsBoard,

Eclipse Ditto, and Microsoft Azure IoT address key IIoT
requirements [7]. Their analysis revealed that Things-
Board supports standalone server deployment suitable
for up to 300,000 devices with 10,000 messages per sec-
ond, while typical virtual environments handle approxi-
mately 5,000 telemetry data points per second.

Venanzi et al. (2023) presented comparative func-
tional and performance evaluation of Siemens and
EdgeX IIoT platforms [8]. Their analysis revealed
EdgeX Foundry’s superior modularity and performance
characteristics compared to proprietary industrial IoT
solutions, providing direct evidence for EdgeX’s archi-
tectural advantages in industrial contexts.

2.4 Communication Protocol Perfor-
mance and Optimization

Communication protocol performance represents a fun-
damental aspect of IoT platform scalability. Seoane et
al. (2021) published a definitive performance evaluation
of CoAP and MQTT protocols, focusing on bandwidth
and CPU usage under security constraints [9]. Their
analysis revealed that CoAP’s UDP-based architecture
provides superior performance in resource-constrained
environments, while MQTT’s TCP foundation ensures
higher reliability with increased overhead.

Palmese et al. (2020) provided a specialized analysis
of CoAP versus MQTT-SN for publish-subscribe sce-
narios [10]. Their implementation of CoAP Pub/Sub
functionalities revealed traffic behavior characteristics
that inform platform architecture decisions, demonstrat-
ing that protocol choice affects both latency and re-
source utilization patterns.

The comparative analysis by Sara and Hammoudeh
(2022) extended protocol evaluation to include AMQP,
providing comprehensive security assessments across
resource-constrained devices and networks [11]. Their
findings demonstrate that protocol selection signifi-
cantly impacts overall platform performance, particu-
larly in edge computing scenarios where bandwidth and
computational resources are limited.

2.5 Microservices Architecture in IoT Sys-
tems

Microservices architecture has emerged as a dominant
paradigm for scalable IoT platform design. Siddiqui
et al. (2023) published a comprehensive state-of-the-
art review of microservices-based architectures for IoT
systems [12]. Their analysis reveals that microservices
enable better scalability, interoperability, and modifia-
bility compared to monolithic approaches, though they
introduce complexity in distributed coordination.
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The practical implementation of reactive microser-
vices for IoT applications was evaluated by Lira et al.
(2023) [13]. Their experimental analysis demonstrated
that microservices architecture provides significant per-
formance improvements in IoT environments, particu-
larly for applications requiring real-time data processing
and dynamic scaling capabilities.

Abuseta (2024) presents comprehensive analysis of
quality attribute-driven software architectures for IoT
systems, emphasizing the critical role of microservices,
edge computing, and event-driven architectures [14].
The study proposes treating IoT systems as autonomic
systems requiring closed control loops for orchestration,
incorporating the MAPE-K feedback loop model that in-
forms scalable platform design.

2.6 Scalability Analysis and Performance
Optimization Techniques

Distributed systems scalability research has advanced
through comprehensive analytical frameworks. Rah-
man (2022) published extensive analysis of blockchain-
based scalability solutions for IoT environments, estab-
lishing evaluation frameworks encompassing through-
put, latency, and block size considerations [15]. This
work identified six overarching scalability issues requir-
ing resolution by industry and research communities.

Performance optimization techniques for distributed
IoT systems have been systematically analyzed through
large-scale surveys. Eeti et al. (2023) published com-
prehensive analysis of scalability and performance opti-
mization techniques across 100 IT companies, revealing
that 78% employ horizontal scaling with 57.7% report-
ing significant performance improvements [16]. The
study demonstrated that vertical scaling achieves 61.5%
significant improvement rates among 65% of surveyed
organizations.

Container orchestration optimization for IoT edge
computing has been examined through practical deploy-
ment studies. Kaiser et al. (2024) evaluated hybrid edge
systems using containers and unikernels for IoT appli-
cations, examining Docker, Kubernetes, and specialized
edge orchestration frameworks [17]. Their evaluation
provides insights into resource optimization strategies
for constrained environments that directly apply to plat-
form deployment decisions.

2.7 Security and Privacy in Distributed
IoT Platforms

Blockchain integration with IoT platforms addresses
security and privacy concerns in distributed environ-
ments. Gugueoth et al. (2023) published a comprehen-
sive review examining IoT security using decentralized

blockchain solutions [18]. Their analysis reveals that
blockchain-IoT integration enhances security through
distributed ledger technology, though scalability chal-
lenges remain significant for large-scale deployments.

Loss et al. (2022) introduced innovative blockchain
integration approaches for FIWARE in smart cities ap-
plications [19]. Their quantitative evaluation using
Apache JMeter demonstrated transaction processing ca-
pabilities of 520.7, 483.1, 462.7, and 449.6 transactions
per second for 10, 50, 100, and 500 concurrent users
respectively, with zero error rates and average response
times ranging from 3ms to 245ms.

The privacy-preserving aspects of IoT networks
have been systematically analyzed by Wakili et al.
(2025) [20]. Their comparative analysis of privacy-
preserving security methods provides frameworks for
evaluating platform security characteristics, particularly
relevant for large-scale IoT deployments requiring data
protection.

2.8 Edge Computing Integration and Fed-
erated Learning

Edge computing integration with IoT platforms has be-
come critical for latency-sensitive applications. Verma
(2021) provided comprehensive comparative analysis of
cloud computing and edge computing paradigms [21].
The study forecasts that 70% of IoT-generated data will
be processed at network edges by 2025, emphasizing the
importance of edge-capable platform architectures.

Albogami et al. (2025) developed an Intelligent Deep
Federated Learning Model for IoT-enabled edge com-
puting environments [22]. Their IDFLM-ES approach
achieved 98.24% accuracy in security enhancement,
demonstrating the potential for AI-driven optimization
in distributed IoT platforms.

Zhao et al. (2024) designed federated learning sys-
tems with reputation mechanisms for manufacturers
leveraging customer data while preserving privacy [23].
Their approach demonstrates practical implementation
strategies for privacy-preserving distributed learning in
IoT environments that complement platform security ca-
pabilities.

2.9 Testing Methodologies and Bench-
marking Frameworks

Systematic performance evaluation methodologies have
evolved to address the complexity of modern IoT plat-
forms. Minani et al. (2025) published comprehen-
sive taxonomies for IoT systems testing, establishing
seven distinct categories for systematic evaluation [24].
This work provides foundational frameworks for perfor-
mance evaluation methodologies applicable across dif-
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ferent IoT platform implementations.
Rodriguez-Cardenas et al. (2025) investigated testing

practices and challenges in IoT platforms through anal-
ysis of open-source smart home platforms [25]. Their
analysis reveals testing complexities specific to IoT en-
vironments, providing methodological insights for com-
prehensive platform evaluation that inform experimental
design approaches.

The machine learning-based evaluation framework by
Moustafa et al. (2025) provides comprehensive IoT de-
vice identification methodologies [26]. Their compar-
ative study establishes benchmarking frameworks that
inform platform evaluation strategies and provide sys-
tematic approaches to performance assessment.

2.10 Emerging Trends and Future Direc-
tions

Recent surveys have identified emerging trends in IoT
programming platforms and development methodolo-
gies. Hannou et al. (2024) published a comprehensive
survey examining IoT programming platforms with fo-
cus on development support [27]. Their analysis pro-
vides insights into platform evolution trends that inform
future scalability requirements and development prac-
tices.

3 Methodology

3.1 Platform Architecture Overview
FIWARE Architecture: FIWARE employs a
microservices-based architecture with core compo-
nents including Nginx load balancers, IoT Agents
for device communication, Orion Context Brokers
for NGSI API endpoints, and MongoDB for data
persistence. Our multi-node deployment distributes
core modules (Orion and IoT Agent) across dedicated
nodes, utilizing replicated MongoDB instances with
replica set configurations. For scaling, we deployed 3
instances of Orion and 3 instances of IoT Agent with
a HAProxy load balancer managing connections to
replicated MongoDB instances.

ThingsBoard Architecture: ThingsBoard uti-
lizes a comprehensive platform architecture featuring
HAProxy load balancers, Zookeeper clusters for service
coordination, ThingsBoard nodes for core functionality,
HTTP transport services, JavaScript executors for rule
processing, and PostgreSQL clustering with PgPool op-
timization layers. The multi-node deployment consists
of 3 ThingsBoard nodes connected to a 3-instance Post-
greSQL replication setup managed by PgPool.

EdgeX Foundry Architecture: EdgeX Foundry im-
plements a layered microservices architecture compris-

ing core services (data, metadata, command), device
services (virtual, REST, MQTT), application services,
and Redis database storage. The multi-node deployment
scales core modules with 3 instances each, using an Ng-
inx proxy for load distribution and external Redis for
improved performance.

3.2 Experimental Setup and Load Testing
Framework

Testing Infrastructure: All experiments were con-
ducted on containerized deployments using Docker
Compose configurations. Single-node deployments uti-
lized individual host systems, while multi-node configu-
rations distributed components across separate physical
nodes connected via high-speed networking.

Load Testing Methodology: Apache JMeter served
as the primary load testing tool, configured with In-
fluxDB listeners for metrics export. Each test scenario
was executed five times to ensure statistical reliability
and account for performance variations. Load scenarios
simulated realistic IoT device behavior with concurrent
device connections sending periodic data updates.

Monitoring Strategy: Comprehensive monitoring
employed Prometheus for metrics collection, utilizing
node-exporter and cAdvisor for system-level metrics,
plus platform-specific exporters (nginx, mongo, post-
gres, redis) for application-level insights. Grafana pro-
vided visualization and analysis capabilities.

3.3 Load Testing Scenarios
Three distinct load levels were evaluated:

• Low Load 10×100: 10 devices sending 100 mes-
sages each

• Medium Load 100×1000: 100 devices sending
1000 messages each

• High Load 1000×1000: 1000 devices sending 1000
messages each

Tests measured response times, throughput, error
rates, CPU utilization, memory consumption, and
database performance metrics across both single-node
and multi-node deployments.

4 Results and Analysis

4.1 FIWARE Performance Analysis
FIWARE demonstrated significant scalability improve-
ments in multi-node deployments under low to medium
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Table 1: FIWARE Performance Summary

Metric SL ML SM MM SH MH

Sys CPU (%) 37-50 20-25 85 50 Failed Failed
Error (%) 0 0 0.4 ∼0 100 100
Resp Time 120-180ms 300-650ms >1s ∼1s 2-8s 2-10s
Mongo I/O 30 45 30 190 N/A N/A
CPU-Mongo 25 N/A 300 50 crash crash
CPU-IoT 20 6 Exhaust 50 crash crash

SL=Single Low, ML=Multi Low, SM=Single Medium, MM=Multi Medium,
SH=Single High, MH=Multi High. All I/O in ops/sec.

loads, but faced fundamental limitations under extreme
conditions.

Under low load conditions, FIWARE’s multi-node ar-
chitecture demonstrated clear benefits with system CPU
utilization improving from 37-50% to 20-25%, while
maintaining zero error rates. Container-level analy-
sis revealed efficient distribution with individual IoT
Agents utilizing only 6% CPU capacity each in multi-
node setups versus concentrated 25% MongoDB and
20% IoT Agent usage in single-node deployments.

At medium load levels, significant performance
degradation became evident. Single-node deployments
experienced complete resource exhaustion with con-
tainer CPU usage reaching 300%, while multi-node
configurations maintained manageable 50% utilization.
Database performance showed concerning patterns with
MongoDB I/O operations increasing from 30 to 190 op-
erations per second in multi-node configurations, indi-
cating suboptimal replica set cache utilization.

Maximum load testing revealed FIWARE’s funda-
mental scalability ceiling. Both deployment configura-
tions progressed to 100% error rates, indicating com-
plete system failures. The single deployment “left ev-
erything after a while test was running and did not re-
spond to anything even exporters,” while the multi-node
deployment also ultimately reached 100% error rates.
Once complete system failure occurred, no database
metrics could be collected as monitoring systems be-
came unresponsive.

4.2 ThingsBoard Performance Analysis

ThingsBoard exhibited limited scalability characteris-
tics with counterintuitive performance patterns in multi-
node deployments.

ThingsBoard’s performance analysis revealed con-
cerning scaling limitations. Under low load, multi-
node deployments showed increased CPU utilization
(30% vs 22%) and degraded response times (380ms vs
290ms), indicating coordination overhead rather than
performance benefits. Database transaction improve-
ments were modest, with PostgreSQL handling 8 TPS

in single-node versus 14 TPS in multi-node configura-
tions.

Medium load testing exposed architectural con-
straints with counterintuitive resource utilization pat-
terns. Multi-node configurations consumed 105% CPU
versus 75% in single-node setups, suggesting ineffi-
cient resource distribution. Error rates showed marginal
improvement from 8% to 5%, while PostgreSQL TPS
decreased from original baselines (6 TPS single-node,
10 TPS multi-node), indicating database performance
degradation under load.

Under maximum load, both configurations failed
completely within 30 minutes, progressing to 100% er-
ror rates with 27 second response times before collapse.
The rapid failure progression confirms ThingsBoard’s
architectural constraints in handling high-throughput
scenarios.

4.3 EdgeX Foundry Performance Analysis

EdgeX Foundry demonstrated exceptional performance
stability and scalability across all tested scenarios.

EdgeX Foundry’s performance characteristics stood
out significantly from other platforms. Under low load,
the platform maintained minimal resource utilization (1-
9% CPU) with zero error rates across both deployment
configurations. Redis cache performance showed ex-
cellent efficiency with 45-50% hit rates, contributing to
consistent throughput of 1.6-1.7 req/sec.

Medium load testing confirmed superior scalability
with maintained 320ms response times across both con-
figurations. Throughput scaling was impressive, reach-
ing 17 req/sec while maintaining error rates at 0.5%.
Redis cache hit rates improved dramatically to 90-95%,
demonstrating excellent data management strategies.

Most remarkably, under extreme load conditions
where other platforms failed completely, EdgeX
Foundry maintained operational stability. Error rates re-
mained minimal (0.8% single-node, 0.5% multi-node)
with stable response times (320-350ms single-node,
300-330ms multi-node) and maintained throughput of
17 req/sec. The platform’s layered microservices archi-
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Table 2: ThingsBoard Performance Summary

Metric SL ML SM MM SH MH

Sys CPU (%) 22 30 75 105 Failed Failed
Error (%) 0 0 ∼8 ∼5 100 100
Resp Time 290ms 380ms >2s >2s 2-7s 2-7s
PgSQL TPS 8 14 6 10 N/A N/A
Cont CPU (%) 22 30 75 105 Failed Failed

SL=Single Low, ML=Multi Low, SM=Single Medium, MM=Multi Medium,
SH=Single High, MH=Multi High. TPS=Transactions per second.

Table 3: EdgeX Foundry Performance Summary

Metric Single Multi Single Multi Single Multi
Low Low Medium Medium High High

System CPU (%) 1-9 1-9 28 24 28 24
Error rate (%) 0 0 0.5 0.5 0.8 0.5
Avg Resp. Time (ms) 280-300 280-300 320 320 320-350 300-330
Throughput (req/s) 1.6-1.7 1.6-1.7 17 17 17 17
Redis Hit Rate (%) 45-50 45-50 90-95 90-95 90-95 90-95
Container CPU (%) 1-9 1-9 28 24 28 24

tecture enabled effective load distribution, with multi-
node deployments showing improved response times
and better resource utilization.

4.4 Comparative Performance Analysis

The comprehensive performance evaluation across all
three platforms reveals distinct architectural advantages
and limitations that become increasingly pronounced
under escalating load conditions. Each platform demon-
strates unique scaling characteristics that directly corre-
late with their underlying architectural design philoso-
phy and implementation strategy.

The resource utilization comparison reveals EdgeX
Foundry’s exceptional efficiency in CPU consumption,
maintaining remarkably low system CPU usage (1-9%)
under low load conditions while other platforms con-
sume significantly higher resources. FIWARE demon-
strates the most dramatic improvement in multi-node
deployments with system CPU utilization reducing from
37-50% to 20-25%, representing a 50% efficiency
gain that validates its microservices architecture bene-
fits. Conversely, ThingsBoard exhibits counterproduc-
tive scaling behavior where multi-node deployments ac-
tually increase CPU consumption from 22% to 30% un-
der low load and worsen dramatically to 105% versus
75% under medium load, indicating fundamental archi-
tectural limitations in distributed processing coordina-
tion.

5 Discussion

5.1 Scalability Architecture Analysis

The experimental results reveal distinct scalability pat-
terns directly correlating with platform architecture de-
sign decisions. FIWARE’s microservices-based ap-
proach demonstrates clear multi-node deployment ben-
efits under low-to-medium loads, achieving 50% better
resource utilization (20-25% vs 37-50% system CPU us-
age). However, the platform’s context broker model cre-
ates fundamental bottlenecks preventing effective scal-
ing under extreme loads, leading to complete system
failures where even monitoring exporters become unre-
sponsive.

ThingsBoard’s monolithic container architecture
severely constrains horizontal scaling effectiveness. The
counterintuitive resource utilization patterns, where
multi-node deployments consume more resources
(105% vs 75% CPU) than single-node configurations,
indicate fundamental architectural limitations in dis-
tributed coordination. Memory usage patterns docu-
mented in the referenced figures show similar inefficien-
cies in multi-node resource distribution.

EdgeX Foundry’s layered microservices architecture
provides inherent scalability advantages. The platform’s
exceptional stability, demonstrated through consistently
low error rates (0.5-0.8%) and efficient resource utiliza-
tion (24-28% CPU under extreme load), results from its
modular design enabling selective component scaling.
The minimal resource utilization and superior cache per-
formance (90-95% hit rates) demonstrate architectural
efficiency. The document specifically notes that mem-
ory usage shows significant improvements in multi-node
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Table 4: System Resource Utilization Comparison

Platform Deploy Low CPU Med CPU High Outcome Scale

Fiware Single 37-50% 85% Complete Fail Significant
Fiware Multi 20-25% 50% Complete Fail Significant
ThingsBoard Single 22% 75% Fail (30min) Min/Neg
ThingsBoard Multi 30% 105% Fail (30min) Min/Neg
EdgeX Single 1-9% 28% Stable Op Moderate
EdgeX Multi 1-9% 24% Stable Op Good

Deploy=Deployment Type, Scale=Scalability Benefit, Op=Operation

Table 5: Database Performance Analysis

Platform Deploy Low Load Med Load Cache Eff High Stab

Fiware (Mongo) Single 30 ops/s 30 ops/s Suboptimal Failed
Fiware (Mongo) Multi 45 ops/s 190 ops/s Poor (repl) Failed
TB (PgSQL) Single 8 TPS 6 TPS Standard Failed
TB (PgSQL) Multi 14 TPS 10 TPS Standard Failed
EdgeX (Redis) Single 45-50% hit 90-95% hit Excellent Stable
EdgeX (Redis) Multi 45-50% hit 90-95% hit Excellent Stable

TB=ThingsBoard, Deploy=Deployment, Eff=Efficiency, Stab=Stability, repl=replication

Figure 1: Redis memory usage for a single deployment

deployments, with better memory management strate-
gies as evidenced in the comparison of Figures 1 and
2.

5.2 Database Performance Impact and
System Failure Patterns

Database layer performance significantly influences
overall platform scalability, and the failure patterns re-
veal critical insights. FIWARE’s MongoDB replica set
configuration shows cache utilization inefficiencies dur-
ing normal operation, with multi-node deployments ex-
periencing dramatic increases in I/O operations from 30
to 190 ops/sec. However, under extreme load condi-
tions, complete system failures render database moni-
toring impossible.

ThingsBoard’s PostgreSQL implementation provides
stable performance with modest clustering benefits un-
der normal conditions, showing improvement from 8
TPS single-node to 14 TPS multi-node under low load.

Figure 2: Redis memory usage for a multi-node deploy-
ment

However, performance degrades under medium load (6
TPS single-node, 10 TPS multi-node), and database im-
provements cannot prevent complete system collapse
under extreme loads.

EdgeX Foundry’s Redis-based data management of-
fers superior performance characteristics and maintains
functionality even under extreme conditions. The dra-
matic improvement in cache hit rates from 45-50%
under low load to 90-95% under medium and high
loads demonstrates exceptional scalability. Redis’s in-
memory architecture eliminates disk I/O bottlenecks
that constrain other platforms, enabling continued op-
eration where others fail completely. The memory
management advantages are particularly pronounced, as
documented in the experimental figures available at the
GitHub repository [28].
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Table 6: Error Rate and Reliability Analysis

Load Dep FW Err TB Err EX Err FW Stat TB Stat EX Stat

10×100 S 0% 0% 0% Stable Stable Excellent
10×100 M 0% 0% 0% Stable Stable Excellent
100×1000 S 0.4% 8% 0.5% Degraded Stressed Excellent
100×1000 M 0% 5% 0.5% Better Sl Better Excellent
1000×1000 S 100% 100% 0.8% Complete Fail Fail (30min) Stable
1000×1000 M 100% 100% 0.5% Complete Fail Fail (30min) Stable

Dep=Deployment (S=Single, M=Multi), FW=Fiware, TB=ThingsBoard, EX=EdgeX,
Err=Error Rate, Stat=Status, Sl=Slightly

5.3 Platform Selection Framework

These experimental results provide evidence-based
guidance for IoT platform selection:

EdgeX Foundry emerges as optimal for organiza-
tions requiring high-throughput, large-scale IoT deploy-
ments. The platform’s ability to maintain minimal er-
ror rates (0.5-0.8%) under extreme loads (1000×1000)
while achieving optimal resource utilization makes it
suitable for mission-critical applications requiring ex-
ceptional reliability and scalability. The platform’s
continued operation with stable response times (300-
350ms) and improved memory efficiency in multi-
node deployments demonstrates superior architectural
resilience.

FIWARE suits moderate-scale applications where
comprehensive context management capabilities out-
weigh scalability limitations. The platform’s 50% re-
source utilization improvements in multi-node deploy-
ments make it viable for applications with predictable,
moderate load patterns. However, organizations must
plan for complete system failure scenarios under high-
load conditions and implement appropriate failover
strategies.

ThingsBoard remains viable primarily for appli-
cations emphasizing data visualization and dashboard
functionality over raw performance scalability. The
platform’s limited horizontal scaling benefits, counter-
intuitive resource utilization patterns (105% vs 75%
CPU), and rapid failure progression make it unsuitable
for high-performance scenarios, but its feature richness
may justify selection for visualization-focused use cases
with guaranteed load limits.

6 Conclusion
This comprehensive performance evaluation of FI-
WARE, ThingsBoard, and EdgeX Foundry provides
crucial insights into IoT platform scalability charac-
teristics and failure patterns under extreme conditions.
Our systematic testing across three load levels (10×100,
100×1000, 1000×1000) and two deployment architec-

tures reveals significant performance differences and
critical failure points that directly impact platform se-
lection decisions.

Key findings demonstrate EdgeX Foundry’s superior
scalability and exceptional stability across all tested sce-
narios. The platform maintained remarkable perfor-
mance with minimal error rates (0.5-0.8%) even under
maximum load conditions (1000×1000) while achiev-
ing optimal resource utilization and superior cache per-
formance (90-95% hit rates). The documented memory
efficiency improvements in multi-node deployments, as
evidenced by the experimental figures, establish EdgeX
as the most reliable choice for large-scale IoT deploy-
ments.

FIWARE demonstrates promise for medium-scale ap-
plications with effective multi-node resource distribu-
tion providing 50% better system resource utilization
under low loads. However, the platform faces funda-
mental limitations under extreme loads, experiencing
complete system failures that render even monitoring
systems unresponsive. The MongoDB replication is-
sues (30 to 190 ops/sec increase) and context broker bot-
tlenecks represent significant scalability constraints that
organizations must carefully consider.

ThingsBoard exhibits the most constrained horizon-
tal scaling capabilities, with multi-node deployments of-
ten performing worse than single-node configurations
due to coordination overhead (105% vs 75% CPU). The
platform’s rapid progression to complete failure under
high loads (within 30 minutes of 1000×1000 testing)
confirms architectural limitations that restrict scalabil-
ity potential and make it unsuitable for high-throughput
applications.

The experimental methodology employed provides a
replicable framework for future IoT platform evalua-
tions, with particular attention to complete system fail-
ure scenarios that are often overlooked in performance
studies. The comprehensive tabular analysis with mea-
surable metrics and figure references offers detailed in-
sights into platform behavior under various load condi-
tions, enabling evidence-based platform selection deci-
sions based on quantitative performance data and failure
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resilience rather than feature comparisons alone.
Future research directions include investigation of re-

covery mechanisms following system failures, evalua-
tion of additional open-source platforms under extreme
load conditions, analysis of platform performance under
varied IoT protocol conditions, and development of fail-
ure prediction models based on early performance indi-
cators. Real-world deployment validation with gradual
load increases and hybrid deployment scenario analysis
represent additional valuable research opportunities for
advancing IoT platform performance understanding and
resilience planning.
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