

LVTINO: LATENT VIDEO CONSISTENCY INVERSE SOLVER FOR HIGH DEFINITION VIDEO RESTORATION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
LVTINO: LATENT VIDEO CONSISTENCY INVERSE SOLVER FOR HIGH DEFINITION VIDEO RESTORATION

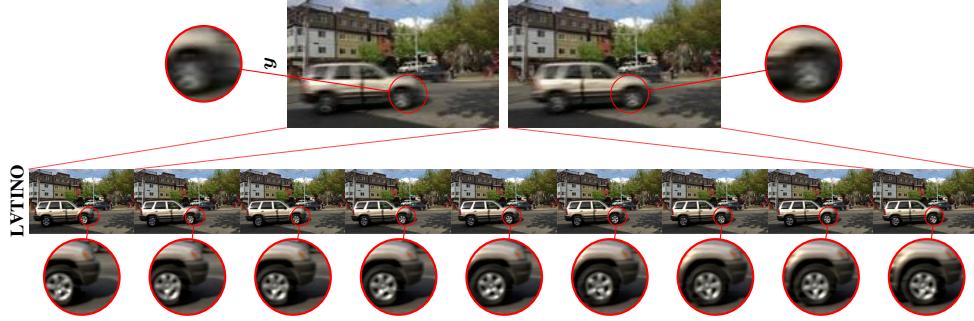


Figure 1: Results on joint spatial-temporal super-resolution by factor $\times 8$.

ABSTRACT

Computational imaging methods increasingly rely on powerful generative diffusion models to tackle challenging image restoration tasks. In particular, state-of-the-art zero-shot image inverse solvers leverage distilled text-to-image latent diffusion models (LDMs) to achieve unprecedented accuracy and perceptual quality with high computational efficiency. However, extending these advances to high-definition video restoration remains a significant challenge, due to the need to recover fine spatial detail while capturing subtle temporal dependencies. Consequently, methods that naively apply image-based LDM priors on a frame-by-frame basis often result in temporally inconsistent reconstructions. We address this challenge by leveraging recent advances in Video Consistency Models (VCMs), which distill video latent diffusion models into fast generators that explicitly capture temporal causality. Building on this foundation, we propose LVTINO¹, the first zero-shot or plug-and-play inverse solver for high definition video restoration with priors encoded by VCMs. Our conditioning mechanism bypasses the need for automatic differentiation and achieves state-of-the-art video reconstruction quality with only a few neural function evaluations, while ensuring strong measurement consistency and smooth temporal transitions across frames. Extensive experiments on a diverse set of video inverse problems show significant perceptual improvements over current state-of-the-art methods that apply image LDMs frame by frame, establishing a new benchmark in both reconstruction fidelity and computational efficiency.

1 INTRODUCTION

We seek to recover an unknown video of interest $\mathbf{x} = (x_1, \dots, x_T)$ from a noisy measurement

$$\mathbf{y} = \mathcal{A}\mathbf{x} + \mathbf{n},$$

where \mathcal{A} is a linear degradation operator acting on the full video sequence, \mathbf{n} is additive Gaussian noise with covariance $\sigma_n^2 \text{Id}$, and $x_\tau \in \mathbb{R}^n$ denotes the τ th video frame.

We focus on video restoration problems that are severely ill-conditioned or ill-posed, leading to significant uncertainty about the solution. We address this difficulty by leveraging prior information

¹LVTINO is short for LATent Video consisTency INverse sOlver.

about \mathbf{x} to regularize the estimation problem and deliver meaningful solutions that are well-posed. More precisely, we adopt a Bayesian statistical approach and introduce prior information by specifying the marginal $p(\mathbf{x})$, so-called prior distribution, which we then combine with the likelihood function $p(\mathbf{y}|\mathbf{x}) \propto \exp\{-\|\mathbf{y} - \mathbf{Ax}\|_2^2/2\sigma_n^2\}$ by using Bayes' theorem to obtain the posterior

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{\int p(\mathbf{y}|\tilde{\mathbf{x}})p(\tilde{\mathbf{x}})d\tilde{\mathbf{x}}}.$$

We aim to leverage a state-of-the-art generative video model as $p(\mathbf{x})$. In recent years, the use of deep generative models as priors in Bayesian frameworks has garnered significant attention, particularly in computational imaging, where denoising diffusion models (DMs) have emerged as powerful generative priors for solving challenging inverse problems (Song & Ermon, 2019; Song et al., 2020; Chung et al., 2022; Kawar et al., 2023; Zhu et al., 2023; Song et al., 2023a; Moufad et al., 2025).

For computational efficiency, modern DMs are often trained in the latent space of a variational autoencoder (VAE), yielding Latent Diffusion Models (LDMs), which are now the backbone of widely used large-scale priors such as Stable Diffusion (Rombach et al., 2021; Podell et al.). More recently, distilled diffusion models, and notably consistency models (CMs) (Song et al., 2023b; Luo et al., 2023a), have emerged as powerful alternatives, producing high-quality samples with only a few neural function evaluations (NFEs), in contrast to the hundreds or thousands often required by iterative DM-based methods. Several recent works have explored leveraging these models in a zero-shot, or so-called Plug & Play (PnP), manner for Bayesian computational imaging (Spagnoletti et al., 2025; Garber & Tirer, 2025; Xu et al., 2024; Li et al., 2025).

Several powerful video DMs (Ho et al., 2022; Blattmann et al., 2023b;a; Chen et al., 2023; Hong et al., 2022) and fast CMs (Wang et al., 2023; Lv et al., 2025; Zhai et al., 2024; Yin et al., 2024b) have recently been proposed, offering great potential for Bayesian video restoration. However, leveraging them remains challenging, so most current methods apply image DMs frame-by-frame and enforce temporal consistency through external constraints (Kwon & Ye, 2025a;b). In challenging settings, this strategy leads to temporal flickering and incoherent dynamics, as it fails to fully capture inter-frame dependencies. This issue could be in principle mitigated by operating directly with video DMs, but applying standard DM-guidance techniques such as DPS to video DMs requires computing gradients by backpropagation through the DM, which incurs a high memory cost (Kwon et al., 2025).

We herein present LVTINO, the first zero-shot or PnP inverse solver for Bayesian restoration of high definition videos, leveraging priors encoded by video CMs that capture fine spatial-temporal detail and causal dependencies. Moreover, by building on the recent image restoration framework of Spagnoletti et al. (2025), LVTINO provides a gradient-free inference engine that ensures strong measurement consistency and perceptual quality, while requiring few NFEs and no automatic differentiation.

2 BACKGROUND

We begin by revisiting the core concepts underlying DMs and LDMs, and briefly discuss their recent extension to generative modeling for video data, which we will use as priors in LVTINO.

Diffusion Models. (DMs) are generative models that draw samples from a distribution of interest $\pi_0(\mathbf{x})$ by iteratively reversing a “noising” process, which is designed to transport $\pi_0(\mathbf{x})$ to a standard normal distribution (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020; Song & Ermon, 2020). In the framework of Ho et al. (2020), the noising and reverse processes are given by the SDEs:

$$d\mathbf{x}_t = -\frac{\beta_t}{2}\mathbf{x}_t dt + \sqrt{\beta_t}d\mathbf{w}_t, \quad (1)$$

$$d\mathbf{x}_t = \left[-\frac{\beta_t}{2}\mathbf{x}_t - \beta_t \nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_t) \right] dt + \sqrt{\beta_t}d\mathbf{w}_t, \quad (2)$$

where β_t is the noise schedule, and the score function $\nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_t)$, which encodes the target π_0 , is represented by a network trained by denoising score matching on samples from π_0 (Vincent, 2011). For computational efficiency, modern DMs rely heavily on a (deterministic) probability flow representation of the backward process (2), given by the following ODE (Song et al., 2020):

$$d\mathbf{x}_t = \left[-\frac{\beta_t}{2}\mathbf{x}_t - \frac{\beta_t}{2}\nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_t) \right] dt. \quad (3)$$

108 **Latent Diffusion Models.** LDMs dramatically increase the computational efficiency of DMs by
 109 operating in the low-dimensional latent space of an autoencoder (\mathcal{E}, \mathcal{D}), rather than directly in pixel
 110 space (Rombach et al., 2021). This substantially reduces compute and memory costs, enabling models
 111 like Stable Diffusion (SD) to generate large images and video (Podell et al.; Wang et al., 2025).
 112

113 **Video Diffusion Models.** Extending DMs to video is an active area of research, requiring models
 114 to capture temporal coherence and causality. Below, we highlight some key contributions to this field:
 115

116 Ho et al. (2022) introduce a spatiotemporal U-Net-based DM tailored for video generation. Their
 117 architecture applies 3D convolutions to jointly process space and time, integrates spatial attention
 118 blocks for fine-grained detail, as well as temporal attention layers to capture inter-frame dependencies.
 119

120 Blattmann et al. (2023b;a) propose to repurpose pre-trained LDMs to video through the incorporation
 121 of trainable temporal layers l_i^ϕ into a frozen U-Net backbone. The temporal layers reshape input
 122 batches into a temporally coherent sequence of frames by using a temporal self-attention mechanism.
 123

124 Wang et al. (2025) introduce a state-of-the-art video foundation model built on three components:
 125 (i) *Wan-VAE*, a lightweight 3D causal variational autoencoder, inspired by Wu et al. (2024), that
 126 compresses a video $\mathbf{x} \in \mathbb{R}^{(1+T) \times H \times W \times 3}$ into a latent tensor $\mathbf{z} \in \mathbb{R}^{(1+T/4) \times H/8 \times W/8 \times C}$ while
 127 ensuring temporal causality; (ii) a *Diffusion Transformer* (*DiT*) Peebles & Xie (2022) that applies
 128 patchification, self-attention, and cross-attention to model spatio-temporal context and text conditioning;
 129 and (iii) a *text encoder* (umT5) Chung et al. (2023) for semantic conditioning. This architecture
 130 enables efficient training and scalable generation of high-resolution, temporally coherent videos.
 131

132 **Consistency Models.** Consistency Models (CMs) are single-step DM samplers derived from the
 133 probability-flow ODE (3). They rely on a so-called *consistency function* $f : (\mathbf{x}_t, t) \mapsto \mathbf{x}_\eta$ that maps
 134 any state \mathbf{x}_t on a trajectory $\{\mathbf{x}_t\}_{t \in [\eta, K]}$ of (3) backwards to \mathbf{x}_η , for some small $\eta > 0$, ensuring
 135 $f(\mathbf{x}_t, t) = f(\mathbf{x}_{t'}, t')$ for all $t, t' \in [\eta, K]$. Two-step CMs achieve superior quality by re-noising
 136 $\mathbf{x}_\eta = f(\mathbf{x}_t, t)$ following (1) for some intermediate time $s \in (\eta, K)$, followed by $f(\mathbf{x}_s, s)$ to bring
 137 back \mathbf{x}_s close to the target π_0 . Multi-step CMs apply this strategy recursively in 4 to 8 steps,
 138 combining top performance with computational efficiency (Song et al., 2023b; Kim et al., 2024).
 139

140 **Latent Consistency Models.** CMs can also be trained in latent space by distilling a pre-trained
 141 LDM into a latent CM (LCM) (Luo et al., 2023a;b). A particularly effective distillation strategy
 142 is *Distribution Matching Distillation* (DMD) (Yin et al., 2023), which trains a generator G_θ to
 143 match the diffused data distribution by minimizing a KL divergence over timesteps, using a frozen
 144 teacher DM as reference. Its improved version, DMD2 (Yin et al., 2024a), adds a GAN-based loss to
 145 further enhance fidelity, and enables few-step samplers (e.g., 4 steps) by conditioning G_θ on discrete
 146 timesteps t_i . In practice, G_θ is often initialized from a pre-trained SDXL model (Podell et al.). We
 147 use DMD2 (Yin et al., 2024a) within our video prior, as prior distribution on individual video frames.
 148

149 **Video Consistency Models.** Recent advancements have extended CMs to video generation. Wang
 150 et al. (2023) propose VideoLCM, the first LCM framework for videos, derived by distilling a pre-
 151 trained text-to-video DM; it can generate temporally coherent videos in as few as four steps. Yin et al.
 152 (2024b) present a theoretical and practical framework to convert slow bidirectional DMs into fast
 153 auto-regressive video generators. This conversion enables frame-by-frame causal sampling, allowing
 154 generation of very long, temporally consistent videos. Our proposed LVTINO method incorporates
 155 the CM variant of Wan (Wang et al., 2025), distilled via DMD (Yin et al., 2023), into our video prior
 156 to effectively capture subtle spatial-temporal dependencies and long-range temporal causality.
 157

158 **Zero-shot (plug & play) posterior sampling.** Zero-shot methods leverage a prior model $p(\mathbf{x})$
 159 (implicit in a pretrained denoiser or generative model) and the known degradation $p(\mathbf{y}|\mathbf{x})$ to obtain
 160 an estimate of the posterior distribution $p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$. Whereas early zero-shot literature
 161 concentrates in maximum a posteriori point estimators (Venkatakrishnan et al., 2013; Monod et al.,
 162 2022), we concentrate here on producing samples from the posterior $p(\mathbf{x}|\mathbf{y})$. This has been addressed
 163 by combining prior and likelihood information in various ways, like the split Gibbs sampler (Vono
 164 et al., 2019), a discretization of the Langevin SDE (Laumont et al., 2022), a guided diffusion model
 165 (Chung et al., 2022; Zhu et al., 2023; Song et al., 2023a; Kwon & Ye, 2025a;b; Kwon et al., 2025) or

162 a guided consistency model (Spagnoletti et al., 2025; Garber & Tirer, 2025; Xu et al., 2024; Li et al.,
163 2025), which is the approach we pursue in this work.

164 LATINO (Spagnoletti et al., 2025) constructs a Markov chain approximating a Langevin diffusion \mathbf{x} ,
165 targeting $p(\mathbf{x}|\mathbf{y})$ by using the following splitting scheme:
166

$$167 \mathbf{u} = \mathbf{x}_k + \int_0^{\delta_k} \nabla \log p(\tilde{\mathbf{x}}_s) ds + \sqrt{2} d\mathbf{w}_s, \quad \tilde{\mathbf{x}}_0 = \mathbf{x}_k, \quad (4)$$

$$169 \mathbf{x}_{k+1} = \mathbf{u} + \delta_k \nabla \log p(\mathbf{y}|\mathbf{x}_{k+1}), \quad (5)$$

170 with step-size δ_k . Note that the first step corresponds to an overdamped Langevin diffusion targeting
171 the prior $p(\mathbf{x})$, while the second step incorporates the likelihood via an implicit Euler step.
172

173 In order to embed an LCM ($\mathcal{E}, \mathcal{D}, f_\theta$) as prior $p(\mathbf{x})$, LATINO replaces (4), which is intractable, with
174 a stochastic auto-encoder (SAE) step that applies the forward and reverse transports (1)-(3) as follows

$$175 \mathbf{z} = \sqrt{\alpha_{t_k}} \mathcal{E}(\mathbf{x}_k) + \sqrt{1 - \alpha_{t_k}} \boldsymbol{\epsilon}, \\ 176 \mathbf{u} = \mathcal{D}(f_\theta(\mathbf{z}, t_k)), \\ 177 \mathbf{x}_{k+1} = \mathbf{u} + \delta_k \nabla \log p(\mathbf{y}|\mathbf{x}_{k+1}),$$

178 where we note that the SAE step preserves three fundamental properties of (4): (i) contraction of
179 random iterates \mathbf{x}_k towards the prior $p(\mathbf{x})$; (ii) $p(\mathbf{x})$ is the unique invariant distribution; and (iii) the
180 amount of contraction is controlled via t_k , which plays a role analogous to the integration step-size
181 δ_k . As demonstrated in (Spagnoletti et al., 2025), LATINO exhibits high computational efficiency,
182 requiring only a few NFEs. By leveraging a state-of-the-art SDXL LCM (Yin et al., 2024a), it
183 achieves remarkable accuracy and perceptual quality across a range of challenging imaging tasks.
184

186 3 LVTINO FOR HIGH DEFINITION VIDEO POSTERIOR SAMPLING

188 We are now ready to present our proposed LAtent Video consisTency INverse sOlver (LVTINO),
189 which approximately draws samples from the posterior distribution

$$190 p(\mathbf{x}|\mathbf{y}, c, \lambda) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x}|c, \lambda)}{\int_{\mathbb{R}^n} p(\mathbf{y}|\mathbf{x})p(\mathbf{x}|c, \lambda)d\mathbf{x}},$$

193 parametrized by the data \mathbf{y} , a text prompt c , and a spatiotemporal regularization parameter $\lambda \in \mathbb{R}_+^3$.
194 As mentioned previously, LVTINO is a zero-shot Langevin posterior sampler specialised for video
195 restoration, which jointly leverages prior information from both Video Consistency Models (VCMs)
196 and Image Consistency Models (ICMs). In addition, LVTINO is highly computationally efficient,
197 requiring only a small number of NFEs and operating in a gradient-free manner, which significantly
198 reduces memory usage and enables scalability to long video sequences.

199 A main novelty in LVTINO is the use of the following product-of-experts prior for video restoration

$$200 p(\mathbf{x}|c, \lambda) \propto p_V^\eta(\mathbf{x}|c)p_I^{1-\eta}(\mathbf{x}|c)p_\phi(\mathbf{x}|\lambda),$$

202 where $\eta \in (0, 1)$ is a temperature parameter and $p_V(\mathbf{x}|c)$, $p_I(\mathbf{x}|c)$, and $p_\phi(\mathbf{x}|\lambda)$ are as follows:

- 203 • $p_V(\mathbf{x}|c)$ is implicitly defined via a text-to-video LCM designed to capture subtle spatial-
204 temporal dependencies as well as long-range temporal causality. It is specified by an
205 encoder-decoder pair $(\mathcal{E}_V, \mathcal{D}_V)$ and consistency function f_ϑ^V operating in their latent space.
- 207 • $p_I(\mathbf{x}|c)$ is implicitly defined via a high-resolution text-to-image LCM, acting separately on
208 each frame, to recover fine spatial detail and enhance perceptual quality. It is specified by an
209 encoder-decoder pair $(\mathcal{E}_I, \mathcal{D}_I)$ and consistency function f_θ^I operating in their latent space.
- 211 • $p_\phi(\mathbf{x}|\lambda) \propto \exp\{-\phi_\lambda(\mathbf{x})\}$ where ϕ_λ is a convex regularizer promoting background stability
212 and smooth temporal transitions across frames, with $\lambda \in \mathbb{R}_+^3$ controlling the regularity
213 enforced. Without loss of generality, in our experiments we use the total-variation norm

$$214 \phi_\lambda(\mathbf{x}) = \text{TV}_3^\lambda(\mathbf{x}) \triangleq \sum_{\tau, c, i, j} \sqrt{\lambda_h^2 (D_h \mathbf{x}_{\tau, c, i, j})^2 + \lambda_v^2 (D_v \mathbf{x}_{\tau, c, i, j})^2 + \lambda_t^2 (D_t \mathbf{x}_{\tau, c, i, j})^2}.$$

215 where (D_h, D_v, D_t) is the three-dimensional discrete gradient. Note that TV_3^λ is not smooth.

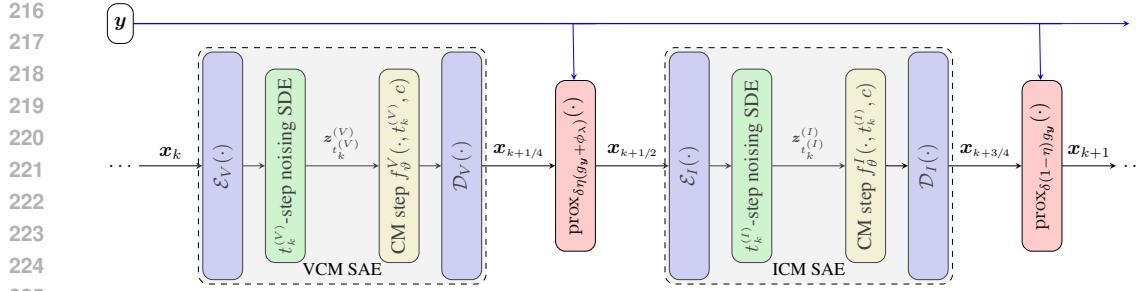


Figure 2: One step of the LVTINO solver, a discretization of the Langevin SDE (7) which targets the posterior $p(\mathbf{x}|\mathbf{y}, c, \lambda)$, involving two stochastic autoencoding (SAE) steps and two proximal steps.

Following a PnP philosophy, $p(\mathbf{x}|\mathbf{y}, c, \lambda)$ combines an analytical likelihood function $p(\mathbf{y}|\mathbf{x})$ with a prior distribution $p(\mathbf{x}|c, \lambda)$ that is represented implicitly by a pre-trained machine learning model. However, unlike conventional PnP approaches that exploit a denoising operator (e.g., PnP Langevin (Laumont et al., 2022)), LVTINO leverages the LATINO framework of Spagnoletti et al. (2025) which is specialised for embedding generative models as priors, notably distilled foundation CMs.

To draw samples from $p(\mathbf{x}|\mathbf{y}, c, \lambda)$, LVTINO considers a Moreau-Yosida regularized overdamped Langevin diffusion, given by the SDE

$$\begin{aligned} \mathbf{d}\mathbf{x}_s = & \nabla \log p(\mathbf{y}|\mathbf{x}_s) \mathbf{d}s + \nabla \log p_V^\eta(\mathbf{x}_s|c) \mathbf{d}s + \nabla \log p_I^{(1-\eta)}(\mathbf{x}_s|c) \mathbf{d}s \\ & + \nabla \log \tilde{p}_{\gamma\phi}(\mathbf{x}_s|\lambda) \mathbf{d}s + \sqrt{2} \mathbf{d}\mathbf{w}_s, \end{aligned} \quad (6)$$

where \mathbf{w}_s denotes a n -dimensional Brownian motion and $\tilde{p}_{\gamma\phi}(\mathbf{x}_s|\lambda)$ is the γ -Moreau-Yosida approximation of the non-smooth factor $p_\phi(\mathbf{x}_s|\lambda)$, given by (Pereyra, 2016)

$$\tilde{p}_{\gamma\phi}(\mathbf{x}|\lambda) \propto \sup_{\mathbf{u} \in \mathbb{R}^n} p_\phi(\mathbf{u}|\lambda) \exp\left\{-\frac{1}{2\gamma} \|\mathbf{x} - \mathbf{u}\|_2^2\right\},$$

with $\gamma > 0$. As mentioned previously, $\tilde{p}_{\gamma\phi}(\mathbf{x}|\lambda)$ is log-concave and Lipschitz differentiable by construction because ϕ_λ is convex on \mathbb{R}^n (Pereyra, 2016). The likelihood $p(\mathbf{y}|\mathbf{x}) \propto \exp\{-\|\mathbf{y} - \mathcal{A}\mathbf{x}\|_2^2/2\sigma_n^2\}$ is also log-concave and Lipschitz differentiable.

Under mild regularity assumptions on $p_V(\mathbf{x}|c)$ and $p_I(\mathbf{x}|c)$, starting from an initial condition \mathbf{x}_0 , the process \mathbf{x}_s converges to a γ -neighborhood of $p(\mathbf{x}|\mathbf{y}, c, \lambda)$ exponentially fast as $s \rightarrow \infty$ (Laumont et al., 2022). While solving (6) exactly is not possible, considering numerical approximations of \mathbf{x}_s provides a powerful computational framework for deriving approximate samplers for $p(\mathbf{x}|\mathbf{y}, c)$.

LVTINO stems from approximating (6) by a Markov chain derived from the following recursion: given an initialization \mathbf{x}_0 and a step-size $\delta > 0$, for all $k \geq 0$,

$$\begin{aligned} \mathbf{x}_{k+1/4} &= \mathbf{x}_k + \underbrace{\int_0^\delta \eta \nabla \log p_V(\tilde{\mathbf{x}}_s|c) \mathbf{d}s + \sqrt{2\eta} \mathbf{d}\mathbf{w}_s}_{\text{VCM prior step}}, \quad \tilde{\mathbf{x}}_0 = \mathbf{x}_k \\ \mathbf{x}_{k+1/2} &= \mathbf{x}_{k+1/4} + \eta \delta \nabla \log p(\mathbf{y}|\mathbf{x}_{k+1/2}) + \eta \delta \nabla \log \tilde{p}_{\gamma\phi}(\mathbf{x}_{k+1/2}|\lambda) \\ &\quad \underbrace{\text{implicit likelihood half-step with } \phi\text{-regularization}}_{\mathbf{x}_{k+1/2}} \\ \mathbf{x}_{k+3/4} &= \mathbf{x}_{k+1/2} + \underbrace{\int_0^\delta (1-\eta) \nabla \log p_I(\tilde{\mathbf{x}}_s|c) \mathbf{d}s + \sqrt{2(1-\eta)} \mathbf{d}\mathbf{w}_s}_{\text{ICM prior step}}, \quad \tilde{\mathbf{x}}_0 = \mathbf{x}_{k+1/2} \\ \mathbf{x}_{k+1} &= \mathbf{x}_{k+3/4} + (1-\eta) \delta \nabla \log p(\mathbf{y}|\mathbf{x}_{k+1}), \\ &\quad \underbrace{\text{implicit likelihood half-step}}_{\mathbf{x}_{k+1}} \end{aligned} \quad (7)$$

where we identify a splitting in which each CM prior is involved separately through exact integration (these integrals will be approximated through SAE steps), and the likelihood is involved through two

270 implicit (backward Euler) half-steps. Importantly, unlike the explicit steps used in most Langevin
 271 sampling algorithms, the implicit steps in (7) remain numerically stable for all $\delta > 0$. This allows
 272 LVTINO to converge quickly by taking δ large, albeit with some small bias. Conversely, the widely
 273 used unadjusted Langevin algorithm (ULA) integrates only the Brownian term w_s exactly, it involves
 274 gradients via an explicit Euler step, and is explosive unless δ is sufficiently small. It is worth recalling
 275 that the Langevin diffusion is a time-homogeneous process. The iterates \mathbf{x}_k resulting from its discrete-
 276 time approximation are asymptotically ergodic, converging to a neighborhood of $p(\mathbf{x}|\mathbf{y}, c, \lambda)$ as $k \rightarrow \infty$.
 277 Unlike DMs, these iterates do not travel backwards in time through an inhomogeneous process.
 278 Therefore, Langevin algorithms use directly the likelihood $p(\mathbf{y}|\mathbf{x}) \propto \exp\{-\|\mathbf{y} - \mathcal{A}\mathbf{x}\|_2^2/2\sigma_n^2\}$,
 279 avoiding the need to approximate the likelihood of \mathbf{y} w.r.t. a noisy version of \mathbf{x} , as required in guided
 280 DMs like (Chung et al., 2022; Song et al., 2023a; Kwon et al., 2025).

281 Following Spagnoletti et al. (2025), we compute $\mathbf{x}_{k+1/4}$ and $\mathbf{x}_{k+3/4}$ approximately via SAE steps,
 282

$$283 \mathbf{x}_{k+1/4} = \mathcal{D}^V \left(f_{\vartheta}^V \left(\sqrt{\alpha_{t_k^{(V)}}} \mathcal{E}_V(\mathbf{x}^{(k)}) + \sqrt{1 - \alpha_{t_k^{(V)}}} \boldsymbol{\epsilon}, t_k^{(V)} \right), c \right), \\ 284 \\ 285 \mathbf{x}_{k+3/4} = \mathcal{D}^I \left(f_{\theta}^I \left(\sqrt{\alpha_{t_k^{(I)}}} \mathcal{E}_I(\mathbf{x}^{(k)}) + \sqrt{1 - \alpha_{t_k^{(I)}}} \boldsymbol{\epsilon}, t_k^{(I)}, c \right) \right), \\ 286$$

287 where we recall that $(\mathcal{E}^I, \mathcal{D}^I, f^I)$ act frame-wise and that f_{ϑ}^V and f_{θ}^I have model-specific schedules.
 288

289 The implicit Euler steps in (7) can be reformulated as an explicit proximal point steps as follows
 290

$$291 \tilde{\mathbf{x}}_{k+1/2} = \arg \min_{\mathbf{u} \in \mathbb{R}^n} g_{\mathbf{y}}(\mathbf{u}) + \left(\inf_{\mathbf{u}' \in \mathbb{R}^n} \phi_{\lambda}(\mathbf{u}') + \frac{1}{2\gamma} \|\mathbf{u} - \mathbf{u}'\|_2^2 \right) + \frac{1}{2\delta\eta} \|\tilde{\mathbf{x}}_{k+1/4} - \mathbf{u}\|_2^2, \\ 292 \\ 293 \approx \arg \min_{\mathbf{u} \in \mathbb{R}^n} g_{\mathbf{y}}(\mathbf{u}) + \phi_{\lambda}(\mathbf{u}) + \frac{1}{2\delta\eta} \|\tilde{\mathbf{x}}_{k+1/4} - \mathbf{u}\|_2^2, \\ 294 \\ 295 \tilde{\mathbf{x}}_{k+1} = \arg \min_{\mathbf{u} \in \mathbb{R}^n} g_{\mathbf{y}}(\mathbf{u}) + \frac{1}{2\delta(1-\eta)} \|\tilde{\mathbf{x}}_{k+3/4} - \mathbf{u}\|_2^2,$$

296 where $g_{\mathbf{y}} : \mathbf{x} \mapsto -\log p(\mathbf{y}|\mathbf{x})$ and where we have simplified the computation of $\tilde{\mathbf{x}}_{k+1/2}$ by assuming
 297 that $\gamma \ll \delta\eta$ (Pereyra, 2016). The optimization problems described above are strongly convex and
 298 can be efficiently approximated by using a small number of iterations of a specialized solver. In
 299 particular, to compute $\tilde{\mathbf{x}}_{k+1}$, we employ a few iterations of the conjugate gradient algorithm with
 300 warm-starting (Hestenes & Stiefel, 1952). For the computation of $\tilde{\mathbf{x}}_{k+1/2}$, we recommend using a
 301 proximal splitting optimizer (Chambolle & Pock, 2011), or a warm-started Adam optimizer (Kingma
 302 & Ba, 2014), both of which are effective in practice. Please see Appendix A.6 for more details.
 303

304 Refer to Algorithm 1 for more details about LVTINO, and to Figure 2 for its schematic representation.
 305

4 EXPERIMENTS

306 **Models.** We implement LVTINO by using CausVid as VCM prior. We adopt the standard
 307 bidirectional WaN architecture, fine-tuned as a CM. The model also supports an autoregressive
 308 configuration, which we do not utilize here, leaving the exploration of autoregressive priors for longer
 309 video restoration to future work. Concerning the ICM, we use DMD2, following Spagnoletti et al.
 310 (2025). For our experiments, we use $t_i^{(V)} \in \{757, 522, 375, 255, 125\}$ and $t_i^{(I)} \in \{374, 249, 124, 63\}$
 311 for the VCM and ICM respectively. This results in a total of 9 NFEs, where applying the ICM across
 312 all frames counts as a single NFE. Regarding the text prompt specifying VCM and ICM, in the same
 313 spirit as Kwon & Ye (2025b), we do not perform any prompt optimization and instead use the generic
 314 prompt “A high resolution video/image”. Exploring prompt optimization by leveraging the maximum
 315 likelihood strategy of Spagnoletti et al. (2025) remains a key direction for future work.
 316

317 **Dataset and Metrics.** We evaluate methods on 435 video clips of 25 frames each from the
 318 `Adobe240` dataset (Su et al., 2017), and 239 video clips of 25 frames each from the `GoPRO240`
 319 test dataset Nah et al. (2016). These datasets contain high-quality, high-frame-rate video sequences
 320 that we rescale to a spatial resolution of 1280×768 pixels to match our targeted resolution.
 321

322 We assess reconstruction quality using peak signal-to-noise ratio (PSNR) and structural similarity
 323 index (SSIM) (Wang et al., 2004). Additionally, we evaluate two perceptual metrics: Learned
 324 Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), along with the recently proposed

324 **Algorithm 1** LVTINO (LAtent Video consisTency INverse sOlver)

325

326 1: **given** degraded video \mathbf{y} , operator \mathcal{A} , initialization $\mathbf{x}_0 = \mathcal{A}^\dagger \mathbf{y}$, video lenght $T + 1$, steps $N = 5$

327 2: **given** video CM $(\mathcal{E}_V, \mathcal{D}_V, f_\theta^V)$, image CM $(\mathcal{E}_I, \mathcal{D}_I, f_\theta^I)$, schedules $\{t_k^{(V)}, t_k^{(I)}, \delta_k, \eta, \lambda\}_{k=0}^{N-1}, g_y$

328 3: **for** $k = 0, \dots, N - 1$ **do**

329 4: # VCM prior half-step (temporal coherence)

330 5: $\epsilon_V \sim \mathcal{N}(0, \text{Id}_{(1+T/4) \times H/8 \times W/8 \times C})$

331 6: $\mathbf{z}_{t_k^{(V)}}^{(V)} \leftarrow \sqrt{\alpha_{t_k^{(V)}}} \mathcal{E}_V(\mathbf{x}_{k-1}) + \sqrt{1 - \alpha_{t_k^{(V)}}} \epsilon_V$

332 7: $\tilde{\mathbf{x}}_{k+1/4} \leftarrow \mathcal{D}_V(f_\theta^V(\mathbf{z}_{t_k^{(V)}}^{(V)}, t_k^{(V)}))$ ▷ VCM

333

334 8: # First likelihood - Solved with proximal splitting or Adam iterations

335 9: $\tilde{\mathbf{x}}_{k+1/2} \leftarrow \arg \min_{\mathbf{u} \in \mathbb{R}^{(T+1) \times H \times W \times 3}} g_y(\mathbf{u}) + \phi_\lambda(\mathbf{u}) + \frac{1}{2\delta_k\eta} \|\tilde{\mathbf{x}}_{k+1/4} - \mathbf{u}\|_2^2$

336 10: **if** $k < N$ **then**

337 11: # ICM prior half-step (per-frame detail)

338 12: $\epsilon_I \sim \mathcal{N}(0, \text{Id}_{h/8 \times w/8 \times c})$

339 13: $\tilde{\mathbf{x}}_{k+3/4} \leftarrow \text{stack}_{\tau=0}^T \mathcal{D}_I\left(\sqrt{\alpha_{t_k^{(I)}}} \mathcal{E}_I(\tilde{\mathbf{x}}_{k+1/2, \tau}) + \sqrt{1 - \alpha_{t_k^{(I)}}} \epsilon_I, t_k^{(I)}\right)$ ▷ ICM

340 14: # Likelihood prox (2nd) - Solved with conjugate gradient iterations

341 15: $\mathbf{x}_k \leftarrow \arg \min_{\mathbf{u} \in \mathbb{R}^{(T+1) \times H \times W \times 3}} g_y(\mathbf{u}) + \frac{1}{2\delta_k(1-\eta)} \|\tilde{\mathbf{x}}_{k+3/4} - \mathbf{u}\|_2^2$

342 16: **else**

343 17: # Final iteration: skip ICM and second likelihood

344 18: $\mathbf{x}_k \leftarrow \tilde{\mathbf{x}}_{k+1/2}$

345 19: **end if**

346 20: **end for**

347 21: **return** \mathbf{x}_N

349

350 Fréchet Video Motion Distance (FVMD) (Liu et al., 2024) which is tailored for assessing motion

351 smoothness and perceptual quality in videos.

352

353 **Inverse Problems.** We consider three linear inverse problems for high-resolution video restoration.

354 Let $\mathbf{x} = (\mathbf{x}_\tau)_{\tau=0}^T \in \mathbb{R}^{(T+1) \times H \times W \times C}$ denote the unknown high-resolution video and $\mathbf{y} = \mathcal{A}\mathbf{x} + \mathbf{n}$

355 the observed degraded video with additive Gaussian noise \mathbf{n} . For fair comparisons, we consider a

356 mild noise regime $\sigma_n = 0.001$, which addresses the noiseless case.

357

358 • **Problem A** - Temporal $SR \times 4 + SR \times 4$: here \mathcal{A} first applies temporal average pooling with

359 factor 4 (reducing the frame rate), followed by frame-wise spatial downsampling by factor

360 4, simulating a low frame rate and low resolution video.² Temporal upsampling to generate

361 the missing frame is highly challenging here, as it requires prior knowledge of motion.

362 • **Problem B** - Temporal blur + $SR \times 8$: here \mathcal{A} first applies a uniform blur kernel of size 7

363 pixels along the temporal dimension, followed by frame-wise spatial downsampling by a

364 factor 8, simulating a motion-blurred and low-resolution video (Kwon & Ye, 2025a;b).

365 • **Problem C** - Temporal $SR \times 8 + SR \times 8$: is a harder version of **Problem A**, where \mathcal{A} first

366 applies temporal average pooling with factor 8 and then a spatial downsampling by factor 8.

367

Method	Problem A: Temp. SR $\times 4 + SR \times 4$					Problem B: Temp. blur + SR $\times 8$					Problem C: Temp. SR $\times 8 + SR \times 8$				
	NFE \downarrow	FVMD \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	NFE \downarrow	FVMD \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	NFE \downarrow	FVMD \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
LVINO	9	371.1	27.25	0.837	0.249	9	42.65	24.91	0.741	0.370	7	602.5	23.11	0.697	0.411
VISION-XL	8	1141	26.03	0.672	0.439	8	82.92	26.18	0.749	0.468	8	1604	23.38	0.652	0.520
VIDUE	—	—	—	—	—	—	—	—	—	—	1	142.5	21.78	0.624	0.505
ADMM-TV	—	427.6	18.04	0.767	0.297	—	128.2	21.18	0.644	0.452	—	1645	18.15	0.663	0.439

373 Table 1: Results on the Adobe240 dataset across the three problems. Best results are in **bold**, second

374 best are underlined.

375

376

377 ²Temporal SR $\times k$ is also a coarse (Riemann sum) approximation of motion blur due to moving objects or

camera during full continuous exposure between frames (Zhang et al., 2021).

378	Problem A: Temp. SR $\times 4$ + SR $\times 4$					Problem B: Temp. blur + SR $\times 8$					Problem C: Temp. SR $\times 8$ + SR $\times 8$						
	Method	NFE \downarrow	FVMD \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	NFE \downarrow	FVMD \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	NFE \downarrow	FVMD \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	
379	LVTINO	9	189.4	24.01	0.775	0.315	9	46.20	22.46	0.687	0.433	7	232.6	22.91	0.677	0.445	
380	VISION-XL	8	282.2	26.06	0.792	<u>0.326</u>	8	<u>52.03</u>	24.05	0.697	0.486	8	995.9	<u>22.67</u>	0.669	0.474	
381	VIDUE	—	—	—	—	—	—	—	—	—	—	1	84.45	20.66	0.571	0.548	
382	ADMM-TV	—	265.8	24.32	0.745	0.406	—	145.9	20.83	—	0.618	0.527	—	969.3	17.70	0.631	0.527

Table 2: Results on the GoPro240 dataset across the three problems. Best results are in **bold**, second best are underlined.

Figure 3: Comparison between slices from 81 consecutive frames for **Problem C** (seq. C2). Slice images (i, τ) are obtained from the video tensor (i, j, τ) by fixing a column index j shown in green.

Computational Efficiency. While NFEs provide a hardware-agnostic measure of complexity, practical deployment requires considering runtime and memory footprints. Table 4 reports the wall-clock time and peak GPU memory usage for restoring a 25-frame video, measured on one A100 GPU. VISION-XL, by only loading an image model, exchanges memory usage for time, as it needs to perform sequentially each frame. LVTINO offers a competitive trade-off thanks to the VCM, which scales better for longer videos. Notably, the lighter variant LVTINO-V (see Appendix A.6 for more details) achieves the fastest runtime among deep generative approaches with a moderate memory cost, as it only loads the VCM component.

Method	NFE \downarrow	Time (s) \downarrow	Mem. (GB) \downarrow
LVTINO	9	132	35.15
VISION-XL	8	176	15.64
ADMM-TV	—	13.6	<u>22.01</u>
LVTINO-V	5	<u>105</u>	25.42

Table 3: Runtime and memory usage. Measured on a single video clip of 25 frames at 1280×768 resolution. Best results are in **bold**, second best are underlined.

Results. Experiments in Table 1 refer to **Problems A, B** and **C**, and are obtained with different numerical schemes for (7). We fix the hyperparameters per problem to better tackle the different degradations; see Table 4 in Appendix A.6 for more details and for an ablation study.

For the more challenging **Problem C**, to stabilize and warm-start LVTINO, we use the joint deblurring/interpolation network of Shang et al. (2023)³ to produce a temporally interpolated version of y , which we then upsample via bilinear spatial interpolation so that it can be used as initialization x_0 . This warm-start allows us to reduce the number of integration steps, bringing the NFEs to 7. The same model, referred to as VIDUE, is used as a baseline comparison in Table 1 and Table 2.

We further provide a visual analysis of motion quality using fixed vertical slices of video frames, following Cohen et al. (2024), who observed that spatiotemporal slices of natural videos resemble natural images. Figure 3 and Appendix B in Figures 11a and 11b show (i, τ) slices. These reveal that even for small motions, LVTINO more closely preserves ground truth temporal continuity.

Qualitative and quantitative evaluation. Figures 1, 4, 5, and 6 show the results of our algorithm compared to the measurements, ground truth and VISION-XL (see also the videos by following the links in the captions). Table 8 in Appendix B provides additional results. These results demonstrate that LVTINO yields more detailed and temporally coherent videos than VISION-XL. The ICM prior enhances spatial detail, while the VCM prior and TV_3^λ jointly improve temporal coherence, particularly in the challenging upsampling tasks B and C. For example, in Figure 6, LVTINO achieves noticeably sharper results with minimal motion blur and strong temporal coherence, whereas VISION-

³Which is trained on the GoPRO240 train dataset (Nah et al., 2016).

XL shows a staircase effect with repeated frames and unresolved blur, also evident in Figure 4. In Figure 5, VISION-XL exhibits temporal flickering, which our method eliminates via the VCM and TV models. Table 1 supports these visual findings: LVTINO achieves strong FVMD and LPIPS scores, reflecting accurate spatiotemporal dynamics and fine spatial detail.

436

437 **Other baselines.** We also report comparisons with ADMM-TV, a classical optimization-based
 438 method (we use the hyperparameters of (Kwon & Ye, 2025a)). We also considered comparing
 439 with VDPS (Kwon et al., 2025), however the backpropagation through Wan’s DiT and Decoder at
 440 resolution 1280×768 pixels required > 80 Gb of VRAM, exceeding the memory capacity of GPUs
 441 available in our academic HPC facility. Since LVTINO’s conditioning mechanism does not rely on
 442 automatic differentiation, it has significantly lower memory usage.

443

444 5 CONCLUSION

445

446 We introduced LVTINO, the first VCM-based zero-shot or PnP inverse solver for Bayesian restoration
 447 of high definition videos. By combining a VCM, a frame-wise ICM and TV3 regularization, LVTINO
 448 can recover subtle spatial temporal dynamics, as evidenced by its strong performance on challenging
 449 tasks and datasets involving both moving objects and camera shake. Moreover, LVTINO’s condi-
 450 tioning mechanism ensures strong measurement consistency and perceptual quality, while requiring
 451 as few as 8 NFEs and no automatic differentiation. We anticipate that upcoming advancements in
 452 distillation of VCMs will further improve the accuracy and computational efficiency of LVTINO.

453

454 Future research will explore sequential and auto-regressive Bayesian strategies for the restoration
 455 of long videos, as well as better Langevin sampling scheme through the use of more sophisticated
 456 numerical integrators. Another promising research direction is the incorporation of automatic prompt
 457 optimization by maximum likelihood estimation, as considered in Spagnoletti et al. (2025) for image
 458 restoration tasks. Furthermore, it would be interesting to specialize LVTINO for particular tasks
 459 through the unfolding and distillation framework of Kemajou Mbakam et al. (2025).

460

461

462

463

464

465

466

467

468

469

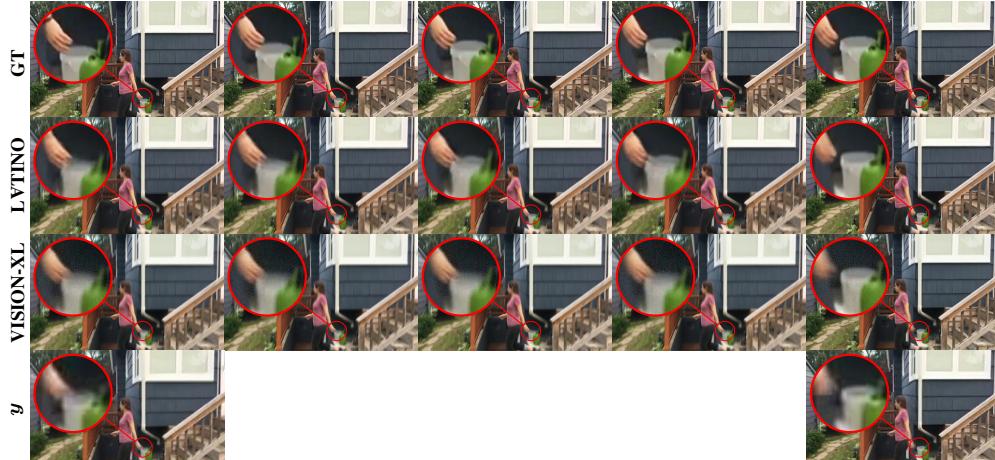
470

471

472

473

474



475 Figure 4: Visual comparison for **Problem A (seq. A1)**. The continuity of the motion is retrieved as
 476 the hand moves from right to left. See full videos: **LVTINO** and **VISION-XL**.

477

478

479

480

481

482

483

484

485

Figure 5: Visual comparison for **Problem B (seq. B2)**. The flickering problem is solved by LVTINO (see darker and lighter area behind the chair). See full videos: **LVTINO** and **VISION-XL**.

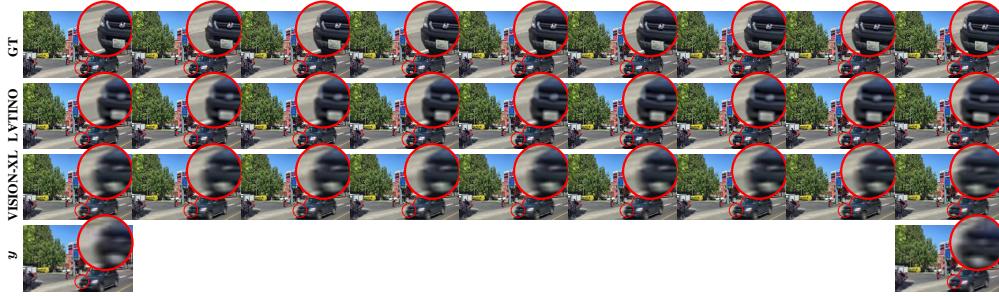


Figure 6: Visual comparison for **Problem C (seq. C2)**. The motion is retrieved by the reconstruction. See full videos (81 frames for a better direct comparison): **LVTINO** and **VISION-XL**.

518 REPRODUCIBILITY STATEMENT

520 To allow complete reproducibility, we commit to publishing the full code on GitHub upon acceptance.
 521 Furthermore, the LVTINO algorithm is fully described as pseudo-code in Algorithm 1 and the details
 522 contained in Table 4 and Sections 4, A.1, A.2 describe the implementations of the key components.

524 REFERENCES

526 Joe Benton, George Deligiannidis, and Arnaud Doucet. Error bounds for flow matching methods,
 527 2024. URL <https://arxiv.org/abs/2305.16860>.

528 A. Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, and Do-
 529 minik Lorenz. Stable video diffusion: Scaling latent video diffusion models to large datasets.
 530 *ArXiv*, abs/2311.15127, 2023a. URL <https://api.semanticscholar.org/CorpusID:265312551>.

533 A. Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
 534 Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models.
 535 *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22563–
 536 22575, 2023b. URL <https://api.semanticscholar.org/CorpusID:258187553>.

538 A. Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with
 539 applications to imaging. *Journal of Mathematical Imaging and Vision*, 40:120–145, 2011. URL
<https://api.semanticscholar.org/CorpusID:261281173>.

540 Haoxin Chen, Menghan Xia, Yin-Yin He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing,
 541 Yaofang Liu, Qifeng Chen, Xintao Wang, Chao-Liang Weng, and Ying Shan. Videocrafter1:
 542 Open diffusion models for high-quality video generation. *ArXiv*, abs/2310.19512, 2023. URL
 543 <https://api.semanticscholar.org/CorpusID:264803867>.

544

545 Hyung Won Chung, Noah Constant, Xavier García, Adam Roberts, Yi Tay, Sharan Narang, and Orhan
 546 Firat. Unimax: Fairer and more effective language sampling for large-scale multilingual pretraining.
 547 *ArXiv*, abs/2304.09151, 2023. URL <https://api.semanticscholar.org/CorpusID:258187051>.

548

549 Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul Ye.
 550 Diffusion posterior sampling for general noisy inverse problems. In *The Eleventh International
 551 Conference on Learning Representations*, 2022.

552

553 Nathaniel Cohen, Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, and Tomer
 554 Michaeli. Slicedit: Zero-shot video editing with text-to-image diffusion models using spatio-
 555 temporal slices. *ArXiv*, abs/2405.12211, 2024. URL <https://api.semanticscholar.org/CorpusID:269921890>.

556

557 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Association*,
 558 106:1602 – 1614, 2011. URL <https://api.semanticscholar.org/CorpusID:23284154>.

560

561 Tomer Garber and Tom Tirer. Zero-shot image restoration using few-step guidance of consistency
 562 models (and beyond). In *Proceedings of the Computer Vision and Pattern Recognition Conference
 563 (CVPR)*, pp. 2398–2407, June 2025.

564

565 Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems.
 566 *Journal of research of the National Bureau of Standards*, 49:409–435, 1952. URL <https://api.semanticscholar.org/CorpusID:2207234>.

567

568 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 569 neural information processing systems*, 33:6840–6851, 2020.

570

571 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
 572 Fleet. Video diffusion models. *ArXiv*, abs/2204.03458, 2022. URL <https://api.semanticscholar.org/CorpusID:248006185>.

573

574 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale
 575 pretraining for text-to-video generation via transformers. *ArXiv*, abs/2205.15868, 2022. URL
 576 <https://api.semanticscholar.org/CorpusID:249209614>.

577

578 Samuel Hurault, Arthur Leclaire, and Nicolas Papadakis. Gradient step denoiser for convergent
 579 plug-and-play. In *International Conference on Learning Representations (ICLR)*, 2022.

580

581 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
 582 models. *Advances in Neural Information Processing Systems*, 35:23593–23606, 2022.

583

584 Charlesquin Kemajou Mbakam, Jonathan Spence, and Marcelo Pereyra. Learning few-step posterior
 585 samplers by unfolding and distillation of diffusion models, 2025. URL <https://arxiv.org/abs/2507.02686>.

586

587 Beomsu Kim, Jaemin Kim, Jeongsol Kim, and Jong Chul Ye. Generalized consistency trajectory
 588 models for image manipulation. *ArXiv*, abs/2403.12510, 2024. URL <https://api.semanticscholar.org/CorpusID:268532278>.

589

590 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *preprint
 591 arXiv:1412.6980*, 2014. URL <https://api.semanticscholar.org/CorpusID:6628106>.

592

593 Nikita Kornilov, Alexander Gasnikov, and Alexander Korotin. Optimal flow matching: Learning
 straight trajectories in just one step. *arXiv preprint arXiv:2403.13117*, 2024.

594 Taesung Kwon and Jong Chul Ye. Solving video inverse problems using image diffusion models,
 595 2025a. URL <https://arxiv.org/abs/2409.02574>.

596

597 Taesung Kwon and Jong Chul Ye. Vision-xl: High definition video inverse problem solver using
 598 latent image diffusion models, 2025b. URL <https://arxiv.org/abs/2412.00156>.

599

600 Taesung Kwon, Gookho Song, Yoosun Kim, Jeongsol Kim, Jong Chul Ye, and Mooseok Jang. Video
 601 diffusion posterior sampling for seeing beyond dynamic scattering layers. *IEEE transactions on pat-
 602 tern analysis and machine intelligence*, PP, 2025. URL <https://api.semanticscholar.org/CorpusID:280648146>.

603

604 Rémi Laumont, Valentin De Bortoli, Andrés Almansa, Julie Delon, Alain Durmus, and Marcelo
 605 Pereyra. Bayesian imaging using plug & play priors: when langevin meets tweedie. *SIAM Journal
 606 on Imaging Sciences*, 15(2):701–737, 2022.

607

608 Xiang Li, Soo Min Kwon, Shijun Liang, Ismail R. Alkhouri, Saiprasad Ravishankar, and Qing
 609 Qu. Decoupled data consistency with diffusion purification for image restoration, 2025. URL
 610 <https://arxiv.org/abs/2403.06054>.

611 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 612 for generative modeling, 2023. URL <https://arxiv.org/abs/2210.02747>.

613

614 Jiahe Liu, Youran Qu, Qi Yan, Xiaohui Zeng, Lele Wang, and Renjie Liao. Fréchet video motion
 615 distance: A metric for evaluating motion consistency in videos. *ArXiv*, abs/2407.16124, 2024.
 616 URL <https://api.semanticscholar.org/CorpusID:271334698>.

617

618 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 619 transfer data with rectified flow, 2022. URL <https://arxiv.org/abs/2209.03003>.

619

620 Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
 621 Synthesizing high-resolution images with few-step inference. *ArXiv*, abs/2310.04378, 2023a. URL
 622 <https://api.semanticscholar.org/CorpusID:263831037>.

623

624 Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo Huang,
 625 Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module, 2023b. URL
 626 <https://arxiv.org/abs/2311.05556>.

627

628 Zhengyao Lv, Chenyang Si, Tianlin Pan, Zhaoxi Chen, Kwan-Yee K. Wong, Yu Qiao, and Zi-
 629 wei Liu. Dcm: Dual-expert consistency model for efficient and high-quality video generation.
 630 *ArXiv*, abs/2506.03123, 2025. URL <https://api.semanticscholar.org/CorpusID:279119323>.

631

632 Ségalène Martin, Anne Gagneux, Paul Hagemann, and Gabriele Steidl. Pnp-flow: Plug-and-play im-
 633 age restoration with flow matching, 2025. URL <https://arxiv.org/abs/2410.02423>.

633

634 Tim Meinhardt, Michael Moeller, Caner Hazirbas, and Daniel Cremers. Learning proximal operators:
 635 Using denoising networks for regularizing inverse imaging problems. In *IEEE International
 636 Conference on Computer Vision (ICCV)*, pp. 1799–1808. IEEE Computer Society, 2017.

637

638 Antoine Monod, Julie Delon, Matias Tassano, and Andrés Almansa. Video restoration with a deep
 639 plug-and-play prior. *arXiv preprint arXiv:2209.02854*, 2022.

640

641 Badr Moufad, Yazid Janati, Lisa Bedin, Alain Oliviero Durmus, randal douc, Eric Moulines, and
 642 Jimmy Olsson. Variational diffusion posterior sampling with midpoint guidance. In *The Thirteenth
 643 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=6EUtjXAvmj>.

644

645 Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale convolutional neural network
 646 for dynamic scene deblurring. *2017 IEEE Conference on Computer Vision and Pattern Recognition
 647 (CVPR)*, pp. 257–265, 2016. URL <https://api.semanticscholar.org/CorpusID:8671030>.

648 William S. Peebles and Saining Xie. Scalable diffusion models with transformers. *2023 IEEE/CVF*
 649 *International Conference on Computer Vision (ICCV)*, pp. 4172–4182, 2022. URL <https://api.semanticscholar.org/CorpusID:254854389>.

650

651 Marcelo Pereyra. Proximal markov chain monte carlo algorithms. *Statistics and Computing*, 26:
 652 745–760, 2016.

653

654 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 655 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 656 synthesis. In *The Twelfth International Conference on Learning Representations*.

657

658 Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
 659 and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch couplings,
 660 2023. URL <https://arxiv.org/abs/2304.14772>.

661

662 Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 663 resolution image synthesis with latent diffusion models. *2022 IEEE/CVF Conference on*
664 Computer Vision and Pattern Recognition (CVPR), pp. 10674–10685, 2021. URL <https://api.semanticscholar.org/CorpusID:245335280>.

665

666 Wonyong Seo, Jihyong Oh, and Munchurl Kim. Bim-vfi: Bidirectional motion field-guided frame
 667 interpolation for video with non-uniform motions, 2025. URL <https://arxiv.org/abs/2412.11365>.

668

669 Wei Shang, Dongwei Ren, Yi Yang, Hongzhi Zhang, Kede Ma, and Wangmeng Zuo. Joint video multi-
 670 frame interpolation and deblurring under unknown exposure time. *2023 IEEE/CVF Conference*
671 on Computer Vision and Pattern Recognition (CVPR), pp. 13935–13944, 2023. URL <https://api.semanticscholar.org/CorpusID:257767169>.

672

673 Jascha Narain Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
 674 unsupervised learning using nonequilibrium thermodynamics. *ArXiv*, abs/1503.03585, 2015. URL
<https://api.semanticscholar.org/CorpusID:14888175>.

675

676 Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
 677 models for inverse problems. In *International Conference on Learning Representations*, 2023a.
 678 URL <https://api.semanticscholar.org/CorpusID:259298715>.

679

680 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 681 In *Neural Information Processing Systems*, 2019. URL <https://api.semanticscholar.org/CorpusID:196470871>.

682

683 Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
 684 *Advances in neural information processing systems*, 33:12438–12448, 2020.

685

686 Yang Song, Jascha Narain Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Er-
 687 mon, and Ben Poole. Score-based generative modeling through stochastic differential equations.
 688 *ArXiv*, abs/2011.13456, 2020. URL <https://api.semanticscholar.org/CorpusID:227209335>.

689

690 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *International*
691 Conference on Machine Learning, 2023b. URL <https://api.semanticscholar.org/CorpusID:257280191>.

692

693 Alessio Spagnoletti, Jean Prost, Andrés Almansa, Nicolas Papadakis, and Marcelo Pereyra. Latino-
 694 pro: Latent consistency inverse solver with prompt optimization, 2025. URL <https://arxiv.org/abs/2503.12615>.

695

696 Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo Sapiro, Wolfgang Heidrich, and Oliver Wang.
 697 Deep video deblurring for hand-held cameras. *2017 IEEE Conference on Computer Vision and*
698 Pattern Recognition (CVPR), pp. 237–246, 2017. URL <https://api.semanticscholar.org/CorpusID:5872410>.

699

700 Yu Sun, Brendt Wohlberg, and Ulugbek S Kamilov. An online plug-and-play algorithm for regularized
 701 image reconstruction. *IEEE Transactions on Computational Imaging*, 5(3):395–408, 2019.

702 Julián Tachella, Matthieu Terris, Samuel Hurault, Andrew Wang, Dongdong Chen, Minh-Hai
 703 Nguyen, Maxime Song, Thomas Davies, Leo Davy, Jonathan Dong, Paul Escande, Johannes
 704 Hertrich, Zhiyuan Hu, Tobías I. Liaudat, Nils Laurent, Brett Levac, Mathurin Massias, Thomas
 705 Moreau, Thibaut Modrzyk, Brayan Monroy, Sebastian Neumayer, J’er’emy Scanvic, Florian
 706 Sarron, Victor Sechaud, Georg Schramm, Romain Vo, and Pierre Weiss. Deepinverse: A
 707 python package for solving imaging inverse problems with deep learning. 2025. URL
 708 <https://api.semanticscholar.org/CorpusID:278910576>.

709 Hong Ye Tan, Subhadip Mukherjee, Junqi Tang, and Carola-Bibiane Schönlieb. Provably convergent
 710 plug-and-play quasi-Newton methods. *SIAM Journal on Imaging Sciences*, 17(2):785–819, 2024.
 711

712 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 713 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 714 with minibatch optimal transport, 2024. URL <https://arxiv.org/abs/2302.00482>.

715 Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. Plug-and-Play pri-
 716 ors for model based reconstruction. In *2013 IEEE Global Conference on Signal and In-
 717 formation Processing*, pp. 945–948. IEEE, dec 2013. ISBN 978-1-4799-0248-4. doi: 10.
 718 1109/GlobalSIP.2013.6737048. URL <http://brendt.wohlberg.net/publications/pdf/venkatakrishnan-2013-plugandplay2.pdf>.

719

720 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural Compu-
 721 tation*, 23:1661–1674, 2011. URL <https://api.semanticscholar.org/CorpusID:5560643>.
 722

723

724 Maxime Vono, Nicolas Dobigeon, and Pierre Chainais. Split-and-augmented Gibbs sampler -
 725 Application to large-scale inference problems. *IEEE Transactions on Signal Processing*, 67(6):
 726 1648–1661, 2019.

727

728 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
 729 Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
 730 Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Xiaofeng Meng, Ningying Zhang,
 731 Pandeng Li, Ping Wu, Ruihang Chu, Rui Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing
 732 Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wen-Chao Zhou,
 733 Wente Wang, Wen Shen, Wenyuan Yu, Xianzhong Shi, Xiaomin Huang, Xin Xu, Yan Kou, Yan-
 734 Mei Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu,
 735 Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhengbin
 736 Han, Zhigang Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
 737 *ArXiv*, abs/2503.20314, 2025. URL <https://api.semanticscholar.org/CorpusID:277321639>.

738

739 Xiang Wang, Shiwei Zhang, Han Zhang, Yu Liu, Yingya Zhang, Changxin Gao, and Nong Sang.
 740 Videolcm: Video latent consistency model. *ArXiv*, abs/2312.09109, 2023. URL <https://api.semanticscholar.org/CorpusID:266209871>.

741

742 Zhou Wang, Alan Conrad Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality assessment:
 743 from error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13:600–612,
 744 2004. URL <https://api.semanticscholar.org/CorpusID:207761262>.

745

746 Ping Wu, Kai Zhu, Yu Liu, Liming Zhao, Wei Zhai, Yang Cao, and Zhengjun Zha. Improved video
 747 vae for latent video diffusion model. *2025 IEEE/CVF Conference on Computer Vision and Pattern
 748 Recognition (CVPR)*, pp. 18124–18133, 2024. URL <https://api.semanticscholar.org/CorpusID:273962787>.

749

750 Tongda Xu, Ziran Zhu, Jian Li, Dailan He, Yuanyuan Wang, Ming Sun, Ling Li, Hongwei Qin,
 751 Yan Wang, Jingjing Liu, and Ya-Qin Zhang. Consistency model is an effective posterior sample
 752 approximation for diffusion inverse solvers, 2024. URL <https://arxiv.org/abs/2403.12063>.

753

754 Tianwei Yin, Michael Gharbi, Richard Zhang, Eli Shechtman, Frédo Durand, William T. Freeman,
 755 and Taesung Park. One-step diffusion with distribution matching distillation. *2024 IEEE/CVF
 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6613–6623, 2023. URL
<https://api.semanticscholar.org/CorpusID:265506768>.

756 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill
 757 Freeman. Improved distribution matching distillation for fast image synthesis. *Advances in Neural*
 758 *Information Processing Systems*, 37:47455–47487, 2024a.

759
 760 Tianwei Yin, Qiang Zhang, Richard Zhang, William T. Freeman, Frédo Durand, Eli Shechtman,
 761 and Xun Huang. From slow bidirectional to fast autoregressive video diffusion models. 2025
 762 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22963–22974,
 763 2024b. URL <https://api.semanticscholar.org/CorpusID:274610175>.

764 Yuanhao Zhai, Kevin Qinghong Lin, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Chung-Ching Lin,
 765 David S. Doermann, Junsong Yuan, and Lijuan Wang. Motion consistency model: Accelerating
 766 video diffusion with disentangled motion-appearance distillation. *ArXiv*, abs/2406.06890, 2024.
 767 URL <https://api.semanticscholar.org/CorpusID:270379579>.

768 K. Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. Plug-and-
 769 play image restoration with deep denoiser prior. *IEEE Transactions on Pattern Analysis and*
 770 *Machine Intelligence*, 44:6360–6376, 2020. URL <https://api.semanticscholar.org/CorpusID:221377171>.

771 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 772 effectiveness of deep features as a perceptual metric. 2018 *IEEE/CVF Conference on Computer*
 773 *Vision and Pattern Recognition*, pp. 586–595, 2018. URL <https://api.semanticscholar.org/CorpusID:4766599>.

774 Youjian Zhang, Chaoyue Wang, Stephen J Maybank, and Dacheng Tao. Exposure trajectory recovery
 775 from motion blur. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):
 776 7490–7504, 2021.

777 Yuanzhi Zhu, K. Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc Van Gool.
 778 Denoising diffusion models for plug-and-play image restoration. 2023 *IEEE/CVF Conference*
 779 *on Computer Vision and Pattern Recognition Workshops (CVPRW)*, pp. 1219–1229, 2023. URL
 780 <https://api.semanticscholar.org/CorpusID:258714952>.

785 A APPENDIX

786 A.1 IMPLEMENTATION OF THE FORWARD OPERATORS

787 For all the inverse problems considered, we use the following formulation

$$788 \mathcal{A} = \text{SpatialSR} \circ \text{TemporalSR}.$$

789 For *Temporal SR* $\times 4 + \text{Spatial SR}$ $\times 4$, we apply a temporal average pooling with factor 4 (with
 790 end padding if T is not divisible), followed by frame-wise spatial downsampling with factor 4
 791 (DeepInv.Downsampling Tachella et al. (2025)). The adjoint \mathcal{A}^\top first applies the spatial
 792 adjoint (back-projection to HR) and then the adjoint of temporal averaging (nearest upsample by 4
 793 divided by 4, with folding of the padded tail back to the last frame when T is not a multiple of 4).
 794 The same approach, but with $\times 8$, is adopted for the *Temporal SR* $\times 8 + \text{Spatial SR}$ $\times 8$ problem.
 795 For the *Temporal blur* + *Spatial SR* $\times 8$ task, we use a 1D temporal uniform convolution with circular
 796 boundary conditions via FFT of window size of 7, followed by frame-wise spatial downsampling
 797 with factor 8; the adjoint corresponds to spatial back-projection and time-reversed temporal filtering
 798 via FFT.

803 A.2 IMPLEMENTATION OF LIKELIHOOD PROXIMAL STEPS

804 We will now describe the implementation of the likelihood updates in the splitting scheme (Equation(7))
 805 instantiated by task-specific linear operators \mathcal{A} over videos $\mathbf{x} \in \mathbb{R}^{(T+1) \times H \times W \times 3}$. We remind
 806 that we have to solve the following problems:

$$807 \arg \min_{\mathbf{u} \in \mathbb{R}^{(T+1) \times H \times W \times 3}} g_{\mathbf{y}}(\mathbf{u}) + \phi_{\lambda}(\mathbf{u}) + \frac{1}{2\delta\eta} \|\tilde{\mathbf{x}}_{k+1/4} - \mathbf{u}\|_2^2, \quad (8)$$

810 and
811

812

$$\arg \min_{\mathbf{u} \in \mathbb{R}^{(T+1) \times H \times W \times 3}} g_{\mathbf{y}}(\mathbf{u}) + \frac{1}{2\delta(1-\eta)} \|\tilde{\mathbf{x}}_{k+3/4} - \mathbf{u}\|_2^2, \quad (9)$$

813

814 where $g_{\mathbf{y}}(\cdot) = \frac{1}{2\sigma_n^2} \|\mathcal{A} \cdot - \mathbf{y}\|_2^2$.

815

816 Starting from Equation (9), we notice that this is exactly the shape of the $\text{prox}_{\delta(1-\eta)/2 \|\mathcal{A} \cdot - \mathbf{y}\|_2^2}(\mathbf{u})$,
817 we thus provide details about the computation of this step.

818

819 **Quadratic proximal (ℓ_2 data term).** Given $\epsilon > 0$ (which may include δ, η as well as the noise
820 variance σ_n^2), the quadratic likelihood proximal operator

821

822

$$\text{prox}_{\frac{\epsilon}{2} \|\mathcal{A} \cdot - \mathbf{y}\|_2^2}(\mathbf{u}) = \arg \min_{\mathbf{x}} \frac{\epsilon}{2} \|\mathcal{A}\mathbf{x} - \mathbf{y}\|_2^2 + \frac{1}{2} \|\mathbf{x} - \mathbf{u}\|_2^2$$

823

824 reduces to the normal equations

825

826

$$(\text{Id} + \epsilon \mathcal{A}^\top \mathcal{A}) \mathbf{x} = \mathbf{u} + \epsilon \mathcal{A}^\top \mathbf{y},$$

827

828 where Id is the identity operator. The exact solution is computationally tractable in high dimensions
829 when \mathcal{A} admits a closed-form and fast SVD (Zhang et al., 2020)⁴, but to make our method applicable
830 to general operators, we solve this linear system approximately using ~ 10 *Conjugate Gradient*
831 (Hestenes & Stiefel, 1952) iterations.

832

833 CG is a Krylov-subspace method that iteratively refines an approximate solution $\mathbf{x}^{(k)}$ without
834 explicitly inverting $\text{Id} + \epsilon \mathcal{A}^\top \mathcal{A}$. Starting from the initial guess $\mathbf{x}^{(0)} = \mathbf{u}$, we iteratively update:

835

$$\begin{aligned} \mathbf{r}^{(k)} &= \mathbf{b} - (\text{Id} + \epsilon \mathcal{A}^\top \mathcal{A}) \mathbf{x}^{(k)}, & \mathbf{b} &:= \mathbf{u} + \epsilon \mathcal{A}^\top \mathbf{y}, \\ \mathbf{p}^{(k)} &= \mathbf{r}^{(k)} + \beta^{(k)} \mathbf{p}^{(k-1)}, & \beta^{(k)} &:= \frac{\|\mathbf{r}^{(k)}\|_2^2}{\|\mathbf{r}^{(k-1)}\|_2^2}, \\ \alpha^{(k)} &= \frac{\|\mathbf{r}^{(k)}\|_2^2}{\langle \mathbf{p}^{(k)}, (\text{Id} + \epsilon \mathcal{A}^\top \mathcal{A}) \mathbf{p}^{(k)} \rangle}, \\ \mathbf{x}^{(k+1)} &= \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}, & \mathbf{r}^{(k+1)} &= \mathbf{r}^{(k)} - \alpha^{(k)} (\text{Id} + \epsilon \mathcal{A}^\top \mathcal{A}) \mathbf{p}^{(k)}. \end{aligned}$$

836

837 The algorithm terminates after a fixed number of iterations or once the residual norm $\|\mathbf{r}^{(k)}\|_2$ falls
838 below a tolerance (e.g. 10^{-6}). Because $\text{Id} + \epsilon \mathcal{A}^\top \mathcal{A}$ is symmetric positive definite, CG converges
839 rapidly.

840

841 This iterative scheme is memory-efficient, requiring only matrix–vector products with \mathcal{A} and \mathcal{A}^\top ,
842 and avoids the explicit computation of $\mathcal{A}^\top \mathcal{A}$, making it suitable for large-scale inverse problems and
843 long video sequences.

844

845 **Spatio-temporal TV_3 proximal (PDHG).** For the regularised subproblem (8), we solve

846

847

$$\min_{\mathbf{u}} \underbrace{\frac{1}{2\sigma_n^2} \|\mathcal{A}\mathbf{u} - \mathbf{y}\|_2^2 + \frac{1}{2\delta\eta} \|\mathbf{u} - \tilde{\mathbf{x}}_{k+1/4}\|_2^2}_{f(\mathbf{u})} + \underbrace{\phi_{\lambda}(\mathbf{u})}_{g(D_{\lambda} \mathbf{u})}, \quad (10)$$

848

849 where

850

851

$$\phi_{\lambda}(\mathbf{u}) = \text{TV}_{3,\lambda}(\mathbf{u}) := \sum_{\tau,c,i,j} \sqrt{\lambda_h^2 (D_h \mathbf{u}_{\tau,c,i,j})^2 + \lambda_v^2 (D_v \mathbf{u}_{\tau,c,i,j})^2 + \lambda_t^2 (D_{\tau} \mathbf{u}_{\tau,c,i,j})^2},$$

852

853 and $D_{\lambda} := [\lambda_h D_h, \lambda_v D_v, \lambda_{\tau} D_{\tau}]$, so that $g(D_{\lambda} \mathbf{u}) = \|D_{\lambda} \mathbf{u}\|_2$.

854

855

856 ⁴For **Problems A, B, C**, the SVD of \mathcal{A} can be expressed in terms of Fourier transforms, only if convolutions
857 are periodic, which is not always the case for the kind of spatial and temporal blur we have in our case.

858

864 The associated subproblem in (10) is convex and can be solved using the *primal–dual hybrid gradient*
 865 (PDHG, Chambolle–Pock) algorithm Chambolle & Pock (2011). Let $\mathbf{p} = (p_h, p_v, p_\tau)$ denote the
 866 dual variable with three components per voxel. Given stepsizes $\rho, \sigma > 0$ such that $\rho\sigma\|D_\lambda\|^2 < 1$ and
 867 extrapolation $\theta \in [0, 1]$, the iterations read:

$$\begin{aligned} 869 \quad \mathbf{p}^{k+1} &= \text{prox}_{\sigma g^*}(\mathbf{p}^k + \sigma D_\lambda \bar{\mathbf{u}}^k) = \frac{\mathbf{p}^k + \sigma D_\lambda \bar{\mathbf{u}}^k}{\max(1, \|\mathbf{p}^k + \sigma D_\lambda \bar{\mathbf{u}}^k\|_2)} \quad (\text{projection onto unit } \ell_2 \text{ ball}), \\ 870 \\ 871 \quad \mathbf{u}^{k+1} &= \text{prox}_{\rho f}(\mathbf{u}^k - \rho D_\lambda^\top \mathbf{p}^{k+1}), \\ 872 \\ 873 \quad \text{obtained by solving } & (I + \rho(\mathcal{A}^\top \mathcal{A} + \frac{1}{\delta\eta} I)) \mathbf{u}^{k+1} = \mathbf{z} + \rho \left(\mathcal{A}^\top \mathbf{y} + \frac{1}{\delta\eta} \tilde{\mathbf{x}}_{k+1/4} \right), \\ 874 \\ 875 \quad \text{with } \mathbf{z} = \mathbf{u}^k - \rho D_\lambda^\top \mathbf{p}^{k+1}, \\ 876 \\ 877 \quad \bar{\mathbf{u}}^{k+1} &= \mathbf{u}^{k+1} + \theta(\mathbf{u}^{k+1} - \mathbf{u}^k). \end{aligned}$$

878 Here $D_\lambda^\top \mathbf{p} = \lambda_h D_h^\top p_h + \lambda_v D_v^\top p_v + \lambda_\tau D_\tau^\top p_\tau$ is the weighted divergence, and the proximal step for
 879 $f(\mathbf{u}) = \frac{1}{2\sigma_n^2} \|\mathcal{A}\mathbf{u} - \mathbf{y}\|_2^2 + \frac{1}{2\delta\eta} \|\mathbf{u} - \tilde{\mathbf{x}}_{k+1/4}\|_2^2$ is implemented by solving the normal equations. As
 880 in our implementation $\delta\eta$ is often $\geq 10^5$, to simplify the computations we remove the regularization
 881 term $\frac{1}{2\delta\eta} \|\mathbf{u} - \tilde{\mathbf{x}}_{k+1/4}\|_2^2$. Around 10 iterations of the CG algorithm can be used to solve the normal
 882 equations, as they are warm-started with \mathbf{u}^k .

883 In practice, we apply Chambolle–Pock (~ 200 iterations) only in the *pure temporal TV* case ($\lambda_h =$
 884 $\lambda_v = 0$). When spatial weights are nonzero ($\lambda_h > 0$ or $\lambda_v > 0$), we instead minimise (8) directly
 885 with ADAM (Kingma & Ba, 2014) (learning rate 10^{-3} , 100 iterations), which proved more robust in
 886 this setting.

889 A.3 THE LATINO ALGORITHM

890 In order to clarify the practical implementation of the splitting scheme introduced in Equation (5), we
 891 provide here the pseudo-code to implement LATINO as described in Spagnoletti et al. (2025).

893 **Algorithm 2** LATINO

```

895 1: given  $\mathbf{x}_0 = \mathcal{A}^\dagger \mathbf{y}$ , text prompt  $c$ , number of steps  $N$ , latent consistency model  $f_\theta$ , latent space
896   decoder  $\mathcal{D}$ , latent space encoder  $\mathcal{E}$ , sequences  $\{t_k, \delta_k\}_{k=0}^{N-1}$ .
897 2: for  $k = 0, \dots, N-1$  do
898   3:    $\epsilon \sim \mathcal{N}(0, \text{Id})$ 
899   4:    $\mathbf{z}_{t_k}^{(k)} \leftarrow \sqrt{\alpha_{t_k}} \mathcal{E}(\mathbf{x}_k) + \sqrt{1 - \alpha_{t_k}} \epsilon$  ▷ Encode
900   5:    $\mathbf{u}^{(k)} \leftarrow \mathcal{D}(f_\theta(\mathbf{z}_{t_k}^{(k)}, t_k, c))$  ▷ Decode
901   6:    $\mathbf{x}_{k+1} \leftarrow \text{prox}_{\delta_k g_y}(\mathbf{u}^{(k)})$  ▷  $g_y : \mathbf{x} \mapsto -\log p(\mathbf{y}|\mathbf{x})$ 
902 7: end for
903 8: return  $\mathbf{x}_N$ 
904

```

906 A.4 THE VISION-XL ALGORITHM

907 VISION-XL Kwon & Ye (2025b) (Video Inverse-problem Solver using latent diffusION models) is a
 908 SOTA framework for high-resolution video inverse problems, LDMs such as SDXL to restore videos
 909 from measurements affected by spatio-temporal degradations.

910 **Components** VISION-XL integrates three main contributions: (i) *Pseudo-batch inversion*, which
 911 initializes the sampling process from latents obtained by DDIM-inverting the measurement frames.
 912 (ii) *Pseudo-batch sampling*, which splits latent video frames and samples them in parallel using
 913 Tweedie’s formula Efron (2011), reducing memory requirements to that of a single frame. (iii)
 914 *Pixel-space data-consistency updates*, where each denoised batch $\hat{\mathbf{x}}_t$ is refined using l iterations of a
 915 quadratic proximal step

$$\bar{\mathbf{x}}_t = \arg \min_{\mathbf{x} \in \hat{\mathbf{x}}_t + K_l} \|\mathbf{y} - \mathcal{A}(\mathbf{x})\|_2^2,$$

918 typically solved via conjugate gradient (CG). This enforces alignment with the measurement before
 919 re-encoding to the latent space and re-noising for the next step.
 920

921 **Overall Algorithm.** Starting from $\mathbf{z}_\rho = \text{DDIM}^{-1}(E_\theta(\mathbf{y}))$ with $\rho \approx 0.3T$, VISION-XL alternates
 922 denoising in latent space and proximal data-consistency refinement in pixel space. After decoding
 923 the denoised latent batch $\hat{\mathbf{x}}_t = D_\theta(\hat{\mathbf{z}}_t)$, a low-pass filter is applied to suppress high-frequency
 924 inconsistencies before re-encoding and re-noising, yielding \mathbf{z}_{t-1} . This process is repeated until $t = 0$,
 925 as shown in Algorithm 3.
 926

Algorithm 3 VISION-XL

927 **Require:** Pretrained VAE encoder \mathcal{E}_θ , decoder \mathcal{D}_θ , denoiser $E_\theta^{(t)}$, measurement \mathbf{x} , forward operator
 928 \mathcal{A} , initial DDIM inversion step ρ , CG iterations l , low-pass filter widths $\{\sigma_t\}$, noise schedule
 929 $\{\bar{\alpha}_t\}_{t=1}^T$
 930 1: $\mathbf{z}_0 \leftarrow \mathcal{E}_\theta(\mathbf{y})$
 931 2: $\mathbf{z}_\rho \leftarrow \text{DDIM}^{-1}(\mathbf{z}_0)$ \triangleright Step 1: **Pseudo-batch inversion** (informative latent initialization)
 932 3: **for** $t = \rho, \dots, 2$ **do**
 933 4: $\hat{\mathbf{z}}_t \leftarrow \frac{\mathbf{z}_t - \sqrt{1 - \bar{\alpha}_t} E_\theta^{(t)}(\mathbf{z}_t)}{\sqrt{\bar{\alpha}_t}}$ \triangleright Step 2: **Pseudo-batch sampling** (Tweedie's formula)
 934 5: $\hat{\mathbf{x}}_t \leftarrow \mathcal{D}_\theta(\hat{\mathbf{z}}_t)$
 935 6: $\bar{\mathbf{x}}_t \leftarrow \arg \min_{\mathbf{x} \in \hat{\mathbf{x}}_t + \mathcal{K}_l} \|\mathbf{y} - \mathcal{A}(\mathbf{x})\|_2^2$ \triangleright Step 3: **Data-consistency refinement** (multi-step
 936 proximal via l CG steps)
 937 7: $\hat{\mathbf{x}}_t \leftarrow \hat{\mathbf{x}}_t * h_{\sigma_t}$ \triangleright Step 4: **Scheduled low-pass filtering** (mitigate VAE error accumulation)
 938 8: $\bar{\mathbf{z}}_t \leftarrow \mathcal{E}_\theta(\bar{\mathbf{x}}_t)$
 939 9: $\mathbf{z}_{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \bar{\mathbf{z}}_t + \sqrt{1 - \bar{\alpha}_{t-1}} \mathcal{E}_t$ \triangleright Step 5: **Renoising** (batch-consistent noise)
 940 10: **end for**
 941 11: $\mathbf{z}_0 \leftarrow \frac{\mathbf{z}_1 - \sqrt{1 - \bar{\alpha}_1} E_\theta^{(1)}(\mathbf{z}_1)}{\sqrt{\bar{\alpha}_1}}$
 942 12: **return** $\mathbf{x}_0 \leftarrow \mathcal{D}_\theta(\mathbf{z}_0)$

943 **A.5 CONNECTION WITH PNP-FLOW ALGORITHMS**

944 The PnP-Flow Martin et al. (2025) algorithm designed to leverage Flow Matching image priors
 945 has some direct connections to LATINO Spagnoletti et al. (2025). For this reason, we now briefly
 946 introduce their setting and state how this idea can be extended to Video Flow models.

947 Let $X_0 \sim P_0$ denote a latent variable and $X_1 \sim P_1$ a data variable, with joint law $(X_0, X_1) \sim \pi$.
 948 Assume we are given a pre-trained Flow Matching model with velocity field

$$v_\theta : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d, \quad (t, \mathbf{x}) \mapsto v_\theta(t, \mathbf{x}),$$

949 learned by minimizing the Conditional Flow Matching (CFM) Lipman et al. (2023) loss along the
 950 straight-line interpolation Liu et al. (2022); Benton et al. (2024)

$$951 \quad X_t := e_t(X_0, X_1) := (1 - t)X_0 + tX_1, \quad t \in [0, 1].$$

952 **Time-dependent denoiser from Flow Matching.** From the velocity field v_θ we define a family of
 953 time-dependent denoisers

$$954 \quad D_t(\mathbf{x}) := \mathbf{x} + (1 - t)v_\theta(t, \mathbf{x}), \quad t \in [0, 1]. \quad (11)$$

955 To motivate this choice, recall that for each $t \in [0, 1]$ the population minimizer v_t^* of the CFM loss
 956 satisfies

$$957 \quad v_t^*(\mathbf{x}) = \mathbb{E}[X_1 - X_0 \mid X_t = \mathbf{x}],$$

958 so that in the ideal case $v_\theta(t, \cdot) = v_t^*(\cdot)$ one has

$$959 \quad D_t(\mathbf{x}) = \mathbf{x} + (1 - t)v_t^*(\mathbf{x}) = \mathbb{E}[X_1 \mid X_t = \mathbf{x}]. \quad (12)$$

972 Thus D_t coincides with the minimum mean-square-error (MMSE) estimator of the clean variable X_1
 973 given a noisy point X_t on the interpolation path. Equivalently, D_t solves the regression problem
 974

$$975 \quad D_t \in \arg \min_g \mathbb{E}[\|X_1 - g(X_t)\|^2],$$

976 and can be interpreted as a time-indexed denoiser that projects points lying along the straight path
 977 $(X_t)_{t \in [0,1]}$ onto the target distribution P_1 .
 978

979 In particular, if the FM flow is *straight-line* in the sense that $X_t = (1-t)X_0 + tX_1$ is realized by the
 980 associated flow ODE, then D_t can perfectly recover X_1 from X_t . Under mild regularity assumptions,
 981 one can show that the mean-squared error $\mathbb{E}[\|D_t(X_t) - X_1\|^2]$ vanishes for all $t \in [0, 1]$ if and only
 982 if the learned flow forms a straight-line Flow Matching pair between X_0 and X_1 .⁵ This highlights
 983 the particular suitability of straight-line FM models (e.g. OT-FM Pooladian et al. (2023); Tong et al.
 984 (2024)) as building blocks for PnP priors.

985 **PnP Flow Matching algorithm.** Martin et al. (2025) incorporates the denoisers $\{D_t\}_{t \in [0,1]}$ into a
 986 Forward–Backward Splitting (FBS) scheme for solving imaging inverse problems of the form
 987

$$988 \quad \min_{\mathbf{x} \in \mathbb{R}^d} F(\mathbf{x}) + R(\mathbf{x}),$$

990 where F is a differentiable data-fidelity term (e.g. negative log-likelihood), and R is an implicit
 991 prior induced by the generative model. Classical PnP-FBS Meinhardt et al. (2017); Sun et al. (2019);
 992 Hurault et al. (2022); Tan et al. (2024) replace the proximal operator of R by a *time-independent*
 993 denoiser, applied directly after the gradient step on F .

994 In contrast, PnP-Flow introduces two key modifications:

- 996 1. A *time-dependent* denoiser D_t as in (11), indexed by a schedule $(t_n)_n \subset [0, 1]$ with $t_n \nearrow 1$.
- 997 2. An intermediate *interpolation/reprojection step* that maps the gradient iterate back onto the
 998 straight FM path before denoising.

1000 Given an initial guess $\mathbf{x}_0 \in \mathbb{R}^d$, a sequence of times $(t_n)_n$ with $t_n \in [0, 1]$ and $t_n \rightarrow 1$, and stepsizes
 1001 $(\gamma_n)_n$, each PnP-Flow iteration at time t_n proceeds as follows:

1002 **1. Gradient step.** Move towards data consistency by a gradient descent step on F :

$$1004 \quad \mathbf{z}_n = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n).$$

1005 **2. Interpolation (reprojection) step.** The denoiser D_{t_n} is trained to act on points distributed as
 1006 X_{t_n} , i.e. lying on the straight-line FM path. The output \mathbf{z}_n of the gradient step does not
 1007 follow this distribution, so we “reproject” it onto the FM trajectory by drawing a latent
 1008 sample $\varepsilon \sim P_0$ and forming

$$1009 \quad \tilde{\mathbf{z}}_n = (1 - t_n) \varepsilon + t_n \mathbf{z}_n. \quad (13)$$

1011 Intuitively, $\tilde{\mathbf{z}}_n$ mimics a point at time t_n on a straight path between a latent sample from P_0
 1012 and the current gradient iterate.

1013 **3. PnP denoising step.** Finally, we apply the FM-induced denoiser at time t_n ,

$$1014 \quad \mathbf{x}_{n+1} = D_{t_n}(\tilde{\mathbf{z}}_n) = \tilde{\mathbf{z}}_n + (1 - t_n) v_\theta(t_n, \tilde{\mathbf{z}}_n), \quad (14)$$

1016 which pushes $\tilde{\mathbf{z}}_n$ towards the data distribution while still respecting the measurement model
 1017 encoded in F .

1018 The resulting discrete-time algorithm, summarized in Algorithm 4, alternates between a data-fidelity
 1019 gradient step, an interpolation onto FM trajectories, and a generative PnP denoising step. The time
 1020 parameter t_n controls the relative weight of the prior: for small t_n , the denoiser has a strong effect
 1021 (large factor $1 - t_n$ in (14)), while as $t_n \rightarrow 1$ the updates gradually become more likelihood-driven.
 1022 Comparing Algorithm 4 to Algorithm 2, it is clear that both adapt the same core idea: data-term \rightarrow
 1023 add noise \rightarrow denoise and repeat. Both LATINO and PnP-Flow reproject the intermediate step \mathbf{x}_n to a
 1024 point in the Flow ODE, to which is applied, in one case, the CM, and in the other, the FM denoiser.

1025 ⁵See Proposition 1 in Martin et al. (2025) for a precise statement and proof.

Algorithm 4 PnP–Flow Matching

```

1026
1027 1: Input: Pre-trained Flow Matching network  $v_\theta$ , time sequence  $(t_n)_n$  with  $t_n \in [0, 1]$  and  $t_n \nearrow 1$ ,
1028   step sizes  $(\gamma_n)_n$ , data-fidelity  $F : \mathbb{R}^d \rightarrow \mathbb{R}$ , prior  $P_0$  (e.g. standard Gaussian), initial iterate
1029    $\mathbf{x}_0 \in \mathbb{R}^d$ 
1030 2: for  $n = 0, 1, 2, \dots$  do
1031   3:    $\mathbf{z}_n \leftarrow \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n)$                                  $\triangleright$  gradient step on data-fidelity
1032   4:   Sample  $\varepsilon \sim P_0$                                                   $\triangleright$  latent noise
1033   5:    $\tilde{\mathbf{z}}_n \leftarrow (1 - t_n) \varepsilon + t_n \mathbf{z}_n$                           $\triangleright$  interpolation along the flow path
1034   6:    $\mathbf{x}_{n+1} \leftarrow \tilde{\mathbf{z}}_n + (1 - t_n) v_\theta(t_n, \tilde{\mathbf{z}}_n)$        $\triangleright$  PnP denoising with FM-induced denoiser  $D_{t_n}$ 
1035 7: end for
1036 8: Output: Reconstruction  $\mathbf{x}_{n+1}$ 
1037
1038

```

1039 The other difference is in the type of data-fidelity term adopted; in one case, it is a proximal step as
1040 a result of an implicit Euler step, while in the other, it is a gradient one, which is equivalent to an
1041 explicit Euler step and requires many more iterations to converge due to the limitations on γ_n .

1042 Given these similarities, it is natural to think about merging the two frameworks by leveraging few-
1043 step FMs Liu et al. (2022); Kornilov et al. (2024) in place of CMs. This would lead to a Flow-SAE
1044 that could be plugged into the LATINO algorithm and provide a different way to integrate the prior
1045 term in Equation (5). As a direct consequence, given a video FM prior, it can be deployed in place
1046 of the VCM in our Algorithm 1, and benefit from the modular framework introduced in this work,
1047 as it can be coupled with an ICM, or an image FM prior, and the TV3 term. We believe that future
1048 research may benefit from this Flow-LVTINO formulation to improve the quality of restorations and
1049 further generalize our setting.

1050 **A.6 ABLATION STUDY**

1051 To better understand the impact of the data-consistency updates in LVTINO, we perform an ablation
1052 study comparing different strategies for the likelihood *proximal steps* appearing in Equation (7).
1053 Furthermore, we provide results on **Problem A** and **Problem B** obtained with a lighter version of
1054 LVTINO that only includes the VCM prior. We call this version LVTINO-V and we provide in
1055 Algorithm 5 its implementation.

1056 In Table 4 we find the hyperparameters used to get Ta-
1057 ble 1 in Section 4. These values were chosen after an
1058 extensive grid search on $\lambda = (\lambda_h, \lambda_w, \lambda_\tau), \eta, \gamma$; never-
1059 theless, other combinations also produced satisfactory re-
1060 sults, and we want to illustrate some alternative choices
1061 in this section.

Problem	$(\lambda_h, \lambda_w, \lambda_\tau)$	$\eta\delta$	$(1 - \eta)\delta$
A	$(0, 0, 0.005)$	10^5	10^5
B	$(0, 0, 0)$	10^5	2×10^3
C	$(10^{-4}, 10^{-4}, 10^{-6})$	10^5	10^5

1063 Table 4: Hyperparameters used in (7).

1064 **LVTINO: w\ and w\o TV.** As we can see from Table 4, it seems better to keep the TV prior term
1065 ϕ_λ when we solve **Problem A**, while it is better to fall back on the prox-only case (*i.e.* $\lambda = (0, 0, 0)$)
1066 when we tackle **Problem B**. We then show in Table 5 what happens in the two symmetric cases,
1067 meaning when we switch the optimal configurations of **Problem A** with those of **Problem B**. We can
1068 observe how the metrics do not change much for **Problem B**, as we are still able to beat the SOTA
1069 VISION-XL method in half of the metrics (in particular, we focus on the FVMD that tells us how
1070 temporally consistent the reconstruction is). As opposed to this, we see that we lose a lot of precision
1071 for **Problem A** in all the metrics. This can be explained by the fact that the TV prior is crucial when
1072 dealing with temporal interpolation, as it prevents the ICM from creating flickering effects.

1073 **LVTINO-V as a lighter alternative.** As anticipated, we also provide some results when we turn
1074 off the ICM part of the LVTINO algorithm, meaning that we set $\eta = 1$. This solution, described
1075 in Algorithm 5, only presents choices in one data-fidelity step, which we can again tune as a TV-
1076 regularized step or as a classical prox-only step. We provide in Table 5 both cases. The values of
1077 λ and δ are the same as Table 4, meaning that the TV case will follow the **Problem A** row and the
1078 prox case the **Problem B** row. We see how this lighter version can still beat VISION-XL in almost
1079 all metrics with only 5 NFEs. In particular, since we no longer have the ICM, the TV prior loses its
importance, and the prox case emerges as the best option. LVTINO-V is capable of getting highly

temporally coherent reconstructions, as shown by the low FVMD values, only losing to LVTINO, especially in LPIPS, as its single frame quality suffers from the limitations of the VCM. We believe that further research could fill the gap between LVTINO and LVTINO-V, developing new SOTA methods that solely use VCMs, without the need for its image counterpart, to increase spatial quality.

		Temp. SR $\times 4$ + SR $\times 4$				Temp. blur + SR $\times 8$					
1085	1086	Method (Data-Consistency Config)	NFE \downarrow	FVMD \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FVMD \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
1087	LVTINO-V (prox)	5	425.2	25.00	0.811	0.270	31.70	23.80	0.737	0.375	
1088	LVTINO (ICM: prox, VCM: prox)	9	607.5	22.59	0.614	0.475	42.65	24.91	0.741	0.370	
1089	LVTINO-V (TV)	5	503.3	24.44	0.776	0.338	578.0	22.01	0.684	0.441	
1090	LVTINO (ICM: prox, VCM: TV)	9	371.1	27.25	0.837	0.249	51.52	23.18	0.725	0.418	
1091	VISION-XL	8	1141	<u>26.03</u>	0.672	0.439	82.92	26.18	0.749	0.468	
1092	ADMM-TV	—	427.6	18.04	0.767	0.297	128.2	21.18	0.644	0.452	

1092 **Table 5: Ablation study on data-consistency schemes.** Left block: results for *temporal SR* $\times 4 +$
 1093 *SR* $\times 4$. **Problem A.** Right block: results for *temporal blur* + *SR* $\times 8$. **Problem B.**

Algorithm 5 LVTINO-V

```

1097 1: given degraded video  $\mathbf{y}$ , operator  $\mathcal{A}$ , initialization  $\mathbf{x}_0 = \mathcal{A}^\dagger \mathbf{y}$ , video lenght  $T + 1$ , steps  $N = 5$ 
1098 2: given video CM  $(\mathcal{E}_V, \mathcal{D}_V, f_\vartheta^V)$ , schedules  $\{t_k, \delta_k, \lambda\}_{k=0}^{N-1}, g_y$ 
1099 3: for  $k = 0, \dots, N - 1$  do
1100 4:    $\epsilon \sim \mathcal{N}(0, \text{Id}_{(1+T/4) \times H/8 \times W/8 \times C})$ 
1101 5:    $\mathbf{z}_{t_k}^{(k)} \leftarrow \sqrt{\alpha_{t_k}} \mathcal{E}_V(\mathbf{x}_k) + \sqrt{1 - \alpha_{t_k}} \epsilon$  ▷ encode & diffuse to  $t_k$ 
1102 6:    $\tilde{\mathbf{x}}_{k+1/2} \leftarrow \mathcal{D}_V(f_\vartheta^V(\mathbf{z}_{t_k}^{(k)}, t_k))$  ▷ VCM prior contraction
1103 7:    $\mathbf{x}_{k+1} \leftarrow \arg \min_{\mathbf{u} \in \mathbb{R}^{(T+1) \times H \times W \times 3}} g_y(\mathbf{u}) + \phi_\lambda(\mathbf{u}) + \frac{1}{2\delta_k} \|\tilde{\mathbf{x}}_{k+1/2} - \mathbf{u}\|_2^2$  ▷ data-consistency
1104   Solved with a few CG iters; TV-in-time can be used here.
1105 8: end for
1106 9: return  $\mathbf{x}_N$ 

```

A.7 ADDITIONAL EXPERIMENTS AND ANALYSES

1111 **Comparisons to other baselines.** To provide a more comprehensive evaluation, we extend our
1112 comparison to include non-zero-shot methods, such as VIDUE Shang et al. (2023), which is explicitly
1113 trained for joint motion-blur removal and frame interpolation. This makes it a highly relevant
1114 baseline for the combined blur and interpolation tasks of **Problem C**, whereas standard Video Frame
1115 Interpolation (VFI) methods often fail to address motion blur. We indeed specifically compare VIDUE
1116 against the recent BiM-VFI Seo et al. (2025). As shown in Figure 7, because BiM-VFI is trained
1117 specifically for interpolation, it fails to remove the degradation caused by motion blur. In contrast,
1118 VIDUE addresses the joint problem more effectively. As VIDUE does not perform super-resolution,
1119 we apply bicubic upsampling ($\times 8$) to its output for fair comparison to LVTINO. The results are
shown in Table 1 and Table 2.

We also acknowledge that DiffIR2VR is a relevant competitor to VISION-XL, and thus to LVTINO. However, the specific Stable Diffusion v2.1 checkpoint required to reproduce their method is no longer publicly available, which prevents a fair comparison.

1132 Figure 7: Visual comparison on **Problem C**. Left: BiM-VFI preserves blur artifacts. Right: VIDUE
1133 removes some motion blur.

1134
 1135 **Noisier cases.** We now show results computed on the Adobe240 dataset for a higher noise scenario
 1136 with $\sigma_y = 0.01$. As expected, the optimization step in VISION-XL fails to properly restore the video
 1137 sequences in this case, as VISION-XL is not conceived to deal with noisy measurements, yielding
 1138 NaN values. In contrast, LVTINO and ADMM-TV handle this case without difficulty. Their results
 1139 are reported in Table 6, together with VIDUE for **Problem C**.

Method	Problem A: Temp. SR $\times 4$ + SR $\times 4$					Problem B: Temp. blur + SR $\times 8$					Problem C: Temp. SR $\times 8$ + SR $\times 8$				
	NFE \downarrow	FVMD \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	NFE \downarrow	FVMD \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	NFE \downarrow	FVMD \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
LVTINO	9	256.5	24.95	0.782	0.331	9	62.6	21.91	0.671	0.448	7	310.6	23.42	0.688	0.428
VIDUE	—	—	—	—	—	—	—	—	—	—	1	121.5	21.33	0.603	0.511
ADMM-TV	—	424.1	17.85	0.758	0.373	—	145.5	21.35	0.646	0.471	—	1665	18.12	0.652	0.475

1144 Table 6: Results on the Adobe240 dataset with noise $\sigma_y = 0.01$ across the three problems. Best
 1145 results are in **bold**, second best are underlined.

1147 **Non-linear Inverse Problems.** Although for presentation clarify we present LVTINO in the context
 1148 of linear inverse problems, LVTINO can be applied to non-linear problems too. The main requirement
 1149 is the ability to evaluate the proximal operator of the log-likelihood, which is feasible for many
 1150 non-linear degradations, as already shown in Spagoletti et al. (2025).

1151 To demonstrate this, we consider a non-linear degradation: Additive Gaussian noise ($\sigma = 0.01$) fol-
 1152 lowed by JPEG compression (quality=10) applied to each frame independently. Figure 8 shows frames
 1153 extracted from the reconstruction results. LVTINO successfully recovers high-frequency details and
 1154 suppresses compression artifacts, confirming its applicability to non-linear inverse problems.

1156
 1157 Figure 8: Results on a non-linear inverse problem (Gaussian Noise + JPEG compression). Top row:
 1158 Example from Adobe240. Bottom row: Example from GoPRO240. LVTINO effectively removes
 1159 blocking artifacts and noise in both cases.

1160
 1161 **Hyperparameter Sensitivity.** We analyze the stability of LVTINO with respect to the step size δ and
 1162 the regularization weight λ . Figure 9 plots PSNR and LPIPS metrics on a representative sequence
 1163 from the challenging **Problem C**. We observe that performance remains stable across a reasonable
 1164 range of values (e.g., $\delta \in [2 \cdot 10^4, 2 \cdot 10^5]$). This indicates that the parameters reported in Table 4 are
 1165 not brittle, and ϵ -good hyperparameters can be found without exhaustive fine-tuning.

1166
 1167 In a similar way, it is also possible to analyse the parameter η , which controls the balance between the
 1168 VCM and the ICM in our theoretical framework (see equation (6)). It must be translated into practice
 1169 by choosing the corresponding evaluation times t_V and t_I . In particular, when η increases, the t_V is
 1170 larger, and the ICM is evaluated at a smaller t_I . Because pretrained Consistency Models are only
 1171 accurate on a restricted subset of timesteps, this severely limits how finely we can tune η in practice.

1172
 1173 To approximate different effective values of η , we therefore perform an ablation in which we vary
 1174 the possible video timesteps t_V and image timesteps t_I within the valid finetuned ranges of the two
 1175 backbones. Operationally, we choose among the subsets:

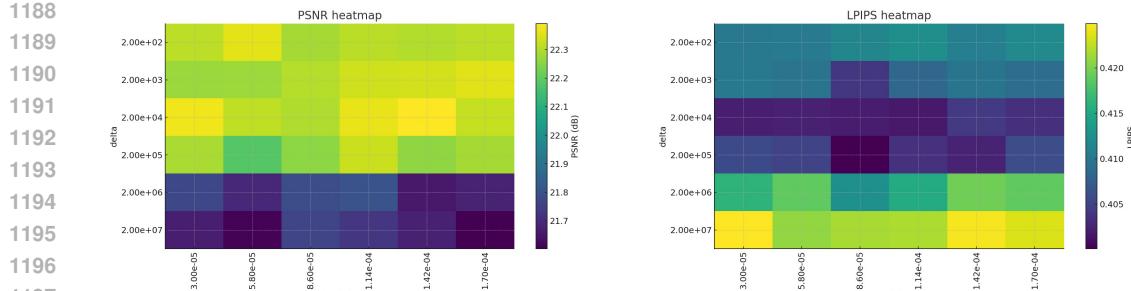


Figure 9: Sensitivity analysis for **Problem C**. The method shows robust performance across a wide range of step sizes (δ) and regularization weights (λ).

- **VCM (video model):** ([757, 522, 375, 255, 125])
- **ICM (image model):** ([749, 624, 499, 374, 249, 124, 63])

and pairing them to simulate “larger η ” (larger VCM steps + smaller ICM steps) and “smaller η ” (smaller VCM steps + larger ICM steps).

For clarity, Table 7 shows some configurations evaluated to provide a comparison for **Problem B** (Temporal SR \times 4 + SR \times 4). Each configuration is evaluated on the same sample sequence:

Experiment	t_V (video)	t_I (image)	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
EXP 1	[375, 255, 125]	[499, 374]	22.90	0.752	0.296
EXP 2	[757, 522, 375]	[249, 124]	22.56	0.714	0.308
EXP 3	[522, 375, 255]	[374, 249]	22.80	0.762	0.290
EXP 4	[522, 255, 125]	[749, 624]	22.36	0.720	0.317
BASELINE	[757, 522, 375, 255, 125]	[374, 249, 124, 63]	23.96	0.770	0.272
VISION-XL	—	—	24.36	0.667	0.488

Table 7: Ablation study on scheduling strategies (t_V and t_I) for **Problem B**. EXP 1-4 represent varying balances of η , while BASELINE represents the configuration used in the main paper.

For comparison, the values used for the experiments shown in the other tables are: $t_V \in [757, 522, 375, 255, 125]$ and $t_I \in [374, 249, 124, 63]$. We notice how, even with fewer steps and varying the configurations, the metrics remain stable.

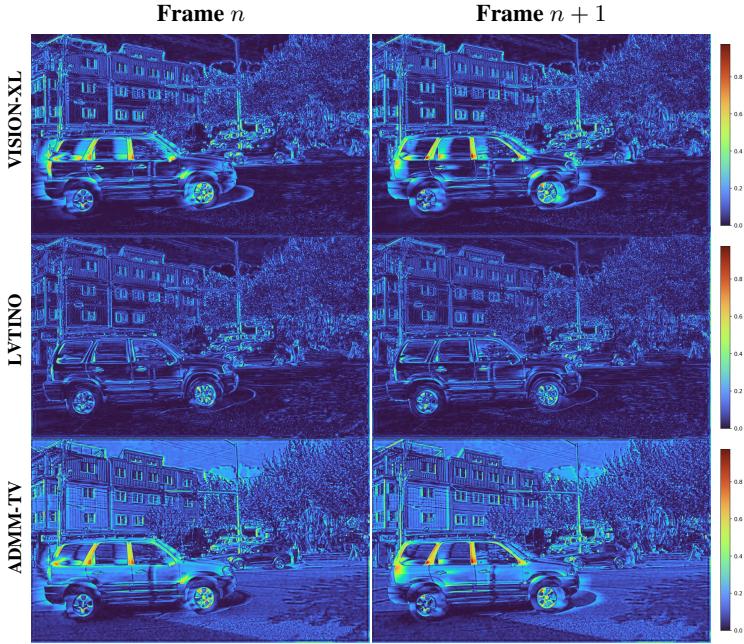
Error Map Analysis. To better visualize the nature of the residuals, we provide L_2 error maps in Figure 10 for **Problem C** on an example sequence. Comparing LVTINO against VISION-XL and ADMM-TV, we observe that our method yields lower residuals, particularly around motion boundaries and fine structural details where competing methods exhibit larger errors due to unresolved blur or temporal inconsistencies.

B ADDITIONAL EXAMPLES

We provide in Table 8 qualitative video comparisons for **Problem A**, **Problem B**, and **Problem C**. Each triplet corresponds to the Ground Truth (GT), the observed degraded input (y), and the restored sequence. For **Problem C**, we provide longer sequences (81 frames) to better appreciate the results.

Additional examples are shown in Figures 12, 13, 14, 15, 16. We also include additional sliced images in Figures 11a and 11b.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267



1268 Figure 10: L_2 error maps between reconstructions and Ground Truth. LVTINO (middle row)
1269 demonstrates lower error magnitude compared to VISION-XL and ADMM-TV, particularly in
1270 dynamic regions.

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

	GT	y	LVTINO	VISION-XL
Problem A (seq. A1)	link	link	link	link
Problem B (seq. B1)	link	link	link	link
Problem B (seq. B2)	link	link	link	link
Problem C (seq. C1)	link	link	link	link
Problem C (seq. C2)	link	link	link	link

1290 Table 8: Results of our method compared to those obtained by VISION-XL, ground truth, and
1291 measurements (input sequence). Click the links to see the videos.

1292
1293
1294
1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

(a) Comparison between slices from 25 consecutive frames. **Problem A (seq. A1)**

1316

1317

1318

1319

1320

1321

1322

1323

1324

(b) Comparison between slices from 81 consecutive frames. **Problem C (seq. C1)**

1334

1335

Figure 11: Slice comparisons across two sequences. In green, the sliced column. Slice images are obtained from the three-dimensional video tensor (i,j,τ) by fixing a column index j . This leads to a 2D tensor with indices (i,τ) that is represented as an image, where the i index represents the row and the τ index represents the column.

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Figure 12: Visual comparison for **Problem A**.

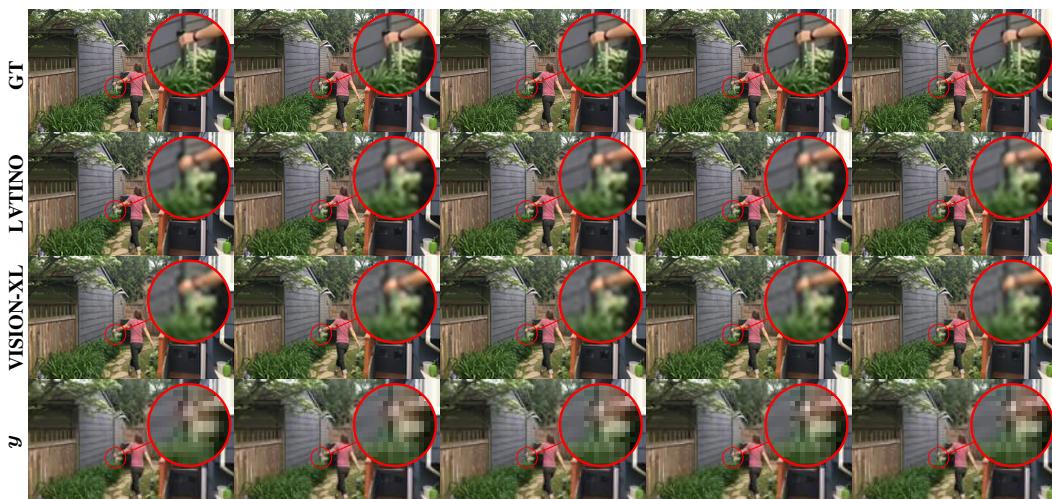


Figure 13: Visual comparison for **Problem B**.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 14: Visual comparison for **Problem C**.

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 15: Visual comparison for **Problem C**.

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 16: Visual comparison for **Problem C**.