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Figure 1: Results on joint spatial-temporal super-resolution by factor ×8.

ABSTRACT

Computational imaging methods increasingly rely on powerful generative diffusion
models to tackle challenging image restoration tasks. In particular, state-of-the-art
zero-shot image inverse solvers leverage distilled text-to-image latent diffusion
models (LDMs) to achieve unprecedented accuracy and perceptual quality with high
computational efficiency. However, extending these advances to high-definition
video restoration remains a significant challenge, due to the need to recover fine
spatial detail while capturing subtle temporal dependencies. Consequently, meth-
ods that naively apply image-based LDM priors on a frame-by-frame basis often
result in temporally inconsistent reconstructions. We address this challenge by
leveraging recent advances in Video Consistency Models (VCMs), which distill
video latent diffusion models into fast generators that explicitly capture temporal
causality. Building on this foundation, we propose L

A

TINO1, the first zero-shot
or plug-and-play inverse solver for high definition video restoration with priors
encoded by VCMs. Our conditioning mechanism bypasses the need for automatic
differentiation and achieves state-of-the-art video reconstruction quality with only
a few neural function evaluations, while ensuring strong measurement consistency
and smooth temporal transitions across frames. Extensive experiments on a diverse
set of video inverse problems show significant perceptual improvements over cur-
rent state-of-the-art methods that apply image LDMs frame by frame, establishing
a new benchmark in both reconstruction fidelity and computational efficiency.

1 INTRODUCTION

We seek to recover an unknown video of interest x = (x1, . . . ,xT ) from a noisy measurement

y = Ax+ n ,

where A is a linear degradation operator acting on the full video sequence, n is additive Gaussian
noise with covariance σ2

nId, and xτ ∈ Rn denotes the τ th video frame.

We focus on video restoration problems that are severely ill-conditioned or ill-posed, leading to
significant uncertainty about the solution. We address this difficulty by leveraging prior information

1L

A

TINO is short for LAtent Video consisTency INverse sOlver.
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about x to regularize the estimation problem and deliver meaningful solutions that are well-posed.
More precisely, we adopt a Bayesian statistical approach and introduce prior information by specifying
the marginal p(x), so-called prior distribution, which we then combine with the likelihood function
p(y|x) ∝ exp{−∥y −Ax∥22/2σ2

n} by using Bayes’ theorem to obtain the posterior

p(x|y) = p(y|x)p(x)∫
p(y|x̃)p(x̃)dx̃

.

We aim to leverage a state-of-the-art generative video model as p(x). In recent years, the use of deep
generative models as priors in Bayesian frameworks has garnered significant attention, particularly
in computational imaging, where denoising diffusion models (DMs) have emerged as powerful
generative priors for solving challenging inverse problems (Song & Ermon, 2019; Song et al., 2020;
Chung et al., 2022; Kawar et al., 2022; Zhu et al., 2023; Song et al., 2023a; Moufad et al., 2025).

For computational efficiency, modern DMs are often trained in the latent space of a variational
autoencoder (VAE), yielding Latent Diffusion Models (LDMs), which are now the backbone of
widely used large-scale priors such as Stable Diffusion (Rombach et al., 2021; Podell et al.). More
recently, distilled diffusion models, and notably consistency models (CMs) (Song et al., 2023b; Luo
et al., 2023a), have emerged as powerful alternatives, producing high-quality samples with only
a few neural function evaluations (NFEs), in contrast to the hundreds or thousands often required
by iterative DM-based methods. Several recent works have explored leveraging these models in a
zero-shot, or so-called Plug & Play (PnP), manner for Bayesian computational imaging (Spagnoletti
et al., 2025; Garber & Tirer, 2025; Xu et al., 2024; Li et al., 2025).

Several powerful video DMs (Ho et al., 2022; Blattmann et al., 2023b;a; Chen et al., 2023; Hong
et al., 2022) and fast CMs (Wang et al., 2023; Lv et al., 2025; Zhai et al., 2024; Yin et al., 2024b) have
recently been proposed, offering great potential for Bayesian video restoration. However, leveraging
them remains challenging, so most current methods apply image DMs frame-by-frame and enforce
temporal consistency through external constraints (Kwon & Ye, 2025a;b). In challenging settings, this
strategy leads to temporal flickering and incoherent dynamics, as it fails to fully capture inter-frame
dependencies. This issue could be in principle mitigated by operating directly with video DMs, but
applying standard DM-guidance techniques such as DPS to video DMs requires computing gradients
by backpropagation through the DM, which incurs a high memory cost (Kwon et al., 2025).

We herein present L

A

TINO, the first zero-shot or PnP inverse solver for Bayesian restoration of high
definition videos, leveraging priors encoded by video CMs that capture fine spatial-temporal detail and
causal dependencies. Moreover, by building on the recent image restoration framework of Spagnoletti
et al. (2025), L

A

TINO provides a gradient-free inference engine that ensures strong measurement
consistency and perceptual quality, while requiring few NFEs and no automatic differentiation.

2 BACKGROUND

We begin by revisiting the core concepts underlying DMs and LDMs, and briefly discuss their recent
extension to generative modeling for video data, which we will use as priors in L

A

TINO.

Diffusion Models. (DMs) are generative models that draw samples from a distribution of interest
π0(x) by iteratively reversing a “noising” process, which is designed to transport π0(x) to a standard
normal distribution (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020; Song & Ermon,
2020). In the framework of Ho et al. (2020), the noising and reverse processes are given by the SDEs:

dxt = −
βt

2
xtdt+

√
βtdwt, (1)

dxt =

[
−βt

2
xt − βt∇xt log πt(xt)

]
dt+

√
βtdwt , (2)

where βt is the noise schedule, and the score function ∇xt log πt(xt), which encodes the target
π0, is represented by a network trained by denoising score matching on samples from π0 (Vincent,
2011). For computational efficiency, modern DMs rely heavily on a (deterministic) probability flow
representation of the backward process (2), given by the following ODE (Song et al., 2020):

dxt =

[
−βt

2
xt −

βt

2
∇xt

log πt(xt)

]
dt . (3)

2
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Latent Diffusion Models. LDMs dramatically increase the computational efficiency of DMs by
operating in the low-dimensional latent space of an autoencoder (E ,D), rather than directly in pixel
space (Rombach et al., 2021). This substantially reduces compute and memory costs, enabling models
like Stable Diffusion (SD) to generate large images and video (Podell et al.; Wang et al., 2025).

Video Diffusion Models. Extending DMs to video is an active area of research, requiring models
to capture temporal coherence and causality. Below, we highlight some key contributions to this field:

Ho et al. (2022) introduce a spatiotemporal U-Net-based DM tailored for video generation. Their
architecture applies 3D convolutions to jointly process space and time, integrates spatial attention
blocks for fine-grained detail, as well as temporal attention layers to capture inter-frame dependencies.

Blattmann et al. (2023b;a) propose to repurpose pre-trained LDMs to video through the incorporation
of trainable temporal layers lϕi into a frozen U-Net backbone. The temporal layers reshape input
batches into a temporally coherent sequence of frames by using a temporal self-attention mechanism.

Wang et al. (2025) introduce a state-of-the-art video foundation model built on three components:
(i) Wan-VAE, a lightweight 3D causal variational autoencoder, inspired by Wu et al. (2024), that
compresses a video x ∈ R(1+T )×H×W×3 into a latent tensor z ∈ R(1+T/4)×H/8×W/8×C while
ensuring temporal causality; (ii) a Diffusion Transformer (DiT) Peebles & Xie (2022) that applies
patchification, self-attention, and cross-attention to model spatio-temporal context and text condition-
ing; and (iii) a text encoder (umT5) Chung et al. (2023) for semantic conditioning. This architecture
enables efficient training and scalable generation of high-resolution, temporally coherent videos.

Consistency Models. Consistency Models (CMs) are single-step DM samplers derived from the
probability-flow ODE (3). They rely on a so-called consistency function f : (xt, t) 7→ xη that maps
any state xt on a trajectory {xt}t∈[η,K] of (3) backwards to xη, for some small η > 0, ensuring
f(xt, t) = f(xt′ , t

′) for all t, t′ ∈ [η,K]. Two-step CMs achieve superior quality by re-noising
xη = f(xt, t) following (1) for some intermediate time s ∈ (η,K), followed by f(xs, s) to bring
back xs close to the target π0. Multi-step CMs apply this strategy recursively in 4 to 8 steps,
combining top performance with computational efficiency (Song et al., 2023b; Kim et al., 2024).

Latent Consistency Models. CMs can also be trained in latent space by distilling a pre-trained
LDM into a latent CM (LCM) (Luo et al., 2023a;b). A particularly effective distillation strategy
is Distribution Matching Distillation (DMD) (Yin et al., 2023), which trains a generator Gθ to
match the diffused data distribution by minimizing a KL divergence over timesteps, using a frozen
teacher DM as reference. Its improved version, DMD2 (Yin et al., 2024a), adds a GAN-based loss to
further enhance fidelity, and enables few-step samplers (e.g., 4 steps) by conditioning Gθ on discrete
timesteps ti. In practice, Gθ is often initialized from a pre-trained SDXL model (Podell et al.). We
use DMD2 (Yin et al., 2024a) within our video prior, as prior distribution on individual video frames.

Video Consistency Models. Recent advancements have extended CMs to video generation. Wang
et al. (2023) propose VideoLCM, the first LCM framework for videos, derived by distilling a pre-
trained text-to-video DM; it can generate temporally coherent videos in as few as four steps. Yin et al.
(2024b) present a theoretical and practical framework to convert slow bidirectional DMs into fast
auto-regressive video generators. This conversion enables frame-by-frame causal sampling, allowing
generation of very long, temporally consistent videos. Our proposed L

A

TINO method incorporates
the CM variant of Wan (Wang et al., 2025), distilled via DMD (Yin et al., 2023), into our video prior
to effectively capture subtle spatial-temporal dependencies and long-range temporal causality.

Zero-shot (plug & play) posteror sampling. Zero-shot methods leverage a prior model p(x)
(implicit in a pretrained denoiser or generative model) and the known degradation p(y|x) to obtain
an estimate of the posterior distribution p(x|y) ∝ p(y|x)p(x). Whereas early zero-shot literature
concentrates in maximum a posteriori point estimators (Venkatakrishnan et al., 2013; Monod et al.,
2022), we concentrate here on producing samples from the posterior p(x|y). This has been addressed
by combining prior and likelihood information in various ways, like the split Gibbs sampler (Vono
et al., 2019), a discretization of the Langevin SDE (Laumont et al., 2022), a guided diffusion model
(Chung et al., 2022; Zhu et al., 2023; Song et al., 2023a; Kwon & Ye, 2025a;b; Kwon et al., 2025) or

3
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a guided consistency model (Spagnoletti et al., 2025; Garber & Tirer, 2025; Xu et al., 2024; Li et al.,
2025), which is the approach we pursue in this work.

LATINO (Spagnoletti et al., 2025) constructs a Markov chain approximating a Langevin diffusion xs

targeting p(x|y) by using the following splitting scheme:

u = xk +

∫ δk

0

∇ log p(x̃s) ds+
√
2 dws, x̃0 = xk , (4)

xk+1 = u+ δk∇ log p(y|xk+1) , (5)

with step-size δk. Note that the first step corresponds to an overdamped Langevin diffusion targeting
the prior p(x), while the second step incorporates the likelihood via an implicit Euler step.

In order to embed an LCM (E ,D, fθ) as prior p(x), LATINO replaces (4), which is intractable, with
a stochastic auto-encoder (SAE) step that applies the forward and reverse transports (1)-(3) as follows

z =
√
αtkE

(
xk

)
+
√
1− αtkϵ ,

u = D
(
fθ(z, tk)

)
,

xk+1 = u+ δk∇ log p(y|xk+1) ,

where we note that the SAE step preserves three fundamental properties of (4): (i) contraction of
random iterates xk towards the prior p(x); (ii) p(x) is the unique invariant distribution; and (iii) the
amount of contraction is controlled via tk, which plays a role analogous to the integration step-size
δk. As demonstrated in (Spagnoletti et al., 2025), LATINO exhibits high computational efficiency,
requiring only a few NFEs. By leveraging a state-of-the-art SDXL LCM (Yin et al., 2024a), it
achieves remarkable accuracy and perceptual quality across a range of challenging imaging tasks.

3 L

A

TINO FOR HIGH DEFINITION VIDEO POSTERIOR SAMPLING

We are now ready to present our proposed LAtent Video consisTency INverse sOlver (L
A

TINO),
which approximately draws samples from the posterior distribution

p(x|y, c, λ) = p(y|x)p(x|c, λ)∫
Rn p(y|x)p(x|c, λ)dx

,

parametrized by the data y, a text prompt c, and a spatiotemporal regularization parameter λ ∈ R3
+.

As mentioned previously, L

A

TINO is a zero-shot Langevin posterior sampler specialised for video
restoration, which jointly leverages prior information from both Video Consistency Models (VCMs)
and Image Consistency Models (ICMs). In addition, L

A

TINO is highly computationally efficient,
requiring only a small number of NFEs and operating in a gradient-free manner, which significantly
reduces memory usage and enables scalability to long video sequences.

A main novelty in L

A

TINO is the use of the following product-of-experts prior for video restoration

p(x|c, λ) ∝ pηV (x|c)p
1−η
I (x|c)pϕ(x|λ) ,

where η ∈ (0, 1) is a temperature parameter and pV (x|c), pI(x|c), and pϕ(x|λ) are as follows:

• pV (x|c) is implicitly defined via a text-to-video LCM designed to capture subtle spatial-
temporal dependencies as well as long-range temporal causality. It is specified by an
encoder-decoder pair (EV ,DV ) and consistency function fV

ϑ operating in their latent space.
• pI(x|c) is implicitly defined via a high-resolution text-to-image LCM, acting separately on

each frame, to recover fine spatial detail and enhance perceptual quality. It is specified by an
encoder-decoder pair (EI ,DI) and consistency function f I

θ operating in their latent space.
• pϕ(x|λ) ∝ exp {−ϕλ(x)} where ϕλ is a convex regularizer promoting background stability

and smooth temporal transitions across frames, with λ ∈ R3
+ controlling the regularity

enforced. Without loss of generality, in our experiments we use the total-variation norm

ϕλ(x) = TVλ
3 (x) ≜

∑
τ,c,i,j

√
λ2
h

(
Dhxτ,c,i,j

)2
+ λ2

v

(
Dvxτ,c,i,j

)2
+ λ2

t

(
Dtxτ,c,i,j

)2
.

where (Dh, Dv, Dt) is the three-dimensional discrete gradient. Note that TVλ
3 is not smooth.

4
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Figure 2: One step of the L

A

TINO solver, a discretization of the Langevin SDE (7) which targets the
posterior p(x|y, c, λ), involving two stochastic autoencoding (SAE) steps and two proximal steps.

Following a PnP philosophy, p(x|y, c, λ) combines an analytical likelihood function p(y|x) with a
prior distribution p(x|c, λ) that is represented implicitly by a pre-trained machine learning model.
However, unlike conventional PnP approaches that exploit a denoising operator (e.g., PnP Langevin
(Laumont et al., 2022)), L

A

TINO leverages the LATINO framework of Spagnoletti et al. (2025)
which is specialised for embedding generative models as priors, notably distilled foundation CMs.

To draw samples from p(x|y, c, λ), L

A

TINO considers a Moreau-Yosida regularized overdamped
Langevin diffusion, given by the SDE

dxs =∇ log p(y|xs)ds+∇ log pηV (xs|c)ds+∇ log p
(1−η)
I (xs|c)ds

+∇ log p̃γϕ(xs|λ)ds+
√
2dws ,

(6)

where ws denotes a n-dimensional Brownian motion and p̃γϕ(xs|λ) is the γ-Moreau-Yosida approx-
imation of the non-smooth factor pϕ(xs|λ), given by (Pereyra, 2016)

p̃γϕ(x|λ) ∝ sup
u∈Rn

pϕ(u|λ) exp {−
1

2γ
∥x− u∥22} ,

with γ > 0. As mentioned previously, p̃γϕ(x|λ) is log-concave and Lipchitz differentiable
by construction because ϕλ is convex on Rn (Pereyra, 2016). The likelihood p(y|x) ∝
exp {−∥y −Ax∥22/2σ2

n} is also log-concave and Lipchitz differentiable.

Under mild regularity assumptions on pV (x|c) and pI(x|c), starting from an initial condition x0, the
process xs converges to a γ-neighborhood of p(x|y, c, λ) exponentially fast as s→∞ (Laumont
et al., 2022). While solving (6) exactly is not possible, considering numerical approximations of xs

provides a powerful computational framework for deriving approximate samplers for p(x|y, c).
L

A

TINO stems from approximating (6) by a Markov chain derived from the following recursion:
given an initialization x0 and a step-size δ > 0, for all k ≥ 0,

xk+1/4 = xk +

∫ δ

0

η∇ log pV (x̃s|c)ds+
√

2η dws, x̃0 = xk︸ ︷︷ ︸
VCM prior step

xk+1/2 = xk+1/4 + ηδ∇ log p
(
y|xk+1/2

)
+ ηδ∇ log p̃γϕ

(
xk+1/2|λ

)︸ ︷︷ ︸
implicit likelihood half-step with ϕ-regularization

xk+3/4 = xk+1/2 +

∫ δ

0

(1− η)∇ log pI(x̃s|c)ds+
√

2(1− η) dws, x̃0 = xk+1/2︸ ︷︷ ︸
ICM prior step

xk+1 = xk+3/4 + (1− η)δ∇ log p(y|xk+1)︸ ︷︷ ︸
implicit likelihood half-step

,

(7)

where we identify a splitting in which each CM prior is involved separately through exact integration
(these integrals will be approximated through SAE steps), and the likelihood is involved through two

5
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implicit (backward Euler) half-steps. Importantly, unlike the explicit steps used in most Langevin
sampling algorithms, the implicit steps in (7) remain numerically stable for all δ > 0. This allows
L

A

TINO to converge quickly by taking δ large, albeit with some small bias. Conversely, the widely
used unadjusted Langevin algorithm (ULA) integrates only the Brownian term ws exactly, it involves
gradients via an explicit Euler step, and is explosive unless δ is sufficiently small. It is worth recalling
that the Langevin diffusion is a time-homogeneous process. The iterates xk resulting from its discrete-
time approximation are asymptotically ergodic, converging to a neighborhood of p(x|y, c, λ) as k →
∞. Unlike DMs, these iterates do not travel backwards in time through an inhomogeneous process.
Therefore, Langevin algorithms use directly the likelihood p(y|x) ∝ exp {−∥y −Ax∥22/2σ2

n},
avoiding the need to approximate the likelihood of y w.r.t. a noisy version of x, as required in guided
DMs like (Chung et al., 2022; Song et al., 2023a; Kwon et al., 2025).

Following Spagnoletti et al. (2025), we compute xk+1/4 and xk+3/4 approximately via SAE steps,

xk+1/4 = DV

(
fV
ϑ

(√
α
t
(V )
k

EV
(
x(k)

)
+

√
1− α

t
(V )
k

ϵ, t
(V )
k

)
, c

)
,

xk+3/4 = DI

(
f I
θ

(√
α
t
(I)
k

EI
(
x(k)

)
+

√
1− α

t
(I)
k

ϵ, t
(I)
k , c

))
,

where we recall that (EI ,DI , f I) act frame-wise and that fV
ϑ and f I

θ have model-specific schedules.

The implicit Euler steps in (7) can be reformulated as an explicit proximal point steps as follows

x̃k+1/2 =argmin
u∈Rn

gy(u) +

(
inf

u′∈Rn
ϕλ(u

′) + 1
2γ ∥u− u′∥22

)
+ 1

2δη∥x̃k+1/4 − u∥22 ,

≈ argmin
u∈Rn

gy(u) + ϕλ(u) +
1

2δη∥x̃k+1/4 − u∥22 ,

x̃k+1 =argmin
u∈Rn

gy(u) +
1

2δ(1−η)∥x̃k+3/4 − u∥22 ,

where gy : x 7→ − log p(y|x) and where we have simplified the computation of x̃k+1/2 by assuming
that γ ≪ δη (Pereyra, 2016). The optimization problems described above are strongly convex and
can be efficiently approximated by using a small number of iterations of a specialized solver. In
particular, to compute x̃k+1, we employ a few iterations of the conjugate gradient algorithm with
warm-starting (Hestenes & Stiefel, 1952). For the computation of x̃k+1/2, we recommend using a
proximal splitting optimizer (Chambolle & Pock, 2011), or a warm-started Adam optimizer (Kingma
& Ba, 2014), both of which are effective in practice. Please see Appendix A.6 for more details.

Refer to Algorithm 1 for more details about L

A

TINO, and to Figure 2 for its schematic representation.

4 EXPERIMENTS

Models. We implement L

A

TINO by using CausVid as VCM prior. We adopt the standard
bidirectional WaN architecture, fine-tuned as a CM. The model also supports an autoregressive
configuration, which we do not utilize here, leaving the exploration of autoregressive priors for longer
video restoration to future work. Concerning the ICM, we use DMD2, following Spagnoletti et al.
(2025). For our experiments, we use t(V )

i ∈ {757, 522, 375, 255, 125} and t
(I)
i ∈ {374, 249, 124, 63}

for the VCM and ICM respectively. This results in a total of 9 NFEs, where applying the ICM across
all frames counts as a single NFE. Regarding the text prompt specifying VCM and ICM, in the same
spirit as Kwon & Ye (2025b), we do not perform any prompt optimization and instead use the generic
prompt “A high resolution video/image”. Exploring prompt optimization by leveraging the maximum
likelihood strategy of Spagnoletti et al. (2025) remains a key direction for future work.

Dataset and Metrics. We evaluate methods on 435 video clips of 25 frames each from the
Adobe240 dataset (Su et al., 2017), and 239 video clips of 25 frames each from the GoPRO240
test dataset Nah et al. (2016). These datasets contain high-quality, high-frame-rate video sequences
that we rescale to a spatial resolution of 1280× 768 pixels to match our targeted resolution.

We assess reconstruction quality using peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) (Wang et al., 2004). Additionally, we evaluate two perceptual metrics: Learned
Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), along with the recently proposed

6
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Algorithm 1 L

A

TINO (LAtent Video consisTency INverse sOlver)

1: given degraded video y, operator A, initialization x0 = A†y, video lenght T + 1, steps N = 5

2: given video CM (EV ,DV , f
V
ϑ ), image CM (EI ,DI , f

I
θ ), schedules {t(V )

k , t
(I)
k , δk, η, λ}N−1

k=0 , gy
3: for k = 0, . . . , N − 1 do
4: # VCM prior half-step (temporal coherence)
5: ϵV ∼ N

(
0, Id(1+T/4)×H/8×W/8×C

)
6: z

(V )

t
(V )
k

←√
α
t
(V )
k

EV
(
xk−1

)
+

√
1− α

t
(V )
k

ϵV

7: x̃k+1/4 ← DV

(
fV
ϑ (z

(V )

t
(V )
k

, t
(V )
k )

)
▷ VCM

8: # First likelihood - Solved with proximal splitting or Adam iterations
9: x̃k+1/2 ← argminu∈R(T+1)×H×W×3 gy(u) + ϕλ(u) +

1
2δkη
∥x̃k+1/4 − u∥22

10: if k < N then
11: # ICM prior half-step (per-frame detail)
12: ϵI ∼ N

(
0, Idh/8×w/8×c

)
13: x̃k+3/4 ← stackTτ=0 DI

(
f I
θ

(√
α
t
(I)
k

EI(x̃k+1/2,τ ) +
√
1− α

t
(I)
k

ϵI , t
(I)
k

))
▷ ICM

14: # Likelihood prox (2nd) - Solved with conjugate gradient iterations
15: xk ← argminu∈R(T+1)×H×W×3 gy(u) +

1
2δk(1−η)∥x̃k+3/4 − u∥22

16: else
17: # Final iteration: skip ICM and second likelihood
18: xk ← x̃k+1/2

19: end if
20: end for
21: return xN

Fréchet Video Motion Distance (FVMD) (Liu et al., 2024) which is tailored for assessing motion
smoothness and perceptual quality in videos.

Inverse Problems. We consider three linear inverse problems for high-resolution video restoration.
Let x = (xτ )

T
τ=0 ∈ R(T+1)×H×W×C denote the unknown high-resolution video and y = Ax+ n

the observed degraded video with additive Gaussian noise n. For fair comparisons, we consider a
mild noise regime σn = 0.001, which addresses the noiseless case.

• Problem A - Temporal SR×4 + SR×4: here A first applies temporal average pooling with
factor 4 (reducing the frame rate), followed by frame-wise spatial downsampling by factor
4, simulating a low frame rate and low resolution video. 2 Temporal upsampling to generate
the missing frame is highly challenging here, as it requires prior knowledge of motion.

• Problem B - Temporal blur + SR×8: here A first applies a uniform blur kernel of size 7
pixels along the temporal dimension, followed by frame-wise spatial downsampling by a
factor 8, simulating a motion-blurred and low-resolution video (Kwon & Ye, 2025a;b).

• Problem C - Temporal SR×8 + SR×8: is a harder version of Problem A, where A first
applies temporal average pooling with factor 8 and then a spatial downsampling by factor 8.

Problem A: Temp. SR×4 + SR×4 Problem B: Temp. blur + SR×8 Problem C: Temp. SR×8 + SR×8
Method NFE↓ FVMD↓ PSNR↑ SSIM↑ LPIPS↓ NFE↓ FVMD↓ PSNR↑ SSIM↑ LPIPS↓ NFE↓ FVMD↓ PSNR↑ SSIM↑ LPIPS↓

L

A

TINO 9 371.1 27.25 0.837 0.249 9 42.65 24.91 0.741 0.370 7 602.5 23.11 0.697 0.411
VISION-XL 8 1141 26.03 0.672 0.439 8 82.92 26.18 0.749 0.468 8 1604 23.38 0.652 0.520
VIDUE – – – – – – – – – – 1 142.5 21.78 0.624 0.505
ADMM-TV – 427.6 18.04 0.767 0.297 – 128.2 21.18 0.644 0.452 – 1645 18.15 0.663 0.439

Table 1: Results on the Adobe240 dataset across the three problems. Best results are in bold, second
best are underlined.

2Temporal SR×k is also a coarse (Riemann sum) approximation of motion blur due to moving objects or
camera during full continuous exposure between frames (Zhang et al., 2021).
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Problem A: Temp. SR×4 + SR×4 Problem B: Temp. blur + SR×8 Problem C: Temp. SR×8 + SR×8
Method NFE↓ FVMD↓ PSNR↑ SSIM↑ LPIPS↓ NFE↓ FVMD↓ PSNR↑ SSIM↑ LPIPS↓ NFE↓ FVMD↓ PSNR↑ SSIM↑ LPIPS↓

L

A

TINO 9 189.4 24.01 0.775 0.315 9 46.20 22.46 0.687 0.433 7 232.6 22.91 0.677 0.445
VISION-XL 8 282.2 26.06 0.792 0.326 8 52.03 24.05 0.697 0.486 8 995.9 22.67 0.669 0.474
VIDUE – – – – – – – – – – 1 84.45 20.66 0.571 0.548
ADMM-TV – 265.8 24.32 0.745 0.406 – 145.9 20.83 0.618 0.527 – 969.3 17.70 0.631 0.527

Table 2: Results on the GoPro240 dataset across the three problems. Best results are in bold, second
best are underlined.

Frame from measurement y
GT slice L

A

TINO slice VISION-XL slice

Figure 3: Comparison between slices from 81 consecutive frames for Problem C (seq. C2). Slice
images (i, τ) are obtained from the video tensor (i, j, τ) by fixing a column index j shown in green.

Computational Efficiency. While NFEs provide a
hardware-agnostic measure of complexity, practical de-
ployment requires considering runtime and memory foot-
prints. Table 4 reports the wall-clock time and peak GPU
memory usage for restoring a 25-frame video, measured
on one A100 GPU. VISION-XL, by only loading an image
model, exchanges memory usage for time, as it needs to
perform sequentially each frame. L

A
TINO offers a com-

petitive trade-off thanks to the VCM, which scales better
for longer videos. Notably, the lighter variant L

A

TINO-V
(see Appendix A.6 for more details) achieves the fastest
runtime among deep generative approaches with a moder-
ate memory cost, as it only loads the VCM component.

Method NFE ↓ Time (s) ↓ Mem. (GB) ↓
L

A

TINO 9 132 35.15
VISION-XL 8 176 15.64
ADMM-TV – 13.6 22.01
L

A

TINO-V 5 105 25.42

Table 3: Runtime and memory usage.
Measured on a single video clip of 25
frames at 1280× 768 resolution. Best
results are in bold, second best are
underlined.

Results. Experiments in Table 1 refer to Problems A, B and C, and are obtained with different
numerical schemes for (7). We fix the hyperparameters per problem to better tackle the different
degradations; see Table 4 in Appendix A.6 for more details and for an ablation study.

For the more challenging Problem C, to stabilize and warm-start L

A

TINO, we use the joint deblur-
ring/interpolation network of Shang et al. (2023)3 to produce a temporally interpolated version of y,
which we then upsample via bilinear spatial interpolation so that it can be used as initialization x0.
This warm-start allows us to reduce the number of integration steps, bringing the NFEs to 7. The
same model, referred to as VIDUE, is used as a baseline comparison in Table 1 and Table 2.

We further provide a visual analysis of motion quality using fixed vertical slices of video frames,
following Cohen et al. (2024), who observed that spatiotemporal slices of natural videos resemble
natural images. Figure 3 and Appendix B in Figures 11a and 11b show (i, τ) slices. These reveal that
even for small motions, L

A

TINO more closely preserves ground truth temporal continuity.

Qualitative and quantitative evaluation. Figures 1, 4, 5, and 6 show the results of our algorithm
compared to the measurements, ground truth and VISION-XL (see also the videos by following the
links in the captions). Table 8 in Appendix B provides additional results. These results demonstrate
that L

A

TINO yields more detailed and temporally coherent videos than VISION-XL. The ICM
prior enhances spatial detail, while the VCM prior and TV λ

3 jointly improve temporal coherence,
particularly in the challenging upsampling tasks B and C. For example, in Figure 6, L

A

TINO achieves
noticeably sharper results with minimal motion blur and strong temporal coherence, whereas VISION-

3Which is trained on the GoPRO240 train dataset (Nah et al., 2016).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

XL shows a staircase effect with repeated frames and unresolved blur, also evident in Figure 4. In
Figure 5, VISION-XL exhibits temporal flickering, which our method eliminates via the VCM and
TV models. Table 1 supports these visual findings: L

A

TINO achieves strong FVMD and LPIPS
scores, reflecting accurate spatiotemporal dynamics and fine spatial detail.

Other baselines. We also report comparisons with ADMM-TV, a classical optimization-based
method (we use the hyperparameters of (Kwon & Ye, 2025a)). We also considered comparing
with VDPS (Kwon et al., 2025), however the backpropagation through Wan’s DiT and Decoder at
resolution 1280× 768 pixels required > 80 Gb of VRAM, exceeding the memory capacity of GPUs
available in our academic HPC facility. Since L

A

TINO’s conditioning mechanism does not rely on
automatic differentiation, it has significantly lower memory usage.

5 CONCLUSION

We introduced L

A

TINO, the first VCM-based zero-shot or PnP inverse solver for Bayesian restoration
of high definition videos. By combining a VCM, a frame-wise ICM and TV3 regularization, L

A

TINO
can recover subtle spatial temporal dynamics, as evidenced by its strong performance on challenging
tasks and datasets involving both moving objects and camera shake. Moreover, L

A

TINO’s condi-
tioning mechanism ensures strong measurement consistency and perceptual quality, while requiring
as few as 8 NFEs and no automatic differentiation. We anticipate that upcoming advancements in
distillation of VCMs will further improve the accuracy and computational efficiency of L

A

TINO.

Future research will explore sequential and auto-regressive Bayesian strategies for the restoration
of long videos, as well as better Langevin sampling scheme through the use of more sophisticated
numerical integrators. Another promising research direction is the incorporation of automatic prompt
optimization by maximum likelihood estimation, as considered in Spagnoletti et al. (2025) for image
restoration tasks. Furthermore, it would be interesting to specialize L

A

TINO for particular tasks
through the unfolding and distillation framework of Kemajou Mbakam et al. (2025).

G
T

L

A T
IN

O
V

IS
IO

N
-X

L
y

Figure 4: Visual comparison for Problem A (seq. A1). The continuity of the motion is retrieved as
the hand moves from right to left. See full videos: L

A

TINO and VISION-XL.
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Figure 5: Visual comparison for Problem B (seq. B2). The flickering problem is solved by L

A

TINO
(see darker and lighter area behind the chair). See full videos: L

A

TINO and VISION-XL.
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Figure 6: Visual comparison for Problem C (seq. C2). The motion is retrieved by the reconstruction.
See full videos (81 frames for a better direct comparison): L

A

TINO and VISION-XL.

REPRODUCIBILITY STATEMENT

To allow complete reproducibility, we commit to publishing the full code on GitHub upon acceptance.
Furthermore, the L

A

TINO algorithm is fully described as pseudo-code in Algorithm 1 and the details
contained in Table 4 and Sections 4, A.1, A.2 describe the implementations of the key components.
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Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill
Freeman. Improved distribution matching distillation for fast image synthesis. Advances in Neural
Information Processing Systems, 37:47455–47487, 2024a.

Tianwei Yin, Qiang Zhang, Richard Zhang, William T. Freeman, Frédo Durand, Eli Shechtman,
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A APPENDIX

A.1 IMPLEMENTATION OF THE FORWARD OPERATORS

For all the inverse problems considered, we use the following formulation

A = SpatialSR ◦ TemporalSR.

For Temporal SR×4 + Spatial SR×4, we apply a temporal average pooling with factor 4 (with
end padding if T is not divisible), followed by frame-wise spatial downsampling with factor 4
(DeepInv.Downsampling Tachella et al. (2025)). The adjoint A⊤ first applies the spatial
adjoint (back-projection to HR) and then the adjoint of temporal averaging (nearest upsample by 4
divided by 4, with folding of the padded tail back to the last frame when T is not a multiple of 4).
The same approach, but with ×8, is adopted for the Temporal SR×8 + Spatial SR×8 problem. For
the Temporal blur + Spatial SR×8 task, we use a 1D temporal uniform convolution with circular
boundary conditions via FFT of window size of 7, followed by frame-wise spatial downsampling
with factor 8; the adjoint corresponds to spatial back-projection and time-reversed temporal filtering
via FFT.

A.2 IMPLEMENTATION OF LIKELIHOOD PROXIMAL STEPS

We will now describe the implementation of the likelihood updates in the splitting scheme (Equa-
tion(7)) instantiated by task-specific linear operatorsA over videos x ∈ R(T+1)×H×W×3. We remind
that we have to solve the following problems:

argmin
u∈R(T+1)×H×W×3

gy(u) + ϕλ(u) +
1

2δη∥x̃k+1/4 − u∥22, (8)
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and

argmin
u∈R(T+1)×H×W×3

gy(u) +
1

2δ(1−η)∥x̃k+3/4 − u∥22, (9)

where gy(·) = 1
2σ2

n
∥A · −y∥22.

Starting from Equation (9), we notice that this is exactly the shape of the proxδ(1 − η)/2∥A·−y∥2
2
(u),

we thus provide details about the computation of this step.

Quadratic proximal (ℓ2 data term). Given ϵ > 0 (which may include δ, η as well as the noise
variance σ2

n), the quadratic likelihood proximal operator

prox ϵ
2∥A ·−y∥2

2
(u) = argmin

x

ϵ
2∥Ax− y∥22 + 1

2∥x− u∥22

reduces to the normal equations (
Id + ϵA⊤A

)
x = u+ ϵA⊤y,

where Id is the identity operator. The exact solution is computationally tractable in high dimensions
when A admits a closed-form and fast SVD (Zhang et al., 2020)4, but to make our method applicable
to general operators, we solve this linear system approximately using ∼ 10 Conjugate Gradient
(CG) (Hestenes & Stiefel, 1952) iterations.

CG is a Krylov-subspace method that iteratively refines an approximate solution x(k) without
explicitly inverting Id + ϵA⊤A. Starting from the initial guess x(0) = u, we iteratively update:

r(k) = b−
(
Id + ϵA⊤A

)
x(k), b := u+ ϵA⊤y,

p(k) = r(k) + β(k)p(k−1), β(k) :=
∥r(k)∥22
∥r(k−1)∥22

,

α(k) =
∥r(k)∥22

⟨p(k), (Id + ϵA⊤A)p(k)⟩
,

x(k+1) = x(k) + α(k)p(k), r(k+1) = r(k) − α(k)
(
Id + ϵA⊤A

)
p(k).

The algorithm terminates after a fixed number of iterations or once the residual norm ∥r(k)∥2 falls
below a tolerance (e.g. 10−6). Because Id + ϵA⊤A is symmetric positive definite, CG converges
rapidly.

This iterative scheme is memory-efficient, requiring only matrix–vector products with A and A⊤,
and avoids the explicit computation of A⊤A, making it suitable for large-scale inverse problems and
long video sequences.

Spatio-temporal TV3 proximal (PDHG). For the regularised subproblem (8), we solve

min
u

1
2σ2

n
∥Au− y∥22 + 1

2δη∥u− x̃k+1/4∥22︸ ︷︷ ︸
f(u)

+ ϕλ(u)︸ ︷︷ ︸
g(Dλu)

, (10)

where

ϕλ(u) = TV3,λ(u) :=
∑
τ,c,i,j

√
λ2
h

(
Dhuτ,c,i,j

)2
+ λ2

v

(
Dvuτ,c,i,j

)2
+ λ2

t

(
Dτuτ,c,i,j

)2
,

and Dλ :=
[
λhDh, λvDv, λτDτ

]
, so that g(Dλu) = ∥Dλu∥2.

4For Problems A, B, C, the SVD of A can be expressed in terms of Fourier transforms, only if convolutions
are periodic, which is not always the case for the kind of spatial and temporal blur we have in our case.
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The associated subproblem in (10) is convex and can be solved using the primal–dual hybrid gradient
(PDHG, Chambolle–Pock) algorithm Chambolle & Pock (2011). Let p = (ph, pv, pτ ) denote the
dual variable with three components per voxel. Given stepsizes ρ, σ > 0 such that ρσ∥Dλ∥2 < 1 and
extrapolation θ ∈ [0, 1], the iterations read:

pk+1 = proxσg∗

(
pk + σDλū

k
)
=

pk + σDλū
k

max
(
1, ∥pk + σDλūk∥2

) (projection onto unit ℓ2 ball),

uk+1 = proxρf
(
uk − ρD⊤

λ p
k+1

)
,

obtained by solving
(
I + ρ(A⊤A+ 1

δη I)
)
uk+1 = z + ρ

(
A⊤y + 1

δη x̃k+1/4

)
,

with z = uk − ρD⊤
λ p

k+1,

ūk+1 = uk+1 + θ(uk+1 − uk).

Here D⊤
λ p = λhD

⊤
h ph + λvD

⊤
v pv + λτD

⊤
τ pτ is the weighted divergence, and the proximal step for

f(u) = 1
2σ2

n
∥Au− y∥22 + 1

2δη∥u− x̃k+1/4∥22 is implemented by solving the normal equations. As
in our implementation δη is often ≥ 105, to simplify the computations we remove the regularization
term 1

2δη∥u− x̃k+1/4∥22. Around 10 iterations of the CG algorithm can be used to solve the normal
equations, as they are warm-started with uk.

In practice, we apply Chambolle–Pock (∼ 200 iterations) only in the pure temporal TV case (λh =
λv = 0). When spatial weights are nonzero (λh > 0 or λv > 0), we instead minimise (8) directly
with ADAM (Kingma & Ba, 2014) (learning rate 10−3, 100 iterations), which proved more robust in
this setting.

A.3 THE LATINO ALGORITHM

In order to clarify the practical implementation of the splitting scheme introduced in Equation (5), we
provide here the pseudo-code to implement LATINO as described in Spagnoletti et al. (2025).

Algorithm 2 LATINO

1: given x0 = A†y, text prompt c, number of steps N , latent consistency model fθ, latent space
decoder D, latent space encoder E , sequences {tk, δk}N−1

k=0 .
2: for k = 0, . . . , N − 1 do
3: ϵ ∼ N (0, Id)
4: z

(k)
tk
← √αtkE(xk) +

√
1− αtkϵ ▷ Encode

5: u(k) ← D(fθ(z(k)
tk

, tk, c)) ▷ Decode
6: xk+1 ← proxδkgy (u

(k)) ▷ gy : x 7→ − log p(y|x)
7: end for
8: return xN

A.4 THE VISION-XL ALGORITHM

VISION-XL Kwon & Ye (2025b) (Video Inverse-problem Solver using latent diffusION models) is a
SOTA framework for high-resolution video inverse problems, LDMs such as SDXL to restore videos
from measurements affected by spatio-temporal degradations.

Components VISION-XL integrates three main contributions: (i) Pseudo-batch inversion, which
initializes the sampling process from latents obtained by DDIM-inverting the measurement frames.
(ii) Pseudo-batch sampling, which splits latent video frames and samples them in parallel using
Tweedie’s formula Efron (2011), reducing memory requirements to that of a single frame. (iii)
Pixel-space data-consistency updates, where each denoised batch x̂t is refined using l iterations of a
quadratic proximal step

x̄t = arg min
x∈x̂t+Kl

∥y −A(x)∥22,
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typically solved via conjugate gradient (CG). This enforces alignment with the measurement before
re-encoding to the latent space and re-noising for the next step.

Overall Algorithm. Starting from zρ = DDIM−1(Eθ(y)) with ρ ≈ 0.3T , VISION-XL alternates
denoising in latent space and proximal data-consistency refinement in pixel space. After decoding
the denoised latent batch x̂t = Dθ(ẑt), a low-pass filter is applied to suppress high-frequency
inconsistencies before re-encoding and re-noising, yielding zt−1. This process is repeated until t = 0,
as shown in Algorithm 3.

Algorithm 3 VISION-XL

Require: Pretrained VAE encoder Eθ, decoder Dθ, denoiser E(t)
θ , measurement x, forward operator

A, initial DDIM inversion step ρ, CG iterations l, low-pass filter widths {σt}, noise schedule
{ᾱt}Tt=1

1: z0 ← Eθ(y)
2: zρ ← DDIM−1(z0) ▷ Step 1: Pseudo-batch inversion (informative latent initialization)
3: for t = ρ, . . . , 2 do

4: ẑt ←
zt −

√
1− ᾱt E

(t)
θ (zt)√

ᾱt
▷ Step 2: Pseudo-batch sampling (Tweedie’s formula)

5: x̂t ← Dθ(ẑt)
6: x̄t ← argminx∈x̂t+Kl

∥ y −A(x) ∥22 ▷ Step 3: Data-consistency refinement (multi-step
proximal via l CG steps)

7: x̄t ← x̄t ∗ hσt ▷ Step 4: Scheduled low-pass filtering (mitigate VAE error accumulation)
8: z̄t ← Eθ(x̄t)
9: zt−1 ←

√
ᾱt−1z̄t +

√
1− ᾱt−1Et ▷ Step 5: Renoising (batch-consistent noise)

10: end for

11: z0 ←
z1 −

√
1− ᾱ1 E

(1)
θ (z1)√

ᾱ1

12: return x0 ← Dθ(z0)

A.5 CONNECTION WITH PNP-FLOW ALGORITHMS

The PnP-Flow Martin et al. (2025) algorithm designed to leverage Flow Matching image priors
has some direct connections to LATINO Spagnoletti et al. (2025). For this reason, we now briefly
introduce their setting and state how this idea can be extended to Video Flow models.

Let X0 ∼ P0 denote a latent variable and X1 ∼ P1 a data variable, with joint law (X0, X1) ∼ π.
Assume we are given a pre-trained Flow Matching model with velocity field

vθ : [0, 1]× Rd → Rd, (t,x) 7→ vθ(t,x),

learned by minimizing the Conditional Flow Matching (CFM) Lipman et al. (2023) loss along the
straight-line interpolation Liu et al. (2022); Benton et al. (2024)

Xt := et(X0, X1) := (1− t)X0 + tX1, t ∈ [0, 1].

Time-dependent denoiser from Flow Matching. From the velocity field vθ we define a family of
time-dependent denoisers

Dt(x) := x+ (1− t) vθ(t,x), t ∈ [0, 1]. (11)

To motivate this choice, recall that for each t ∈ [0, 1] the population minimizer v⋆t of the CFM loss
satisfies

v⋆t (x) = E[X1 −X0 |Xt = x] ,

so that in the ideal case vθ(t, ·) = v⋆t (·) one has

Dt(x) = x+ (1− t) v⋆t (x) = E[X1 |Xt = x] . (12)
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Thus Dt coincides with the minimum mean-square-error (MMSE) estimator of the clean variable X1

given a noisy point Xt on the interpolation path. Equivalently, Dt solves the regression problem

Dt ∈ argmin
g

E
[
∥X1 − g(Xt)∥2

]
,

and can be interpreted as a time-indexed denoiser that projects points lying along the straight path
(Xt)t∈[0,1] onto the target distribution P1.

In particular, if the FM flow is straight-line in the sense that Xt = (1− t)X0 + tX1 is realized by the
associated flow ODE, then Dt can perfectly recover X1 from Xt. Under mild regularity assumptions,
one can show that the mean-squared error E

[
∥Dt(Xt)−X1∥2

]
vanishes for all t ∈ [0, 1] if and only

if the learned flow forms a straight-line Flow Matching pair between X0 and X1.5 This highlights
the particular suitability of straight-line FM models (e.g. OT-FM Pooladian et al. (2023); Tong et al.
(2024)) as building blocks for PnP priors.

PnP Flow Matching algorithm. Martin et al. (2025) incorporates the denoisers {Dt}t∈[0,1] into a
Forward–Backward Splitting (FBS) scheme for solving imaging inverse problems of the form

min
x∈Rd

F (x) +R(x),

where F is a differentiable data-fidelity term (e.g. negative log-likelihood), and R is an implicit
prior induced by the generative model. Classical PnP-FBS Meinhardt et al. (2017); Sun et al. (2019);
Hurault et al. (2022); Tan et al. (2024) replace the proximal operator of R by a time-independent
denoiser, applied directly after the gradient step on F .

In contrast, PnP-Flow introduces two key modifications:

1. A time-dependent denoiser Dt as in (11), indexed by a schedule (tn)n ⊂ [0, 1] with tn ↗ 1.
2. An intermediate interpolation/reprojection step that maps the gradient iterate back onto the

straight FM path before denoising.

Given an initial guess x0 ∈ Rd, a sequence of times (tn)n with tn ∈ [0, 1] and tn → 1, and stepsizes
(γn)n, each PnP-Flow iteration at time tn proceeds as follows:

1. Gradient step. Move towards data consistency by a gradient descent step on F :

zn = xn − γn∇F (xn).

2. Interpolation (reprojection) step. The denoiser Dtn is trained to act on points distributed as
Xtn , i.e. lying on the straight-line FM path. The output zn of the gradient step does not
follow this distribution, so we “reproject” it onto the FM trajectory by drawing a latent
sample ε ∼ P0 and forming

z̃n = (1− tn) ε+ tn zn. (13)

Intuitively, z̃n mimics a point at time tn on a straight path between a latent sample from P0

and the current gradient iterate.
3. PnP denoising step. Finally, we apply the FM-induced denoiser at time tn,

xn+1 = Dtn(z̃n) = z̃n + (1− tn) vθ
(
tn, z̃n

)
, (14)

which pushes z̃n towards the data distribution while still respecting the measurement model
encoded in F .

The resulting discrete-time algorithm, summarized in Algorithm 4, alternates between a data-fidelity
gradient step, an interpolation onto FM trajectories, and a generative PnP denoising step. The time
parameter tn controls the relative weight of the prior: for small tn, the denoiser has a strong effect
(large factor 1− tn in (14)), while as tn → 1 the updates gradually become more likelihood-driven.
Comparing Algorithm 4 to Algorithm 2, it is clear that both adapt the same core idea: data-term→
add noise→ denoise and repeat. Both LATINO and PnP-Flow reproject the intermediate step xn to a
point in the Flow ODE, to which is applied, in one case, the CM, and in the other, the FM denoiser.

5See Proposition 1 in Martin et al. (2025) for a precise statement and proof.
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Algorithm 4 PnP–Flow Matching

1: Input: Pre-trained Flow Matching network vθ, time sequence (tn)n with tn ∈ [0, 1] and tn ↗ 1,
step sizes (γn)n, data-fidelity F : Rd → R, prior P0 (e.g. standard Gaussian), initial iterate
x0 ∈ Rd

2: for n = 0, 1, 2, . . . do
3: zn ← xn − γn∇F (xn) ▷ gradient step on data-fidelity
4: Sample ε ∼ P0 ▷ latent noise
5: z̃n ← (1− tn) ε+ tn zn ▷ interpolation along the flow path
6: xn+1 ← z̃n + (1− tn) vθ

(
tn, z̃n

)
▷ PnP denoising with FM-induced denoiser Dtn

7: end for
8: Output: Reconstruction xn+1

The other difference is in the type of data-fidelity term adopted; in one case, it is a proximal step as
a result of an implicit Euler step, while in the other, it is a gradient one, which is equivalent to an
explicit Euler step and requires many more iterations to converge due to the limitations on γn.

Given these similarities, it is natural to think about merging the two frameworks by leveraging few-
step FMs Liu et al. (2022); Kornilov et al. (2024) in place of CMs. This would lead to a Flow-SAE
that could be plugged into the LATINO algorithm and provide a different way to integrate the prior
term in Equation (5). As a direct consequence, given a video FM prior, it can be deployed in place
of the VCM in our Algorithm 1, and benefit from the modular framework introduced in this work,
as it can be coupled with an ICM, or an image FM prior, and the TV3 term. We believe that future
research may benefit from this Flow-L

A

TINO formulation to improve the quality of restorations and
further generalize our setting.

A.6 ABLATION STUDY

To better understand the impact of the data-consistency updates in L
A

TINO, we perform an ablation
study comparing different strategies for the likelihood proximal steps appearing in Equation (7).
Furthermore, we provide results on Problem A and Problem B obtained with a lighter version of
L

A

TINO that only includes the VCM prior. We call this version L

A

TINO-V and we provide in
Algorithm 5 its implementation.

Problem (λh, λv, λτ ) ηδ (1 − η)δ

A (0, 0, 0.005) 105 105

B (0, 0, 0) 105 2×103

C (10−4, 10−4, 10−6) 105 105

Table 4: Hyperparameters used in (7).

In Table 4 we find the hyperparameters used to get Ta-
ble 1 in Section 4. These values were chosen after an
extensive grid search on λ = (λh, λw, λτ ), η, γ; never-
theless, other combinations also produced satisfactory re-
sults, and we want to illustrate some alternative choices
in this section.

L

A

TINO: w\ and w\o TV. As we can see from Table 4, it seems better to keep the TV prior term
ϕλ when we solve Problem A, while it is better to fall back on the prox-only case (i.e. λ = (0, 0, 0))
when we tackle Problem B. We then show in Table 5 what happens in the two symmetric cases,
meaning when we switch the optimal configurations of Problem A with those of Problem B. We can
observe how the metrics do not change much for Problem B, as we are still able to beat the SOTA
VISION-XL method in half of the metrics (in particular, we focus on the FVMD that tells us how
temporally consistent the reconstruction is). As opposed to this, we see that we lose a lot of precision
for Problem A in all the metrics. This can be explained by the fact that the TV prior is crucial when
dealing with temporal interpolation, as it prevents the ICM from creating flickering effects.

L

A

TINO-V as a lighter alternative. As anticipated, we also provide some results when we turn
off the ICM part of the L

A

TINO algorithm, meaning that we set η = 1. This solution, described
in Algorithm 5, only presents choices in one data-fidelity step, which we can again tune as a TV-
regularized step or as a classical prox-only step. We provide in Table 5 both cases. The values of
λ and δ are the same as Table 4, meaning that the TV case will follow the Problem A row and the
prox case the Problem B row. We see how this lighter version can still beat VISION-XL in almost
all metrics with only 5 NFEs. In particular, since we no longer have the ICM, the TV prior loses its
importance, and the prox case emerges as the best option. L

A

TINO-V is capable of getting highly
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temporally coherent reconstructions, as shown by the low FVMD values, only losing to L

A

TINO,
especially in LPIPS, as its single frame quality suffers from the limitations of the VCM. We believe
that further research could fill the gap between L

A

TINO and L

A

TINO-V, developing new SOTA
methods that solely use VCMs, without the need for its image counterpart, to increase spatial quality.

Temp. SR×4 + SR×4 Temp. blur + SR×8
Method (Data-Consistency Config) NFE↓ FVMD↓ PSNR↑ SSIM↑ LPIPS↓ FVMD↓ PSNR↑ SSIM↑ LPIPS↓
L

A

TINO-V (prox) 5 425.2 25.00 0.811 0.270 31.70 23.80 0.737 0.375
L

A

TINO (ICM: prox, VCM: prox) 9 607.5 22.59 0.614 0.475 42.65 24.91 0.741 0.370
L

A

TINO-V (TV) 5 503.3 24.44 0.776 0.338 578.0 22.01 0.684 0.441
L

A

TINO (ICM: prox, VCM: TV) 9 371.1 27.25 0.837 0.249 51.52 23.18 0.725 0.418
VISION-XL 8 1141 26.03 0.672 0.439 82.92 26.18 0.749 0.468
ADMM-TV – 427.6 18.04 0.767 0.297 128.2 21.18 0.644 0.452

Table 5: Ablation study on data-consistency schemes. Left block: results for temporal SR×4 +
SR×4, Problem A. Right block: results for temporal blur + SR×8, Problem B.

Algorithm 5 L

A

TINO-V

1: given degraded video y, operator A, initialization x0 = A†y, video lenght T + 1, steps N = 5
2: given video CM (EV ,DV , f

V
ϑ ), schedules {tk, δk, λ}N−1

k=0 , gy
3: for k = 0, . . . , N − 1 do
4: ϵ ∼ N (0, Id(1+T/4)×H/8×W/8×C)

5: z
(k)
tk
← √αtk EV

(
xk

)
+
√
1− αtk ϵ ▷ encode & diffuse to tk

6: x̃k+1/2 ← DV

(
fV
ϑ (z

(k)
tk

, tk)
)

▷ VCM prior contraction
7: xk+1 ← argminu∈R(T+1)×H×W×3 gy(u) + ϕλ(u) +

1
2δk
∥x̃k+1/2 − u∥22 ▷ data-consistency

Solved with a few CG iters; TV-in-time can be used here.
8: end for
9: return xN

A.7 ADDITIONAL EXPERIMENTS AND ANALYSES

Comparisons to other baselines. To provide a more comprehensive evaluation, we extend our
comparison to include non-zero-shot methods, such as VIDUE Shang et al. (2023), which is explicitly
trained for joint motion-blur removal and frame interpolation. This makes it a highly relevant
baseline for the combined blur and interpolation tasks of Problem C, whereas standard Video Frame
Interpolation (VFI) methods often fail to address motion blur. We indeed specifically compare VIDUE
against the recent BiM-VFI Seo et al. (2025). As shown in Figure 7, because BiM-VFI is trained
specifically for interpolation, it fails to remove the degradation caused by motion blur. In contrast,
VIDUE addresses the joint problem more effectively. As VIDUE does not perform super-resolution,
we apply bicubic upsampling (×8) to its output for fair comparison to L

A

TINO. The results are
shown in Table 1 and Table 2.

We also acknowledge that DiffIR2VR is a relevant competitor to VISION-XL, and thus to L

A

TINO.
However, the specific Stable Diffusion v2.1 checkpoint required to reproduce their method
is no longer publicly available, which prevents a fair comparison.

BiM-VFI VIDUE

Figure 7: Visual comparison on Problem C. Left: BiM-VFI preserves blur artifacts. Right: VIDUE
removes some motion blur.
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Noisier cases. We now show results computed on the Adobe240 dataset for a higher noise scenario
with σy = 0.01. As expected, the optimization step in VISION-XL fails to properly restore the video
sequences in this case, as VISION-XL is not conceived to deal with noisy measurements, yielding
NaN values. In contrast, L

A

TINO and ADMM-TV handle this case without difficulty. Their results
are reported in Table 6, together with VIDUE for Problem C.

Problem A: Temp. SR×4 + SR×4 Problem B: Temp. blur + SR×8 Problem C: Temp. SR×8 + SR×8
Method NFE↓ FVMD↓ PSNR↑ SSIM↑ LPIPS↓ NFE↓ FVMD↓ PSNR↑ SSIM↑ LPIPS↓ NFE↓ FVMD↓ PSNR↑ SSIM↑ LPIPS↓
L

A

TINO 9 256.5 24.95 0.782 0.331 9 62.6 21.91 0.671 0.448 7 310.6 23.42 0.688 0.428
VIDUE – – – – – – – – – – 1 121.5 21.33 0.603 0.511
ADMM-TV – 424.1 17.85 0.758 0.373 – 145.5 21.35 0.646 0.471 – 1665 18.12 0.652 0.475

Table 6: Results on the Adobe240 dataset with noise σy = 0.01 across the three problems. Best
results are in bold, second best are underlined.

Non-linear Inverse Problems. Although for presentation clarify we present L

A

TINO in the context
of linear inverse problems, L

A

TINO can be applied to non-linear problems too. The main requirement
is the ability to evaluate the proximal operator of the log-likelihood, which is feasible for many
non-linear degradations, as already shown in Spagnoletti et al. (2025).

To demonstrate this, we consider a non-linear degradation: Additive Gaussian noise (σ = 0.01) fol-
lowed by JPEG compression (quality=10) applied to each frame independently. Figure 8 shows frames
extracted from the reconstruction results. L

A

TINO successfully recovers high-frequency details and
suppresses compression artifacts, confirming its applicability to non-linear inverse problems.

GT Measurement y L

A

TINO

Figure 8: Results on a non-linear inverse problem (Gaussian Noise + JPEG compression). Top row:
Example from Adobe240. Bottom row: Example from GoPRO240. L

A

TINO effectively removes
blocking artifacts and noise in both cases.

Hyperparameter Sensitivity. We analyze the stability of L

A

TINO with respect to the step size δ and
the regularization weight λ. Figure 9 plots PSNR and LPIPS metrics on a representative sequence
from the challenging Problem C. We observe that performance remains stable across a reasonable
range of values (e.g., δ ∈ [2 · 104, 2 · 105]). This indicates that the parameters reported in Table 4 are
not brittle, and ϵ-good hyperparameters can be found without exhaustive fine-tuning.

In a similar way, it is also possible to analyse the parameter η, which controls the balance between the
VCM and the ICM in our theoretical framework (see equation (6)). It must be translated into practice
by choosing the corresponding evaluation times tV and tI . In particular, when η increases, the tV is
larger, and the ICM is evaluated at a smaller tI . Because pretrained Consistency Models are only
accurate on a restricted subset of timesteps, this severely limits how finely we can tune η in practice.

To approximate different effective values of η, we therefore perform an ablation in which we vary
the possible video timesteps tV and image timesteps tI within the valid finetuned ranges of the two
backbones. Operationally, we choose among the subsets:
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Figure 9: Sensitivity analysis for Problem C. The method shows robust performance across a wide
range of step sizes (δ) and regularization weights (λ).

• VCM (video model): ([757, 522, 375, 255, 125])
• ICM (image model): ([749, 624, 499, 374, 249, 124, 63])

and pairing them to simulate “larger η” (larger VCM steps + smaller ICM steps) and “smaller η”
(smaller VCM steps + larger ICM steps).

For clarity, Table 7 shows some configurations evaluated to provide a comparison for Problem B
(Temporal SR×4 + SR×4). Each configuration is evaluated on the same sample sequence:

Experiment tV (video) tI (image) PSNR ↑ SSIM ↑ LPIPS ↓
EXP 1 [375, 255, 125] [499, 374] 22.90 0.752 0.296
EXP 2 [757, 522, 375] [249, 124] 22.56 0.714 0.308
EXP 3 [522, 375, 255] [374, 249] 22.80 0.762 0.290
EXP 4 [522, 255, 125] [749, 624] 22.36 0.720 0.317

BASELINE [757, 522, 375, 255, 125] [374, 249, 124, 63] 23.96 0.770 0.272
VISION-XL — — 24.36 0.667 0.488

Table 7: Ablation study on scheduling strategies (tV and tI ) for Problem B. EXP 1-4 represent
varying balances of η, while BASELINE represents the configuration used in the main paper.

For comparison, the values used for the experiments shown in the other tables are: tV ∈
[757, 522, 375, 255, 125] and tI ∈ [374, 249, 124, 63]. We notice how, even with fewer steps and
varying the configurations, the metrics remain stable.

Error Map Analysis. To better visualize the nature of the residuals, we provide L2 error maps
in Figure 10 for Problem C on an example sequence. Comparing L

A

TINO against VISION-XL
and ADMM-TV, we observe that our method yields lower residuals, particularly around motion
boundaries and fine structural details where competing methods exhibit larger errors due to unresolved
blur or temporal inconsistencies.

B ADDITIONAL EXAMPLES

We provide in Table 8 qualitative video comparisons for Problem A, Problem B, and Problem C.
Each triplet corresponds to the Ground Truth (GT), the observed degraded input (y), and the restored
sequence. For Problem C, we provide longer sequences (81 frames) to better appreciate the results.

Additional examples are shown in Figures 12,13,14,15,16. We also include additional sliced images
in Figures 11a and 11b.
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Frame n Frame n+ 1

V
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-X
L
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M
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Figure 10: L2 error maps between reconstructions and Ground Truth. L
A

TINO (middle row)
demonstrates lower error magnitude compared to VISION-XL and ADMM-TV, particularly in
dynamic regions.

GT y L

A

TINO VISION-XL

Problem A (seq. A1) link link link link

Problem B (seq. B1) link link link link

Problem B (seq. B2) link link link link

Problem C (seq. C1) link link link link

Problem C (seq. C2) link link link link

Table 8: Results of our method compared to those obtained by VISION-XL, ground truth, and
measurements (input sequence). Click the links to see the videos.
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Frame from measurement y GT slice L

A

TINO slice VISION-XL slice

(a) Comparison between slices from 25 consecutive frames. Problem A (seq. A1)

Frame from measurement y GT slice L

A

TINO slice VISION-XL slice

(b) Comparison between slices from 81 consecutive frames. Problem C (seq. C1)

Figure 11: Slice comparisons across two sequences. In green, the sliced column. Slice images are
obtained from the three-dimensional video tensor (i,j,τ ) by fixing a column index j. This leads to a
2D tensor with indices (i,τ ) that is represented as an image, where the i index represents the row and
the t index represents the column.
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Figure 12: Visual comparison for Problem A.
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Figure 13: Visual comparison for Problem B.
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