
Computing Planning Centroids and Minimum Covering States using Symbolic
Bidirectional Search

Submission #218

Abstract

In some scenarios, planning agents might be interested in
reaching states that keep certain relationships with respect
to a set of goals. Recently, two of these types of relation-
ships were proposed: centroids, which minimize the aver-
age distance to the goals; and minimum covering states,
which minimize the maximum distance to the goals. Previ-
ous approaches compute these states by searching forward
either in the original or a reformulated task. In this paper,
we propose several algorithms that use symbolic bidirectional
search to efficiently compute centroids and minimum cover-
ing states. Experimental results in existing and novel bench-
marks show that our algorithms scale much better than previ-
ous approaches, establishing a new state-of-the-art technique
for this problem.

1 Introduction
Automated Planning typically deals with the task of finding
a sequence of actions, namely a plan, which achieves a goal
state from a given initial state (Ghallab, Nau, and Traverso
2004). However, in some scenarios planning agents might
be interested in reaching states that keep certain relation-
ships with respect to a set of (potential) goals. Recently, two
of these states were proposed (Pozanco et al. 2019; Karpas
2022): centroids, which minimize the average distance to the
goals; and minimum covering states, which minimize the
maximum distance to the goals. These states have proven
to be useful for tasks such as deceptive planning (Price et al.
2023) or anticipatory planning (Burns et al. 2012).

Figure 1 illustrates the centroid (blue) and minimum
covering states (green) of the planning task introduced by
Pozanco et al. (2019), where a forest ranger has to put out
fires that might arrive dynamically in the locations marked
with a flame. Under these circumstances, the ranger should
generate a plan to set the camp at a location that minimizes
the cost (time) of a plan to put out any fire that might arrive.

There exist two approaches in the literature to compute
these states. The first one, introduced by Pozanco et al.
(2019), uses a best-first search algorithm that expands all
the reachable states from the initial state, computing one

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of the centroid (blue) and minimum
covering (green) states of a forest ranger planning task.
Flames mark locations where the forest ranger might need
to put out fires (goals).

optimal plan to each goal from each state. The second ap-
proach, introduced by Karpas (2022), compiles the origi-
nal planning task into a multi-agent planning task where
each agent is trying to achieve one of the goals. They pro-
posed two slightly different compilations for centroids and
minimum covering states, both being inspired by seminal
work on goal recognition design (Keren, Gal, and Karpas
2014, 2015). In the reformulated task to compute centroids,
agents can either perform actions together, with an associ-
ated cost of 0, or split and perform actions separately, with
their original cost. The idea behind the compilation is that
the agents will try to execute as many joint actions as pos-
sible, and the state where they start executing separate ac-
tions will be the centroid of the planning task. Empirically,
Karpas (2022) showed that computing centroid and mini-
mum covering states by solving the reformulated tasks was
orders of magnitude faster than using the exhaustive search
approach by Pozanco et al. (2019) in most planning tasks.

In this paper we propose to use symbolic bidirectional
search to compute centroid and minimum covering states.
We believe this search paradigm offers two main benefits
over previous approaches. First, symbolic search uses suc-
cint data structures to efficiently represent and manipulate
sets of states. This allows us to compute all the centroid
and minimum covering states without conducting exhaustive
search. Second, these states are defined as those that (i) opti-
mize a given statistical measure with respect to their distance
to the goals; and (ii) are reachable from the initial state. We
can speed-up their computation by using backward search to
find the former, and forward search to find the latter.

In the rest of the paper we introduce a set of symbolic
bidirectional search algorithms to compute centroid and
minimum covering states. Experimental results in both ex-
isting and novel benchmarks show that these algorithms are
faster and scale better than state of the art approaches.

2 Preliminaries
Classical Planning
A SAS+ planning task (Bäckström and Nebel 1995) can be
defined as a tuple Π = ⟨V, I,O, G⟩. V is a finite set of state
variables, each associated with a finite domain Dv . A partial
state p is a function on a subset of variables Vp ⊆ V that
assigns each variable v ∈ Vp a value in its domain, p[v]. A
state s is a complete assignment to all the variables. With
S we refer to the set of all possible states defined over V .
We also use partial states to represent conditions on states.
A state s satisfies a condition p (s |= p) if s(v) = p(v) for
all v ∈ Vp. We also identify any partial state p with the set
of states that satisfy it: Sp = {s | s |= p}. The state I ∈ S
is the initial state of the planning task, and G is the goal
condition, which defines the set of goal states SG ⊆ S.
O is a set of operators, where an operator is a tuple o =

⟨preo, eff o, co⟩ of partial variable assignments called pre-
conditions and effects, respectively, and co 7→ N0 is the non-
negative cost of o. An operator o ∈ O is applicable in state
s iff preo is satisfied in s, i.e., s |= preo. Applying operator
o in state s results in a state s[o] where s[o](v) = eff o(v)
for all variables v ∈ Veff o

and s[o](v) = s(v) for all other
variables.

A sequence of operators π = ⟨o0, . . . , on−1⟩ is applica-
ble in a state s0 if there are states s1, . . . , sn such that oi is
applicable in si−1 and si = si−1[oi] for all i = 0, . . . , n.
The resulting state of this application is s0[π] = sn, and
c(π) =

∑
oi∈π coi denotes the cost of this sequence of op-

erators. A state s is reachable iff there exist a sequence of
operators π applicable in I such that I[π] = s. With SR ⊆ S
we refer to the set of all reachable states of the planning task.
The solution to a planning task Π is a plan, i.e., a sequence
of operators π such that I[π] ∈ SG. A plan with minimal
cost is optimal.

We denote as h∗(s, s′) the optimal cost of reaching state
s′ from state s. If there is no path between the two states,
h∗(s, s′) = ∞. We denote as g(s) = h∗(I, s), and h∗

G(s) :
S 7→ N0 ∪ {∞} for a goal G as minsG∈SG

h∗(s, sG).

Symbolic Representation with Decision Diagrams
Binary Decision Diagrams (BDDs) (Bryant 1986) are a effi-
cient data-structure to encode Boolean functions {0, 1}n 7→
{⊤,⊥}. We use BDDs to represent sets of states S ⊆ S.
This requires to consider some arbirary encoding of the val-
ues of the state variables V in binary. To simplify the pre-
sentation, we assume without loss of generality that the set
of variables V have a binary domain. Each set of states S
is represented by a BDD encoding its characteristic function
XS : S 7→ {⊤,⊥}, where XS(s) = ⊤ iff s ∈ S. We denote
the set of states represented as a BDD as B.

A BDD (Figure 2a) is a directed acyclic graph with a
single root node and up to two terminal nodes, ⊤ and ⊥.

v1

v2

v3

⊤ ⊥

(a) BDD

v1

v2

v3

0 1 3

(b) ADD

Figure 2: Example of a BDD and an ADD.

Each inner node corresponds to a binary variable v ∈ V ,
and has two successors depending on whether s(v) = 0
(dashed edge), or s(v) = 1 (solid edge). The size of a
BDD |B| is simply the number of nodes in its directed
acyclic graph. Given a state s ∈ S, and a BDD B, it can
be checked whether s belongs to the set represented by B
by a simple top-down traversal, which will always end in
⊤ if s ∈ B and ⊥ otherwise. For example, the BDD in
Figure 2a has 5 nodes and represents a set with 3 states:
{v1 7→ 0, v2 7→ 0, v3 7→ 0}, {v1 7→ 0, v2 7→ 1, v3 7→ 0},
and {v1 7→ 1, v2 7→ 1, v3 7→ 0}. In general, the number of
states represented by a BDD can be exponentially larger than
its number of nodes. We denote as Bp the BDD representing
a (partial) state p, i.e., the set of states {s | s |= p}.

We assume BDDs are reduced and ordered. BDDs are or-
dered whenever in any path from the root to the leaves vari-
ables are always checked in the same order (though some
variables may be skipped). BDDs are reduced whenever (a)
there are no irrelevant nodes whose both successor point
to the same node; and (b) all nodes are unique (i.e., any
equivalent nodes with the same variable and successors are
merged). These properties are easy to maintain. Also, they
allow to implement efficient operations on BDDs, whose
runtime depends on the size of the BDDs and not on how
many states they represent (which, again, could be exponen-
tially larger). Specifically, the union (∪) and intersection (∩)
of sets of states can be computed as the disjunction (B ∨ B′)
and conjunction (B ∧ B′) of their characteristic functions,
respectively. The runtime of these operations is O(|B||B′|).
However, the conjunction/disjunction of n BDDs is worst-
case exponential in n.

Algebraic Decision Diagrams (ADDs) (Bahar et al. 1997)
are similar to BDDs, but have an arbitrary numer of termi-
nal nodes with different discrete values. That is, we can use
them to represent the previously defined functions g, map-
ping each state to a numerical value. A schematic represen-
tation of an ADD is shown in Figure 2b. The APPLY oper-
ation takes an input two ADDs and a binary operation on
the terminal values (e.g. +,−,×,÷,max,min), and returns
a new ADD where the values of its terminal nodes are de-
fined by the result of the binary operations. The runtime is
O(ADD1,ADD2).

ADDs can be converted into BDDs and viceversa (Speck
2022). We will use the BDD(ADD, n ∈ N0) function to
convert ADD into a BDD representing the set of states

{s | ADD(s) = n}. This can be done in linear time in
the size of the ADD by replacing its terminal nodes by ⊤
and ⊥ and applying the reduction rules in a bottom-up fash-
ion. In the example of Figure 2, the BDD corresponds to
BDD(ADD, 0).

Symbolic Bidirectional Search
Symbolic search explores the state space by using the repre-
sentation of sets of states as BDDs explained above. To do
search directly in the symbolic representation, operators are
represented as transition relations (TRs). A set of operators
O ⊆ O can be represented as a TR containing the set of all
state pairs (s, s′) such that s′ is reachable from s by applying
an operator o ∈ O. For a given set of states B and TR T , the
image/preimage operator computes all successors/predeces-
sors of B with respect to the operators represented by T .

In the forward direction, the search starts with a BDD
representing the initial state BI , and iteratively constructs
a set of BDDs with an associated cost B0,B1,B2, where
Bg = {s | h∗(I, s) = g} represents the set of states that can
be reached from I with a cost of g. Typically, the search ter-
minates whenever the next set of states to be expanded has a
non-empty intersection with the set of goal states, also repre-
sented as a BDD BG, meaning that an optimal plan has been
found. However, one can also choose to continue the search
beyond that point to exhaust the set of reachable states.

On the other hand, symbolic backward search (regression)
starts the search from the goal states, and applies the preim-
age operation until a non-empty intersection with the BDD
that represents the initial state I is found. As a result, we
obtain BDDs B0,B1,B2, where Bh = {s | h∗(s,G) = h}
represents the set of states that can reach G with a cost of h.
If the search is exhausted (ignoring I), this is equivalent to
computing the perfect heuristic h∗

G.
The combination of these two searches forms a bidirec-

tional search used by most modern symbolic search plan-
ners (Torralba et al. 2017; Speck, Mattmüller, and Nebel
2020). We will use STEP to denote a function that computes
the image (preimage) of a forward (backward) search. Fi-
nally, we will use FINISHED to denote a boolean function
that indicates if the given search has been exhausted, i.e.,
the image/preimage operation does not generate new non-
expanded states.

Perimeter search (Dillenburg and Nelson 1994) consists
of searching a perimeter around the goal. This idea has been
used in the construction of heuristic functions for explicit-
state search using a symbolic backward search, which is
interrupted before termination (Kissmann and Edelkamp
2011; Torralba, Linares López, and Borrajo 2018).

Given an unfinished backward search initialized with G
where the sets of states B0, . . . ,Bp have been generated up
to h = p, the set of closed states is closed =

∨
i∈[0,p] Bi, i.e.,

the set of states for which the real goal distance is known.
Then, the perimeter heuristic is hP

G(s) := i if s ∈ Bi and
hP
G(s) = p + 1 otherwise. Note that hP

G is a lower bound
on the actual goal distance, i.e., hP

G(s) ≤ h∗
G(s). As sets

of states are generated with increasing values of h, we are
certain that any remaining state will have a goal distance of

at least p+1. We will use CLOSED to denote a function that
returns a BDD with the set of states closed by a given search.

3 Centroids, Minimum Covering States, and
Beyond

In order to compute planning centroids and minimum cov-
ering states, we consider the same setting as in previous
works (Pozanco et al. 2019; Karpas 2022) using the concept
of Planning task with multiple possible goal conditions
(PMG).

Definition 1 (PMG) A planning task with multiple possible
goal conditions is defined as P = ⟨V, I,O,G⟩, where V ,
I , and O are defined as in a SAS+ planning task, and G is
a set of possible goal conditions, where each possible goal
condition G ∈ G is defined as in a standard planning task.

Definition 2 (Planning centroid states) Given a PMG P ,
planning centroid states are those reachable states s ∈ SR

that minimize the sum of costs to the possible goals, i.e.,∑
G∈G h∗

G(s).

Definition 3 (Planning minimum covering states) Given
a PMG P , planning minimum covering states are those
reachable states s ∈ SR that minimize the maximum cost to
any of the possible goals, i.e., maxG∈G , h

∗
G(s).

We introduce a general definition that encompasses these
and other states that optimize a given goal-related function.
To do that, we first define goal-related functions.
Definition 4 (Goal-related function) Let P be a PMG, and
h∗
G(s) = (h∗

G1
(s), . . . , h∗

Gn
(s)), a vector of optimal costs

from s to each goal Gi ∈ G. A goal-related function is a
function ϕ(h∗

G(s)) 7→ N0 ∪ {∞}.

Definition 5 (Goals-related states wrt ϕ) Given a PMG P ,
and a goal-related function ϕ, the set of goal-related states
wrt ϕ, Sϕ, is the set of reachable states that minimize ϕ.

This definition generalizes centroids (when ϕ is the sum),
and minimum covering states (when ϕ is the maximum). In
principle, one can be interested in any goal-related function.
In this paper, we focus in functions that satisfy the following
two properties, both of which are satisfied by centroids and
minimum covering states.
Definition 6 (Monotonic goal-related functions) A goal-
related function ϕ is monotonic iff increasing any of the
costs in h∗

G(s) does not generate a lower ϕ value.

Definition 7 (Aggregatable goal-related functions) A
goal-related function ϕ is aggregatable iff its value can be
computed by pairwise aggregation of the costs in h∗

G(s).

Let us clarify these definitions by using a vector of costs
h∗
G(s) = (1, 2, 3). In the case of centroids and minimum

covering states, ϕ(h∗
G(s)) can be computed by pairwise ag-

gregation, i.e., max(max(1, 2), 3) = max(1, 2, 3). This is
not possible for other goal-related functions such as com-
puting the median of the cost vector. It is also easy to see
that when ϕ involves minimizing the sum or the maximum,
any increase to any component of that vector would entail a
worse solution. However, this is not the case for other goal-
related functions such as achieving a state with the same cost

to all the goals, i.e., ϕ(h∗
G(s)) = maxh∗

G(s)−minh∗
G(s) =

0. In the rest of the paper we will focus on centroids and
minimum covering states, which are defined using mono-
tonic and aggregatable goal-related functions, and use these
general definitions to simplify notation.

Finally, we are interested in the problem of, given a PMG
P , and a function ϕ, find a state that is a goal-related state
wrt ϕ.

4 Computing Goals-Related States with
Exhaustive Symbolic Search

Using bi-directional search offers two main advantages over
existing approaches: (i) we can perform independent back-
ward searches for each goal; and (ii) we can decouple the
search of candidate solutions from the reachability analy-
sis. The first algorithm we propose is SBDe, an algorithm
that exploits these observations by performing (a) exhaus-
tive forward search to find the set of reachable states; and
(b) exhaustive backward searches to find the perfect heuris-
tic from each state to each goal. More precisely, SBDe starts
by performing |G| independent symbolic backward searches,
one from each possible goal G ∈ G, until all the searches
are FINISHED. Each of these backward searches will give us
an ADD having at the terminal nodes all the states that can
achieve each goal G ∈ G with a given cost. We combine all
the ADDs into a single backward ADD by using the APPLY
operation either with the sum as function, if we are interested
in finding centroids, or taking the maximum when comput-
ing minimum covering states. We will slightly abuse nota-
tion and use APPLY(ADDs, ϕ) to refer to an operation that
perform these pairwise operations over a set of ADDs. Then,
the algorithm performs a full forward search from the initial
state, yielding the set of reachable states SR. We update the
backward ADD by setting to ∞ the value of unreachable
states, i.e., those states that do not appear in the CLOSED list
of the forward search. Finally, we take the minimum of the
backward ADD, and extract a BDD with the states that have
that value in the backward ADD. The states in that BDD will
be the centroids or minimum covering states, depending on
the ϕ used in the APPLY operation that combines the back-
ward ADDs. Finally, the algorithm returns any of the states
in the BDD as the goal-related state. A plan from I to such
state can be easily reconstructed by analyzing the forward
search CLOSED list.

This algorithm is symmetric, and we could exchange the
forward and backward steps obtaining the same result. It
could also be seamlessly adapted to compute goals-related
states that optimize any aggregatable goal-related function
by just modifying how the ADDs are combined.

5 From Exhaustive to Perimeter Search
The main drawback of the exhaustive search is that it per-
forms unnecessary computations by obtaining h∗ to each
goal from each state in the problem. Some of these computa-
tions are not needed, since we are only interested in mono-
tonic goal-related functions, meaning that we can stop the
backward searches once a candidate solution is found.

Let us assume a PMG P with 3 possible goals, where we
are interested in computing the minimum covering state. The
solution to such task is a single state that is at distance 10 of
the further goal, and at distances 4 and 3 of the other two,
respectively. In this case, any state with h∗ larger than 10 to
any goal will not be part of the solution, so it is unnecessary
to expand them as the previous exhaustive algorithm does.
However, this raises the following question: up to when do
we need to keep exploring?

It is clear that we need to explore each search at least up
to distances 10, 4, and 3 to each goal, since otherwise we
wouldn’t know the distance from the solution state to each
of the goals. However, that is not sufficient to prove that this
is indeed the optimal solution. At this point we know there is
no minimum covering state at distance 3 or below, but there
could be a solution at distance 5 from each goal. However,
we do not need to expand all the backward searches up to
distance 10 either. In this case, it would suffice to explore all
states at distances 10, 9 and 3, assuming that there is no state
at distance 9 or less in the first two searches. Alternatively,
we could explore up to 10, 4 and 9, if there is no state at
distance 9 or less in the first and third search.

To formalize when we have performed enough search to
guarantee that we have found the desired goal-related state,
we define the set of candidate states with respect to the
perimeter heuristics of all backward searches.

Definition 8 Let BW be a set of perimeter searches, and
hP
G = (hP

G1
, . . . , hP

Gn
) a vector of the perimeter heuristics

to each goal G ∈ G. The set of candidate states BC for some
goal-related function ϕ(h∗

G) is the set of states that mini-
mizes argmins∈S ϕ(hP

G (s)).

Proposition 1 Let ϕ(h∗
G) be a monotone goal-related func-

tion. Let BW be a set of perimeter searches with a set of
candidates BC . Then, if there exists s ∈ BC such that
s ∈ closed(bw) for all bw ∈ BW and s ∈ SR, then s ∈ Sϕ.

Proof: Since s is a candidate, then s has minimum ϕ(hP
G).

Since s ∈ closed(bw) for all bw ∈ BW, then hP
G(s) =

h∗
G(s) for all goals G ∈ G. Therefore ϕ(hP

G) = ϕ(h∗
G).

Finally, let s′ ∈ SR be any other state. As hP
G(s

′) ≤
h∗
G(s

′), by monotonicity of ϕ, we have that ϕ(hP
G (s

′)) ≤
ϕ(h∗

G(s
′)). So, we conclude that ϕ(h∗

G) = ϕ(hP
G) ≤

ϕ(hP
G (s

′)) ≤ ϕ(h∗
G(s

′)). As this holds for all s′, s is a goal-
related state with respect to ϕ, i.e., s ∈ Sϕ. □

The second algorithm we propose is SBDbw, an algorithm
that performs backward search until a solution candidate is
found, then running forward search to verify that the candi-
date solution is reachable. Algorithm 1 shows this process
in more detail. At each step (lines 4-18), the algorithm first
checks whether there is a candidate solution. This is done by
joining all the backward searches in a single ADD through
the APPLY operator and the goal-related function ϕ (line 4).
Then, the algorithm retrieves the lowest value in the termi-
nal nodes of the resulting ADD, and use it to build a BDD
with all the states satisfying that value (lines 5-6). After that,
the algorithm checks whether those candidate states have
been explored by the backward searches (lines 7-8). If that

Algorithm 1: SBDbw

Input: P = ⟨V, I,O,G⟩
Input: Goal-related function: ϕ
Output: A goal-related state sϕ
1: fw← BI

2: BW←
⋃

G∈G{BG}
3: while true do
4: ADDBW ← APPLY(

⋃
G∈G{bwG.ADD()}, ϕ)

5: value← mins ADDBW (s)
6: BC ← {s | ADDBW (s) = value}
7: Bexplored =

∧
G∈G bwG.CLOSED()

8: BexpCand ← Bexplored ∧ BC

9: if BexpCand ̸= ∅ then
10: while ¬fw.FINISHED() do
11: Bϕ ← BexpCand ∧ fw.CLOSED()
12: if Bϕ ̸= ⊥ then
13: return any sϕ ∈ Bϕ

14: fw.STEP()
15: BW← bwi ∈ BW s.t. ¬bwi.FINISHED()

16:
BW←bwi ∈ BW s.t.

BC ∧ ¬bwi.CLOSED() ̸= ∅
17: bw to advance← PICKEASIEST(BW)
18: bw to advance.STEP()

Get
candidates

Check
reachability

Step
backward

is the case, SBDbw starts progressing the forward search un-
til a non-empty intersection with the candidate solutions is
found. The states in that intersection are reachable and con-
form the set of minimum covering (centroid) states of the
task, and SBDbw returns any of the states in that BDD. Oth-
erwise, the algorithm selects which of the backward searches
should be progressed (lines 15-18). First, it updates the set
of backward searches BW by filtering out those backward
searches that (i) have already finished (line 15); and (ii) have
already explored the candidate states (line 16). These two fil-
ters leave as alternative to progress those backward searches
that have not yet explored the states in BC . Then, the algo-
rithm advances the easiest backward search in BW, which
we defined as the one that is estimated to generate a lower
number of nodes in the next step. This process is repeated
until a minimum covering (centroid) is found.This algorithm
can be slightly modified to first run forward search to de-
tect all the reachable states, and then perform the backward
searches only over these states. We refer to this variation of
the algorithm as SBDfw.

Proposition 2 Algorithm 1 always terminates and returns a
goals-related states wrt ϕ, for any monotone function ϕ.

Proof Sketch: Termination is guaranteed as at every itera-
tion some unfinished backward search will take a step. The
number of steps a backward search is bounded by the num-
ber of states in the planning task, so eventually all searches
will finish. At that point, the goal distance to all states is
known, so the algorithm will return a reachable state with
minimum goal-related function value.

Whenever the algorithm terminates, it always returns a
goal-related state. Note that all states in Bϕ are candidates
(due to line 6), closed in all unfinished backward searches
(due to line 7), and reachable (due to line 11). Therefore, all

conditions of Proposition 1 are met.
□

Lazy Computation using BDDs
In the case of minimum covering states we can slightly mod-
ify Algorithm 1 to only use BDDs, which are typically faster
to manipulate than ADDs. In this version of the algorithm,
we do not select which backward search should be pro-
gressed, but perform one step in all of them. This is done
by replacing lines 16 to 18 by ∀bwi∈BW bwi.STEP(). Then,
we remove lines 4 to 8, and define BC as the intersection
of all the backward searches, i.e.,

∧
G∈G bwG. If BC ̸= ∅,

those states represent candidate solutions, and the reachabil-
ity check (lines 11-14) remains the same. We refer to these
variations of the algorithm as SBDDbw and SBDDfw, depend-
ing on whether we start by finding solution candidates or
computing reachable states. Note that we cannot use this
variation of the algorithm to compute centroids. In that case
we cannot stop the algorithm after finding an intersection at
distance 2 of G1 and G2 (sum of 4), since it does not mean
that we could not find an intersection at distance 3 from G1

and 0 from G2 (sum of 3).

6 Experimental Setting
Approaches. We implemented our SBD algorithms on top
of Symbolic Fast Downward (Torralba et al. 2017)1, and
compare them against the two other approaches in the lit-
erature, GRS and COMP. GRS (Pozanco et al. 2019)2 uses the
Fast Downward planner (Helmert 2006) with the A∗ search
algorithm (Hart, Nilsson, and Raphael 1968) and the LM-
cut heuristic (Helmert and Domshlak 2009) to perform ex-
haustive search in the original planning task with multiple
possible goals P . COMP (Karpas 2022)3 compiles P into a
standard planning task Π. We use two planners to solve Π:
the same Fast Downward configuration, as initially proposed
by Karpas (2022), COMPfd; and the symbolic bi-directional
configuration of Symbolic Fast Downward, COMPsbd, so we
make sure any performance improvement of SBD does not
come from using a different planner.

Benchmarks and Reproducibility. We used two bench-
marks. The first one consists of all domains and problems
available at both software repositories2,3, except for HANOI,
which contains tasks with only one possible goal. This gives
us four planning domains (BLOCKS, FERRY, GRIPPER, and
LOGISTICS), and one grid path-finding domain. The plan-
ning domains were adapted from standard IPC benchmarks,
and the grid path-finding domains consists of 20 × 20 grids
with a different percentage of obstacles (5%, 10%, 15%, and
20%). Each domain has 10 problem instances, for a total of
80 problems equally splitted between IPC and grid domains.
This benchmark was used by Karpas (2022), and we will re-
fer to it as SMALL, as most of the tasks consists of small
planning problems with few possible goals. For example, all
BLOCKS instances contain only 5 blocks and 3 goals.

1https://gitlab.com/atorralba/fast-downward-symbolic
2https://github.com/apozanco/GRS 0.1
3https://github.com/karpase/grscompilation

Centroid Minimum Covering
Domain GRS COMPfd COMPsbd SBDe SBDbw SBDfw GRS COMPfd COMPsbd SBDe SBDbw SBDfw SBDDbw SBDDfw

BLOCKS (10) 10 10 10 10 10 10 10 10 10 10 10 10 10 10
FERRY (10) 0 9 2 10 10 10 0 7 6 10 10 10 10 10

GRIPPER (10) 1 10 10 10 10 10 2 10 8 10 10 10 10 10
LOGISTICS (10) 5 10 4 10 10 10 7 10 10 10 10 10 10 10

GRID (40) 18 39 1 1 2 40 18 1 1 1 3 40 3 40
SMALL (80) 34 78 27 41 42 80 37 38 35 41 43 80 43 80

BLOCKS (80) 2 30 10 45 58 60 2 9 10 45 67 59 62 60
FERRY (80) 0 46 27 80 80 80 0 39 31 80 80 80 80 80

GRIPPER (80) 2 74 32 46 70 75 2 55 25 46 71 75 72 77
LOGISTICS (80) 3 57 32 64 70 62 3 27 26 64 72 64 72 64

GRID (80) 15 50 16 0 1 58 17 19 15 0 7 60 6 60
LARGE (400) 22 257 117 235 279 335 24 149 107 235 297 338 292 341
TOTAL (480) 56 335 144 276 321 415 61 187 142 276 340 418 335 421

Table 1: Coverage of the approaches in computing centroid and minimum covering. Bold figures indicate best performance.

The second benchmark, which we will refer to as LARGE,
consists of novel P tasks in the same five domains, where we
generated 80 tasks of increasing difficulty. In BLOCKS, we
generated these instances by creating random configurations
of 6, 8, 10 or 12 blocks, and having 2, 4, 8 or 16 possible
goals (words) to be formed by stacking the blocks. In GRID,
we generated 10×10, 20×20, 40×40 and 80×80 grids, with
2, 4, 8 or 16 possible goals (agent’s locations). For FERRY,
GRIPPER and LOGISTICS, we selected the 20 first problems
available at the Planning Domains repository4, and created 4
different instances for each problem by generating between
2 and 5 possible goals. These goals are sets of cars/balls/-
packages being delivered at different locations/rooms/cities.

Experiments were run on an Intel Xeon E5-2666 v3 CPU
@ 2.90GHz x 8 processors with a 8GB memory bound and
a time limit of 1800s. Code and benchmarks will be made
available upon paper acceptance.

7 Results
In this section we present the results of our evaluation, where
we aim to investigate how our algorithms compare to exist-
ing approaches, in terms of coverage and execution time.

Coverage Analysis
Table 1 presents the results of our first analysis, where we
focus on studying the coverage (C) of each approach, i.e.,
the number of problems they solve.

Regarding centroids (left side of the table), COMPfd
solves more than twice the tasks solved by GRS in the small
instances, as previously reported by Karpas (2022). This per-
formance difference is emphasized in the larger tasks, where
GRS solves only 22 tasks compared to the 257 for which
COMPfd can compute a centroid state. Solving the compiled
tasks using a symbolic planner (COMPsbd) offers a worse
performance across all domains, highlighting the fact that
the reformulated task does not suit symbolic planners partic-
ularly well. Our baseline approach that performs exhaustive
search (SBDe) achieves results that are on par with COMPfd

4https://github.com/AI-Planning/classical-domains

in all small instances except for those from the GRID do-
main, where SBDe can only solve 1 out of 40 problems. This
is because this arguably ill-defined domain uses a redundant
(free ?c) predicate to denote that a given cell is free
and the agent can move to it. Having this predicate turns
GRID tasks into challenging for approaches using backward
search, since the set of reachable states is orders of mag-
nitude smaller than the set of states. For example, assum-
ing a 20 × 20 grid without obstacles, the problem will have
only 400 reachable states, but more than 2400 total states
that backward searches could potentially consider. This is
also the reason why SBDbw obtains similar results, although
it outperforms the exhaustive algorithm in larger tasks, be-
ing able to solve 44 tasks more. In fact, if we leave GRID
aside, SBDbw would be the best performing algorithm, solv-
ing 1 task more than SBDfw, the winner across the bench-
mark with a coverage of 415. By first computing the reach-
able states and using that information to prune the backward
searches, SBDfw is able to solve most of the GRID tasks, as
well as showing a good performance in the rest of domains.

Similar conclusions can be drawn from the minimum cov-
ering states results (right side of Table 1). In this case, SBD
approaches outperform the compilation approach by even
larger margins, with the best performing SBD variant solv-
ing 421 tasks compared to the 187 solved by COMPfd. This
is because the compilation to compute minimum covering
states is more involved than the centroids one, since it needs
to discretize numerical variables. The performance of the
SBDD algorithms is very similar to their SBD counterparts.

Runtime Analysis
Coverage results show that SBD approaches tend to outper-
form COMP approaches. Next, we conduct an analysis of ex-
ecution time to test this further and study in more detail the
differences between all the approaches. A summary of these
results is shown in Figure 3, where we represent the execu-
tion time in log scale of pairs of approaches. Each point in
the plot corresponds to a problem of our joint benchmark
(480 tasks), with its color indicating the domain it belongs
to. Points above the diagonal indicate that the approach in
the x axis is faster than the approach in the y axis.

0 100 101 102 103

sbdfw

0

100

101

102

103

co
m

p f
d

Centroid

grid
logistics
blocks
ferry
gripper

(a) Best SBD and COMP approaches when
computing centroids.

0 100 101 102 103

sbdfw

0

100

101

102

103

co
m

p f
d

Minimum Covering

grid
logistics
blocks
ferry
gripper

(b) Best SBD and COMP approaches when
computing minimum covering states.

0 100 101 102 103

sbdbw

0

100

101

102

103

sb
d f

w

Centroid - Backward vs Forward
grid
logistics
blocks
ferry
gripper

(c) SBDbw vs SBDfw when computing
centroids.

0 100 101 102 103

sbdbw

0

100

101

102

103

sb
d f

w

Minimum Covering - Backward vs Forward

grid
logistics
blocks
ferry
gripper

(d) SBDbw vs SBDfw when computing
minimum covering states.

0 100 101 102 103

sbdbw

0

100

101

102

103

sb
dd

bw

Minimum Covering
grid
logistics
blocks
ferry
gripper

(e) SBDbw vs SBDDbw when computing
minimum covering states.

0 100 101 102 103

centroids sbdbw

0

100

101

102

103

m
in

im
um

co
ve

rin
g

sb
d b

w

Centroid vs Minimum Covering

grid
logistics
blocks
ferry
gripper

(f) SBDbw when computing centroids vs
minimum covering states.

Figure 3: Pairwise comparisons of execution time.

SBD vs COMP. First, we want to compare the execution
time of the best variants of each approach. These results are
shown in Figures 3a and 3b, where we compare the execu-
tion time of SBDfw (x axis) and COMPfd (y axis). In the case
of centroids (Figure 3a), 57% of the tasks were solved faster
by SBDfw than by the compilation, i.e., 57% of the points
fall above the diagonal line in the plot. We can observe some
trends across domains. For example, SBDfw is consistently
faster than COMPfd in BLOCKS and GRID instances, while
the results in the other domains depend more on the task
at hand. There is a cluster of simple problems that COMPfd
can solve in less than a second, while SBDfw requires up
to 1 second to solve them. Symbolic Fast Downward ini-
tializes some data structures before starting the search pro-
cess, which slightly delays SBD algorithms in some simple
tasks. Following the coverage trend, the execution time dif-
ference between both approaches increases in the case of
minimum covering states (Figure 3b), with 67% of the tasks
being solved faster by SBDfw.

Backward vs Forward. Forward SBD variants obtained
higher coverage scores mainly due to GRID, but the forward
variants were able to solve more problems in domains such
as LOGISTICS and BLOCKS. Figures 3c and 3d compare the
execution time of SBDbw and SBDfw when computing cen-
troids and minimum covering states, respectively. As we can
see, SBDbw is faster than SBDfw when finding both states in
most domains and tasks except for GRID. This was expected,
as SBDbw does not need to compute all the set of reachable
states as SBDfw does, which might be demanding in some
problems. In particular, starting the search backwards until a
minimum covering state candidate is found is faster in 64%

of the tasks. This percentage raises up to a 86% if we do
not consider GRID, re-emphasizing SBDbw as the go-to al-
gorithm for many IPC domains such as BLOCKS where (i)
most of the states in the planning task are reachable; and (ii)
the number of these states is large.

SBD vs SBDD. The coverage difference between the SBD
variants, which use ADDs and BDDs and progress only one
backward search at a time, and the SBDD variants, which
only use BDDs and progress multiple backward searches si-
multaneously, was negligible. Figure 3e compares the ex-
ecution time of their backward versions when computing
minimum covering states. As we can see, both approaches
have very similar execution times. These similar runtimes
are explained by two counteracting factors. On the one hand,
SBDD variants should be faster, as they do not need to build
and reason over ADDs. On the other hand, SBD variants
should be faster, as they typically require to advance a lower
number of backward searches.

Centroids vs Minimum Covering States. Coverage fig-
ures suggest that while finding minimum covering states is
much harder for the compilation approaches, it is as diffi-
cult as computing centroids for our SBD approaches. Fig-
ure 3f compares the execution time of SBDbw to find each of
the states in the 480 tasks. The results clearly indicate that
computing minimum covering states is faster than comput-
ing centroids, with only 17% of problems where the opposite
is true. Combining the ADDs of the backward searches by
taking their maximum generates a smaller joint ADD than
when these ADDs are combined by taking their sum, as the
number of possible terminal node values is larger in the latter
case. If we empirically analyze these differences for the ex-

| | = 2 | | = 4 | | = 8 | | = 16
0

100

101

102

103

6 blocks
compfd

sbdbw

sbde

sbdfw

| | = 2 | | = 4 | | = 8 | | = 16
0

100

101

102

103

8 blocks

compfd

sbdbw

sbde

sbdfw

| | = 2 | | = 4 | | = 8 | | = 16
0

100

101

102

103

10 blocks

compfd

sbdbw

sbde

sbdfw

Figure 4: Execution time (log scale) distribution of each approach when computing minimum covering states in BLOCKS tasks.
Each graph shows a set of violinplots representing the execution time distribution (y axis) of each approach (different colors),
as we fix the problem size (6, 8 and 12 blocks) and vary the number of possible goals (x axis).

haustive algorithm SBDe, which needs to execute the same
number of step operations for both states, we observe that
the ADD operations require 16.1± 77.6 seconds in the case
of centroids, versus the 12.4 ± 57.1 required in the case of
minimum covering states.

Scalability Analysis
Finally, we study the scalability of the different approaches.
Figure 4 shows the execution time of COMPfd and the three
SBD variants when computing minimum covering states
in BLOCKS, where we generated problems with increasing
complexity by varying the number of blocks (size of the
problem) and the number of words to build (number of pos-
sible goals). Each graph shows a set of violinplots represent-
ing the execution time distribution (y axis) of each approach
(different colors), as we fix the problem size and vary the
number of possible goals (x axis). We do not report results
in problems with 12 blocks, since none of the approaches is
able to solve any of the tasks.

As we can see, our SBD approaches scale much better than
the compilation ones, which cannot solve any task with 10
blocks (right plot) or with more than 4 goals in problems
with 8 blocks. As expected, the exhaustive approach tends to
be slower and scales worse than the backward and forward
variants. This difference is not clear for small instances (left
plot), mainly due to the low execution times and the limited
sample of 5 problems per each combination of possible goals
and number of blocks. The results indicate that problem size
is the main execution time driver for our approaches, while
the number of possible goals is the main factor in COMPfd
execution time. Similar results were obtained in the case of
GRID, the other domain with controlled problems, with the
caveat that, as we already discussed, the backward searches
cannot solve many of these tasks.

8 Conclusions and Future Work
In this paper we have presented SBD, a family of symbolic
bidirectional search algorithms to compute centroids and
minimum covering states. Experimental results in existing
and novel benchmarks show that our algorithms outperform
current approaches both in coverage and execution time.
These results establish our algorithms as a new state-of-the-
art technique for this task. The decision of which SBD algo-

rithm should be used greatly depends on the task at hand.
Forward alternatives are the best option when the number of
reachable states is small compared to all states in the plan-
ning task, as it can prune many states and simplify the back-
ward searches. Backward alternatives are the best choice in
the rest of cases.

This work paves the path for many interesting research av-
enues, that we group into two different areas: performance
and generalization. We would like to further improve SBD
performance in three directions. First, SBD advances the
backward search that is estimated to generate a lower num-
ber of nodes in the next step. In future work, we would like
to explore different heuristics to make this decision. Second,
we would like to incorporate the h2 preprocessor (Alcázar
and Torralba 2015) to our planners, so we can increase
the coverage in the variants that prioritize backward search,
which tend to be faster. Third, we would like to estimate
reachability with heuristics without conducting the forward
search. This remains an open question, as it would require
computing heuristics with respect to a set of goal states (our
candidate set) represented as a BDD. Currently, this is only
possible for admissible heuristics that are derived with sym-
bolic search (Torralba et al. 2016; Torralba, Linares López,
and Borrajo 2018), but these are not competitive for satis-
ficing planning. Finally, in this paper we have focused on
two goal-related states that have already been defined and
proved useful in the literature. In future work we would like
to generalize SBD to consider other goal-related states, such
as those that are at the same distance from all the goals, or
those that are as far as possible from the goals.

References
Alcázar, V.; and Torralba, Á. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilber-
stein, S., eds., Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS
2015), 2–6. AAAI Press.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Bahar, R. I.; Frohm, E. A.; Gaona, C. M.; Hachtel, G. D.;
Macii, E.; Pardo, A.; and Somenzi, F. 1997. Algebraic Deci-

sion Diagrams and Their Applications. Formal Methods in
System Design, 10(2–3): 171–206.
Bryant, R. E. 1986. Graph-Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers,
35(8): 677–691.
Burns, E.; Benton, J.; Ruml, W.; Yoon, S.; and Do, M.
2012. Anticipatory On-line Planning. In McCluskey, L.;
Williams, B.; Silva, J. R.; and Bonet, B., eds., Proceedings of
the Twenty-Second International Conference on Automated
Planning and Scheduling (ICAPS 2012), 333–337. AAAI
Press.
Dillenburg, J. F.; and Nelson, P. C. 1994. Perimeter Search.
Artificial Intelligence, 65: 165–178.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Gerevini, A.; Howe, A.; Cesta, A.; and Refanidis, I., eds.,
Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS 2009), 162–
169. AAAI Press.
Karpas, E. 2022. A Compilation Based Approach to Find-
ing Centroids and Minimum Covering States in Planning. In
Thiébaux, S.; and Yeoh, W., eds., Proceedings of the Thirty-
Second International Conference on Automated Planning
and Scheduling (ICAPS 2022), 174–178. AAAI Press.
Keren, S.; Gal, A.; and Karpas, E. 2014. Goal Recognition
Design. In Chien, S.; Fern, A.; Ruml, W.; and Do, M., eds.,
Proceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling (ICAPS 2014), 154–
162. AAAI Press.
Keren, S.; Gal, A.; and Karpas, E. 2015. Goal Recognition
Design for Non-optimal Agents. In Bonet, B.; and Koenig,
S., eds., Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (AAAI 2015), 3298–3304. AAAI
Press.
Kissmann, P.; and Edelkamp, S. 2011. Improving Cost-
Optimal Domain-Independent Symbolic Planning. In Bur-
gard, W.; and Roth, D., eds., Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence (AAAI 2011),
992–997. AAAI Press.
Pozanco, A.; E-Martı́n, Y.; Fernández, S.; and Borrajo, D.
2019. Finding Centroids and Minimum Covering States in
Planning. In Lipovetzky, N.; Onaindia, E.; and Smith, D. E.,
eds., Proceedings of the Twenty-Ninth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2019),
348–352. AAAI Press.
Price, A.; Pereira, R. F.; Masters, P.; and Vered, M. 2023.
Domain-Independent Deceptive Planning. In Agmon, N.;
An, B.; Ricci, A.; and Yeoh, W., eds., Proceedings of the

2023 International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2023), 95–103. ACM.
Speck, D. 2022. Symbolic Search for Optimal Planning with
Expressive Extensions. Ph.D. thesis, University of Freiburg.
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic
Top-k Planning. In Conitzer, V.; and Sha, F., eds., Proceed-
ings of the Thirty-Fourth AAAI Conference on Artificial In-
telligence (AAAI 2020), 9967–9974. AAAI Press.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient Symbolic Search for Cost-optimal Planning.
Artificial Intelligence, 242: 52–79.
Torralba, Á.; Gnad, D.; Dubbert, P.; and Hoffmann, J. 2016.
On State-Dominance Criteria in Fork-Decoupled Search. In
Kambhampati, S., ed., Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI 2016),
3265–3271. AAAI Press.
Torralba, Á.; Linares López, C.; and Borrajo, D. 2018. Sym-
bolic perimeter abstraction heuristics for cost-optimal plan-
ning. Artificial Intelligence, 259: 1–31.

