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ABSTRACT

Improving the generalization of Bird’s Eye View (BEV) detection models is essen-
tial for safe driving in the real world. In this paper, we consider a realistic yet more
challenging scenario, which aims to improve the generalization with single source
data for training, as collecting multiple source data is time-consuming and labor
intensive in autonomous driving. To this end, we rethink the task from a frequency
perspective and exploit the cross-view consistency between adjacent perspectives.
We propose the Fourier Cross-View Learning (FCVL) framework including Fourier
Hierarchical Augmentation (FHiAug), an augmentation strategy in the frequency
domain to boost domain diversity and Fourier Cross-View Semantic Consistency
Loss to facilitate the model to learn more domain-invariant features. Furthermore,
we provide theoretical guarantees via augmentation graph theory. To the best of
our knowledge, this is the first study to explore generalizable 3D Object Detection
in BEV with single-source data. Extensive experiments on various testing domains
have demonstrated that our approach achieves the best performance on various test
domains with single-source data.

1 INTRODUCTION

Recent advances in Bird’s Eye View (BEV) representations have shown significant potential for multi-
camera 3D object detection, as they capture both spatial locations and semantic features without being
heavily affected by occlusions. While existing camera-based BEV models (Philion & Fidler, 2020;
Huang et al., 2022; Li et al., 2022b;c) have achieved excellent performance on in-distribution datasets
like nuScenes (Caesar et al., 2020), they struggle in real-world settings where the environment and
conditions vary widely. This performance drop occurs because camera data in practical applications
often has different distributions compared to the limited training data. As a result, enhancing the
generalization of these models is critical for their safe deployment. Domain generalization (DG) aims
to generalize a model to an unseen target domain by learning from multiple source domains. However,
collecting diverse source data for training is time-consuming and labor-intensive, especially in
autonomous driving scenarios, and cannot always guarantee improved performance. In this paper, we
tackle a more practical yet challenging problem: improving the generalization of 3D object detectors
when trained on a single source domain. Focusing on single-domain generalization (SDG) not only
addresses practical constraints but also provides a more robust evaluation of model adaptability.

In SDG for 2D image classification, previous works (Zhao et al., 2023; Qiao et al., 2020) aim to
enhance data diversity using common 2D data augmentation techniques1, such as geometric transfor-
mations, style transfer, or adversarial data generation. However, directly applying these approaches
to BEV-based tasks introduces several challenges. First, BEV representations are generated by pro-
jecting multi-view 2D features using real-world physical constraints, which limits the use of strong
geometric transformations, such as 270-degree rotations, as they would disrupt the spatial consistency
of the BEV space. Second, style transfer techniques (Zhao et al., 2023) replace the original image
statistics with those from the target style, but this often blurs the boundary between style and content
(Lee et al., 2023), distorting important features and ultimately harming model generalization. Third,
adversarial generation methods(Goodfellow et al., 2020) suffer from unstable training and mode

1We have provided a more detailed introduction to these techniques in the Appendix A.
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Figure 1: (a) Detection results of different models: the proposed FCVL can improve the generalization
of 3D detection on multiple target domains with single source training data. (b) Cross-View Learning:
make the most of the natural cross-view input to improve the generalization. (c) Augmentation graph
connectivity: augmentations of data from the same classes are assumed to be connected. FHiAug
increases the augmentation graph connectivity between source and unseen domains.

collapse. While diffusion-based techniques(Ho et al., 2020) are more stable, they add significant
computational and storage overhead, making them impractical for complex 3D detection models.
Therefore, common 2D data augmentations cannot be effectively leveraged to create diverse training
samples for BEV-based tasks. More importantly, for multi-camera 3D object detection, the natural
availability of multi-view data offers a unique opportunity to learn domain-invariant features, a
potential that remains underexplored in scenarios with limited training data.

In response to these limitations and challenges, we propose the Fourier Cross-View Learning (FCVL)
framework including Fourier Hierarchical Augmentation (FHiAug), an augmentation strategy in the
frequency domain to boost domain diversity and Fourier Cross-View Semantic Consistency Loss
to facilitate the model to learn more domain-invariant features. Different from Zhao et al. (2023)
expanding style statistics in the pixel domain, we utilize the Fourier transform to introduce style
variations while minimizing content distortion. This is motivated by the well-known property of the
Fourier transformation: the phase component encodes high-level semantic information, while the
amplitude component captures low-level image statistics (Xu et al., 2021). This separation allows
us to independently manipulate style (low-level statistics) and content (high-level semantics) in the
frequency domain. At the image level, we introduce Frequency Jitter, which perturbs both amplitude
and phase components to create diverse samples that complement the single source domain. At
the feature level, we propose Amplitude Transfer, a novel method for generating fine-grained style
variations, ensuring domain diversity in the latent space. For multi-camera setups, FHiAug applies
cross-camera augmentation, creating surrounding views with varied “styles” to simulate realistic
variations. To leverage the natural multi-view input, we design the Fourier Cross-View Semantic
Consistency Loss, which aligns adjacent perspectives to help the model develop robust features
against domain shifts. Furthermore, using augmentation graph theory (HaoChen et al., 2022; Wang
et al., 2024), we provide a unique theoretical perspective on FCVL and establish its theoretical
soundness.

In summary, our major contributions are as follows:

• Towards SDG for multi-camera 3D object detection, we present the Fourier Cross-View
Learning framework to fully exploit natural cross-view inputs.

• We propose FHiAug, a novel, efficient, plug-and-play augmentation strategy that operates
on both image and feature levels, to enhance domain diversity without requiring additional
modules or specialized training strategies.

• We propose Fourier Cross-View Semantic Consistency Loss to facilitate the model to learn
more domain-invariant features from adjacent perspectives.

• Using augmentation graph theory, we provide a valid theoretical foundation for the effec-
tiveness of FCVL.

• To the best of our knowledge, this is the first work to address generalizable 3D object
detection in BEV using single-source data. Extensive experiments across various test
domains demonstrate that our approach achieves superior performance compared to existing
domain generalization methods (See Fig.1(a)).
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Figure 2: Overview of our FCVL framework. FCVL includes two major parts: FHiAug to boost
domain diversity and Fourier Cross-View Semantic Consistency Loss to ensure domain-invariant
BEV features. FHiAug consists of two stages. One is Frequency Jitter at image level. The other is
Amplitude Transfer at feature level. Notably, we achieve cross-camera augmentation via FHiAug,
which means a set of surrounding views have different "styles". This forces the model to learn from
diversified domains. Besides, on multi-view features, we calculate Fourier Cross-View Semantic
Consistency Loss to learn more domain-invariant BEV features.

2 METHODOLOGY

2.1 OVERVIEW OF FOURIER CROSS-VIEW LEARNING (FCVL) FRAMEWORK

In this section, we elaborate the Fourier Cross-View Learning (FCVL) framework. The FCVL
framework is motivated by the cross-view consistency in BEV 3D object detection. For example, as
shown in Fig.1(b), objects such as cars or pedestrians are often visible across multiple adjacent camera
views. This overlap results in similar BEV features across these cameras, providing an inductive bias
to guide the learning process. To capture this cross-view relationship, we implement a Fourier Cross-
View Semantic Consistency Loss, where features from nearby camera views are considered positive
samples, while those from distant views are treated as negative samples. To enhance feature diversity
and improve domain generalization, we propose Fourier Hierarchical Augmentation, which applies
frequency-based transformations to different camera views. This method enriches the feature space,
promoting the learning of domain-invariant BEV features. The overall structure of our framework is
depicted in Fig.2 and the process is outlined in Algorithm 1 in Appendix D. In the following sections,
we provide an in-depth explanation of both the Fourier Hierarchical Augmentation and the Fourier
Cross-View Semantic Consistency Loss.

2.2 FOURIER HIERARCHICAL AUGMENTATION

Fourier Hierarchical Augmentation (FHiAug) includes data augmentation at image level (Frequency
Jitter) and domain perturbation at feature level (Amplitude Transfer), which is a plug-and-play and
non-parameter method to boost domain diversity without extra module designing or special training
strategies.

2.2.1 FREQUENCY JITTER AT IMAGE LEVEL

For a single channel image x ∈ Rd1×d2 , the 2D Fourier transformation is defined as follows,

F (x)(u, v) =

d1−1∑
m=0

d2−1∑
n=0

x(m,n) exp−2πi(mu
d1

+nv
d2

), (1)
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where F denotes Fourier Transform; u and v denote spatial coordinates; m and n denote frequency
coordinates.

The amplitude components A and phase components P are then respectively expressed as:

A(x)(u, v) = [R2(x)(u, v) + I2(x)(u, v)]1/2,P(x)(u, v) = arctan
[ I(x)(u, v)
R(x)(u, v)

]
, (2)

where R(x) and I(x) represent the real and imaginary part of F (x), respectively.

To generate diverse samples that complement the single source domain, we employ two strategies.
First, we perturb the amplitude component using a hyperparameter, α, to create variations in low-level
statistics. Second, we modify the intensity of the phase component with a hyperparameter, β, to
expose the model to previously less emphasized features (Chen et al., 2020).

Â(x)(u, v) = αA(x)(u, v), P̂(x)(u, v) = βP(x)(u, v), (3)

where α ∼ U(η, 1) and the hyperparameter η control the strength of the augmentation on amplitude;
β ∼ U(λ, 1) and the hyperparameter λ control the strength of the augmentation on phase.

With new amplitude and phase component, we can form a new Fourier representation and use inverse
Fourier transformation to generate the augmented image x̂.

F (x̂)(u, v) = Â(x)(u, v) ∗ e−j∗P̂(x)(u,v), x̂ = F−1[F (x̂)(u, v)]. (4)

In the training phase, we set pi as the calling probability of Frequency Jitter and sample p ∼ U(0, 1).
For image input x, we acquire the augmented xaug as:

xaug = Frequency_Jitter(x), if p ≤ pi. (5)

This Fourier-based augmentation strategy, termed Frequency Jitter, manipulates both amplitude and
phase components, as shown in Fig.6. The top row demonstrates adjustments to the amplitude,
primarily affecting image brightness, which helps the model become robust to varying lighting
conditions. The bottom row shows modifications to the phase component, creating samples with
varying levels of semantic detail while preserving the overall structure. This controlled manipulation
of semantic strength encourages the model to learn more domain-invariant and robust features.
Additional examples highlighting the effect of phase adjustments are provided in Fig.8(b).

2.2.2 AMPLITUDE TRANSFER AT FEATURE LEVEL

To implement domain perturbation and create diverse virtual styles during training, we apply Ampli-
tude Transfer based on the style statistics of intermediate features. This approach aims to improve
model robustness and generalization.

Given an intermediate feature map X ∈ RB×C×H×W , where B, C, H , and W denote batch size,
number of channels, height, and width, respectively, we first perform a Fourier transformation and
extract its amplitude component A(X) ∈ RB×C×H×W . We then compute the channel-wise mean
(µ) and standard deviation (σ) for each instance’s amplitude as follows:

µ(A(X)) =
1

HW

H∑
h=1

W∑
w=1

A(X), σ2(A(X)) =
1

HW

H∑
h=1

W∑
w=1

[A(X)− µ(A(X))]2. (6)

Now, we acquire the style statistics µ(A(X)) and σ2(A(X)) of the features. To achieve feature-level
perturbation, different from Xu et al. (2021) and Zhou et al. (2021) to mix up different domains’ style
information directly, inspired by Li et al. (2022a) we make uncertainty estimation on µ(A(X)) and
σ(A(X)) with the variance as follows:

Var(µ(A(X))) =
1

B

B∑
b=1

[µ(A(X))− E(µ(A(X)))]2,

Var(σ(A(X))) =
1

B

B∑
b=1

[σ(A(X))− E(σ(A(X)))]2,

(7)

where B is the batch size and E denotes the mathematical expectations.
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Next, we obtain new style statistics β and γ by random sampling from the Gaussian distributions:

β(A(X)) = µ(A(X)) + ϵµ
√

Var(µ(A(X))), ϵµ ∼ N (0, 1),

γ(A(X)) = σ(A(X)) + ϵσ
√

Var(σ(A(X))), ϵσ ∼ N (0, 1).
(8)

Finally, we replace the original style statistics with the perturbed values and perform an inverse
Fourier transform to obtain the augmented feature map X̂:

Â(X) = γ(A(X))× A(X)− µ(A(X))

σ(A(X))
+ β(A(X)). (9)

This allows us to create diverse styled features in each training iteration without explicitly defining
content and style. During training, we set pf as the probability of applying Amplitude Transfer
and sample p ∼ U(0, 1). For a given feature input X, the augmented feature Xaug is generated as
follows:

Xaug = Amplitude_Transfer(X), if p ≤ pf . (10)

We visualize the style variations of some pictures via Amplitude Transfer in Fig.7. The left column
shows the original images, while the adjacent columns display styled variations. As observed, the
augmented images exhibit different colors and textures, showcasing the effectiveness of the proposed
method in generating diverse feature styles.

2.3 FOURIER CROSS-VIEW SEMANTIC CONSISTENCY LOSS

Figure 3: Illustration of Fourier Cross-View
Semantic Consistency Loss

For multi-camera 3D object detection, the input inher-
ently includes cross-view data, which is beneficial for
learning domain-invariant features. This has not yet
been harnessed to improve generalization. As illus-
trated in Fig.3, consider a car appearing in both the
front and front-right views. Such cross-view targets
are common in multi-camera inputs, providing natu-
ral opportunities to observe the same object from dif-
ferent perspectives. To exploit this, we propose the
Fourier Cross-View Semantic Consistency Loss to help
the model learn more robust features from adjacent
views. Unlike conventional consistency losses that op-
erate in the pixel domain, we minimize the distance
between the phase distributions of the targets with the
same semantics, as the phase component usually en-
codes high-level semantic information. Concretely, for adjacent views, we split the features into
halves as shown in Fig.3. We treat the target from the right half of the first view as the anchor, use the
same target or the augmented one via FHiAug from the left half of the adjacent view as the positive
sample and select other samples as negatives. Next, we calculate triplet loss (Schroff et al., 2015) in
the frequency domain to explore potential semantic similarity as follows:{

viewpos
aug = FHiAug(viewpos),

viewneg
aug = FHiAug(viewneg),

(11)

a = P(viewanchor), p = P(viewpos
aug), n = P(viewneg

aug), (12)

Lcross = max(dist(a, p)− dist(a, n) + margin, 0), (13)

where FHiAug is the proposed augmentation method; viewanchor is the anchor example; viewpos is the
sample with the same category as anchor; viewneg is the sample with different categories; P denotes
calculating the phase components of different views after Fourier transformation; dist is the distance
measurement; margin is a constant greater than zero.

Overall, the training objective loss including detection loss Ldet and consistency loss Lcross can be
written as:

Ltrain = Ldet + γLcross, (14)

where γ is the weighting parameter to balance different loss terms.
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3 THEORETICAL ANALYSIS

To analyze the influence of data augmentation, we adopt the standard augmentation graph framework
(HaoChen et al., 2022; Wang et al., 2024), where data augmentations induce interactions (as edges)
between training samples (as nodes). Given a natural data sample x ∈ X , we use A(·|x) to denote
the distribution of its augmentations. For any two augmented data x, x′ ∈ X , define the adjacency
matrix Wxx′ as the marginal probability of x and x′ from a random natural data x ∼ PX :

Wxx′ = Ex∼PX
[A(x|x)A(x′|x)]. (15)

Let L = I −D− 1
2WD− 1

2 be the normalized graph Laplacian matrix, where D is a diagonal degree
matrix with the (x, x)-th diagonal element as Dxx =

∑
x′ Wxx′ .

Based on the above augmentation graph framework, we construct the augmentation graph
G(X ,X ,W ) in the feature space for single source domain and augmented domains as shown
in Fig.1(c). Then, we have the following theorem:
Theorem 1. For the optimal encoder f∗, BEV projection module P ∗

BEV, a learned classification
head C∗ and regression head R∗ on augmented data X , its linear probing error has the following
generalization upper bound,

E(f∗, P ∗
BEV, C

∗, R∗) ≤ 2α

λk+1
+ 4∆(yc, ŷc) + 4∆(yr, ŷr), (16)

where α denotes the labeling error caused by data augmentation; λk+1 denotes the k+ 1-th smallest
eigenvalue of the Laplacian matrix L; ∆(yc, ŷc) denotes the average disagreement between ŷc and
the ground-truth labeling yc for classification; ∆(yr, ŷr) denotes the average disagreement between
ŷr and the ground-truth labeling yr for regression.

Based on the generalization upper bound in Eq.16 (proof in AppendixE.1), we can provide rigorous
explanations to show that our method can increase graph connectivity λk+1 and reduce label error α
to decrease the generalization loss.

First, as shown in Fig.1(c), as we can only get access to the single source data, the connectivity of the
graph is poor and only a few feature points are connected. There is a large margin between the source
and target domains. The proposed FHiAug plays a positive role in expanding graph connectivity
λk+1, since it creates more diverse "middle" domains between single source data and unseen target
domains. According to augmentation graph theory, with the increase of augmentation strength, the
graph connectivity λk+1 can be increased. Via increasing λk+1 in Eq.16, the generalization upper
bound can be tighter and the generalization ability can be improved.

However, common strong augmentation, such as strong geometric enhancement, also causes label
error (larger α in Eq.16 ) and increases the generalization loss. The proposed FHiAug augmenting in
the frequency domain can effectively alleviate this issue. Next, we will provide a theoretical analysis
and show that FHiAug can ensure semantic consistency under strong augmentation strength to
increase connectivity. As mentioned in Sec.2, input data X can be decomposed into two components:
phase Xp, and amplitude Xa, where Xp contains semantic information about the label y, denoting the
causal component, and Xa contains more low-level information, denoting the non-causal components.
Assumption 1. We assume the linear relationship between Xp and y,

y = Xpϕ+ ϵ, (17)

where ϵ is the noise, Cov(Xp, ϵ) = 0, E[Xp] = 0.
Theorem 2. If input data X consists of all the phase components, X = Xp, the optimal linear
predictor ϕ can be estimated without bias. Otherwise, the predictor ϕ is biased.

For some style transferring methods in pixel domain, both phase and amplitude components are
modified. In this situation, the predictor ϕ is biased, which means that the predictor probably gives
wrong prediction of label. While the proposed method FHiAug augments in the frequency domain
and retains the phase congruency, avoiding label error effectively. At image level, Frequency Jitter
only adjusts the intensity of phase component in the global. The distribution of semantic information
is not changed. At feature level, we achieve style transfer with operating on amplitude component
only. More proof for Theorem 2 is in Appendix E.2.
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Table 1: Comparison with baseline methods on nuScenes and nuScenes-C. The table represents
the results of NDS ↑ with ResNet50 as backbone. "Clean" denotes the normal validation set of
nuScenes. "OoD Avg." is the average performance of eight testing domains. FCVL achieves SOTA
out-of-distribution performance on three frameworks. PD-BEV †(Lu et al., 2023) has released the
code for BEVDepth. Thus, we mainly compare our method with PDBEV on BEVDepth for fair
comparison. The best and second-best results are highlighted in Red and Blue, respectively.

Model Clean Cam
Crash

Frame
Lost

Color
Quant

Motion
Blur Bright Low

Light Fog Snow OoD Avg.

BEVFormer (Li et al., 2022c) 0.4362 0.3175 0.3246 0.3410 0.2549 0.4022 0.2461 0.3853 0.1510 0.3028
+CPerb (Zhao et al., 2023) 0.4356 0.3199 0.3292 0.3372 0.2548 0.4096 0.2420 0.3907 0.1661 0.3062

+DSU (Li et al., 2022a) 0.4359 0.3206 0.3322 0.3609 0.3425 0.4083 0.2458 0.3937 0.2601 0.3330
+DAC-SC (Lee et al., 2023) 0.4332 0.3085 0.2872 0.3703 0.3691 0.4161 0.3155 0.4093 0.3086 0.3481

+FACT (Xu et al., 2021) 0.4379 0.3181 0.3285 0.3436 0.2585 0.4100 0.2494 0.3916 0.1486 0.3060
+FCVL(Ours) 0.4375 0.3244 0.3374 0.3751 0.3748 0.4202 0.3078 0.4170 0.2969 0.3567

BEVDepth (Li et al., 2022b) 0.4028 0.2654 0.2178 0.2801 0.2697 0.3072 0.1558 0.3080 0.0881 0.2365
PD-BEV † (Lu et al., 2023) 0.4094 0.2822 0.2316 0.3102 0.2842 0.3011 0.1411 0.3151 0.1091 0.2468
+CPerb (Zhao et al., 2023) 0.4034 0.2698 0.2294 0.2847 0.2873 0.3180 0.1616 0.3164 0.1054 0.2466

+DSU (Li et al., 2022a) 0.4057 0.2722 0.2330 0.3065 0.3270 0.3462 0.2165 0.3249 0.1565 0.2729
+DAC-SC (Lee et al., 2023) 0.4007 0.2714 0.2200 0.2846 0.2861 0.3284 0.1586 0.3172 0.1299 0.2495

+FACT (Xu et al., 2021) 0.4026 0.2670 0.2224 0.2872 0.2749 0.3276 0.1611 0.3141 0.0957 0.2438
+FCVL(Ours) 0.4050 0.2722 0.2346 0.3106 0.3318 0.3539 0.2577 0.3380 0.1968 0.2870

BEVDet (Huang et al., 2022) 0.3880 0.2508 0.1955 0.2409 0.2201 0.2591 0.1112 0.2633 0.0728 0.2017
+CPerb (Zhao et al., 2023) 0.3908 0.2590 0.2065 0.2479 0.2325 0.2643 0.1322 0.2752 0.0782 0.2120

+DSU (Li et al., 2022a) 0.3835 0.2582 0.2061 0.2814 0.3019 0.3128 0.1806 0.2961 0.1065 0.2430
+DAC-SC (Lee et al., 2023) 0.3884 0.2574 0.2046 0.2688 0.2644 0.2986 0.1450 0.2926 0.1028 0.2293

+FACT (Xu et al., 2021) 0.3907 0.2581 0.2054 0.2430 0.2277 0.2708 0.1230 0.2727 0.0773 0.2098
+FCVL(Ours) 0.3848 0.2579 0.2064 0.2928 0.3204 0.3244 0.2393 0.3156 0.1848 0.2677

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

To verify different methods’ generalization ability, we first utilize nuScenes (Caesar et al., 2020) as
the single training source and nuScenes-C (Xie et al., 2023) as the testing sets. To further demonstrate
the effectiveness of our method, we experiment on Argoverse 2 (Wilson et al., 2023). We choose four
baselines including BEVFormer, BEVDepth, BEVDet and new SOTA method Far3D (Jiang et al.,
2023a). More details of datasets and implementation can be found in Appendix B.

4.2 COMPARISON WITH SOTA METHODS

We compare our method with some SOTA SDG and DG methods which involve frequency-domain
data augmentation (CPerb (Zhao et al., 2023), FACT (Xu et al., 2021)) and style transformation
(DAC-SC (Lee et al., 2023)). Besides, PD-BEV (Lu et al., 2023) working on BEVDepth, is proposed
to ensure consistent and accurate detection and improve generalization via perspective debiasing.

The results on nuScenes and nuScenes-C are shown in Table 1. On transformer-based framework,
our FCVL can greatly improve the generalization of BEVFormer as shown in Table 1. The average
NDS of eight testing domains is increasing from 0.3028 to 0.3567 (↑ 5.39%). FCVL achieves SOTA
out-of-domain performance across different SDG or DG methods. On LLS-based framework,
FCVL achieves SOTA performance on both BEVDepth and BEVDet as well. In terms of the average
NDS of eight testing domains, our method achieves much better performance than BEVDepth
(↑ 5.05%) and BEVDet (↑ 6.07%). Especially, FCVL improves the performance of BEVDepth by
10.87% for adverse weather conditions Snow and 10.19% for Low Light. Similarly, FCVL improves
the performance of BEVDet by 8.07% for adverse weather conditions Snow and 12.50% for Low
Light. FCVL has more stable generalization ability for adverse weather and light conditions on
different 3D detection frameworks. For worst cases Low Light and Snow, as shown in Fig.4(b),
FCVL has shown significant improvement. Overall, as is shown in Fig.4(a), the proposed FCVL
outperforms other methods with great margin on average of three frameworks (↑ 2.08%). Besides,
for both transformer-based framework and LLS-based framework, FCVL has the superiority in stable
maintenance of better generalization ability in eight testing domains, especially in Low Light, Motion
Blur and Snow.
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To comprehensively evaluate our method, we extend our methods to the 3D detectors without explicit
BEV features, such as Sparse4D(Lin et al., 2023) and multi-modal method, such as BEVFusion(Liu
et al., 2024) as well. We list the experimental results including different 3D detection schemes (explicit
BEV or not, multi frames or not, etc.) in the Table 3. Our method can improve the out-of-distribution
performance in all the settings, while maintaining the in-distribution performances.

Table 2: Comparison with baseline methods on Argoverse
2. The table represents the results of mAP ↑. "Clean"
denotes the in-domain set.

Model Clean City Cloudy OoD Avg.
Far3D(Jiang et al., 2023a) 0.219 0.146 0.113 0.130
+CPerb (Zhao et al., 2023) 0.221 0.156 0.130 0.143

+DSU (Li et al., 2022a) 0.218 0.168 0.138 0.153
+DAC-SC (Lee et al., 2023) 0.213 0.162 0.140 0.151

+FACT (Xu et al., 2021) 0.220 0.159 0.129 0.144
+FCVL(Ours) 0.220 0.176 0.161 0.169

More results on Argoverse 2 are shown
in Table 2. We experiment on a new
SOTA Far3D, which presents a sparse
query-based method for multi-view 3D
long-range detection without explicit
BEV features. To achieve training on
one domain and test on unseen domains,
we sample data from sunny weather in
urban scenarios as the training data and
data from cloudy weather or city scenar-
ios as the ood test set. As is shown, our
method improves the generalization for long-range detection as well.

Table 3: The table represents the effectiveness of
our proposed method under different settings on
nuScenes and nuScenes-C. "C" denotes camera
input. "L" denotes lidar input. "Explicit BEV"
means 3D detectors generate explicit BEV fea-
tures. "Temporal" denotes whether utilizing multi
frames. "Depth" denotes whether utilizing depth
information. Bold fonts indicate the best results.

Model Modality Temporal Depth Explicit
BEV Clean OoD Avg.

BEVFormer C ✓ ✓ 0.4362 0.3028
+FCVL(Ours) C ✓ ✓ 0.4375 0.3567

BEVDepth C ✓ ✓ 0.4028 0.2365
+FCVL(Ours) C ✓ ✓ 0.4050 0.2870

BEVDepth C ✓ ✓ ✓ 0.4828 0.4128
+FCVL(Ours) C ✓ ✓ ✓ 0.4827 0.4291

BEVDet C ✓ 0.3880 0.2017
+FCVL(Ours) C ✓ 0.3848 0.2677
Sparse4Dv3 C ✓ ✓ 0.5590 0.4431

+FCVL(Ours) C ✓ ✓ 0.5592 0.4492
BEVFusion L+C ✓ 0.7074 0.6865

+FCVL(Ours) L+C ✓ 0.7123 0.6948

Table 4: Ablation Study on different components
of FCVL on BEVDepth(Li et al., 2022b). Am-
plitude means only jittering on amplitude compo-
nent. Phase means only jittering on phase com-
ponent. Jittering on both is the Frequency Jitter
operated at image level. AT denotes Amplitude
Transfer at feature level. Bold fonts indicate the
best results.

Amplitude Phase AT Lcross Clean OoD Avg.
0.4028 0.2365

! 0.4037 0.2735
! 0.4021 0.2690

! ! 0.4037 0.2767
! 0.4022 0.2570

! ! ! 0.4004 0.2843
! ! ! ! 0.4050 0.2870

4.3 ABLATION STUDY ON NUSCENES

4.3.1 EFFECTS OF DIFFERENT COMPONENTS OF FCVL

Firstly, we analyze the effects of different components of Frequency Jitter at image level, as shown
in Table 4. On average, jittering phase of the input only or jittering amplitude only has impressive
performance. When jittering both phase and amplitude, Frequency Jitter improves the performance
further. Then, we combine Frequency Jitter and Amplitude Transfer to further improve all the testing
domains’ performance, which can demonstrate that the strength of proposed augmentations at image
and feature levels. At last, we add our Lcross in the training. Notably, the consistency loss not only is
beneficial for the in-domain performance, but also boosts the out-of-domain performance.

4.3.2 EFFECTS OF DIFFERENT INSERTED POSITIONS OF AMPLITUDE TRANSFER

We evaluate the impact of different inserted positions of Amplitude Transfer, as shown in Table 8.
Inserted position of ResNet is numbered as follows: after first Conv 0, after Max Pooling layer 1,
after first Resblock 2, after second Resblock 3, after third Resblock 4 and after fourth Resblock 5,
respectively. According to Zhou et al. (2021), Resblock 1 to Resblock 3 contain domain-related
information, which means domain-related information usually lies in shallow layers. Thus, in our
method, Amplitude Transfer is inserted in Position 0-2. We make more experiments by increasing
Position 3-5 gradually to find more suitable positions. As shown in Table 8, in terms of in- and
out- of distribution performance, inserting Amplitude Transfer in Position 0-3 achieves both the best
performance.
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Figure 4: (a) The average detection results of different methods including eight OoD domains under
three baseline frameworks. As is shown, the proposed FCVL outperforms other methods with great
margin on average. (b) Worst cases analysis. Our method has shown significant improvement in
the worst cases, Low Light and Snow. (c) Hyperparameters analysis of FHiAug. The strength
of augmentation η and λ for Frequency Jitter; the probability pi for Frequency Jitter and pf for
Amplitude Transfer.
4.3.3 EFFECTS OF HYPERPARAMETERS

In Frequency Jitter, there are three hyper-parameters. The hyperparameter η controls the strength
of Amplitude augmentation; λ controls the strength of Phase augmentation and pi is the provability
of implementing Frequency Jitter. For Amplitude Transfer, as we have decided where to insert AT
in above section, in this section, we experiment on the probability pf of implementing Amplitude
Transfer. As shown in Fig.4(c), initially, as the probability and intensity increase, the out-of-domain
performance gradually improves. After reaching a certain level of probability and intensity, further
changes in the parameters will no longer cause drastic changes in ood performance, indicating that
the model is stable against hyper-parameter misspecifications as long as the hyper-parameters are
within reasonable ranges. We set η = 0.25, λ = 0.5, pi = 0.25 and pf = 0.75 as the final setting.

Furthermore, we conduct experiments to validate the effect of Fourier Cross-View Semantic Consis-
tency Loss on BEVDet. We take Fourier Cross-View Semantic Consistency Loss as a stand alone
addition to the backbone and adjust the weights of Lcross. The results are shown in the Table 9. γ is
the weight of Lcross. It can be seen that when adding this Cross-View Semantic Consistency Loss
separately, the overall generalization performance has been significantly improved, especially in
some domains such as Motion Blur, LowLight.

4.4 EFFICIENCY ANALYSIS

In this part, we make efficiency analysis to delve into the proposed FCVL. We investigate how the
method scales with increasing image resolution and computational complexity. The results are listed
in Table 5. With larger resolution, FCVL can still improve the performance. FCVL is only used
during the training phase. In the inference, we do not need to do the augmentation. Our approach
enhances the algorithm’s generalization performance without increasing the time consumption during
the inference, which is beneficial for practical applications.

Table 5: Efficiency analysis of FCVL. Training time refers to the time it takes for one training step
when the batch size is 1. Inference time refers to the time for inferring a single sample. “Memory” is
the consumed GPU memory during training with batch size 1. All the tests are conducted on RTX
3090 GPU.

Model Resolution Training time (s) Inference time (s) Memory(MB) OoD Avg.
BEVDet 256 × 704 0.257 0.073 5498 0.2017
+FCVL 256 × 704 0.364 0.073 7383 0.2677(↑ 6.60%)
BEVDet 512 × 1408 0.482 0.143 11698 0.2006
+FCVL 512 × 1408 0.605 0.143 20094 0.2394(↑ 3.88%)

4.5 VISUALIZATION ANALYSIS

We use t-SNE to visualize the BEV features from different domains of BEVDet and FCVL. In the
Fig. 5, source domain is represented in red and other colors represent different target domains. We
can find that the features of different domains extracted from BEVDet are distant from each other
and loosely distributed in the feature space.
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Figure 5: t-SNE Visualization of FCVL.

While, after optimization with FCVL, the distri-
bution of four domains becomes more compact
and connected, which is in line with augmenta-
tion graph theory. FCVL increases the augmen-
tation graph connectivity between source and
unseen domains and improve the generalization
a lot. More visualized results of FCVL can be
found in Appendix F.

5 RELATED WORK

5.1 MULTI-VIEW 3D OBJECT DETECTION

The recent advances in BEV representation exhibit great potential for multi-view 3D Object Detection
Dong et al. (2024); Yang et al. (2023); Pan et al. (2024); Qi et al. (2024); Li et al. (2024); Zhang
et al. (2022); Jiang et al. (2023b). The camera-based BEV models (Philion & Fidler, 2020; Huang
et al., 2022; Li et al., 2022b;c) have achieved excellent performance on in-distribution datasets but
improving the generalization of such detection models in real-world application scenarios is remains
under-studied. PD-BEV renders diverse view maps from BEV features and rectify the perspective
bias of these maps to help the learning of features resilient to domain shifts (Lu et al., 2023). DG-BEV
creates multiple pseudo-domains and construct an adversarial training loss to encourage the feature
representation to be more domain-agnostic (Wang et al., 2023a).

5.2 SINGLE DOMAIN GENERALIZATION

Domain Generalization (DG) aims to generalize a model trained on multiple source domains to a
target domain which is distributionally different. CIRL(Lv et al., 2022) generates augmented images
by a causal intervention module with intervention upon non-causal factors. AGFA (Kim et al., 2023)
trains the classifier and the amplitude generator adversarially to synthesise a worst-case domain for
adaptation. This paper focuses on single domain generalization (Wang et al., 2023b) which is a more
challenging yet realistic setting. Wang et al. (2023b) propose a style-complement module to enhance
the generalization power of the model by synthesizing images from diverse distributions that are
complementary to the source ones. Chen et al. (2023) propose a new learning paradigm, namely
simulate-analyze-reduce, which first simulates the domain shift by building an auxiliary domain as
the target domain, then learns to analyze the causes of domain shift, and finally learns to reduce
the domain shift for model adaptation. Qiao et al. (2020) leverage adversarial training to create
“fictitious” yet “challenging” populations and use a Wasserstein Auto-Encoder (WAE) to relax the
widely used worst-case constraint in a meta-learning scheme. Zhao et al. (2023) propose CPerb,
a simple yet effective cross-perturbation method to enhance the diversity of the training data and
introduce multi-route perturbation to learn domain-invariant features. As can be seen from previous
work, increasing data diversity is a key ingredient for single domain generalization.

6 CONCLUSION

In conclusion, this paper addresses the challenge of Single Domain Generalization in multi-camera 3D
object detection via Fourier Cross-View Learning framework. We propose a non-parametric Fourier
Hierarchical Augmentation at both image and feature levels to enhance data diversity and Fourier
Cross-View Semantic Consistency Loss to facilitate model to learn more domain-invariant features
from adjacent perspectives. Besides, via augmentation graph theory, we make valid theoretical
guarantees. Extensive experiments on various testing domains of different datasets have demonstrated
that our approach achieves the best performance across various domain generalization methods.

Limitations. At present, there are several hyperparameters to be tuned. In the future work, we
can explore additional techniques to avoid spending too much time on tuning hyperparameters.
Additionally, for snowy weather, we have already improved by 10 points, but the performance is still
much worse compared to the performance in other scenarios such as low light. Consequently, there is
a substantial potential for enhancement in adverse weather conditions.
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A INTRODUCTION TO COMMON 2D DATA AUGMENTATION TECHNIQUES

In SDG for 2D image classification, previous works (Zhao et al., 2023; Qiao et al., 2020) aim
to enhance data diversity using common 2D data augmentation techniques, such as geometric
transformations, style transfer, or data generation. However, directly applying these approaches to
BEV-based tasks introduces several challenges.

First, BEV representations are generated by projecting multi-view 2D features using real-world
physical constraints, which limits the use of strong geometric transformations, such as 270-degree
rotations, as they would disrupt the spatial consistency of the BEV space. We add a strong geometric
enhancement experiment including significant rotation and translation on the image and the results are
as follows in the Table 6. For one thing, it shows that strong geometric enhancement hurts in-domain
performance, as large scale rotation or translation may destroy physical restraints in the real driving
scenario. For another, geometric enhancement is not very effective in improving OoD performance.

Table 6: Strong geometric enhancement experiments including significant rotation and translation on
the images.

Model Clean Cam
Crash

Frame
Lost

Color
Quant

Motion
Blur Bright Low

Light Fog Snow OoD Avg.

BEVDet 0.3880 0.2508 0.1955 0.2409 0.2201 0.2591 0.1112 0.2633 0.0728 0.2017
strong geo 0.3505 0.2338 0.1875 0.2249 0.2030 0.2371 0.1188 0.2511 0.0639 0.1900

Second, some style transfer techniques (Zhao et al., 2023; Nuriel et al., 2021) replace the original
image statistics with those from the target style, but this often blurs the boundary between style and
content (Lee et al., 2023), distorting important features and ultimately harming model generalization.
These methods need to remove the "style" in the pixel domain first. Some content cues will be
removed inevitably.

Third, data generation methods including adversarial generation and diffusion-based techniques.
Training a Generative Adversarial Network (GAN) (Goodfellow et al., 2020) involves a competitive
process between two neural networks: the generator and the discriminator. Adversarial generation
can suffer from unstable training and mode collapse. It often requires a lot of experiments and
fine-tuning to get a GAN to work well. While diffusion-based techniques(Ho et al., 2020) are
more stable, they need significant computational and storage overhead, making them impractical for
complex 3D detection models. Additionally, although we can spend much time generating a large
number of samples, we would also require extra storage space. However, our method involves online
augmentation and does not require any additional storage space.

Therefore, common 2D data augmentations cannot be effectively leveraged to create diverse training
samples for BEV-based tasks.

Besides, we further clarify the differences between our method and other frequency-domain ap-
proaches. Compared with these methods(Xu et al., 2021; Lv et al., 2022; Kim et al., 2023), our
method has major strengths in two aspects including accuracy and efficiency. Firstly, in the setting
of single source data, our proposed method can enhance the generalization ability of the detectors
by large margin. FACT (Xu et al., 2021) mixes up two different domains’ data in frequency, e.g.
Cartoon and Photo from dataset PACS and achieves great OOD performance in the paper. But when
training with only single domain, FACT can only mix the samples within the single domain and it
indeed improves the in-domain clean set a little, but the improvement of OOD sets is very slim in
the single domain setting. Different from FACT, we first propose Frequency Jitter at image level to
create diverse samples that are complementary to the single source domain. Then, at feature level,
we introduce a novel method Amplitude Transfer to achieve style transfer without content distortion.
Through uncertainty estimation, we can obtain uncertain feature statistics, which can gradually shift
the features to more diverse domains through continuous training.

Secondly, due to the high complexity of BEV-based 3D object detection models, our plug-and-
play and non-paramerter data augmentation method can achieve better generalization results more
efficiently. CIRL (Lv et al., 2022) generates augmented images by a causal intervention module
with intervention upon non-causal factors. AGFA (Kim et al., 2023) trains the classifier and the
amplitude generator adversarially to synthesise a worst-case domain for adaptation. Compared with
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these methods, our proposed method is simple, stable, yet effective without extra module designing
or special training strategies.

B MORE DETAILS OF EXPERIMENTS SETUP

B.1 DATASETS

To verify different methods’ single domain generalization ability, we first utilize nuScenes (Caesar
et al., 2020) as the single training source and nuScenes-C (Xie et al., 2023) as the testing sets.
NuScenes-C is comprehensive dataset that encompasses eight distinct corruptions, including Bright,
Dark, Fog, Snow, Motion Blur, Color Quant, Camera Crash, and Frame Lost. Each type of corruption
has three different levels of corruption intensity (i.e., easy, moderate, and hard). These eight corrup-
tions include different weather conditions, different light conditions, potential equipment damage
situations. These scenarios are common out-of-distribution problems in real-world application. We
use eight distinct corruptions as our multi testing domains to evaluate the effectiveness of different
DG methods.

Besides, we experiment on public dataset Argoverse 2 (Wilson et al., 2023), which includes different
scenarios from different cities. We sample 20 % data to achieve single domain training set and evaluate
five categories including ’BICYCLE’, ’LARGE VEHICLE’, ’MOTORCYCLE’, ’PEDESTRIAN’,
’REGULAR VEHICLE’.

B.2 EVALUATION METRIC.

For 3D detection task, we maily report mean Average Precision (mAP) and nuScenes Detection
Score (NDS) (Caesar et al., 2020), which is calculated of mAP, as well as five True Positive (TP)
metrics including mean Average Translation Error (mATE), mean Average Scale Error (mASE), mean
Average Orientation Error (mAOE), mean Average Velocity Error (mAVE), mean Average Attribute
Error (mAAE).

NDS =
1

10
[5mAP +

∑
mTP∈TP

(1−min(1,mTP))] (18)

where, TP is the set of the five mean True Positive metrics.

B.3 IMPLEMENTATION DETAILS

To comprehensively evaluate the performance of generalization algorithms, we first choose three
baselines BEVFormer, BEVDepth and BEVDet and experiment on nuScenes. We use ResNet50
as the backbone for these baselines. We extend our method on three baselines respectively. All
parameters in our framework are initialized from ImageNet. We apply an AdamW optimizer with the
learning rate set to 0.0002 and we set the batch size to 2 per GPU. All experiments are conducted
with 4 3090 GPUs.

Besides, we choose a new SOTA Far3D (Jiang et al., 2023a) as another baseline and experiment on
dataset Argoverse 2.

C MORE EXPERIMENTAL RESULTS

C.1 EXPERIMENTS WITH RANDOM SEED

In early experiments, we find that the effect of random seeds on BEVDepth or BEVFormer is
relatively small. We run our method FCVL three times on BEVDepth and the average NDS on clean
testing set is 0.4004 ± 0.0002; the average NDS of OoD sets is 0.2845 ± 0.0003. The standard
deviation for three trials is 0.0002 or 0.0003, which means the method is quite robust to different
seeds. Thus, in later experiments, we run our method with random seed.
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C.2 EVALUATION IN PRACTICAL APPLICATION SCENARIOS

To further evaluate the performance of our algorithm in practical application scenarios, we collect
a large dataset consisting of sunny daytime and nighttime. We train the detection model with our
method on 61716 samples of sunny daytime and test on daytime (6169) and night (8200) samples.
More results can be found in Table 7. Notably, on the night testing set, FCVL can improve the mAP
from 0.0420 to 0.1004(↑ 5.84%).

Table 7: Evaluation results (mAP ↑) in the real-world autonomous driving scenarios.

Model Daytime Night
Baseline 0.2690 0.0420

+FCVL(Ours) 0.2687 0.1004(↑ 5.84%)

C.3 EXTRA ABLATION STUDY RESULTS ON NUSCENES

Effects of different inserted positions of Amplitude Transfer are shown in Table 8. The effect of
Fourier Cross-View Semantic Consistency Loss alone are shown in Table 9.

Table 8: Effects of different inserted positions of Amplitude Transfer. Inserted position of ResNet
is numbered as: after first Conv 0, after Max Pooling layer 1, after first Resblock 2, after second
Resblock 3, after third Resblock 4 and after fourth Resblock 5. "0-5" means inserting Amplitude
Transfer from Position 0 to Position 5.

Model Clean OoD Avg.
BEVFormer 0.4362 0.3028

0-5 0.4404 0.3267
0-4 0.4393 0.3289
0-3 0.4421 0.3294
0-2 0.4404 0.3280

Table 9: The effect of Fourier Cross-View Semantic Consistency Loss alone. γ is the weight of Lcross.

Model Cam
Crash

Frame
Lost

Color
Quant

Motion
Blur Bright Low

Light Fog Snow OoD Avg.

BEVDet 0.2508 0.1955 0.2409 0.2201 0.2591 0.1112 0.2633 0.0728 0.2017
γ = 0.5 0.2487 0.1942 0.2444 0.2132 0.2583 0.1328 0.2635 0.0641 0.2024
γ = 1.0 0.2501 0.1952 0.2785 0.2882 0.2890 0.1407 0.2807 0.1140 0.2296
γ = 2.0 0.2462 0.1932 0.2806 0.2863 0.2872 0.1340 0.2803 0.1147 0.2278

D ALGORITHM

The algorithm of the proposed method is illustrated in 1.
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Algorithm 1 The proposed algorithm (FCVL)
Input: Training data (x, y), detector network f with parameter θ,learning rate β, probability pi to do
Frequency Jitter , probability pf to do Amplitude Transfer.
Output: The optimized network parameter θ∗.

1: while t ≤ T do
2: # Fourier-based data augmentation at image level.
3: Sample p0 ∼ U(0, 1)
4: for (x, y) do
5: if p0 ≤ pi then
6: Perform Frequency Jitter according to Eq. 3.
7: Obtain augmented image x̂ according to Eq. 4.
8: else
9: x̂← x

10: end if
11: end for
12: # Fourier-based domain perturbation at feature level.
13: Sample p1 ∼ U(0, 1)
14: for intermediate features X do
15: if p1 ≤ pf then
16: Perform Amplitude Transfer according to Eq.6 - Eq.9.
17: Obtain perturbed features X̂ according to Eq.4.
18: else
19: X̂ ← X
20: end if
21: end for
22: #Cross-view Semantic Consistency Loss.
23: θ ← θ − β · ▽θLtrain((x̂, y), X̂; θ) ;
24: end while
25: return Save the optimized network f(θ∗).

E PROOF

E.1 PROOF FOR THEOREM1

Lemma 1. Let G = (X ,W ) be the augmentation graph, r be the number of underlying classes.
There exists an extended labeling function ŷ such that

ϕŷ =
∑

x,x′∈X
Wxx′ · I[ŷ(x), ŷ(x′)] ≤ 2α. (19)

Lemma 2. (Theorem B.3 (HaoChen et al., 2022)). Assume the set of augmented data X is finite. Let
f∗ be the optimal encoder. Then, for any labeling function ŷ : X ← [r], there exists a linear probe
B∗ such that

Ex∼Px∼A(·|x)
= [∥y(x)−B∗f∗(x)∥22] ≤

ϕy

λk+1
+ 4∆(y, ŷ), (20)

where λk+1 denotes the k + 1-th smallest eigenvalue of the Laplacian matrix L; ∆(y, ŷ) denotes the
average disagreement between ŷ and the ground-truth labeling y.

According to above lemmas, for detection task, the optimal encoder f∗, BEV projection module P ∗
BEV,

a learned classification head C∗ and regression head R∗ on augmented data X , its linear probing
error has the following generalization upper bound,

E(f∗, P ∗
BEV, C

∗, R∗) ≤ ϕyc

λk+1
+ 4∆(yc, ŷc) + 4∆(yr, ŷr)

≤ 2α

λk+1
+ 4∆(yc, ŷc) + 4∆(yr, ŷr),

(21)
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where α denotes the labeling error caused by data augmentation; ∆(yc, ŷc) denotes the average
disagreement between ŷc and the ground-truth labeling yc for classification; ∆(yr, ŷr) denotes the
average disagreement between ŷr and the ground-truth labeling yr for regression.

E.2 PROOF FOR THEOREM2

The optimal linear predictor for y = Xpϕ+ ϵ is

ϕ∗ = argmin[(y −Xpϕ)
T (y −Xpϕ)] (22)

= (E[X T
p Xp])

−1E[X T
p y] (23)

= ϕ+ (E[X T
p Xp])

−1(E[X T
p y]−E[X T

p Xp]ϕ) (24)

= ϕ+ (E[X T
p Xp])

−1E[X T
p (y − ϕTXp)] (25)

= ϕ+ (E[X T
p Xp])

−1E[X T
p ϵ] (26)

= ϕ+ (E[X T
p Xp])

−1(E[X T
p ]E[ϵ] + Cov(Xp, ϵ)) (27)

= ϕ (28)

If input data X is deteriorated due to data augmentation in pixel domain, the phase components,
Xp = Xp− , is no longer a distribution with E[Xp− ] = 0. Then, the predictor ϕ is biased:

ϕ∗ = ϕ+ (E[X T
p−Xp− ])−1(E[X T

p− ]E[ϵ]) (29)

F VISUALIZATION ANALYSIS

F.1 VISUALIZATION OF PROPOSED FHIAUG

In this section, we visualize diverse styles generated via FHiAug. Visualization of Frequency Jitter at
image level and visualization of style variations via Amplitude Transfer are shown in Fig.6 and 7. To
better illustrate the phase component, we provide more examples of changing phase components in
Fig.8.

Figure 6: Frequency Jitter at image level. The top line is adjusting the amplitude. It mainly influence
the image brightness. The bottom line is adjusting the phase. As it can been, main structures of
different targets have been retained.
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Figure 7: Visualization of style variations via Amplitude Transfer. The left cols are original pictures.
The other two cols are styled pictures.

(a) (b)

Figure 8: (a) Visualized results of diverse styles generated via FHiAug. For the same image, via
FHiAug, we can generate multiple samples, which can facilitate the model to learn more domain
invariant feature. (b) The sample on the top right is the image reconstructed with the phase only.
As it can be seen, the phase components mainly contain the semantic information. The images in
the bottom show how the image changing when adjusting the strength of phase components only.
The image after the phase changing is similar to dirty lenses and weather changes in real world, still
preserving key BEV prediction information.

F.2 VISUALIZED DETECTION RESULTS

Notably, FCVL greatly improves the performance for Snow. We visualize some detection results
of these samples to compare the performance between baseline models and FCVL in Fig.9. Under
the condition of Snow, baseline model misses detecting the small targets severely, while FCVL can
greatly alleviate the problem of missing detection. Compared with CPerb, FCVL still shows more
stable and more accurate localization and recognition ability.

Besides, we test our method in the night with the model training on daylight samples only. This
example in Fig. 10 well demonstrates that our model can robustly deal with rapid environmental
changes, such as variations in lighting conditions.The model is trained on only daylight samples with
the proposed FCVL. As it can be seen, in the distance where vehicles are dense and the lighting
is very strong, the model can stably detect the targets. As the vehicles move, the lighting becomes
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Figure 9: Visualized detection results of baseline and FCVL from Snow set.

normal, and the model detects normally. Although the model has only seen normal daylight samples,
with our proposed FCVL, it also performs well under the extreme changes in light condition at night.

Figure 10: Visualized detection results of FCVL at night with light variations.
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