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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated remarkable success in various
domains such as social networks, molecular chemistry, and more. A crucial compo-
nent of GNNs is the pooling procedure, in which the node features calculated by the
model are combined to form an informative final descriptor to be used for the down-
stream task. However, previous graph pooling schemes rely on the last GNN layer
features as an input to the pooling or classifier layers, potentially under-utilizing
important activations of previous layers produced during the forward pass of the
model, which we regard as historical graph activations. This gap is particularly
pronounced in cases where a node’s representation can shift significantly over
the course of many graph neural layers, and worsen by graph-specific challenges
such as over-smoothing in deep architectures. To bridge this gap, we introduce
HISTOGRAPH, a novel two-stage attention-based final aggregation layer that first
applies a unified layer-wise attention over intermediate activations, followed by
node-wise attention. By modeling the evolution of node representations across
layers, our HISTOGRAPH leverages both the activation history of nodes and the
graph structure to refine features used for final prediction. Empirical results on mul-
tiple graph classification benchmarks demonstrate that HISTOGRAPH offers strong
performance that consistently improves traditional techniques, with particularly
strong robustness in deep GNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved strong results on graph-structured tasks, including
molecular property prediction and recommendation (Ma et al., 2019; Gilmer et al., 2017; Hamilton
et al., 2017). Recent advances span expressive layers (Maron et al., 2019; Morris et al., 2023; Frasca
et al., 2022; Zhang et al., 2023a;b; Puny et al., 2023), positional and structural encodings (Dwivedi
et al., 2023; Rampášek et al., 2022; Eliasof et al., 2023; Belkin & Niyogi, 2003; Maskey et al., 2022;
Lim et al., 2023; Huang et al., 2024), and pooling (Ying et al., 2018; Lee et al., 2019; Bianchi et al.,
2020; Wang et al., 2020; Vinyals et al., 2015; Zhang et al., 2018; Gao & Ji, 2019; Ranjan et al.,
2020; Yuan & Ji, 2020). However, pooling layers still underuse intermediate activations produced
during message passing, limiting their ability to capture long-range dependencies and hierarchical
patterns (Alon & Yahav, 2020; Li et al., 2019; Xu et al., 2019).

In GNNs, layers capture multiple scales: early layers model local neighborhoods and motifs, while
deeper layers encode global patterns (communities, long-range dependencies, topological roles) (Xu
et al., 2019), mirroring CNNs where shallow layers detect edges/textures and deeper layers capture
object semantics (Zeiler & Fergus, 2014). Greater depth can overwrite early information (Li et al.,
2018) and cause over-smoothing, making node representations indistinguishable (Cai & Wang, 2020;
Nt & Maehara, 2019; Rusch et al., 2023). We address this by leveraging historical graph activations,
the representations from all layers, to integrate multi-scale features at readout (Xu et al., 2018).

Several works have explored the importance of deeper representations, residual connections, and
expressive aggregation mechanisms to overcome such limitations (Xu et al., 2018; Li et al., 2021;
Bresson & Laurent, 2017). Yet, these efforts often focus on improving stability during training,
without explicitly modeling the internal trajectory of node features across layers. We argue that a
GNN’s computation path and the sequence of node features through layers can be a valuable signal.
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Figure 1: Overview of HISTOGRAPH. (1) Given input node features X0 and adjacency A, a backbone
GNN produces historical graph activations X1, ..,XL−1. (2) The Layer-wise attention module uses
the final-layer embedding as a query to attend over all historical states while averaging across nodes,
yielding per-node aggregated embeddings H. (3) A Node-wise self-attention module refines H by
modeling interactions across nodes, producing Z, then averaged if graph embeddings G is wanted.

By reflecting on this trajectory, models can better understand which transformations were beneficial
and refine their final predictions accordingly.

In this work, we propose HISTOGRAPH, a self-reflective architectural paradigm that enables GNNs
to reason about their historical graph activations. HISTOGRAPH introduces a two-stage self-attention
mechanism that disentangles and models two critical axes of GNN behavior: the evolution of node
embeddings through layers, and their spatial interactions across the graph. The layer-wise module
treats each node’s layer representations as a sequence and learns to attend to the most informative
representation, while the node-wise module aggregates global context to form richer, context-aware
outputs. HISTOGRAPH design enables learning representations without modifying the underlying
GNN architecture, leveraging the rich information encoded in intermediate representations to enhance
many graph related predictions (graph classification, node classification and link prediction).

We apply HISTOGRAPH in two complementary modes: (1) end-to-end joint training with the
backbone, and (2) post-processing as a lightweight head on a frozen pretrained GNN. The end-to-end
variant enriches intermediate representations, while the post-processing variant trains only the head,
yielding substantial gains with minimal overhead. HISTOGRAPH consistently outperforms strong
GNN and pooling baselines on TU and OGB benchmarks (Morris et al., 2020; Hu et al., 2020),
demonstrating that computational history is a powerful, general inductive bias. Figure 1 overviews
HISTOGRAPH.

Main contributions. (1) We introduce a self-reflective architectural paradigm for GNNs that leverages
the full trajectory of node embeddings across layers; (2) We propose HISTOGRAPH, a two-stage
self-attention mechanism that disentangles the layer-wise node embeddings evolution and spatial
aggregation of node features; (3) We empirically validate HISTOGRAPH on graph-level classification,
node classification and link prediction tasks, demonstrating consistent improvements over state-of-
the-art baselines; and, (4) We show that HISTOGRAPH can be employed as a post-processing tool to
further enhance performance of models trained with standard graph pooling layers.
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2 RELATED WORKS

Table 1: Comparison of pooling methods based on inter-
mediate representation usage, structural considerations,
and layer-node modeling.

Method Int.
Repr. Struct. Layer-Node

Model.

JKNet (Xu et al., 2018) Yes No No
Set2Set (Vinyals et al., 2015) No Yes No
SAGPool (Lee et al., 2019) No Yes No
DiffPool (Ying et al., 2018) No Yes No
SSRead (Lee et al., 2021) No Yes No
DKEPool (Chen et al., 2023) No Yes No
SOPool (Wang & Ji, 2023) No Yes No
GMT (Baek et al., 2021) No Yes No
Mean/Max/Sum Pool No No No

HISTOGRAPH (Ours) Yes Yes Yes

Graph Neural Networks. GNNs propa-
gate and aggregate messages along edges
to produce node embeddings that cap-
ture local structure and features (Scarselli
et al., 2008; Gilmer et al., 2017). GNN
architectures are typically divided into
two families: spectral GNNs, defining
convolutions with the graph Laplacian
(e.g., ChebNet (Defferrard et al., 2016),
GCN (Kipf & Welling, 2016)), and spa-
tial GNNs, aggregating neighborhoods di-
rectly (e.g., GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2017)).
Greater GNN depth expands receptive
fields but introduces over-smoothing (Cai
& Wang, 2020; Nt & Maehara, 2019;
Rusch et al., 2023; Li et al., 2018) and over-
squashing (Alon & Yahav, 2020). Mitigations include residual and skip connections (Chen et al.,
2020; Xu et al., 2018), graph rewiring (Topping et al., 2021), and global context via positional
encodings or attention (Graphormer (Ying et al., 2021), GraphGPS (Rampášek et al., 2022)). Several
models preserve multi-hop information for robustness and expressivity. HISTOGRAPH maintains
node-embedding histories across propagation and fuses them at readout. Unlike per-layer mixing, this
yields a consolidated multi-scale summary, mitigating intermediate feature degradation and retaining
local and long-range information.

Pooling in Graph Learning. Graph-level tasks (e.g., molecular property prediction, graph classifi-
cation) require a fixed-size summary of node embeddings. Early GNNs used permutation-invariant
readouts such as sum, mean, and max (Gilmer et al., 2017; Zaheer et al., 2017), as in GIN (Xu
et al., 2019). Richer structure motivated learned pooling: SortPool sorts embeddings and selects
top-k (Zhang et al., 2018); DiffPool learns soft clusters for hierarchical coarsening (Ying et al.,
2018); SAGPool scores nodes and retains a subset (Lee et al., 2019). Set2Set uses LSTM atten-
tion for iterative readout (Vinyals et al., 2015), while GMT uses multi-head attention for pairwise
interactions (Baek et al., 2021). SOPool adds covariance-style statistics (Wang & Ji, 2023). A
recent survey (Liu et al., 2022) reviews flat and hierarchical techniques on TU and OGB benchmarks.
Hierarchical approaches (e.g., Graph U-Net (Gao & Ji, 2019)) capture multi-scale structure but add
complexity and risk information loss. In contrast, HISTOGRAPH directly pools historical activations:
layer-wise attention fuses multi-depth features, node-wise attention models spatial dependencies, and
normalization stabilizes contributions. This preserves information across propagation depths without
clustering or node dropping. Table 1 summarizes design choices and shows HISTOGRAPH is the only
method combining intermediate representations with structural information.

Residual Connections. Residuals are pivotal for deep GNNs and multi-scale features. Jumping
Knowledge flexibly combines layers (Xu et al., 2019), APPNP uses personalized PageRank to
preserve long-range signals (Gasteiger et al., 2018), and GCNII adds initial residuals and identity
mappings for stability (Chen et al., 2020). In pooling, Graph U-Net links encoder–decoder via
skips (Gao & Ji, 2019), and DiffPool’s cluster assignments act as soft residuals preserving early-layer
information (Ying et al., 2018). HISTOGRAPH departs by introducing historical pooling: at readout,
it accumulates node histories across layers, creating a global shortcut at aggregation that revisits and
integrates multi-hop features into the final representation unlike prior models that apply residuals
only within node updates or via hierarchical coarsening.

3 LEARNING FROM HISTORICAL GRAPH ACTIVATIONS

We introduce HISTOGRAPH, a learnable pooling operator that improves graph representation learning
across downstream tasks by integrating layer evolution and spatial interactions in an end-to-end
differentiable framework. Unlike pooling that operates on the last GNN layer, HISTOGRAPH treats
hidden representations as a sequence of historical activations. It computes node embeddings by
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querying each node’s history with its final-layer representation, then applies spatial self-attention to
produce a fixed-size graph representation. Details appear in Appendix B and Algorithm 1; Figure 1
overviews HISTOGRAPH, and Table 1 compares to other methods.

Notations. Let X ∈ RN×L×Din be a batch of historical graph activations, where N is the number of
nodes in the batch, L is the number of GNN layers or time steps, and Din is the feature dimensionality.
Each node has L historical embeddings corresponding to different depths of message passing. We
assume that all GNN layers produce activations with the same dimensionality Din.

We denote by X = [X(1), . . . ,X(L−1)] the activation history of the GNN computations across L
layers. The initial representation is given by X(0) = Embin(F), where F ∈ RN×Din is the input node
features and Emb is a linear layer. For each subsequent layer l = 1, . . . , L− 1, the representations
are computed recursively as X(l) = GNN(l)(X(l−1)), where GNN(l) denotes the l-th GNN layer.

Input Projection and Per Layer Positional Encoding. We first project input features to a common
hidden dimension D using a linear transformation:

X′ = Embhist(X) ∈ RN×L×D. (1)

To encode layer ordering, we add fixed sinusoidal positional encodings as in Vaswani et al. (2017):

Pl,2k = sin

(
l

100002k/D

)
, Pl,2k+1 = cos

(
l

100002k/D

)
, (2)

for 0 ≤ l < L, 0 ≤ k < D/2, resulting in P ∈ RL×D, to obtain layer-aware features X̃ = X′ +P.

Layer-wise Attention and Node-wise Attention. We view each node through its sequence of
historical activations and use attention to learn which activations are most relevant. We use only the
last-layer embedding as the query to attend over all historical states:

Q = X̃L−1W
Q ∈ RN×1×D, K = X̃WK ∈ RN×L×D, V = X̃ ∈ RN×L×D. (3)

We apply scaled dot-product attention and average across nodes, obtaining a layer weighting scheme:

c = Average

(
QK⊤
√
D

)
∈ R1×L. (4)

Rather than softmax, which enforces non-negative weights and suppresses negative differences, we
apply a normalization that permits signed contributions αl =

cl∑L−1

l′=0
cl′

. This allows the model to

express additive or subtractive relationships between layers, akin to finite-difference approximations
in dynamical systems. The cross-layer pooled node embeddings are computed as:

H =

L−1∑
l=0

αl · X̃l =

L−1∑
l=0

cl∑L−1
l′=0 cl′

· X̃l ∈ RN×D. (5)

Graph-level Representation. We first aggregate each node’s history weighted by relevance to
the final state, with a residual recency bias from the final-layer query, into H. Next, we obtain
a graph-level representation by applying multi-head self-attention across nodes, omitting spatial
positional encodings to preserve permutation invariance:

Z = MHSA(H,H,H) ∈ RN×D, (6)

optionally followed by residual connections and LayerNorm. Averaging over nodes yields G =
Average(Z) ∈ RD, which then feeds the final prediction head (typically an MLP). Early message-
passing layers capture local interactions, whereas deeper layers encode global ones (Gasteiger et al.,
2019; Chien et al., 2020). By attending across layers and nodes, HISTOGRAPH fuses local and global
cues, retaining multi-scale structure and validating our motivation.

Computational Complexity. Layer-wise attention costs O(LD) per node; spatial attention over N
nodes costs O(N2D). Thus the per-graph complexity is

O(NLD +N2D) = O(N(L+N)D), (7)

4
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with memory O(L+N2) from attention maps. A naïve joint node–layer attention costs O(LN2D),
which is prohibitive. Our two-stage scheme—first across layers (O(LD) per node), then across
nodes (O(N2D))—avoids this. Since L≪ N in practice, the dominant cost is O(N2D), matching
a single graph-transformer layer, whereas standard graph transformers stack L such layers (Yun et al.,
2019). This decomposition keeps historical activations tractable despite the quadratic node term.
Empirically, HISTOGRAPH adds only a slight runtime over a standard GNN forward pass (Figure 4)
while delivering significant gains across multiple benchmarks, as seen in Tables 2, 3 and 17.

Frozen Backbone Efficiency. With a pretrained, frozen message-passing backbone, we train only
the HISTOGRAPH head. We cache the N × L ×D activations per graph in one forward pass and
skip gradients through the backbone, removing O(L(ED +ND2)) work (where E is the number
of edges). The backward pass applies only to the head, O(N(L + N)D), substantially reducing
memory and training time. This is especially useful in low-resource or few-shot regimes, and when
fine-tuning large datasets where repeated backpropagation through L GNN layers is prohibitive.

4 PROPERTIES OF HISTOGRAPH

In this section, we discuss the properties of our HISTOGRAPH, which motivate its architectural design
choices. In particular, these properties show how (i) layer-wise attention mitigates over-smoothing and
acts as a dynamic trajectory filter, (ii) layer-wise attention can allow the architecture to approximate
low/high pass filters, and (iii) node-wise attention is beneficial in our HISTOGRAPH.

HISTOGRAPH can mitigate Over-smoothing. One key property of HISTOGRAPH is its ability
to mitigate the over-smoothing problem in a simple way. As node embeddings tend to become
indistinguishable after a certain depth los, i.e., |x(l1)

v − x
(l2)
u | = 0 for all node pairs u, v and layers

l1, l2 ≫ 0, HISTOGRAPH aggregates representations across layers using a weighted combination:

hu =

L−1∑
l=0

αlxu
(l), with

∑
l

αl = 1. (8)

Attention weights αl that place nonzero mass on early layers let the final embedding hu retain discrim-
inative early representations, countering over-smoothing so node embeddings remain distinguishable
(|hu − hv| ≠ 0). This mechanism underlies HISTOGRAPH’s robustness in deep GNNs, corroborated
by the depth ablation in Table 17 and by Fig. 2, which show substantial early-layer attention and
nonzero differences between historical activations. We formalize HISTOGRAPH’s mitigation of
over-smoothing in Proposition 1; the proof appears in Appendix E.

Proposition 1 (Mitigating Over-smoothing with HISTOGRAPH). Let x(l)
v ∈ RD denote the embed-

ding of node v at layer l of a GNN. Suppose the GNN exhibits over-smoothing, i.e., there exists some
layer L0 sufficiently large such that for all layers l1, l2 > L0 and all nodes u, v,

∥x(l1)
u − x(l2)

v ∥ → 0. (9)

Let HISTOGRAPH compute the final node embedding as

hv =

L−1∑
l=0

αlx
(l)
v , (10)

where αl are learned attention weights. Then, for distinct nodes u and v, there exists at least one
layer l′ ≤ L0 with αl′ ̸= 0 such that

∥hu − hv∥ > 0. (11)

That is, HISTOGRAPH retains information from early layers and mitigates over-smoothing.

HISTOGRAPH’s Layer-wise Attention is an Adaptive Trajectory Filter. We interpret HISTO-
GRAPH’s layer-wise attention as an Adaptive Trajectory Filter, which dynamically aggregates a
node’s embeddings across layers based on learned weights. Let {x(l)}L−1

l=0 ⊂ RD denote a node’s
embeddings at each layers. We define the aggregated embedding as:

h =

L−1∑
l=0

αlx
(l), with

∑
l

αl = 1. (12)
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Figure 2: Visualizations on the IMDB-B dataset with 64-layer HISTOGRAPH. (left) Attention patterns
across layers under different training regimes. (right) Embedding evolution throughout training,
measured by the normed difference between final and intermediate representations.
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Figure 3: Graph and signal transformations: (a) input node features; (b) prediction target, the node-
feature gradient; (c) GCN output trained to approximate (b) from (a); (d) HISTOGRAPH output. The
gap between GCN and HISTOGRAPH underscores the importance of adaptive trajectory filtering.
Node colors: red, blue, and green denote values −1, 0, 1.

where αl are learnable attention weights. Depending on αl, the aggregation implements: (i) a
low-pass filter when αl =

1
L (uniform average); (ii) a high-pass filter when αl = δl,L−1 − δl,L−2

(first difference); and (iii) a general FIR filter when αl are learned. Consequently, layer-wise attention
in HISTOGRAPH treats the GNN’s historical activations as a sequence and learns flexible, task-driven
filtering and aggregation for the final classifier. Figure 3 illustrates a case where GCN fails at
high-pass filtering, whereas HISTOGRAPH succeeds. The barbell graph—a symmetric clique joined
by a single edge—creates a sharp gradient discontinuity, highlighting how the adaptive filtering
of HISTOGRAPH preserves such signals, unlike standard GCNs. Appendix D further analyzes the
usefulness of node-wise attention in HISTOGRAPH.

5 EXPERIMENTS

In this section, we conduct an extensive set of experiments to demonstrate the effectiveness of
HISTOGRAPH as a graph pooling function. Our experiments seek to address the following questions:

(Q1) Does HISTOGRAPH consistently improve GNN performance over existing pooling functions
across diverse domains?

(Q2) Can HISTOGRAPH be applied as a post-processing step to enhance the performance of
pretrained GNNs?

(Q3) What is the impact of each component of HISTOGRAPH on performance?

Baselines. We compare HISTOGRAPH against diverse baselines spanning graph representation and
pooling. Message-passing GNNs: GCN and GIN with mean or sum aggregation (Kipf & Welling,
2016; Xu et al., 2019). Set-level pooling: Set2Set (Vinyals et al., 2015). Node-dropping pooling:
SortPool (Zhang et al., 2018), SAGPool (Lee et al., 2019), TopKPool (Gao & Ji, 2019), ASAP (Ran-
jan et al., 2020). Clustering-based pooling: DiffPool (Ying et al., 2018), MinCutPool (Bianchi
et al., 2020), HaarPool (Wang et al., 2020), StructPool (Yuan & Ji, 2020). EdgePool (Diehl, 2019)
merges nodes along high-scoring edges. Attention-based global pooling: GMT (Baek et al., 2021).
Additional models: SOPool (Wang & Ji, 2023), HAP (Liu et al., 2021), PAS (Wei et al., 2021),
GMN (Ahmadi, 2020), DKEPool (Chen et al., 2023), JKNet (Xu et al., 2018). On TUdatasets, we
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Table 2: Comparison of graph-classification accuracy (%) ↑ on TU datasets with HISTOGRAPH and
existing benchmark methods. All methods use a 5-layer GIN backbone. Only top-three methods
(plus JKNet) are shown and markedFirst,Second,Third. Additional results and methods appear in
Table 9 in Appendix F.

Method ↓ / Dataset → IMDB-B IMDB-M MUTAG PTC PROTEINS RDT-B NCI1

SOPool (Wang & Ji, 2023) 78.5±2.8 54.6±3.6 95.3±4.4 75.0±4.3 80.1±2.7 91.7±2.7 84.5±1.3

GMT (Baek et al., 2021) 79.5±2.5 55.0±2.8 95.8±3.2 74.5±4.1 80.3±4.3 93.9±1.9 84.1±2.1

HAP (Liu et al., 2021) 79.1±2.8 55.3±2.6 95.2±2.8 75.2±3.6 79.9±4.3 92.2±2.5 81.3±1.8

PAS (Wei et al., 2021) 77.3±4.1 53.7±3.1 94.3±5.5 71.4±3.9 78.5±2.5 93.7±1.3 82.8±2.2

HaarPool (Wang et al., 2020) 79.3±3.4 53.8±3.0 90.0±3.6 73.1±5.0 80.4±1.8 93.6±1.1 78.6±0.5

GMN (Ahmadi, 2020) 76.6±4.5 54.2±2.7 95.7±4.0 76.3±4.3 79.5±3.5 93.5±0.7 82.4±1.9

DKEPool (Chen et al., 2023) 80.9±2.3 56.3±2.0 97.3±3.6 79.6±4.0 81.2±3.8 95.0±1.0 85.4±2.3

JKNet (Xu et al., 2018) 78.5±2.0 54.5±2.0 93.0±3.5 72.5±2.0 78.0±1.5 91.5±2.0 82.0±1.5

HISTOGRAPH (Ours) 87.2±1.7 61.9±5.5 97.9±3.5 79.1±4.8 97.8±0.4 93.4±0.9 85.9±1.8

Table 3: Comparison of graph classification ROC-AUC (%) ↑ on different datasets between HIS-
TOGRAPH and existing baselines on OGB datasets. All methods use a 3-layer GCN backbone for
fair comparison. Only the top three methods are included and marked by First, Second, and Third.
Additional method are present in Table 10 in Appendix F.

† symbolizes non-learnable methods.

Method ↓ / Dataset → MOLHIV MOLBBBP MOLTOX21 TOXCAST

GCN† (Kipf & Welling, 2016) 76.18±1.26 65.67±1.86 75.04±0.80 60.63±0.51

GIN† (Xu et al., 2019) 75.84±1.35 66.78±1.77 73.27±0.84 60.83±0.46

MinCutPool (Bianchi et al., 2020) 75.37±2.05 65.97±1.13 75.11±0.69 62.48±1.33

GMT (Baek et al., 2021) 77.56±1.25 68.31±1.62 77.30±0.59 65.44±0.58

HAP (Liu et al., 2021) 75.71±1.33 66.01±1.43 - -
PAS (Wei et al., 2021) 77.68±1.28 66.97±1.21 - -
DKEPool (Chen et al., 2023) 78.65±1.19 69.73±1.51 - -

HISTOGRAPH (Ours) 77.81±0.89 72.02±1.46 77.49±0.70 66.35±0.80

also include five kernel baselines: GK (Shervashidze et al., 2009), RW (Vishwanathan et al., 2010),
WL subtree (Shervashidze et al., 2011), DGK (Yanardag & Vishwanathan, 2015), and AWE (Ivanov
& Burnaev, 2018). An overview of baseline characteristics versus HISTOGRAPH appears in Table 1.

Benchmarks. We use the OGB benchmark (Hu et al., 2020) and the widely used TUDatasets (Morris
et al., 2020); dataset statistics appear in Tables 7 and 8 in Appendix A. For OGB, we follow Baek et al.
(2021); Chen et al. (2023) with 3 GCN layers; for TUDatasets, we adopt Wang & Ji (2023); Chen et al.
(2023); Gao & Ji (2019); Gao et al. (2021), typically using 5 GIN layers. For deeper variants, we keep
the backbone and vary the number of layers. Hyperparameters are in Appendix C.1. Additionally,
we benchmark HISTOGRAPH on several node-classification datasets spanning heterophilic and
homophilic graphs (Table 11) and across varying GNN depths (Table 4). Further results appear
in Appendix F: feature-distance across layers for GCN and GCN with HISTOGRAPH (Table 12),
comparison to the GraphGPS baseline (Table 14), and link prediction (Table 13).

5.1 END-TO-END ACTIVATION AGGREGATION WITH HISTOGRAPH

We evaluate end-to-end activation aggregation with HISTOGRAPH on graph-level benchmarks and
node classification. We first report results on TUDatasets (Table 2), followed by OGB molecular
property prediction (Table 3), and finally depth-scaled node classification (Table 4).

TUDatasets. On seven datasets (Morris et al., 2020) (IMDB-B, IMDB-M, MUTAG, PTC, PROTEINS,
RDT-B, NCI1), HISTOGRAPH attains state-of-the-art performance on 5 of 7: IMDB-B 87.2%, IMDB-M
61.9%, MUTAG 97.9%, PROTEINS 97.8%, NCI1 85.9%. It is marginally behind on PTC at 79.1%
versus 79.6% for DKEPool. Relative to the second-best method, gains are substantial on PROTEINS

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Node classification accuracy (%) on benchmark datasets with varying GNN depth.

Dataset Method 2 4 8 16 32 64

Cora GCN 81.1 80.4 69.5 64.9 60.3 28.7
GCN + HISTOGRAPH 81.3 82.9 80.7 83.1 80.6 77.5

Citeseer GCN 70.8 67.6 30.2 18.3 25.0 20.0
GCN + HISTOGRAPH 70.9 69.5 69.9 69.3 67.2 63.4

Pubmed GCN 79.0 76.5 61.2 40.9 22.4 35.3
GCN + HISTOGRAPH 78.9 78.2 78.6 80.4 80.0 79.3

(+16.6%), IMDB-B (+6.3%), and IMDB-M (+5.6%). Although DKEPool slightly leads on PTC and
RDT-B, the overall trend favors HISTOGRAPH across diverse graph classification benchmarks.

OGB molecular property prediction. On four OGB datasets (Hu et al., 2020) (MOLHIV, MOLTOX21,
TOXCAST, MOLBBBP), HISTOGRAPH achieves the top ROC-AUC on 3 of 4: MOLBBBP 72.02%,
MOLTOX21 77.49%, TOXCAST 66.35%. Margins over the second-best are +2.29% on MOLBBBP
versus DKEPool, +0.91% on TOXCAST versus GMT, and +0.19% on MOLTOX21 versus GMT. On
MOLHIV, DKEPool leads with 78.65%, while HISTOGRAPH is competitive at 77.81%, ranking in the
top three, indicating strong generalization across molecular property prediction.

Node classification. Table 4 shows that HISTOGRAPH mitigates over-smoothing: standard GCN
accuracy degrades with depth, whereas HISTOGRAPH maintains stable, competitive performance up
to 64 layers. This improves feature propagation while preserving discriminative power, particularly
on heterophilic graphs. Additional node-classification results for heterophilic and homophilic datasets
appear in Table 11 in Appendix F.

5.2 POST-PROCESSING OF TRAINED GNNS WITH HISTOGRAPH

We evaluate HISTOGRAPH as a lightweight post-processing strategy on four TU graph-classification
datasets: IMDB-B, IMDB-M, PROTEINS, and PTC. For each dataset, we train GINs with 5, 16, 32,
and 64 layers using standard architectures and mean pooling. After convergence, we save per-fold
checkpoints and apply HISTOGRAPH in three modes: (i) auxiliary head on a frozen backbone
(HISTOGRAPH(FT)), (ii) full joint fine-tuning (HISTOGRAPH(Full FT)), and (iii) end-to-end training
from scratch for comparison. Complete depth-wise results appear in Table 17 in Appendix F.

Table 5: Graph classifica-
tion accuracy (%) ↑ sum-
mary. More results are
reported in Table 17.

Dataset Method Acc.

IMDB-M

MeanPool 54.7
FT 67.3
Full FT 62.7
End-to-End 61.9

IMDB-B

MeanPool 76.0
FT 94.0
Full FT 94.0
End-to-End 87.2

PROTEINS

MeanPool 75.9
FT 97.3
Full FT 97.3
End-to-End 97.8

PTC

MeanPool 77.1
FT 85.7
Full FT 97.1
End-to-End 88.6

Table 5 summarizes the graph-classification accuracy (%) across GIN
depths for each dataset and method. HISTOGRAPH used as a frozen
auxiliary head (FT) consistently improves performance vs. MeanPool,
often matching or surpassing full fine-tuning (Full FT) and end-to-end
training. For example, on IMDB-M, FT raises accuracy from 54.7%
(MeanPool) to 67.3%; on IMDB-B, both FT and Full FT reach 94.0%, far
above the baseline (76.0%) and end-to-end (87.2%). On PROTEINS, all
HISTOGRAPH variants achieve near-optimal performance, demonstrating
effectiveness across datasets of varying size and characteristics. On PTC,
Full FT attains the best score (97.1%), showing joint fine-tuning can
further enhance results. Overall, HISTOGRAPH offers a flexible, effective
post-processing strategy that consistently boosts GNN performance.

Runtime Analysis. We measure average training time per epoch for GCN
backbones with 3 and 32 layers on MOLHIV and TOXCAST, comparing
MeanPool, End-to-End, and FT. As shown in Fig. 4, End-to-End is costlier
than MeanPool (e.g., 60.34s vs. 41.27s for 32 layers on MOLHIV) yet
remains scalable. FT, which fine-tunes only the head on a pretrained
MeanPool model, cuts overhead: training time is slightly higher for
3 layers but significantly lower for 32 layers on both datasets. While
achieving results comparable to End-to-End (Table 17), FT offers an
efficient way to boost existing models. Finally, HISTOGRAPH is significantly faster than GMT (Baek
et al., 2021) in almost all cases, with larger speedups for deeper networks.
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(a) MOLHIV (b) TOXCAST

Figure 4: Average training time per epoch (in log scale) for GCN backbones with 3 and 32 layers,
evaluated on the MOLHIV and TOXCAST datasets. Each configuration is compared across four post-
processing methods: GMT(Baek et al., 2021), MeanPool, HISTOGRAPH, and HISTOGRAPH-FT.

5.3 ABLATION STUDY

Table 6: Ablation on the PROTEINS dataset.
Each row shows the performance of a HISTO-
GRAPH variant with a component removed.

Variant Acc. (%) Std. Dev.

DKEPool (Chen et al., 2023) 81.20 3.80

w/o Division by Sum 74.45 6.28
w/o Layer-wise Attention 78.61 4.82
w/o Node-wise Attention 80.78 7.71

HISTOGRAPH (Ours) 97.80 0.40

Setup. We assess component contributions on the
TUDatasets PROTEINS dataset by removing or modi-
fying parts and measuring classification accuracy (Ta-
ble 6). We test three variants: (i) removing division-
by-sum normalization, (ii) disabling layer-wise at-
tention that models inter-layer dependencies, and
(iii) disabling node-wise attention that captures cross-
node dependencies.

Results and discussion. On PROTEINS, HISTO-
GRAPH attains 97.80% accuracy with a 0.40 standard
deviation. Every ablation reduces accuracy; remov-
ing division-by-sum normalization performs worst at
74.45% ± 6.28, indicating each component is necessary. Removing layer-wise normalization allows
attention weights to grow unbounded, destabilizing training and overshadowing early discriminative
layers. Our signed normalization balances layer contributions and enables additive and subtrac-
tive filtering (Section 4), preserving discriminative information and stability. Against alternative
aggregation strategies (mean aggregation and randomized attention), HISTOGRAPH consistently
outperforms them by a significant margin (Table 16, Appendix F). Overall, normalization, layer-wise
attention, and node-wise attention are critical for capturing complex dependencies and realizing the
full performance of HISTOGRAPH.

6 CONCLUSION

We introduced HISTOGRAPH, a two-stage attention-based pooling layer that learns from historical
activations to produce stronger graph-level representations. The design is simple and principled: layer-
wise attention captures the evolution of each node’s trajectory across depths, node-wise self-attention
models spatial interactions at readout, and signed layer-wise normalization balances contributions
across layers to preserve discriminative signals and stabilize training. This combination mitigates
over-smoothing and supports deeper GNNs while keeping computation and memory overhead modest.
Across TU and OGB graph-level benchmarks, and in node-classification settings, HISTOGRAPH
consistently improves over strong pooling baselines and matches or surpasses leading methods
on multiple datasets. Moreover, used as a lightweight post-processing head on frozen backbones,
HISTOGRAPH delivers additional gains without retraining the encoder. Taken together, the results
establish intermediate activations as a valuable signal for readout and position HISTOGRAPH as a
practical, general drop-in pooling layer for modern GNNs.
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Reproducibility Statement To ensure reproducibility, we provide all code, model architectures,
training scripts, and hyperparameter settings in a public repository (available upon acceptance).
Dataset preprocessing, splits, and downsampling are detailed in Appendix A. Hyperparameter
configurations, including batch sizes, learning rates, hidden dimensions, and model depths, are
documented in Appendix C.1. Experiments were conducted using PyTorch and PyTorch Geometric
on NVIDIA L40, A100, and GeForce RTX 4090 GPUs, with Weights and Biases for logging and
model selection. All random seeds and training protocols are specified to facilitate replication.

Ethics Statement Our work involves minimal ethical concerns. We use publicly available datasets
(TU, OGB) that are widely adopted in graph learning research, adhering to their licensing terms. No
private or sensitive data is introduced. Our method is primarily methodological, but we encourage
responsible use to avoid potential misuse in applications that could impact privacy or enable harm.
We acknowledge the environmental impact of large-scale training and note that HISTOGRAPH’s
computational efficiency may reduce energy costs compared to retraining full models.

Usage of Large Language Models in This Work Large language models were used solely
for minor text editing suggestions to improve clarity and grammar. All research concepts, code
development, experimental design, and original writing were performed by the authors.
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A DATASET STATISTICS

Tables 7 and 8 summarize the statistics of the datasets used in our experiments. Table 7 covers
molecular property prediction datasets from the Open Graph Benchmark (OGB), including MOLHIV,
MOLBBBP, MOLTOX21, and TOXCAST, reporting the number of graphs, number of prediction classes,
and average number of nodes per graph. Table 8 presents the statistics of graph classification
datasets from the TU benchmark suite, including social network datasets (IMDB-B, IMDB-M) and
bioinformatics datasets (MUTAG, PTC, PROTEINS, RDT-B, NCI1). These datasets vary widely in graph
sizes and label space, providing a comprehensive evaluation setting across small, medium, and large
graphs with diverse class distributions.

Table 7: Dataset statistics: number of graphs, number of classes, and average number of nodes.

Dataset MOLHIV MOLBBBP MOLTOX21 TOXCAST

# Graphs 41,127 2,039 7,831 8,576
# Classes 2 2 12 617
Nodes (avg.) 25.51 24.06 18.57 18.78

Table 8: Statistics of TU benchmark datasets.

IMDB-B IMDB-M MUTAG PTC PROTEINS RDT-B NCI1

D
at

as
et # Graphs 1000 1500 188 344 1113 2000 4110

# Classes 2 3 2 2 2 2 2
Nodes(max) 136 89 28 109 620 3783 111
Nodes(avg.) 19.8 13.0 18.0 25.6 39.1 429.6 29.2

B IMPLEMENTATION DETAILS OF HISTOGRAPH

Algorithm 1 outlines the forward pass of HISTOGRAPH. The input X ∈ RN×L×Din consists of node
embeddings across L GNN layers, for N nodes per graph (referred to as historical graph activations).
We first project the input to a common hidden dimension D using a shared linear transformation.
Sinusoidal positional encodings are added to encode the layer index. The final-layer embeddings
serve as the query in an attention mechanism, while all intermediate layers act as key and value inputs.
Attention scores are computed, averaged across nodes, and normalized over layers to yield a weighted
aggregation of layer-wise features. A multi-head self-attention (MHSA) block is then applied over
the aggregated node representations to capture spatial dependencies. Finally, a global average pooling
operation over the node dimension produces the final graph-level representation Y ∈ RD.

To stabilize training, we combined the output of HISTOGRAPH with a simple mean pooling baseline
using a learnable weighting factor α ∈ [0, 1]. Specifically, the final graph representation was
computed as a convex combination of the output of our method and the mean of the final-layer
node embeddings: Yfinal = α ·YHISTOGRAPH + (1 − α) ·Ymean. We experimented both with fixed
and learnable values of α, and found that incorporating the mean-pooling signal helps guide the
optimization in early training stages.

C EXPERIMENTAL DETAILS

We implemented our method using PyTorch (Paszke, 2019) (offered under BSD-3 Clause license) and
the PyTorch Geometric library (Fey & Lenssen, 2019) (offered under MIT license). All experiments
were run on NVIDIA L40, NVIDIA A100 and GeForce RTX 4090 GPUs. For logging, hyperpa-
rameter tuning, and model selection, we used the Weights and Biases (W&B) framework (Biewald,
2020).

In the subsection below, we provide details on the hyperparameter configurations used across our
experiments.
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Algorithm 1 HISTOGRAPH Forward Pass

Input: X ∈ RN×L×Din

Output: Graph-level representation Y ∈ RD

X′ ← Embhist(X) ▷ Linear projection to D dimensions
X̃← X′ +P ▷ Add sinusoidal positional encoding
Q←WQX̃L−1 ▷ Query: last-layer embedding
K←WKX̃, V← X̃ ▷ Key and Value: all layers
c← QK⊤

√
D

▷ Dot-product attention logits
c← Average(c) ▷ Average across nodes
αt ← ct∑

t′ ct′
▷ Normalize over time

H←
∑L−1

t=0 αtX̃t ▷ Layer-wise aggregation
Z← MHSA(H,H,H) ▷ Node-wise self-attention
return Y = Average(Z) ▷ Average across nodes

C.1 HYPERPARAMETERS

The hyperparameters in our method include the batch size B, hidden dimension D, learning rate
l, and weight decay γ. We also tune architectural and attention-specific components such as the
number of attention heads H , use of fully connected layers, inclusion of zero attention token, use
of layer normalization, and skip connections. Attention dropout rates are controlled via the multi-
head attention dropout pmha and attention mask dropout pmask. We further include the use of a
learning rate schedule as a hyperparameter. Additionally, we consider different formulations for
the attention coefficient parameterization αtype, including learnable, fixed, and gradient-constrained
variants. Hyperparameters were selected via a combination of grid search and Bayesian optimization,
using validation performance as the selection criterion. For baseline models, we consider the search
space of their relevant hyperparameters.

D PROPERTIES OF HISTOGRAPH

Contribution of Node-wise Attention for Graph-Level Prediction. Let H = [h1, . . . ,hN ] ∈
RN×D be the cross-layer-pooled node embeddings. Suppose the downstream task requires a function
f : RN×D → RK that is permutation-invariant but non-uniform (e.g., depends on inter-node
interactions). Then, standard mean pooling cannot approximate f unless it includes additional
inter-node operations like node-wise attention.

As a concrete example where the node-wise attention is beneficial in our HISTOGRAPH, let us
consider a graph G = (V,E) composed of two subgraphs connected by a narrow bridge. Let
GL = (VL, EL) be a large graph G(n, p) with n≫ 1, and let GR = (VR, ER) be a singleton graph
containing a single node vR. The resulting structure is illustrated in Figure 5.

Suppose the graph-level classification task depends solely on the features of the singleton node vR
(e.g., label is determined by a property encoded in vR). In this setting, a naive mean pooling aggregates
all node embeddings uniformly. As n increases, the contribution of vR to the pooled representation
becomes increasingly marginal, leading to its signal being dominated by the embeddings from the
much larger subgraph GL. This becomes especially problematic when there is a distribution shift at
test time, e.g., GL becomes larger or denser, which further suppresses the contribution of vR.

In contrast, a node-wise attention mechanism can learn to attend selectively to vR, regardless of
the size of GL, making it robust to distributional changes. This demonstrates the contribution of
node-wise attention in capturing non-uniform importance of nodes in our HISTOGRAPH.

E PROOFS

E.1 HISTOGRAPH MITIGATES OVERSMOOTHING

Proof.
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GL

GR

GL

GR

Figure 5: Barbell graph illustrating a distribution shift: a singleton node (right) is connected to a
larger subgraph (left) whose size increases at test time (blue) compared to training (green). Node-wise
attention helps preserve the importance of the singleton node despite the dominance of the larger
subgraph.

Consider two nodes u and v. Under the definition of HISTOGRAPH’s final embedding:

hu − hv =

L−1∑
l=0

αl

(
x(l)
u − x(l)

v

)
. (13)

We split the sum into layers before and after L0:

hu − hv =

L0∑
l=0

αl

(
x(l)
u − x(l)

v

)
+

L−1∑
l=L0+1

αl

(
x(l)
u − x(l)

v

)
. (14)

By over-smoothing (Eq. 9), for all l > L0:

∥x(l)
u − x(l)

v ∥ ≈ 0, (15)

and hence the second sum is negligible. Therefore,

hu − hv ≈
L0∑
l=0

αl

(
x(l)
u − x(l)

v

)
. (16)

Because initial node representations differ (a standard assumption for distinct nodes), there exists at
least one layer l′ ≤ L0 for which

∥x(l′)
u − x(l′)

v ∥ ≠ 0. (17)
Given that HISTOGRAPH employs learned dynamic attention, suppose αl′ ̸= 0. Consequently:

∥hu − hv∥ ≈

∥∥∥∥∥∥αl′

(
x(l′)
u − x(l′)

v

)
+
∑
l ̸=l′

αl

(
x(l)
u − x(l)

v

)∥∥∥∥∥∥ (18)

> 0. (19)

This directly contradicts the assumption that node embeddings become indistinguishable in the pooled
representation. Thus, HISTOGRAPH mitigates over-smoothing by explicitly retaining discriminative
early-layer representations.

F ADDITIONAL EXPERIMENTS

Table 9 and Table 10 show the results of different methods on two different settings of multiple graph
pooling methods. Table 11 reports node classification accuracy on both heterophilic and homophilic
datasets. We observe that our method (HISTOGRAPH+ GCN) consistently outperforms standard
GCN and JKNet across all datasets. The improvements are particularly pronounced on heterophilic
graphs such as Actor, Squirrel, and Chameleon, where our method achieves gains of up to 12.3% over
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Table 9: Comparison of graph classification accuracy (%) ↑ on different datasets with HISTO-
GRAPH and existing benchmark graph classification methods on TU datasets. All methods use a
5-layer GIN backbone for fair comparison. Top three results are marked as First, Second, and Third.

Method ↓ / Dataset → IMDB-B IMDB-M MUTAG PTC PROTEINS RDT-B NCI1

KERNEL
GK (Shervashidze et al., 2009) 65.9±1.0 43.9±0.4 81.4±1.7 57.3±1.4 71.7±0.6 77.3±0.2 62.3±0.3

RW (Vishwanathan et al., 2010) - - 79.2±2.1 57.9±1.3 74.2±0.4 - -
WL (Shervashidze et al., 2011) 73.8±3.9 50.9±3.8 82.1±0.4 60.0±0.5 74.7±0.5 - 82.2±0.2

DGK (Yanardag & Vishwanathan, 2015) 67.0±0.6 44.6±0.5 - 60.1±2.6 75.7±0.5 78.0±0.4 80.3±0.5

AWE (Ivanov & Burnaev, 2018) 74.5±5.9 51.5±3.6 87.9±9.8 - - 87.9±2.5 -

GNN
ASAP (Ranjan et al., 2020) 77.6±2.1 54.5±2.1 91.6±5.3 72.4±7.5 78.3±4.0 93.1±2.1 75.1±1.5

SOPool (Wang & Ji, 2023) 78.5±2.8 54.6±3.6 95.3±4.4 75.0±4.3 80.1±2.7 91.7±2.7 84.5±1.3

GMT (Baek et al., 2021) 79.5±2.5 55.0±2.8 95.8±3.2 74.5±4.1 80.3±4.3 93.9±1.9 84.1±2.1

HAP (Liu et al., 2021) 79.1±2.8 55.3±2.6 95.2±2.8 75.2±3.6 79.9±4.3 92.2±2.5 81.3±1.8

PAS (Wei et al., 2021) 77.3±4.1 53.7±3.1 94.3±5.5 71.4±3.9 78.5±2.5 93.7±1.3 82.8±2.2

HaarPool (Wang et al., 2020) 79.3±3.4 53.8±3.0 90.0±3.6 73.1±5.0 80.4±1.8 93.6±1.1 78.6±0.5

DiffPool (Ying et al., 2018) 73.9±3.6 50.7±2.9 94.8±4.8 68.3±5.9 76.2±3.1 91.8±2.1 76.6±1.3

GMN (Ahmadi, 2020) 76.6±4.5 54.2±2.7 95.7±4.0 76.3±4.3 79.5±3.5 93.5±0.7 82.4±1.9

DKEPool (Chen et al., 2023) 80.9±2.3 56.3±2.0 97.3±3.6 79.6±4.0 81.2±3.8 95.0±1.0 85.4±2.3

JKNet (Xu et al., 2018) 78.5±2.0 54.5±2.0 93.0±3.5 72.5±2.0 78.0±1.5 91.5±2.0 82.0±1.5

HISTOGRAPH (Ours) 87.2±1.7 61.9±5.5 97.9±3.5 79.1±4.8 97.8±0.4 93.4±0.9 85.9±1.8

Table 10: Comparison of graph classification ROC-AUC (%) ↑ on different datasets between HISTO-
GRAPH and existing baselines on OGB datasets. All methods use a 3-layer GCN backbone for fair
comparison. The metric used is ROC-AUC. The top three methods are marked by First, Second, and
Third.

† symbolizes non-learnable methods.

Method ↓ / Dataset → MOLHIV MOLBBBP MOLTOX21 TOXCAST

GCN† (Kipf & Welling, 2016) 76.18±1.26 65.67±1.86 75.04±0.80 60.63±0.51

GIN† (Xu et al., 2019) 75.84±1.35 66.78±1.77 73.27±0.84 60.83±0.46

HaarPool† (Wang et al., 2020) 74.69±1.62 66.11±0.82 - -
ASAP (Ranjan et al., 2020) 72.86±1.40 63.50±2.47 72.24±1.66 58.09±1.62

TopKPool (Gao & Ji, 2019) 72.27±0.91 65.19±2.30 69.39±2.02 58.42±0.91

SortPool (Zhang et al., 2018) 71.82±1.63 65.98±1.70 69.54±0.75 58.69±1.71

JKNet (Xu et al., 2018) 74.99±1.60 65.62±0.77 65.98±0.46 -
SAGPool (Lee et al., 2019) 74.56±1.69 65.16±1.93 71.10±1.06 59.88±0.79

Set2Set (Vinyals et al., 2015) 74.70±1.65 66.79±1.05 74.10±1.13 59.70±1.04

SAGPool(H) (Lee et al., 2019) 71.44±1.67 63.94±2.59 69.81±1.75 58.91±0.80

EdgePool (Diehl, 2019) 72.66±1.70 67.18±1.97 73.77±0.68 60.70±0.92

MinCutPool (Bianchi et al., 2020) 75.37±2.05 65.97±1.13 75.11±0.69 62.48±1.33

StructPool (Yuan & Ji, 2020) 75.85±1.81 67.01±2.65 75.43±0.79 62.17±1.61

SOPool (Wang & Ji, 2023) 76.98±1.11 65.82±1.66 - -
GMT (Baek et al., 2021) 77.56±1.25 68.31±1.62 77.30±0.59 65.44±0.58

HAP (Liu et al., 2021) 75.71±1.33 66.01±1.43 - -
PAS (Wei et al., 2021) 77.68±1.28 66.97±1.21 - -
DiffPool (Ying et al., 2018) 75.64±1.86 68.25±0.96 74.88±0.81 62.28±0.56

GMN (Ahmadi, 2020) 77.25±1.70 67.06±1.05 - -
DKEPool (Chen et al., 2023) 78.65±1.19 69.73±1.51 - -

HISTOGRAPH (Ours) 77.81±0.89 72.02±1.46 77.49±0.70 66.35±0.80

GCN. On homophilic datasets like Cora, Citeseer, and Pubmed, we also observe consistent, albeit
smaller, improvements.

To evaluate the ability of HISTOGRAPH to mitigate oversmoothing, we measure the feature distance
across layers for a standard GCN, both with and without HISTOGRAPH. The results, presented in
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Table 11: Node classification accuracy (mean ± std) on heterophilic and homophilic datasets.

Dataset GCN JKNet HISTOGRAPH+ GCN (Ours)

Actor 27.3 ± 1.1 35.1 ± 1.4 36.2 ± 1.1
Squirrel 53.4 ± 2.0 45.0 ± 1.7 65.7 ± 1.4
Chameleon 64.8 ± 2.2 63.8 ± 2.3 69.8 ± 1.8
Cora 81.1 ± 0.8 81.0 ± 1.0 83.1 ± 0.4
Citeseer 70.8 ± 0.7 69.8 ± 0.8 70.9 ± 0.5
Pubmed 79.0 ± 0.6 78.1 ± 0.5 80.4 ± 0.4

Table 12: Feature distance metrics across layers, showing the ability of HISTOGRAPH to mitigate
oversmoothing. Compared to standard GCN, HISTOGRAPH yields more diverse node embeddings.

Layer 0 8 64 Final (pre-classifier)
GCN 2.634 2.385 1.703 1.703
GCN + HISTOGRAPH 3.710 3.403 2.888 5.000

Table 12, show that incorporating HISTOGRAPH consistently leads to higher feature distances across
all layers, with the most pronounced improvement observed in the pre-classifier layer as expected
due to the oversmoothing.

The results in Tables 13–15 further demonstrate the versatility and effectiveness of HISTO-
GRAPH across different tasks and architectures. On the OGBL-COLLAB link prediction benchmark
(Table 13), incorporating HISTOGRAPH as a readout function leads to consistent improvements over a
standard GCN baseline. Similarly, in molecular property prediction tasks with GraphGPS backbones
(Table 14), HISTOGRAPH achieves substantial performance gains across multiple datasets, highlight-
ing its ability to preserve and leverage historical information across layers. Finally, the ablation on
the number of historical layers (Table 15) shows that incorporating deeper historical context enhances
predictive performance, with the best results obtained when more layers are retained. These findings
underscore the robustness of HISTOGRAPH as a drop-in replacement for readout functions across
diverse settings. Finally, we present an additional ablation in Table 16, which examines the effect
of different aggregation strategies across all layers—mean aggregation, randomized attention, and
HISTOGRAPH. Across datasets, HISTOGRAPH consistently achieves superior performance.

F.1 SCALABLE POST-PROCESSING WITH HISTOGRAPH

Table 17 indicates that all HISTOGRAPH variants consistently outperform the MeanPool baseline
for every depth and dataset. In particular, FT, often matches or even exceeds the accuracy of full
end-to-end tuning despite having far fewer trainable parameters. For example, at 5 layers it boosts
IMDB-M from 54.0 % to 67.3 %, IMDB-B accuracy from 76.0 % to 94.0 %, PROTEINS from 75.0 %
to 97.3 %, and PTC from 77.1 % to 85.7 %. As model depth grows, FT remains highly competitive:
at 16 layers it achieves 64.7%

We would like to note that While HISTOGRAPH mitigates over-smoothing by dynamically leveraging
early-layer discriminative features, at extreme depths (e.g., 64 layers) we face known optimiza-
tion challenges in GNNs (Li et al., 2019; Chen et al., 2020; Arroyo et al., 2025). Nonetheless,
HISTOGRAPH consistently outperforms baseline pooling methods, as shown in our depth-varying
experiments on Cora, Citeseer, and Pubmed in Table 4, demonstrating robustness to model depth.

These findings demonstrate that caching intermediate representations and training a small auxiliary
head enables scalable, modular adaptation of GNNs, obtaining strong performance across depths and
domains without incurring the computational costs of full model training.
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Table 13: Link prediction results on the OGBL-COLLAB dataset. HISTOGRAPH is applied as
a drop-in replacement for the readout function with a GCN backbone, demonstrating consistent
improvements over the baseline.

Model Hits@50 (Test) ↑ Hits@50 (Validation) ↑

Baseline (GCN) 0.4475 ± 0.0107 0.5263 ± 0.0115
GCN + HISTOGRAPH 0.4533 ± 0.0096 0.5314 ± 0.0103

Table 14: Performance comparison of GraphGPS baselines with and without HISTOGRAPH on
multiple datasets. Integrating HISTOGRAPH consistently improves performance by preserving layer-
wise historical context and enabling adaptive readout.

Method PROTEINS tox21 ToxCast

GPS + MeanPool 79.8 ± 2.1 75.7 ± 0.4 62.5 ± 1.09
GPS + HISTOGRAPH 98.9 ± 1.2 77.8 ± 2.2 66.9 ± 0.69

Table 15: Performance of HISTOGRAPH with different numbers of historical layers on PTC.

#Historical Layers PTC (%)
5 79.1± 4.8
3 75.6± 3.7
1 73.8± 4.3

Table 16: Comparison between different aggregation options of all layers: mean over all layers,
randomized attention, and HISTOGRAPH performance across datasets.

Dataset Mean over all layers Randomized attention HISTOGRAPH

IMDB-MULTI 54.73 ± 2.3 54.73 ± 4.3 61.9 ± 5.5
IMDB-BINARY 75.5 ± 2.2 76.6 ± 1.4 87.2 ± 1.7
PROTEINS 70.08 ± 5.8 80.05 ± 3.2 97.8 ± 0.4
PTC 73.24 ± 3.2 73.56 ± 2.56 79.1 ± 4.8

Table 17: Graph classification accuracy (%) ↑ across varying model depths, comparing methods over
multiple datasets and approaches. The top three methods for each setting are marked by First, Second,
and Third.

Dataset Method Number of Layers

5 16 32 64

IMDB-M

MeanPool 54.0 54.7 52.0 52.0
FT 67.3 64.7 57.3 66.0
Full FT 58.0 62.7 58.0 57.3
End-to-End 61.9 58.7 58.7 54.7

IMDB-B

MeanPool 76.0 76.0 76.0 71.0
FT 94.0 84.0 81.0 78.0
Full FT 94.0 81.0 81.0 81.0
End-to-End 87.2 79.0 79.0 72.0

PROTEINS

MeanPool 75.0 75.0 75.0 75.9
FT 97.3 77.7 75.9 77.8
Full FT 97.3 84.8 80.4 97.3
End-to-End 97.8 78.6 84.8 94.6

PTC

MeanPool 77.1 68.6 71.4 68.5
FT 85.7 80.0 71.5 71.4
Full FT 85.7 97.1 82.9 80.0
End-to-End 79.1 88.6 85.7 80.0
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