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Abstract001

In this paper, we propose a method to im-002
prove the reasoning capabilities of Visual Ques-003
tion Answering (VQA) systems by integrat-004
ing Dense Passage Retrievers (DPRs) with Vi-005
sion Language Models (VLMs). While recent006
works focus on the application of knowledge007
graphs and chain-of-thought reasoning, we rec-008
ognize that the complexity of graph neural net-009
works and end-to-end training remain signifi-010
cant challenges. To address these issues, we in-011
troduce Relevance Guided VQA (RG-VQA),012
a retriever-generator pipeline that uses DPRs013
to efficiently extract relevant information from014
structured knowledge bases. Our approach en-015
sures scalability to large graphs without sig-016
nificant computational overhead. Experiments017
on the ScienceQA dataset show that RG-VQA018
achieves state-of-the-art performance, surpass-019
ing human accuracy and outperforming GPT-4020
by more than 8%. This demonstrates the effec-021
tiveness of RG-VQA in boosting the reasoning022
capabilities of VQA systems and its potential023
for practical applications.024

1 Introduction025

Visual Question Answering (VQA) has garnered026

significant attention in artificial intelligence for its027

potential to bridge the gap between visual percep-028

tion and natural language understanding. VQA sys-029

tems are designed to answer questions based on the030

content of a given image, necessitating the integra-031

tion of visual and textual information. While early032

VQA approaches focused on answering straight-033

forward questions that could be directly inferred034

from the visual content, recent research has shifted035

towards addressing complex, knowledge-intensive036

questions that require advanced reasoning capabili-037

ties in the models.038

Recent studies, such as KAM-CoT (Mondal039

et al., 2024) and MM-CoT (Zhang et al., 2023),040

investigate how integrating Knowledge Graphs041

(KGs) and chain-of-thought (CoT) reasoning (Wei042

Figure 1: An example from the ScienceQA dataset illus-
trating the significance of knowledge infusion. While
the correct answer is not directly present in the triples,
they effectively assist in eliminating incorrect options.

et al., 2022) can enhance these capabilities in mul- 043

timodal models. A common approach involves 044

using Graph Neural Networks (GNNs) to integrate 045

KGs, but the complexity of these models increases 046

significantly with the size of the graph. QA-GNN 047

(Yasunaga et al., 2021a) and GreaseLM (Zhang 048

et al., 2022) propose heuristics to extract a relevant 049

sub-graphs from a KG before encoding it with a 050

GNN. However, this sacrifices the ability to con- 051

sider the entire KG and incorporate knowledge 052

from diverse sections. Additionally, methods lever- 053

aging GNNs or CoT come with substantial latency, 054

resulting in high inference times. 055

This paper aims to re-purpose Dense Passage 056

Retrievers (DPRs) for structured knowledge, offer- 057

ing an alternative to sub-graph extraction and sub- 058

sequently applying GNNs. DPRs were primarily 059

designed to retrieve relevant passages from large 060

text corpora (i.e., unstructured data) for a given 061

query (Guu et al., 2020; Karpukhin et al., 2020; 062

Lewis et al., 2020). They focus on transforming 063

text into embeddings and performing simple simi- 064

larity searches, in contrast to GNNs, which handle 065
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intricate graph structures and require iterative up-066

dates across the graph. Our empirical findings067

suggest that with appropriate training, DPRs can068

effectively substitute GNNs and proficiently ex-069

tract relevant knowledge from structured knowl-070

edge bases like KGs. This has the potential to071

advance multimodal reasoning capabilities signif-072

icantly. However, our work does not undermine073

the merits of GNNs; rather, it serves as a viable074

alternative for practical purposes.075

This work represents, to the best of our knowl-076

edge, the first comprehensive study on the use077

of DPRs to improve the performance of Vision078

Language Models (VLMs) on complex, reasoning-079

based VQA tasks. Our contributions are:080

1. We propose a multimodal retriever-generator081

model for VQA tasks, namely RG-VQA082

(Relevance Guided VQA). Our method ex-083

hibits competitive performance with GNN084

based methods. Moreover, RG-VQA is com-085

patible with any retriever and VLM architec-086

ture. The method is also generalizable across087

diverse VQA datasets and KGs (Section 3).088

2. We evaluate the effectiveness of our pro-089

posed RG-VQA pipeline on the ScienceQA090

dataset (Lu et al., 2022) using various VLMs.091

We provide a comprehensive analysis of the092

method’s effectiveness along with a detailed093

comparison against approaches that utilize094

GNNs (Section 5). With RG-VQA, we095

achieve a test accuracy of 92.10% on the Sci-096

enceQA dataset without incorporating addi-097

tional modules into the VLMs or relying on098

chain-of-thought prompting.099

Notably, 9 of the top 10 methods on the Sci-100

enceQA leaderboard1 (as of February 2025) ne-101

cessitate multiple calls to the underlying language102

model, with the only exception being the Honey-103

bee model (Cha et al., 2024). Our experiments also104

demonstrate that training the retriever results in an105

improvement of nearly 2.5% in zero-shot testing106

across different VLMs compared to using an off-107

the-shelf retriever, highlighting the significance of108

our training approach. We find that this improve-109

ment surpasses the accuracy of the model evaluated110

with triples extracted using greedy methods (Ya-111

sunaga et al., 2021a). To fully leverage knowledge112

augmentation, we train diverse VLMs and evaluate113

their ability to comprehend external knowledge.114

1https://scienceqa.github.io/leaderboard.html

2 Related Work 115

2.1 Vision Language Models 116

Several recent works have introduced a new 117

paradigm for training VLMs that leverages pre- 118

trained unimodal models instead of end-to-end pre- 119

training (Li et al., 2021; Wang et al., 2021; Bao 120

et al., 2022). BLIP-2 (Li et al., 2023) and LLaVA 121

(Liu et al., 2024b) are two pivotal works in this 122

direction, using frozen image encoders and lan- 123

guage models with lightweight projection layers to 124

align the modalities. This approach has led to the 125

development of several efficient and performant 126

VLMs, such as LaVIN (Luo et al., 2024), Honey- 127

bee (Cha et al., 2024), the Bunny family (He et al., 128

2024), and TinyLLaVA (Zhou et al., 2024), which 129

employ various techniques to enhance the cross- 130

modal alignment while maintaining the benefits of 131

using pre-trained components. These models have 132

consistently achieved strong results across a range 133

of benchmarks, demonstrating the effectiveness of 134

this new training paradigm for VLMs. 135

2.2 Knowledge-based VQA 136

Several knowledge-based visual question answer- 137

ing (KB-VQA) benchmarks, such as FVQA (Lin 138

et al., 2023b), OK-VQA (Marino et al., 2019), A- 139

OKVQA (Schwenk et al., 2022), Encyclopedic 140

VQA (Mensink et al., 2023), and InfoSeek (Wu 141

et al., 2023), have been proposed to evaluate the 142

performance of models in utilizing external knowl- 143

edge to answer visually-grounded questions. Vari- 144

ous approaches have been proposed to tackle these 145

benchmarks, including concept-aware representa- 146

tions (Gardères et al., 2020), integration of implicit 147

and symbolic knowledge (Marino et al., 2021) and 148

retrieval-augmented VQA (Lin et al., 2023a). In 149

contrast, ScienceQA is a large-scale multimodal 150

dataset for science question answering that not only 151

requires external knowledge but also demands rea- 152

soning capabilities posing an additional challenge 153

compared to other KB-VQA benchmarks. Also, 154

for ScienceQA dataset, KG infusion techniques are 155

explored by only KAM-COT (Mondal et al., 2024). 156

Hence, we select ScienceQA to test our method. 157

2.3 KG infusion in LMs for Question 158

Answering 159

Several methods augment language models with 160

structured knowledge from KGs specifically for 161

question answering. KagNet (Lin et al., 2019) 162

constructs a question-specific subgraph from the 163
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KG and employs a graph convolutional network164

(GCN) to propagate information to the question-165

and-answer representations. JointLK (Sun et al.,166

2021) utilizes a dense bidirectional attention mod-167

ule for joint reasoning between LMs and GNNs, al-168

lowing mutual updates through multi-step interac-169

tions. GreaseLM (Zhang et al., 2022) uses a greedy170

search algorithm to extract a relevant subgraph and171

linearizes it into text for LM input. QA-GNN (Ya-172

sunaga et al., 2021b) integrates a GNN-based KG173

reasoning module with a pre-trained LM, where the174

GNN updates node representations through mes-175

sage passing. KAM-CoT (Mondal et al., 2024)176

encodes a sub-graph using a stack of GNNs and177

fuses it with image and text embeddings, incor-178

porating them into the chain-of-thought reasoning179

process of a VLM.180

These works demonstrate the effectiveness of181

augmenting LMs with structured knowledge from182

KGs to improve their reasoning capabilities. How-183

ever, the computational overhead associated with184

these methods, particularly those involving GNNs,185

can be significant (Wu et al., 2020; Meng et al.,186

2021). Our work aims to explore the potential of187

dense passage retrievers, specifically ColBERTv2188

(Santhanam et al., 2022), as a more efficient alter-189

native for knowledge-augmented VQA while still190

maintaining the benefits of incorporating external191

knowledge into the reasoning process. Previous re-192

search on knowledge augmentation from structured193

knowledge using DPRs (Wu and Mooney, 2022;194

Nangi et al., 2023) has primarily concentrated on195

the task of question answering, with little atten-196

tion given to tasks demanding extensive reasoning197

capabilities.198

3 Methodology199

In this section, we discuss about the retriever and200

generator training in detail. An overview of our201

approach can be seen in Figure 2.202

3.1 Relevance Guided Supervision203

Our retrieval process draws inspiration from the204

RGS method (Khattab et al., 2021), initially de-205

signed to generate training data for the ColBERT206

model (Khattab and Zaharia, 2020) without any207

prior access to training examples. The original208

method extracts passages from a database and clas-209

sifies them as positive or negative based on a heuris-210

tic, suitable for tasks where a single passage could211

directly answer the query. We adapt the approach212

to accommodate tasks where the knowledge base 213

aids the question-answering process by providing 214

relevant facts, rather than direct answers. 215

3.1.1 Descriptions 216

Since ColBERTv2 uses a text-only encoder, we 217

first extract inputs from the image in the form of 218

image descriptions. We use LLaVA-NeXT-Mistral- 219

7B (Liu et al., 2024a) to generate descriptions for 220

each image. These descriptions are then included 221

as part of the query provided to ColBERTv2. 222

We observe that LLaVA’s descriptions, when 223

generated without specific guidance, often lack 224

both expressiveness and relevance to the accom- 225

panying question. To address this issue, we adopt 226

a method akin to Generate-then-Read (Yu et al., 227

2023), where models first generate relevant infor- 228

mation to answer a question and then separately 229

provide the answer. We adopt a similar approach, 230

directing the LLaVA model to generate more use- 231

ful image descriptions by prompting it to produce 232

descriptions that aid in answering the question. 233

3.1.2 Heuristic 234

We represent the query given to ColBERTv2 as 235

follows. 236

q = image_desc ⊕ question ⊕ choices 237

Here, ⊕ denotes concatenation. 238

We define heuristic h(q) as the set of 239

nouns and adjectives in the question and the 240

correct_answer. A triple t is labeled to be posi- 241

tive with respect to query q if 242

|t ∩ h(q)| > min (0.5× |h(q)|, 2) 243

In simpler terms, to classify as positive, t should 244

have a significant overlap with h(q); otherwise, it 245

is labeled as a negative triple. This approach is 246

crucial to minimize false classifications and main- 247

tain relevance. Without a sufficiently high over- 248

lap threshold, even partial matches on individual 249

words could lead to incorrect classifications. Simi- 250

larly, we limit the heuristic to nouns and adjectives 251

to avoid overestimating the relevance of a triple. 252

Specifically, verbs and pronouns are excluded as 253

they can be generic across various triples. 254

3.2 Analysis of Heuristic 255

In this section, we analyze the different aspects of 256

the heuristic (Section 3.1.2), shedding light on why 257

it is chosen in this manner. 258
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Figure 2: Overview of the RG-VQA training pipeline. In step 1, image descriptions are generated using a frozen
VLM, which is then used as inputs for the ColBERTv2 model. In step 2, the ColBERTv2 model undergoes weakly
supervised training through multiple rounds (using the heuristic defined in Section 3.1.2). Finally, in step 3, the
VLM is trained to generate answers and rationales, with the top N triples from step 2 added as context.

• In any VQA dataset, certain samples contain259

highly generic questions that lack sufficient260

information to guide triple selection. To ad-261

dress this, we incorporate both the question262

and the correct answer in h(q).263

• We set a high threshold of 2 for classify-264

ing triples as positive or negative with re-265

spect to a given query. This choice is cru-266

cial to minimize misclassification and en-267

sure that retrieved triples are truly relevant.268

For instance, consider a query representation269

h(q) = {"West Virginia", "capital"}. If the270

threshold were too low, any triple containing271

either "West Virginia" or "capital" could be272

a match, leading to the inclusion of distract-273

ing samples that do not directly contribute to274

finding the correct answer. By keeping a high275

threshold, we ensure that only triples contain-276

ing both terms are marked positive, thereby277

improving the quality of retrieved knowledge278

and reducing noise in the training process.279

• ConceptNet contains multiple similar triples,280

which may bias the training process by lead-281

ing the retriever to extract the same type of282

triples repeatedly. This can hinder effective283

training. To tackle this, we perform a simi-284

larity check before categorizing the retrieved285

triples as positive or negative, as outlined in286

Stage II of Section 3.2.1. 287

A ∈
h(q), no
threshold

Q+A ∈
h(q), no
threshold

Q+A ∈
h(q), 2
threshold

Round 1 465,814 1,003,773 306,805
Round 2 693,865 583,886 376,623
Round 3 434,520 192,713 380,318

Table 1: Number of training triples per round of re-
triever training under different heuristics. Comparison
is made between answer-only vs. when both ques-
tion and answer are considered, and no threshold vs.
a threshold of 2.

Our observations were also validated quantita- 288

tively. Specifically, we train the retriever in rounds, 289

where each round is expected to guide the model 290

towards better retrieval. This should also increase 291

the size of the training data as the rounds proceed. 292

In Table 1, we see that the training data size does 293

not show this expected trend unless the heuristic is 294

properly chosen. 295

3.2.1 Training 296

The training process consists of R rounds. For 297

each round r ∈ [1, R], we follow these 4 stages: 298

1. STAGE I: Indexing 299

We first index the triples in the KG using the 300
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ColBERTv2 model from round r − 1 to form301

a pre-computed index I . Here, round 0 repre-302

sents the base ColBERTv2 model. Index I is303

not changed throughout round r.304

2. STAGE II: Base Retrieval305

The second stage involves retrieving the top306

K triples, denoted as T (q), for each query307

q using the pre-computed index I from the308

previous stage. To avoid redundancy, if two309

similar triples (those with identical subjects310

and objects) are present in T (q), only the one311

with a higher ranking is retained.312

3. STAGE III: Training Data Instantiation313

For every query q and its corresponding314

triples T (q) extracted in Stage II, we par-315

tition T (q) into positive and negative sets,316

T (q) = TP(q)
⋃

TN (q) using the heuristic317

h(q) (as described in Section 3.1.2). Then,318

the training data for round r is obtained as,319

D =
⋃
q

{(q, p, n) | p ∈ TP(q), n ∈ TN (q)}320

Here, we only consider queries q for which321

both |TP(q)| > 0 and |TN (q)| > 0 hold.322

4. STAGE IV: Training ColBERTv2323

The fourth and final stage involves training the324

ColBERTv2 model from round r−1 using the325

training data D generated in Stage III. This326

yields the model after round r.327

3.3 Answer Generation328

Finally, the top N triples extracted using the329

trained ColBERTv2 model are added to the prompt330

of the VLM as context. In the zero-shot setting,331

the VLM is prompted to choose the correct answer332

out of the given choices. Furthermore, we employ333

LoRA fine-tuning of various VLMs to generate334

a rationale and the correct answer. This is cho-335

sen over full fine-tuning since prior works have336

shown empirically that LoRA leads to better per-337

formance in VLMs (Zhai et al., 2023b; Laurençon338

et al., 2024; He et al., 2024).339

4 Experimental Setup340

We utilize ConceptNet as our KG because of its341

extensive general knowledge coverage. However,342

the vast scale of ConceptNet, with over 2 million343

nodes and 21 million edges, significantly increases344

the retriever’s training time. To address this, we345

selectively extract triples corresponding to the 20 346

most frequent relations out of the 34 available in 347

ConceptNet. This reduction results in a smaller 348

KG containing approximately 2.5 million triples. 349

4.1 Datasets 350

We conduct experiments on ScienceQA (Lu et al., 351

2022), a benchmark for multi-modal learning and 352

reasoning covering diverse science topics, and con- 353

taining annotations of answers with corresponding 354

lectures and explanations. The dataset consists of 355

12726, 4241, and 4241 train, dev, and test samples 356

respectively. 357

4.2 Retriever 358

We employ the 110M-parameter ColBERTv2 as 359

the retriever, as it captures better cross-sequence 360

(query and triple) interaction than a traditional bi- 361

encoder with its token-level embeddings. It is also 362

faster than most cross-encoders since the triple 363

embeddings can be pre-computed and retrieved in- 364

dependently of the query. We train the model for 365

R = 3 rounds using the strategy described in Sec- 366

tion 3.2.1 on 1 NVIDIA A-100 80GB GPU. In each 367

round, stage I takes around 30 minutes on average, 368

stage II takes around 60 -70 minutes, and stage IV 369

requires another 40 - 60 minutes (depending on 370

the amount of training data created in stage III). 371

Training takes < 3 hours for one round. In stage 372

II, we choose the value of K as 200. The maxi- 373

mum length for the query encoder is 256, while 374

that for the triple encoder is 64. We train the model 375

with a batch size of 32. We use the open-source 376

RAGatouille library2 for training. 377

4.3 Generator 378

We consider the following recent models: LLaVA- 379

1.5 Vicuna-13B (Liu et al., 2023), LLaVA-NeXT 380

Mistral-7B (Liu et al., 2024a), Bunny Llama3- 381

8B (He et al., 2024), and MM-CoT FlanT5-Base 382

(250M) (Zhang et al., 2023). While all models 383

except Bunny employ the CLIP encoder (Radford 384

et al., 2021), Bunny and TinyLLaVA-Gemma uti- 385

lizes the SIGLIP vision encoder (Zhai et al., 2023a). 386

All large models follow a similar two-stage train- 387

ing paradigm, which involves feature alignment 388

followed by supervised fine-tuning. 389

4.3.1 Zero-shot Evaluations 390

For the zero-shot evaluations, we employ the stan- 391

dard prompt given for ScienceQA, outlined in (Liu 392

2https://github.com/bclavie/RAGatouille

5

https://github.com/bclavie/RAGatouille


Model Size NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg
Human - 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40

CoT (ChatGPT) 175B 78.82 70.98 83.18 77.37 67.92 86.13 80.72 74.03 78.31
CoT (GPT-4) 1T+ 85.48 72.44 90.27 82.65 71.49 92.89 86.66 79.04 83.99

Chameleon (GPT-4) 1T+ 89.83 74.13 89.82 88.27 77.64 92.13 88.03 83.72 86.54
MM-CoT (T5 Base) 223M 84.06 92.35 82.18 82.75 82.75 84.74 85.79 84.44 85.31
DDCoT (T5 Base) 223M 88.72 86.84 84.91 87.59 83.34 88.08 88.58 85.10 87.34

MM-CoT (Flan T5) 250M 91.5 74.92 90.09 91.69 84.28 90.52 88.14 87.01 87.74
MC-CoT (Flan T5) 248M 93.56 83.58 90.73 94.13 89.24 90.94 90.93 90.38 90.73

LaVIN (LoRA) 13B 89.88 94.49 89.82 88.95 87.61 91.85 91.45 89.72 90.83
TinyLLaVA-Gemma 2B 87.39 94.15 85.18 91.14 85.03 88.01 86.35 89.28 88.21

Bunny Llama3 (LoRA) 8B 89.96 94.38 91.45 94.96 87.21 92.82 91.81 90.31 91.28
LLaVA-1.5 (LoRA) 13B 91.79 96.06 88.18 91.06 90.48 90.31 92.22 90.90 91.75

RG-VQA (MM-CoT) 360M 92.67 80.31 90.09 92.13 87.01 91.43 89.90 88.53 89.41
RG-VQA (TinyLLaVA-Gemma) 2B 88.37 95.05 85.27 91.10 86.61 87.67 89.50 88.00 88.96

RG-VQA (LLaVA-1.5) 13B 92.81 95.61 87.45 91.89 91.03 90.03 92.62 90.90 92.01
RG-VQA (Bunny) 8B 90.45 96.85 91.64 95.37 88.50 93.24 92.47 91.43 92.10

Table 2: We compare our results on the ScienceQA dataset with different baselines that do not use knowledge. All
scores are for exact match accuracy (in %). Here, Size = size of the backbone model, NAT = Natural Science, SOC
= Social Science, LAN = Language Science, TXT = Text context, IMG = Image context, NO = No context, G1-6 =
Grade 1 to 6, G7-12 = from Grade 7 to 12, Avg = Average accuracy. The best score for each category is marked in
bold. Segment 1 compares against the human average. Segment 2 has the performance of the GPT family. Segment
3 compares with models that utilize multimodal CoT. In Segment 4, we show parameter-efficient finetuned versions
of different LLMs. The score of MM-CoT (Flan T5 Base) is taken from Mondal et al. (2024), where a caption
is also given as context along with the vision features. Results, other than ours and that of fine-tuned Bunny and
LLaVA-1.5 models, are taken from respective papers and the ScienceQA leaderboard.

et al., 2024b), with triples added as part of the393

context. The exact prompt can be found in Ap-394

pendix D.1. Models are instructed to generate only395

the correct answer choice, and we report exact396

match accuracies. To ensure reproducibility and397

obtain more reliable results, all evaluations are con-398

ducted using greedy decoding with 3 beams, and399

N = 10 triples (Section 3.3).400

4.3.2 Generator Fine-tuning401

We perform LoRA fine-tuning on the LLaVA-1.5402

Vicuna-13B and Bunny-Llama3-8b models and full403

fine-tuning for TinyLLaVA-Gemma. We also train404

the MM-CoT FlanT5-Base model, with captions405

added as context (similar to the approach followed406

in Mondal et al. (2024)). The training is performed407

on 4 NVIDIA A-100 80GB GPUs. The triples408

retrieved after each round of training are provided409

as additional context during fine-tuning. Due to410

limitations in the context length (set as 2048), we411

only add the top N = 25 retrieved triples, and train412

the models to generate both explanation and the413

correct answer.414

For both the LLaVA-1.5 and Bunny models, we415

conduct supervised fine-tuning starting from the416

base checkpoint, which has not been pre-trained417

on any instruction-following datasets. The LLaVA-418

1.5 model is fine-tuned for 12 epochs, while the419

Bunny model undergoes fine-tuning for 2 epochs.420

This training is carried out using LoRA and PEFT,421

keeping the number of trainable parameters to422

around 0.4% of the total model size. The global 423

batch size is kept at 128, with a training batch size 424

of 8 per device, and gradient accumulation steps 425

set as 4. The learning rate is set at 2e-5 for LLaVA- 426

1.5 and 2e-4 for Bunny. Training takes around 30 427

minutes per epoch. To ensure optimal performance, 428

we evaluate our model on the development set af- 429

ter each epoch and save the model with the best 430

checkpoint upon the completion of training. 431

5 Results and Analysis 432

We compare RG-VQA with 3 different categories 433

of models from the official leaderboard of Sci- 434

enceQA: (i) Techniques using GPT (Achiam et al., 435

2023; Wei et al., 2022; Lu et al., 2024), (ii) Mod- 436

els based on MM-CoT, with T5 or Flan T5 as the 437

underlying LLM (Zhang et al., 2023; Zheng et al., 438

2023; Tan et al., 2023) and (iii) VLMs fine-tuned 439

with LoRA (Luo et al., 2024; He et al., 2024; Liu 440

et al., 2023). As shown in Table 2, the proposed 441

RG-VQA technique outperforms all models not 442

utilizing knowledge, with the highest accuracy of 443

92.10% achieved by training the Bunny model. 444

Our results demonstrate an improvement of 445

nearly 2.5% in the Social Science category when 446

applying RG-VQA to the Bunny model, achieving 447

a score of 96.85%. This surpasses the previous 448

best accuracy of 96.74% on the ScienceQA leader- 449

board, achieved by the LLaVA and GPT-4 synergy 450

on the Social Science subset. Similarly, a substan- 451

tial improvement of nearly 6.5% is observed in the 452
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LLaVA-1.5
Vicuna-13B

LLaVA-NeXT
Mistral-7B

Bunny
Llama3-8B

TinyLLaVA-
Gemma-2B

Without KG 69.96 76.56 81.49 55.56
Base Triples 65.27 70.05 75.01 51.00
Round 1 Triples 66.85 71.40 77.29 52.74
Round 2 Triples 66.87 72.08 77.53 52.95
Round 3 Triples 67.37 72.53 77.36 53.93
KAM-CoT Triples 65.6 72.01 76.26 51.00

Table 3: Zero-shot results with different VLMs (Section 4.3.1). “Without KG” refers to the evaluation done without
the addition of any knowledge triples. “Base triples” consider the addition of triples retrieved using the pre-trained
ColBERTv2 model, and the triples extracted with the ColBERTv2 model trained for r rounds (Section 3.2.1)
are denoted as “Round r triples” (where r ∈ [1, 3]). “QA-GNN triples” is used to show the inclusion of triples,
extracted using the method followed in (Mondal et al., 2024), as part of the context. All results are with the top 10
triples (Appendix D.1), and report top-1 accuracy (in %).

LLaVA-1.5
Vicuna-13B

(LoRA)

Bunny
Llama3-8B

(LoRA)

MM-CoT
FlanT5-Base

TinyLLaVA-
Gemma-2B

Without KG 91.75 91.28 87.74 88.21
Base Triples 91.46 91.84 89.15 88.42
Round 3 Triples 92.01 92.10 89.41 88.96

Table 4: Performance comparison of different models after fine-tuning. Training and evaluation are done with 25
triples added to the prompt (Appendix D.3). The other settings are the same as that for Table 3.

same category when applying RG-VQA to MM-453

CoT. However, we generally observe a decline in454

the accuracy of Language Science questions, likely455

due to the absence of triples necessary to deduce456

linguistic features within sentences, which consti-457

tutes the majority of questions in this category.458

We also provide a few generated samples in459

Appendix D.4, to visualize the effect of knowl-460

edge augmentation in RG-VQA. Results for sen-461

sitivity analysis test with varying temperature set-462

tings on TinyLLaVA-Gemma model can be seen463

in appendix B. Results of RG-VQA method on464

A-OKVQA dataset are presented in appendix A.465

Alongside the KAM-COT method, we compare466

RG-VQA with another end-to-end model, Unifer,467

with the corresponding results detailed in C468

5.1 Effect of Retriever Training469

Tables 3 and 4 present the performance of various470

VLMs on the ScienceQA dataset, both in zero-shot471

and fine-tuned settings. In the zero-shot setting,472

incorporating KG triples extracted using the base473

ColBERTv2 retriever results in a notable decline in474

accuracy compared to the baseline without KG inte-475

gration. This decline can be attributed to two main476

factors: the challenge VLMs face in effectively477

utilizing the additional knowledge without appro- 478

priate training, and the irrelevance of the triples 479

extracted by ColBERTv2 without fine-tuning. As 480

we conduct multiple rounds of training, we notice 481

a continuous rise in accuracy, reaching an improve- 482

ment of over 2% across all models. This consistent 483

performance enhancement indicates that the itera- 484

tive refinement of the retriever helps VLMs better 485

utilize the KG triples. Our training approach en- 486

ables the models to identify and focus on the most 487

relevant knowledge, progressively aligning the re- 488

trieved information with the task at hand. 489

In comparison to the zero-shot setting, the fine- 490

tuned models show significantly higher accuracy, 491

demonstrating their ability to adapt to the dataset’s 492

specific characteristics and utilize the provided KG 493

triples effectively. Remarkably, the performance of 494

models without KG integration is already quite 495

high, with LLaVA-1.5-Vicuna-13B and Bunny- 496

Llama3-8B achieving accuracies above 91%. How- 497

ever, incorporating KG triples during training fur- 498

ther improves their performance. Specifically, for 499

RG-VQA based on Bunny and MM-CoT as the 500

VLM, we see an accuracy increase of 0.8% and 501

1.7%, respectively. Additionally, we observe that 502

retriever training, followed by fine-tuning with ex- 503
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Model Accuracy Size Trainable params #KG Entities Training time ↓ Inference time ↓
KAM-CoT 93.87 280M 280M 200 20 hours 116 minutes
RG-VQA 92.10 8B 140M 800k 10 hours 80 minutes

Table 5: Comparison of RG-VQA and KAM-CoT. The inference time is for the complete test set.

tracted triples improves accuracy across all three504

VLMs.505

5.2 Comparison with GNNs506

We compare our method, RG-VQA, with the base-507

line KAM-CoT (Mondal et al., 2024) on the Sci-508

enceQA benchmark, which employs GNNs for509

KG infusion. KAM-CoT also utilizes Concept-510

Net as its KG, first extracting a relevant subgraph511

and then encoding it using a combination of graph512

layers. Table 5 presents a comparison of key as-513

pects between RG-VQA (Bunny) and KAM-CoT514

(FlanT5 Base). We observe that RG-VQA achieves515

comparable performance after training the Bunny516

model for just 2 epochs, despite utilizing only half517

the trainable parameters (110M for ColBERTv2518

and 30M for Bunny) and leveraging the entire KG519

during both training and evaluation, unlike KAM-520

CoT. Additionally, evaluating the entire ScienceQA521

test set (4,241 samples) takes only 80 minutes on522

RG-VQA, compared to 116 minutes for KAM-523

CoT. This difference arises because RG-VQA re-524

quires just 20 minutes to retrieve relevant entities,525

whereas KAM-CoT takes approximately 84 min-526

utes for subgraph retrieval, significantly increas-527

ing its overall inference time. The faster retrieval528

process in RG-VQA shows the efficiency of our529

method as an alternative to GNN based models and530

eliminates the costly subgraph extraction steps by531

considering the entire KG during both training and532

evaluation.533

5.3 Importance of Image Descriptions534

To assess the effectiveness of adding image descrip-535

tions to the retriever training process, we conduct536

an ablation study. We evaluate the benefits of using537

descriptions against the additional computational538

overhead and potential noise introduced by includ-539

ing an extra model. The results presented in Table 6540

show that using image descriptions enhances the541

answer accuracy. Notably, models trained with542

descriptions consistently achieve higher accuracy543

across all training rounds compared to the no de-544

scription setting. Moreover, without descriptions,545

there was no observed accuracy improvement over546

successive training rounds, emphasizing their cru-547

cial role in effective retriever training within our 548

proposed pipeline. 549

With description No description
Base Triples 70.05 68.88

Round 1 71.40 71.19
Round 2 72.08 70.93
Round 3 72.53 70.90

Table 6: Zero-shot evaluation with LLaVA-NeXT
Mistral-7B when image descriptions are provided to
the ColBERTv2 model vs. when training is done with-
out any image input (as discussed in Section 3.1.1).

6 Conclusion and Future Work 550

In this paper, we introduce RG-VQA, a new frame- 551

work designed to enhance knowledge-augmented 552

multimodal reasoning. Our approach is adaptable 553

to various retrievers, VLMs, and KGs, and involves 554

weakly supervised training of the retriever. Ex- 555

periments on the ScienceQA dataset demonstrate 556

the effectiveness of our retriever training pipeline, 557

showing improvements post-training. With the 558

Bunny Llama3-8B model, RG-VQA achieves an 559

accuracy of 92.10%. The RG-VQA paradigm 560

consistently improves performance across various 561

model scales, ranging from 250M to 13B param- 562

eters. Our technique presents a viable alternative 563

to methods involving GNNs and CoT reasoning, 564

offering similar results with the ability to scale to 565

large KGs efficiently while maintaining reasonable 566

inference latencies. Future work includes integrat- 567

ing a visual retriever to replace the first two steps 568

(as in Figure 2) for direct image feature incorpo- 569

ration, and using a KG with multimodal nodes, 570

instead of a text-only KG. 571

7 Limitations 572

We acknowledge certain limitations in our work 573

that highlight areas for future research. One no- 574

table issue is the insufficient knowledge triples for 575

enhancing reasoning on Language Science ques- 576

tions, indicating a need for a Knowledge Graph 577

with better coverage of linguistic devices. Addi- 578

tionally, our current pipeline is unable to recognize 579

named entities in images, which may be crucial for 580

some datasets. This limitation can be addressed 581

8



by employing well-trained vision encoders in com-582

bination with multimodal Knowledge Graphs, en-583

abling the retrieval of relevant multimodal context584

about the entities.585

Ethics Statement586

This research was conducted in accordance with587

the ACL Ethics Policy.588
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A Performance on A-OKVQA dataset837

To validate the effectiveness of our approach we838

have evaluated RG-VQA method on A-OKVQA839

dataset (Schwenk et al., 2022). A-OKVQA is an-840

other VQA dataset made to ensure that all ques-841

tions would need external knowledge to be an-842

swered. It comes with 17k training, 1k validation843

and 6.7k test samples. But since the test-set is844

closed, we use the validation split as the held-out845

set for reporting our scores. Out of the 17k train-846

ing samples, we randomly picked 13k samples for847

training and use the remaining 4k samples as the848

dev-set. As shown in Table 7, the RG-VQA method849

significantly outperforms prior approaches, demon-850

strating its strong generalizability to knowledge-851

intensive VQA datasets.852

Results on A-OKVQA dataset
KAM-CoT 59.65
MM-CoT 55.98

RG-VQA (ours) 77.38

Table 7: Results on A-OKVQA dataset using RG-VQA
method.

B Evaluating Model Robustness: 853

Sensitivity Analysis of Temperature 854

Variations 855

We conducted a sensitivity analysis test with vary- 856

ing temperature settings on TinyLLaVA-Gemma 857

model (Zhou et al., 2024). By systematically al- 858

tering the temperature values and assessing the 859

model’s outputs, we aim to understand how these 860

variations affect the accuracy and reliability of our 861

method. We observe that the results are consistent 862

across temperatures. 863

temperature 0.0 0.2 0.4 Average
Base Triples 88.42 86.10 86.20 86.90

Round 1 88.51 86.22 87.34 87.35
Round 2 88.70 88.78 87.70 88.39
Round 3 88.96 87.20 88.10 88.08

Table 8: Results on ScienceQA dataset for TinyLLaVA-
Gemma across different temperatures. Each column
corresponds to the temperature of the model during
inference on test set.

C End-to-End VQA Model 864

To demonstrate the effectiveness of our proposed 865

method, we compared it with another end-to-end 866

VQA model (refer Table 9), based on the UnifER 867

approach (Guo et al., 2022), which uses a weak 868

supervision signal from the generated answer to 869

guide the retriever. We made the following modifi- 870

cations in UnifER: 871

1. Adaptation to MCQA: Converted the model 872

from Open-ended Visual Question Answer- 873

ing to Multiple-choice Question Answering 874

(MCQA). 875

2. Positional Bias Mitigation: Introduced per- 876

muted answer choices by passing multiple 877

instances of the same example from the Sci- 878

enceQA (Lu et al., 2022) dataset. 879

3. Separate Encoders: Unlike UnifER, which 880

shares an encoder between the retriever and 881

generator, we found this setup ineffective for 882

11



Model Size NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg
E2E-VQA 614M 76.67 91.09 84.80 81.67 81.98 79.10 83.20 79.31 81.80

Table 9: End-to-End VQA model results on the ScienceQA dataset. All scores are for exact match accuracy (in
%). Here, Size = size of the backbone model, NAT = Natural Science, SOC = Social Science, LAN = Language
Science, TXT = Text context, IMG = Image context, NO = No context, G1-6 = Grade 1 to 6, G7-12 = from Grade 7
to 12, Avg = Average accuracy.

1: "rufous headed woodpecker; isa; bird"

2: "bird of juno; relatedto; peafowl"

3: "bird of juno; relatedto; peacock"

4: "hippo birdie two ewe; hascontext; comical"

5: "wild turkey; isa; only bird with beard"

6: "rufous winged woodpecker; isa; bird"

7: "cane toad; isa; amphibian"

8: "black headed parrot; relatedto; pionites melanocephalus"

9: "scapegallows; relatedto; gallows bird"

10: "boatswain bird; relatedto; phaethon aethereus"

Base triples

1: "cane toad; isa; amphibian"

2: "cane toads; relatedto; cane toad"

3: "cane toad; relatedto; toad"

4: "cane toad; relatedto; bufo marinus"

5: "marine toad; relatedto; cane toad"

6: "marinobufagin; relatedto; cane toad"

7: "cane toad; relatedto; rhinella marina"

8: "pectus; relatedto; bird"

9: "bird; usedfor; subject for zoologists to study"

10: "bird; capableof; watch land below"

Triples from round 3

Question: 
Select the bird
below
Options:
a) Cane toad
b) Ostrich

Figure 3: An example to demonstrate the effect of training on the quality of the triples. We can observe that the
triples from round 3, i.e., from the trained ColBERTv2 model, show a higher degree of relevance to the question.

MCQA and used separate encoders for each883

module.884

Our model consistently outperformed the end-885

to-end VQA system in every category, with an886

average accuracy improvement of over 10%.887

D Prompts888

In this section, we present the prompts that are used889

for training and evaluating VLMs. The variable890

parts are shown within ⟨·⟩, and may be removed if891

they are not available.892

D.1 Zero-shot893

894

Question: ⟨ question ⟩
Context: ⟨ hint + triples ⟩
Answer Choices: ⟨ answer choices ⟩
Choose the correct answer choice number from 1
to ⟨ len(choices) ⟩. Correct answer choice: "

895

896

Figure 5: Prompt template for zero-shot evaluation.
897

D.2 Generate-then-Read prompt898

899

Instruction: Generate descriptions of the image
that will be useful to answer the question below.
Only give the description.
Question: ⟨ question ⟩
Answer Choices: ⟨ answer choices ⟩

900

901

Figure 6: Prompt template for generating image descrip-
tions.

902

D.3 Fine-tuning 903

904

⟨ question ⟩
Context: ⟨ hint ⟩
Options: ⟨ options ⟩
Use the following triples for additional context: ⟨
triples ⟩

905

906

Figure 7: Input template when fine-tuning the VLMs.
907

908

⟨ lecture ⟩
⟨ solution ⟩
The answer is ⟨ choice ⟩.

909

910

12



Which country is highlighted?
A. Nauru

 B. the Federated States of
Micronesia 

C. The Marshall Island
 D. Samao

Model's output when trained
without KG:

This country is Tuvalu. The answer
is A.

Model's output when trained on
round 0 triples

This country is Samoa. The
answer is D.

Top-5 triples extracted in round 0

1: "and new zealand; isa; country with two main
islands"

2: "caroline islands; relatedto; federated states of
micronesia"

3: "french southern and antarctic lands; relatedto;
indian ocean"

4: "austral islands; atlocation; pacific ocean"

5: "float; hascontext; and other commonwealth
countries"

Top-5 triples extracted in round 3

1: "federated states of micronesia; isa; country"

2: "caroline islands; relatedto; federated states of
micronesia"

3: "nauru; relatedto; country"

4: "nauru; isa; tiny pacific island nation"

5: "pohnpei; relatedto; federated states of micronesia"

Model's output when trained on
round 3 triples

This country is Nauru. The answer
is A.

Figure 4: An example that highlights the importance of training the retriever. The words in bold represent the
words that form part of the heuristic, showing how training aligns the triples with the question. The outputs are
generated by the Bunny Llama3-8B model. Round 0 represents the triples extracted with the base ColBERTv2
model, and round 3 denotes the triples retrieved with the ColBERTv2 model obtained after 3 rounds of training.

Figure 8: Expected output during training of VLMs.
911

D.4 Qualitative Examples912

In Figures 4 and 3, we present some examples from913

our experiments to illustrate the impact of training914

the retriever and demonstrate how the retrieved915

triples can be crucial in guiding the model to the916

correct answer.917

13
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