
Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

DATA-DRIVEN MULTI-FIDELITY MODELLING FOR
TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUA-
TIONS USING CONVOLUTIONAL NEURAL NETWORKS

Freja T. Petersen and Allan P. Engsig-Karup
DTU Compute
Technical University of Denmark (DTU)
Kgs. Lyngby, DK

ABSTRACT

We present a general multi-fidelity (MF) framework which is applied through
utilizing flexible-order explicit finite difference numerical schemes using convo-
lutional neural networks (CNNs) by combining low-order simulation data with
higher order simulation data obtained from numerical simulations based on par-
tial differential equations (PDEs). This allows for improving the performance of
low-order numerical simulation through learning from the data how to correct the
numerical schemes to achieve improved accuracy. Through the lens of numerical
analysis we evaluate the accuracy, efficiency and generalizability of constructed
data-driven MF-models. To illustrate the concept, the construction of the MF
models uses CNNs and is evaluated against numerical schemes designed for solv-
ing linear PDEs; the heat, the linear advection equation and linearized 1D shallow
water equations. The numerical schemes allow for a high level of explainability
of data-driven correction terms obtained via CNNs through numerical analysis of
truncation errors. It is demonstrated that data-driven MF models is a means to
improve the accuracy of LF models through operator correction.

1 INTRODUCTION

Convolutional neural networks (CNNs) are kernel-based local approximators which can be applied
in the context of numerical solvers for partial differential equations. We investigate the usability
of CNNs in a multi-fidelity (MF) setting using explicit flexible-order finite difference numerical
solvers. The aim of generating a multi-fidelity model is to take advantage of combining expensive
and often sparse high-accuracy data with cheap and easily obtainable low-accuracy data to improve
accuracy of lower fidelity numerical models.

1.1 RELATED WORK

Decades ago, neural networks were established as function approximators by Hornik et al. (1989),
which was later established in practice by Rico-Martinez et al. (1995) and González-Garcı́a et al.
(1998). This is fundamental for solving e.g. dynamical systems and differential equations using
neural networks. More recently, the universality of CNNs was established (Zhou, 2020).

Recently, the use of multi-fidelity techniques has been evolving using neural network based ap-
proaches. The term multi-fidelity techniques refers to methods that operate with different fidelities.
The word fidelity is a broad term, which describes the overall quality or ”truthness” of the model. The
higher the fidelity, the closer to the truth the model is. The fidelity of the model can be controlled in
terms of grid-discretization, order of the numerical method, and how well a model approximates the
true system. Examples of previous neural network-based multi-fidelity models include a composite
neural network that learns from multi-fidelity data (Meng & Karniadakis, 2020), a long short-term
memory network for multi-fidelity surrogate modeling (Conti et al., 2023) and a neural network-
based acceleration of a high-order discontinuous Galerkin solver (de Lara & Ferrer, 2023). In the
context of initial value problems for PDEs, methods using multi-resolution wavelet operator learning

1

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

have been successful in beating state-of-the-art in terms of obtaining high accuracy for flexible reso-
lutions (Gupta et al., 2021; 2022; Xiao et al., 2023). All of these methods use multi-layer-perceptron
(MLP) type networks, which are global in nature and hence difficult to scale.

CNNs, on the other hand, use localized kernels that are executed across the domain. The advantage
of this is that the computational complexity scales linearly with the input dimension. There are a few
examples of CNN-based MF-models, including the a deep CNN-based MF-model for temperature
field prediction (Zhang et al., 2023) and a CNN-structure called Deep FDM for enhancing finite
difference methods (Kossaczká et al., 2023). The latter argues for a strong connection between
CNNs and numerical schemes. This work builds upon this idea, and explores it even further.

1.2 CONTRIBUTIONS

The above section describes the use of neural networks and multi-fidelity models for solving PDEs.
This work contributes to the area by creating a strong connection between numerical theory and
CNNs, and the contributions include: 1) the formulation of a general framework for developing
multi-fidelity models for future research and 2) data-driven multi-fidelity experiments with numer-
ical simulators of different complexities. This work serves as a proof of concept, highlighting the
potential of the proposed CNN-based multi-fidelity methods.

2 METHODOLOGY

2.1 A GENERAL MULTI-FIDELITY FRAMEWORK

Consider the general initial value problem (IVP):
du
dt

= f(u(t), t), u(t0) = u0, t > 0, (1)

where u ∈ Rn holds n state variables and u0 = u(t0) is the initial state at time t = t0, and f(·)
is assumed Lipschitz continuous with respect to the first argument. In the setting of time-dependent
partial differential equations, it is common to discretize the PDEs using the method of lines (MoL) in
two steps, where the first step involves numerical discretization in space to generate a semi-discrete
system in the form of an IVP. The subsequent step, is to then solve this spatially discretised system
via finite differences in the form of ordinary differential equation (ODE) solvers that provide stability
and efficiency for the temporal integration. The general solution to the IVP can be stated as

u(tn) = u(t0) +

∫ tn

t0

f(u(t), t)dt. (2)

For governing equations such as nonlinear PDEs, the integral cannot be readily evaluated. Instead it
is possible to resort to numerical approximation.

Following Chen & Xiu (2021) that introduced the generalised Residual Neural Networks (gResNet)
for data-driven modeling of autonomous dynamical systems, we introduce an operator, L : Rn →
Rn, such that:

u(tk+1) ≈ L(u(tk)) ↔ u(tk+1) = L(u(tk)) + τ,

where τ is the error (TE) of the numerical scheme that is dependent on the underlying solution u.
To perform numerical analysis, the TE can be expanded in terms of a Taylor series to understand the
structure of the leading order terms wrt. to the numerical discretization parameters.

In the context of MF-models, L can be considered a low-fidelity (LF) operator, which maps the
state variables in a time step from time tk to time tk+1 = tk + ∆t with ∆t the time step. The LF
operator is assumed to be a convergent numerical scheme for finding approximate solutions to the
IVP equation 1. Consider now the operator: F : Rn → Rn. This operator can be subject to function
approximation, e.g., via numerical discretization or neural networks, and the update takes the form:

u(tk+1) = L(u(tk)) + F(u(tk)). (3)

In the framework of equation 3, F(u(tk)) ≈ τ can be interpreted as a correction to the LF operator
L(u(tk)), and the framework is therefore characterized as a multi-fidelity model when the correction
is constructed based on utilizing data of different fidelities in a learning procedure.

2

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

2.2 A CNN-BASED MULTI-FIDELITY FRAMEWORK

Consider a method of lines discretization of the IVP in equation 1 onto a uniform grid, such that
u(xj , ti) denotes the jth grid point of the spatial discretization and i is the time step. Consider an
explicit low-order FDM with a stencil of half-width K and a TE, τFDM . A temporal step with the
FDM approximating equation 2 is:

u(xj , ti+1) = FFDM (u(x̄j , ti)) + τFDM ,

for i = 0, 1, ..., NT and j = 0, ...,m + 1 and where x̄j = [xj−K , ..., xj , ..., xj+K]. The CNN-
based MF-model consists of the FDM being the LF-operator, L, and an additive correction term
represented via a CNN being an approximation to the TE term τFDM . For example, the TE of
the low-order FTCS-scheme for the heat equation is (∆t

2 −
∆x2

12)∂
4u

∂x4 . This term is the difference
between a fourth order and a second order method, which use the same time-stepping scheme. It is
possible to approximate this TE using a local finite difference stencil for the fourth derivative and
apply this stencil anywhere on the domain or for any initial value. The motivation behind using a
CNN for approximating this term is that the convolutional layers consist of local kernels similar to
those of a finite difference stencil, except they are trained using data from the higher-order numerical
method. This work therefore investigates to what extent a CNN can represent the truncation error
of the low-order method compared to a high-order method, which uses a different time-stepping
scheme, and hence obtain a kernel-based local approximator to the truncation error.

The architectures of the CNNs used for the testing in the following consist only of convolutional
layers and activation functions (as described in appendix A.2). To limit the computational expense
for the online phase of the simulation, the CNNs should be relatively shallow (i.e. few layers).
Ultimately, a CNN of only two layers with five channels, kernels of size five and no activation
functions is selected.

2.3 TEST EQUATIONS: TIME-DEPENDENT LINEAR PARTIAL DIFFERENTIAL EQUATIONS

The MF-framework is tested on the one-dimensional heat equation and the one-dimensional lin-
ear advection equation as well as the system of equations given by the linearized one-dimensional
shallow water equations (LSWE) assuming small-amplitude waves. The heat equation is given by:

∂u(x, t)

∂t
= κ

∂2u(x, t)

∂x2
, u(x, 0) = u0, (4)

where κ is the diffusion coefficient. The advection equation is given by:
∂u(x, t)

∂t
= −v ∂u(x, t)

∂x
, u(x, 0) = u0, (5)

where v is the advection velocity. The LSWE are given by:
∂u

∂t
= −g ∂η

∂x
,

∂η

∂t
= −d∂u

∂x
(6)

where g is the local graviational acceleration and d is the mean depth of the water and with initial
values u(x, 0) = u0 and η(x, 0) = η0. u is the velocity and η is the surface elevation of the water.

Implementation details are found in appendix A.3. Table 1 shows the analytical solutions for testing
the efficiency and accuracy of the MF-models for the heat and advection equation. The solutions
are periodic and described on the domain x ∈ [−π, π]. The numerical models are initialized using
the analytical solutions at time step 0, u1(x, 0) and u2(x, 0), respectively. The numerical solution
corresponding to u1, is used for training the MF-model, whereas u2 is only used for testing the
generalization of the MF-model to unseen solutions. The data for training and testing is generated
by sampling values of a, b and c from a uniform distribution. For the LSWE, a traveling wave
solution is used as described in table 2 on the domain x ∈ [0, 1]. The constants are described in table
5 in appendix, where H is sampled in order to introduce variation in the training data.

The equations are simulated using explicit finite difference methods (FDMs). The CNN is trained
to correct a second or first order FDM using a fourth order FDM as reference. Hence, this paper
relies on the use of flexible order FDMs and the strength of the MF-model is to avoid the strict
stability requirements of using a higher order method. In the case of the LSWE, the HF-data used
for training is based on a finer spatial and temporal discretization step by doubling the number of
spatial grid points, resulting in a MF-model which captures both a higher order accuracy as well as
a finer discretization. The training procedure is presented in appendix A.4

3

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 1: Analytic, periodic solutions to the heat and advection equation.

u1(x, t) u2(x, t)

Heat c+ ae−b2π2t sin(bπx) c+ a cos(bπx)e−b2π2t + sin(b4πx)e
− b2

16π
2t

Advection a sin(bπ(x− vt)) a cos(bπ(x− t)) + sin(b4π(x− t))

Table 2: Analytic, traveling wave solution to the LSWE.

u(x, t) η(x, t)
LSWE πHL

2πTh cos(ωt− kx) H
2 cos(ωt− kx)

3 RESULTS AND DISCUSSION

An MF-model is trained on data for the initial value function u1(x, 0) for different numbers of
interior grid points, m, for the two equations. Followed by this, the MF-model is tested by simulation
with 100 initial values with new samples of a, b, and c up to a time T for both u1 and u2, where
the purpose of the latter is to assess the generalization to other functions. In the top row of figure
1, the results for u1 are seen, and in the bottom row the results for u2 are seen. The figures show
the the infinity norm of the mean absolute errors of the LF, MF, and HF-model. The data behind the
figure is found in appendix A.5. For the advection equation, a second order Lax-Wendroff method
is also tested (LF (2)) for comparison. The bars show the number of useful floating point operations
(FLOPs) needed for the time-stepping of each of the models.

(a) (b)

(c) (d)

Figure 1: Infinity norm of the absolute errors of the three models in a double-logarithmic plot for
the heat and advection equation with the initial value function u1(x, 0) on the top (a and b) and the
initial values u2(x, 0) on the bottom (c and d). The bars show the number of FLOPs (right y-axis).
The numbers are mean values across 100 (a, b) and 20 (c, d) simulations.

Considering the top row, the MF-model achieves better performance both in terms of accuracy and
efficiency. The MF-model improves the error of the LF-model, while using fewer FLOPs than the
HF-model, since it avoids the strict stability requirement. For the heat equation, there seems to
be a saturation point in terms of accuracy, since the slope of the graph decreases with m. For the

4

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

advection equation, it seems that a second order convergence rate is obtained, yet with lower error
than the second order Lax-Wendroff scheme. These results show that the MF-model serves as an
improved numerical scheme with properties (truncation errors and computational requirements) that
are midway between known numerical schemes.

The bottom row, showing results for second initial value function u2(x, 0) without retraining the
CNN, is promising. It is seen that the error of the MF-model is still lower than the error of the
LF-model. Though, for the heat equation, the errors are closer to the LF-model than in figure 1a.
For the advection equation, the result is approximately the same as in figure 1b, despite the fact
that the CNN is trained on a completely different initial value problem. This indicates a property of
generalizability of the CNN to unseen initial values. Considering the trade-off between FLOPs and
errors, the advantage of the MF-model is not as clear for the heat equation as it is for the advection
equation. For the heat equation, the computational requirement of the MF-model is midway between
the LF- and HF-model, but the HF-model achieves much better accuracy. Hence, the MF-model
would probably not be the first choice. Though, for the advection equation, the generalization
properties together with the fact that the error of the MF-model is comparable to the HF-model
while using fewer FLOPs, the advantage of the MF-model is more clear.

Figure 2 shows the result for the LSWE. The plot shows that the CNN is able to accurately approx-
imate the TE of the high-order model with double the amount of spatial grid points (m), resulting
in fourth order accuracy for the MF-model and a lower computational effort compared to the HF-
model. In the optimized framework of PyTorch (software information is found in app. A.1), a
simulation with the MF-model with m = 20 takes 0.11 seconds (mean value for 100 simulations)
and a simulation with the HF-model with m = 40 takes 0.29 seconds. Thus, the same accuracy can
be achieved with a speed-up of a factor 2.6 using the MF-model. It is possible that further speed-ups
could be achieved by training the CNN on HF-data which uses an even finer discretization.

Figure 2: Infinity norm of the absolute errors of the three models for the LSWE in a double-
logarithmic plot. The bars show the number of FLOPs (right y-axis).

4 CONCLUSION AND OUTLOOK

In conclusion, this paper shows the potential of CNN-based MF-models for achieving an explainable
and interpretable MF-model, which succeeds in correcting the error of a low-order explicit finite
difference solver to achieve higher order for a set of linear time-dependent PDEs. The paper further
shows the potential to combine the use of flexible order methods with varying grid discretizations
in order to ensure speed-up of the MF-model. In ongoing work, we will consider the construction
of MF-models for nonlinear and more complex time-dependent partial differential equations where
flexible-order numerical schemes are utilized for data generation.

REFERENCES

Z. Chen and D. Xiu. On generalized residual network for deep learning of unknown dynamical
systems. Journal Name, Volume Number(Issue Number):Page Range, 2021.

5

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Paolo Conti, Mengwu Guo, Andrea Manzoni, and Jan S. Hesthaven. Multi-fidelity surrogate mod-
eling using long short-term memory networks. Computer Methods in Applied Mechanics and
Engineering, 404:115811, 2023.

Fernando Manrique de Lara and Esteban Ferrer. Accelerating high order discontinuous galerkin
solvers using neural networks: 3d compressible navier-stokes equations. Journal of Computa-
tional Physics, pp. 112253, 2023.

R. González-Garcı́a, R. Rico-Martı́nez, and I.G. Kevrekidis. Identification of distributed parameter
systems: A neural net based approach. Computers Chemical Engineering, 22:S965–S968, 1998.
ISSN 0098-1354. European Symposium on Computer Aided Process Engineering-8.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
tial equations. Advances in neural information processing systems, 34, 2021.

Gaurav Gupta, Xiongye Xiao, Radu Balan, and Paul Bogdan. Non-linear operator approximations
for initial value problems. International Conference on Learning Representations (ICLR), 2022.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080.

Tatiana Kossaczká, Matthias Ehrhardt, and Michael Günther. Deep FDM: Enhanced finite difference
methods by deep learning. Franklin Open, pp. 100039, 2023.

Xuhui Meng and George Em Karniadakis. A composite neural network that learns from multi-
fidelity data: Application to function approximation and inverse pde problems. Journal of Com-
putational Physics, 401, 2020.

PyTorch. Pytorch, 2023. URL https://pytorch.org/.

R Rico-Martinez, I Kevrekidis, and K Krischer. Nonlinear system identification using neural net-
works: dynamics and instabilities. Neural networks for chemical engineers, pp. 409–442, 1995.

Xiongye Xiao, Defu Cao, Ruochen Yang, Gaurav Gupta, Gengshuo Liu, Chenzhong Yin, Radu
Balan, and Paul Bogdan. Coupled multiwavelet neural operator learning for coupled partial dif-
ferential equations, 2023.

Yunyang Zhang, Zhiqiang Gong, Weien Zhou, Xiaoyu Zhao, Xiaohu Zheng, and Wen Yao. Multi-
fidelity surrogate modeling for temperature field prediction using deep convolution neural net-
work. Engineering Applications of Artificial Intelligence, 123:106354, 2023.

Ding-Xuan Zhou. Universality of deep convolutional neural networks. Applied and Computational
Harmonic Analysis, 48(2):787–794, 2020. ISSN 1063-5203.

A APPENDIX

A.1 MACHINE AND SOFTWARE

All implementations of this work use PyTorch (PyTorch, 2023). PyTorch version 2.0.1 is installed
with python version 3.10.12. The default precision of PyTorch is single-precision floating-point for-
mat (float32). This has been changed to double-precision floating point-format (float64) throughout
this work to reduce the influence of round-off errors. The machine used for training and collection
of all results is a 2021 Macbook Pro with an Apple M1 Pro chip, with 16 GB RAM memory and
with the Mac Ventura operating system version 13.2.1.

A.2 CNN-STRUCTURE

Figure 3 shows the structure of the CNN used for obtaining the results of this paper. Other structures
were tested as well, including CNNs with 2 or 4 convolutional layers with kernels of size K = 3 or
K = 5, both with and without activation functions. The structure in the figure was the most efficient
in terms of training time (between 15 minutes and 1 hour in all cases) and had the lowest test error.

6

https://pytorch.org/

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

For the advection equation, the CNN takes two time steps as input (Nin = 2) and in the other cases,
only the previous time step is taken as input (Nin = 1). The CNN takes the current state as input
and outputs a correction to the FDM approximation of the next time step.

Figure 3: Diagram of the CNN-structure used for obtaining the results of this section

A.3 IMPLEMENTATION DETAILS

The heat equation is simulated using a forward-time-central-space (FTCS) discretization, which is
first order accurate in time, and second and fourth order accurate in space for the low- and high-
fidelity simulations, respectively. The low-order simulation for the advection equation is based on
the upwind method, which is first order accurate in time and space, and the high-fidelity simulation
is based on the Lax-Wendroff method, which is fourth order accurate in the spatial discretization.
The time-step, ∆t, is chosen small enough such that the order of the method corresponds to the
spatial order. This means that the fourth order methods use a more fine time-step than the low-
order methods. The LSWE are simulated using an explicit fourth order Runge-Kutta method for the
time integration and a second and fourth order scheme for the spatial discretization of the low and
high-fidelity models, respectively. The time-stepping of the LF- and HF-models is the same.

Tables 3 and 4 show specifications of the simulation of the heat and advection equation. The ranges
of a, b, and c used for simulation of the two equations are: For the heat equation, a ∈ [1, 2], b ∈
[0.3, 0.5], and c ∈ [0, 0.25], and for the advection equation, a ∈ [0.5, 2] and b ∈ [0.5, 2.5]. In both
cases, the grid spacing, ∆x, is determined by the x range and the number of interior grid points, m.
The time-step is determined using the relation ∆t = c(∆x)q , where c and q are given in the table.
Note, even though these equations can be used to model physical systems, this work is primarily
an academic contribution, and, therefore, units are left out. In a physical system the range of the
variable x would be given in meters and the time would be given in seconds.

Table 3: Specifications of the simulation domain for the two test-equations. Ntrain is the size of the
training set, Nval is the size of the validation set, Tend is the end-time of the simulation, x-range is
the range of the spatial domain.

Equation Ntrain Nval Tend x range
Heat 100 50 0.1 [−π, π]

Advection 100 50 1 [−π, π]

Figure 4 shows a comparison of the two initial value functions used for training the MF-model (u1)
and testing the generalization (u2), respectively.

Table 5 shows the characteristic constants of the traveling wave solution to the LSWE.

7

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 4: Specifications of the simulation domain for the two test-equations and for each type of
model (HF is high-fidelity and LF is low-fidelity). The problem-dependent, c, and the order of the
numerical scheme, q, correspond to the relation ∆t = c(∆x)q , which differ for each equation and
model.

Equation Model order c q

Heat LF 2 0.49 2
HF 4 0.49 4

Advection LF 1 0.3 1
HF 4 0.3 2

3 2 1 0 1 2 3
x

1

0

1

u

Old
New

Heat equation, a = 1.68, b = 0.38, c = 0.18.

3 2 1 0 1 2 3
x

2

0

2

u

Old
New

Advection equation, a = 1.13, b = 1.87.

Figure 4: Comparison of the initial value functions given by u1 (old) and u2 (new) as given in table
1.

Table 5: Characteristic constants for the wave modeled by the LSWE equation 6.

Parameter Description Value Unit
g Local gravitational acceleration 9.81 m/s2

d Mean water depth 0.25 m
c Propagation velocity

√
gd ≈ 1.57 m/s

a Wave amplitude a ∈ [0.2, 1] m
H Wave height 2a m
L Wave length 1 m
T Wave period L

c ≈ 0.659 s
ω Wave frequency 2π

T ≈ 9.84 s−1

k Wave number ω√
gh

= 2π
L = 2π m−1

Specifications of the simulation with LSWE can be seen in table 6. The first table shows the domain
range and the grid resolution, and the second table shows specifics of the LF- and HF-models. The
LF-model is based on a stencil with a half-width of α = 1 (stencil of size 3), and the HF-model has
a stencil with half-width α = 2 (stencil of size 5). The choice of implementation method means that
the restrictions on ∆t in the relation ∆t = c(∆x) is the same for the two models. Figure 5 shows
the analytical solution to the LSWE for a chosen value of a.

8

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

0.0 0.24 0.49 0.73 0.98
x

0.0
0.12
0.24
0.37
0.49
0.61
0.73
0.85
0.98

t

0.4

0.2

0.0

0.2

0.4

x0.00 0.25 0.50 0.75 1.00
t

0.00
0.25
0.50
0.75
1.00
0.4
0.2

0.0
0.2
0.4

Figure 5: Traveling wave solution to the LSWE. Only the solution for the free surface elevation, η,
is shown.

Table 6: Specifications of the simulation domain the LSWE and for each type of model (HF is
high-fidelity and LF is low-fidelity). Ntrain is the size of the training set, Nval is the size of the
validation set, Tend is the end-time of the simulation, x-range is the range of the spatial domain, m
is the number of interior grid points and ∆x is the grid spacing. In the second table, the α column
denotes the half-width of the stencil used for the spatial derivative in the explicit fourth-order 5-
stage Runge-Kutta method used for the simulation. A higher α means a higher order, since α is the
half-width of the finite difference stencil. ∆t is the time-discretization size, and c corresponds to the
relation ∆t = c(∆x).

Equation Ntrain Nval Tend x range
LSWE 100 50 1 [0, 1]

Equation Model α c

LSWE LF 1 0.5
HF 2 0.5

A.4 TRAINING PROCEDURE

The training procedure is outlined in algorithm 1. One for-loop surrounds two sets of nested for-
loops. The outer-most loop, iterates through a number of epochs (iterations), and makes sure that the
training and validation procedures are repeated Nepochs times. In the first set of nested for-loops, the
training procedure is carried out. The outer loop iterates through the time-steps whereas the inner
loop iterates through the training data. Thus, the loop is constructed such that all training data is
visited for one time-step before moving on to the next time-step. For each time step, the function
output is calculated using a low-fidelity finite difference method, FLF , and an additive CNN, FCNN .
The loss, when compared to the correct output obtained from the training data, is calculated using a
mean-squared-error (MSE) function. The gradient of the loss-function is used to update the weights
of the CNN according to the Adam optimizer.

The next set of nested for-loops constitutes the validation procedure. It is only accessed if the
training loss is below some tolerance in order to save computation time. For the validation procedure,
the outer loop iterates the data and the inner loop iterates the time-steps, such that one set of data
is iterated through before moving on to the next. The CNN is not updated in the validation loop.
The validation loss is based only on the last time step. If the validation loss is lower than for the
previously saved model, the new model is saved.

9

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Algorithm 1 Training procedure for MF-model

Require: Dtrain, Dval, Ntrain, Nval, Nepochs, Tend,∆t, FCNN , FLF , tol, tolsave
Calculate number of time-steps, NT , using Tend and ∆t
for e in range(0, Nepochs) do

for i in range(0, NT − 1) do
for n in range(0, Ntrain) do

input← Dtrain[n, i] ▷ Time-step i in data set n
U ← FLF (input) + ∆tFCNN (input) ▷ Corrected time-stepping
Uref ← Dtrain[n, i+ 1] ▷ Reference solution is next time step
loss←MSE(Uref , U) ▷ Calculate loss
Update weights of FCNN using ∇(loss)

end for
Calculate mean(loss)

end for
LR scheduler(mean(loss))
if mean(loss) ≤ tol then ▷ Condition for performing validation

tol← mean(loss) ▷ Update tolerance level
for n in range(0, Nval) do ▷ Repeat loops but with validation data

for i in range(0, NT − 1) do
input← Dval[n, i]
U ← FLF (input) + ∆tFCNN (input)
Uref ← Dval[n, i+ 1]
lossval ←MSE(Uref , U)

end for
Calculate mean(lossval)

end for
if mean(lossval) ≤ tolsave then ▷ Condition for saving model

tolsave ← mean(lossval)
Save FCNN

end if
end if

end for

A.5 RESULTS

Tables 7 and 8 shows the data behind figures 1a, 1b and 2. The FLOPs in table 8 are calculated taking
into account only the operations of the FDM and the execution of the CNN (for the MF-model) in
each time step, and therefore does not consider other operations such as loading data etc. Table 7
can be used to calculate the convergence rate and thereby determine the order of the methods. This
is done by fitting a linear model to the data in the double logarithmic plot, and the slopes of these
lines will be an approximation to the order of the model. The results are given in table 9.

Table 7: Mean absolute errors of the models given by the infinity norm across 100 simulations for
the heat and advection equations and 20 simulations for the LSWE. Reported with 2 significant
digits.

order 10 20 40 80 160

Heat
2 (LF) - 3.3 · 10−3 1.3 · 10−3 3.4 · 10−4 8.5 · 10−5

2+ (MF) - 6.8 · 10−4 1.2 · 10−4 3.2 · 10−5 1.7 · 10−5

4 (HF) - 5.7 · 10−4 4.2 · 10−5 2.9 · 10−6 2.6 · 10−7

Advection

1 (LF) - 1.1 0.84 0.56 0.34
2 - 1.2 0.58 0.19 5.3 · 10−2

1+ (MF) - - 0.20 0.03 6.4 · 10−3

4 (HF) - 0.95 0.15 0.012 8.2 · 10−4

LSWE
2 (LF) 1.98 0.550 0.145 0.0371 -

2+ (MF) 0.00809 6.17 · 10−4 4.48 · 10−5 - -
4 (HF) 0.125 9.79 · 10−3 6.80 · 10−4 4.88 · 10−5 -

10

Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Table 8: Number of FLOPs for one simulation of each of the three models.

order — m 10 20 40 80 160

Heat
2 (LF) - 656 3040 20440 154440

2+ (MF) - 6024 28660 195510 1488510
4 (HF) - 1.11 · 104 2.141 · 105 5.48 · 106 1.61 · 108

Advection

1 (LF) - 2132 6992 25696 99528
2 - 4238 13478 48664 186702

1+ (MF) - - 94898 354024 1382082
4 (HF) - 34710 175536 1105104 8160426

LSWE
LF 27360 91960 339150 1269770. -
MF 96768 325248 1199520 - -
HF 33120 111320 410550 1537090 -

Table 9: The order of accuracy of the three methods are based on finding the slope of the graphs in
figures 1 and 2.

model p for u1 p for u2

Heat
2 (LF) 1.8 1.8

2+ (MF) 1.9 2.1
4 (HF) 3.9 3.9

Advection

1 (LF) 0.7 0.6
2 1.8 1.8

1+ (MF) 2.6 2.6
4 (HF) 3.9 3.8

LSWE
2 (LF) 2.1 -

2+ (MF) 4.1 -
4 (HF) 4.1 -

11

	Introduction
	Related work
	Contributions

	Methodology
	A general multi-fidelity framework
	A CNN-based multi-fidelity framework
	Test equations: time-dependent linear partial differential equations

	Results and discussion
	Conclusion and outlook
	Appendix
	Machine and software
	CNN-structure
	Implementation details
	Training procedure
	Results

