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Figure 1: Results on joint spatial-temporal super-resolution by factor x8.

ABSTRACT

Computational imaging methods increasingly rely on powerful generative diffusion
models to tackle challenging image restoration tasks. In particular, state-of-the-art
zero-shot image inverse solvers leverage distilled text-to-image latent diffusion
models (LDMs) to achieve unprecedented accuracy and perceptual quality with high
computational efficiency. However, extending these advances to high-definition
video restoration remains a significant challenge, due to the need to recover fine
spatial detail while capturing subtle temporal dependencies. Consequently, meth-
ods that naively apply image-based LDM priors on a frame-by-frame basis often
result in temporally inconsistent reconstructions. We address this challenge by
leveraging recent advances in Video Consistency Models (VCMs), which distill
video latent diffusion models into fast generators that explicitly capture temporal
causality. Building on this foundation, we propose LVTINQO'| the first zero-shot
or plug-and-play inverse solver for high definition video restoration with priors
encoded by VCMs. Our conditioning mechanism bypasses the need for automatic
differentiation and achieves state-of-the-art video reconstruction quality with only
a few neural function evaluations, while ensuring strong measurement consistency
and smooth temporal transitions across frames. Extensive experiments on a diverse
set of video inverse problems show significant perceptual improvements over cur-
rent state-of-the-art methods that apply image LDMs frame by frame, establishing
a new benchmark in both reconstruction fidelity and computational efficiency.

1 INTRODUCTION

We seek to recover an unknown video of interest & = (1, ..., @) from a noisy measurement
y=Azx+n,

where A is a linear degradation operator acting on the full video sequence, n is additive Gaussian
noise with covariance U%Id, and x, € R™ denotes the 7th video frame.

We focus on video restoration problems that are severely ill-conditioned or ill-posed, leading to
significant uncertainty about the solution. We address this difficulty by leveraging prior information

'LVTINO is short for LAtent Video consisTency INverse sOlver.



Under review as a conference paper at ICLR 2026

about x to regularize the estimation problem and deliver meaningful solutions that are well-posed.
More precisely, we adopt a Bayesian statistical approach and introduce prior information by specifying
the marginal p(x), so-called prior distribution, which we then combine with the likelihood function
p(y|x) < exp{—||y — Azx||3/202} by using Bayes’ theorem to obtain the posterior

(@)
PElY) = T @)

We aim to leverage a state-of-the-art generative video model as p(x). In recent years, the use of deep
generative models as priors in Bayesian frameworks has garnered significant attention, particularly
in computational imaging, where denoising diffusion models (DMs) have emerged as powerful
generative priors for solving challenging inverse problems (Song & Ermon, 2019; Song et al., 2020;
Chung et al., |2022; |Kawar et al.| |[2022; |Zhu et al., [2023} |Song et al., 2023a; Moufad et al.| [2025)).

For computational efficiency, modern DMs are often trained in the latent space of a variational
autoencoder (VAE), yielding Latent Diffusion Models (LDMs), which are now the backbone of
widely used large-scale priors such as Stable Diffusion (Rombach et al.,[2021; [Podell et al.). More
recently, distilled diffusion models, and notably consistency models (CMs) (Song et al., [ 2023b; |Luo
et al.l |2023a)), have emerged as powerful alternatives, producing high-quality samples with only
a few neural function evaluations (NFEs), in contrast to the hundreds or thousands often required
by iterative DM-based methods. Several recent works have explored leveraging these models in a
zero-shot, or so-called Plug & Play (PnP), manner for Bayesian computational imaging (Spagnoletti
et al.| 2025} |Garber & Tirer, [2025; |Xu et al.| [2024; L1 et al., 2025)).

Several powerful video DMs (Ho et al.,[2022; Blattmann et al., 2023bga; |Chen et al.,|2023; Hong
et al.||2022) and fast CMs (Wang et al., 2023} |Lv et al.,[2025;|Zhai et al., 2024} Y1n et al.,[2024b) have
recently been proposed, offering great potential for Bayesian video restoration. However, leveraging
them remains challenging, so most current methods apply image DMs frame-by-frame and enforce
temporal consistency through external constraints (Kwon & Ye,2025aib). In challenging settings, this
strategy leads to temporal flickering and incoherent dynamics, as it fails to fully capture inter-frame
dependencies. This issue could be in principle mitigated by operating directly with video DMs, but
applying standard DM-guidance techniques such as DPS to video DMs requires computing gradients
by backpropagation through the DM, which incurs a high memory cost (Kwon et al., 2025)).

We herein present LVTINO, the first zero-shot or PnP inverse solver for Bayesian restoration of high
definition videos, leveraging priors encoded by video CMs that capture fine spatial-temporal detail and
causal dependencies. Moreover, by building on the recent image restoration framework of [Spagnoletti
et al.| (2025), LVTINO provides a gradient-free inference engine that ensures strong measurement
consistency and perceptual quality, while requiring few NFEs and no automatic differentiation.

2 BACKGROUND

We begin by revisiting the core concepts underlying DMs and LDMs, and briefly discuss their recent
extension to generative modeling for video data, which we will use as priors in LVTINO.

Diffusion Models. (DMs) are generative models that draw samples from a distribution of interest
mo () by iteratively reversing a “noising” process, which is designed to transport 7o () to a standard
normal distribution (Sohl-Dickstein et al., 2015; Ho et al., [2020; |Song et al., 2020; Song & Ermon,
2020). In the framework of |Ho et al.| (2020), the noising and reverse processes are given by the SDEs:

day = —%:ctdt + v/ Brdwy, (0
dx; = {—gtwt — BiVg, logm(act)} dt + +/Bydwy, @

where [; is the noise schedule, and the score function V, log 7 (@), which encodes the target
7o, is represented by a network trained by denoising score matching on samples from 7y (Vincent,
2011). For computational efficiency, modern DMs rely heavily on a (deterministic) probability flow
representation of the backward process (2), given by the following ODE (Song et al., [2020):

Bt Bt

dx; = |:—21:t — 5th log 7Tt(iL't):| dt. 3)
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Latent Diffusion Models. LDMs dramatically increase the computational efficiency of DMs by
operating in the low-dimensional latent space of an autoencoder (€, D), rather than directly in pixel
space (Rombach et al.,|2021). This substantially reduces compute and memory costs, enabling models
like Stable Diffusion (SD) to generate large images and video (Podell et al.; [Wang et al., [2025).

Video Diffusion Models. Extending DMs to video is an active area of research, requiring models
to capture temporal coherence and causality. Below, we highlight some key contributions to this field:

Ho et al.| (2022) introduce a spatiotemporal U-Net-based DM tailored for video generation. Their
architecture applies 3D convolutions to jointly process space and time, integrates spatial attention
blocks for fine-grained detail, as well as temporal attention layers to capture inter-frame dependencies.

Blattmann et al.| (2023bja)) propose to repurpose pre-trained LDMs to video through the incorporation

of trainable temporal layers lf’ into a frozen U-Net backbone. The temporal layers reshape input
batches into a temporally coherent sequence of frames by using a temporal self-attention mechanism.

Wang et al.[(2025) introduce a state-of-the-art video foundation model built on three components:
(i) Wan-VAE, a lightweight 3D causal variational autoencoder, inspired by |Wu et al.| (2024)), that
compresses a video & € RUFTIXHXWX3 jntg 3 latent tensor z € ROTT/HXH/SXW/EXC yhile
ensuring temporal causality; (ii) a Diffusion Transformer (DiT) |Peebles & Xie|(2022) that applies
patchification, self-attention, and cross-attention to model spatio-temporal context and text condition-
ing; and (iii) a text encoder (umT5) |Chung et al.|(2023)) for semantic conditioning. This architecture
enables efficient training and scalable generation of high-resolution, temporally coherent videos.

Consistency Models. Consistency Models (CMs) are single-step DM samplers derived from the
probability-flow ODE (3). They rely on a so-called consistency function f : (x,t) — x,, that maps
any state x; on a trajectory {:ct}te[m K] of backwards to x,,, for some small > 0, ensuring
f(xe,t) = f(ap,t') forall t,t € [n, K]. Two-step CMs achieve superior quality by re-noising
x, = f(x,t) following (1) for some intermediate time s € (7, K), followed by f(x,, s) to bring
back x; close to the target my. Multi-step CMs apply this strategy recursively in 4 to 8 steps,
combining top performance with computational efficiency (Song et al., 2023b; |Kim et al., 2024).

Latent Consistency Models. CMs can also be trained in latent space by distilling a pre-trained
LDM into a latent CM (LCM) (Luo et al., [2023azb). A particularly effective distillation strategy
is Distribution Matching Distillation (DMD) (Yin et al., [2023)), which trains a generator Gy to
match the diffused data distribution by minimizing a KL divergence over timesteps, using a frozen
teacher DM as reference. Its improved version, DMD2 (Yin et al.l 2024a), adds a GAN-based loss to
further enhance fidelity, and enables few-step samplers (e.g., 4 steps) by conditioning G on discrete
timesteps ¢;. In practice, Gy is often initialized from a pre-trained SDXL model (Podell et al.). We
use DMD2 (Yin et al.l |2024a)) within our video prior, as prior distribution on individual video frames.

Video Consistency Models. Recent advancements have extended CMs to video generation. [Wang
et al.| (2023)) propose VideoLCM, the first LCM framework for videos, derived by distilling a pre-
trained text-to-video DM, it can generate temporally coherent videos in as few as four steps. |Yin et al.
(2024b) present a theoretical and practical framework to convert slow bidirectional DMs into fast
auto-regressive video generators. This conversion enables frame-by-frame causal sampling, allowing
generation of very long, temporally consistent videos. Our proposed LYVTINO method incorporates
the CM variant of Wan (Wang et al.| [2025)), distilled via DMD (Yin et al.}2023)), into our video prior
to effectively capture subtle spatial-temporal dependencies and long-range temporal causality.

Zero-shot (plug & play) posteror sampling. Zero-shot methods leverage a prior model p(x)
(implicit in a pretrained denoiser or generative model) and the known degradation p(y|x) to obtain
an estimate of the posterior distribution p(x|y) « p(y|x)p(x). Whereas early zero-shot literature
concentrates in maximum a posteriori point estimators (Venkatakrishnan et al.,|2013; Monod et al.|
2022), we concentrate here on producing samples from the posterior p(x|y). This has been addressed
by combining prior and likelihood information in various ways, like the split Gibbs sampler (Vono
et al.| 2019), a discretization of the Langevin SDE (Laumont et al.| |2022), a guided diffusion model
(Chung et al.,2022; [Zhu et al.||2023} [Song et al., 2023a; | Kwon & Ye} 2025a:b; Kwon et al., 2025) or
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a guided consistency model (Spagnoletti et al.l 2025} |Garber & Tirer, 2025; Xu et al., 2024} Li et al.
2025])), which is the approach we pursue in this work.

LATINO (Spagnoletti et al., 2025) constructs a Markov chain approximating a Langevin diffusion x,
targeting p(x|y) by using the following splitting scheme:
Sk

u=m+ [ Viegp(&,)ds + V2dw,, & =ms, €5
0

Tpy1 = u+ 6xVIog p(y|Tr 1), Q)
with step-size Jj. Note that the first step corresponds to an overdamped Langevin diffusion targeting
the prior p(x), while the second step incorporates the likelihood via an implicit Euler step.

In order to embed an LCM (€, D, fy) as prior p(x), LATINO replaces (@), which is intractable, with
a stochastic auto-encoder (SAE) step that applies the forward and reverse transports (I)-(3) as follows

z = ,/atké’(wk) + /1 —aye€
u="D(fo(z 1)),
Tpy1 = u+ 6 Viog p(y|Trs1)

where we note that the SAE step preserves three fundamental properties of @): (i) contraction of
random iterates xj, towards the prior p(x); (ii) p(x) is the unique invariant distribution; and (iii) the
amount of contraction is controlled via ¢, which plays a role analogous to the integration step-size
0. As demonstrated in (Spagnoletti et al., 2025), LATINO exhibits high computational efficiency,
requiring only a few NFEs. By leveraging a state-of-the-art SDXL LCM (Yin et al., |2024a), it
achieves remarkable accuracy and perceptual quality across a range of challenging imaging tasks.

3 LVTINO FOR HIGH DEFINITION VIDEO POSTERIOR SAMPLING

We are now ready to present our proposed LAtent Video consisTency INverse sOlver (LVTINO),
which approximately draws samples from the posterior distribution

p(ylz)p(x|c, A)

A
p(@ly,e,A) = Jan P(yl2)p(2|C, \)da ’

parametrized by the data y, a text prompt c, and a spatiotemporal regularization parameter A € Ri.
As mentioned previously, LVTINO is a zero-shot Langevin posterior sampler specialised for video
restoration, which jointly leverages prior information from both Video Consistency Models (VCMs)
and Image Consistency Models (ICMs). In addition, LVTINO is highly computationally efficient,
requiring only a small number of NFEs and operating in a gradient-free manner, which significantly
reduces memory usage and enables scalability to long video sequences.

A main novelty in LVTINO is the use of the following product-of-experts prior for video restoration

p(@le, N) o py (z|e)p; " (x|c)ps (x|X),
where 17 € (0, 1) is a temperature parameter and py (x|c), pr(z|c), and py(x|X) are as follows:

* pyv(x|c) is implicitly defined via a text-to-video LCM designed to capture subtle spatial-
temporal dependencies as well as long-range temporal causality. It is specified by an
encoder-decoder pair (€y, Dy ) and consistency function fX operating in their latent space.

* pr(x|c) is implicitly defined via a high-resolution text-to-image LCM, acting separately on
each frame, to recover fine spatial detail and enhance perceptual quality. It is specified by an
encoder-decoder pair (€7, Dy) and consistency function f; operating in their latent space.

* py(x|A) ox exp {—@a(z)} where ¢, is a convex regularizer promoting background stability
and smooth temporal transitions across frames, with A € R‘i controlling the regularity
enforced. Without loss of generality, in our experiments we use the total-variation norm

oa(@) =TV3(z) & \/)\2 (Dhrci)” + A2 (Dor i)’ + N (Direiy)?

TC’L,]

where (Dp,, D,,, D) is the three-dimensional discrete gradient. Note that TVg} is not smooth.
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Figure 2: One step of the LVTINO solver, a discretization of the Langevin SDE (7) which targets the
posterior p(x|y, ¢, \), involving two stochastic autoencoding (SAE) steps and two proximal steps.

Following a PnP philosophy, p(|y, ¢, A) combines an analytical likelihood function p(y|x) with a
prior distribution p(x|c, A) that is represented implicitly by a pre-trained machine learning model.
However, unlike conventional PnP approaches that exploit a denoising operator (e.g., PnP Langevin
(Laumont et al., [2022))), LVTINO leverages the LATINO framework of |[Spagnoletti et al.| (2025)
which is specialised for embedding generative models as priors, notably distilled foundation CMs.

To draw samples from p(x|y, ¢, \), LYTINO considers a Moreau-Yosida regularized overdamped
Langevin diffusion, given by the SDE

dxs =Vlog p(y|zs)ds 4+ Vlog pl (xs|c)ds + V logpf,lfn) (xs|c)ds
+ Vlogpg(xs|\)ds + vV2dws, ,

where w; denotes a n-dimensional Brownian motion and P4 (5| \) is the y-Moreau-Yosida approx-
imation of the non-smooth factor py(zs|A), given by (Pereyra, 2016)

6)

- 1
Bro(@|A) o sup py(uld) exp {—o—f@ — w3},
ueRn B
with v > 0. As mentioned previously, p¢(x|\) is log-concave and Lipchitz differentiable
by construction because ¢ is convex on R™ (Pereyra, 2016). The likelihood p(y|z)

exp {—|ly — Az||3/202} is also log-concave and Lipchitz differentiable.

Under mild regularity assumptions on py (x|c) and p;(x|c), starting from an initial condition @, the
process & converges to a y-neighborhood of p(x|y, ¢, A) exponentially fast as s — oo (Laumont
et al., [2022). While solving (6) exactly is not possible, considering numerical approximations of
provides a powerful computational framework for deriving approximate samplers for p(x|y, c).

LVTINO stems from approximating (&) by a Markov chain derived from the following recursion:
given an initialization ¢ and a step-size 6 > 0, for all £ > 0,

5
LTpy1/s = Tk J"/ 77V 10ng<:i’s|c)d5 + v 277 dwsa Lo = Tk
0

VCM prior step
Tpyrfy = Tpyrys + 00V 108 (Y| ®pi1s) + 10V 10 Prg (g V)

implicit likelihood half-step with ¢-regularization

§
Lr43/a = Th41/2 +/ (1 =n)Viogpr(Zsle)ds + /2(1 —n) dws, o= Lp41/2
0

ICM prior step
Tpy1 = Thysy + (1 —n)dViog p(y|Tri1),

implicit likelihood half-step
)

where we identify a splitting in which each CM prior is involved separately through exact integration
(these integrals will be approximated through SAE steps), and the likelihood is involved through two
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implicit (backward Euler) half-steps. Importantly, unlike the explicit steps used in most Langevin
sampling algorithms, the implicit steps in (7)) remain numerically stable for all § > 0. This allows
LVTINO to converge quickly by taking § large, albeit with some small bias. Conversely, the widely
used unadjusted Langevin algorithm (ULA) integrates only the Brownian term w; exactly, it involves
gradients via an explicit Euler step, and is explosive unless ¢ is sufficiently small. It is worth recalling
that the Langevin diffusion is a time-homogeneous process. The iterates xy, resulting from its discrete-
time approximation are asymptotically ergodic, converging to a neighborhood of p(x|y, ¢, \) as k —
oo. Unlike DMs, these iterates do not travel backwards in time through an inhomogeneous process.
Therefore, Langevin algorithms use directly the likelihood p(y|x) o exp {—||y — Az|3/202},
avoiding the need to approximate the likelihood of y w.r.t. a noisy version of x, as required in guided
DMs like (Chung et al., [2022; [Song et al., 2023a; Kwon et al., 2025)).

Following |Spagnoletti et al.| (2025), we compute &y, 1/, and &y s/, approximately via SAE steps,

Ty = DY (fg/ ( Oétgcv)gv(a:(k)) + . /1 — ati‘/)qtl(c‘/)) ,C) )
Tpysy = ny (fel ( Ozt;cI)g](:l:(k)) + /1 - atl(cz)e,tgf)70)> ,

where we recall that (€7, D!, f1) act frame-wise and that f}" and f/ have model-specific schedules.

The implicit Euler steps in (7) can be reformulated as an explicit proximal point steps as follows
sy, —angmin gy )+ ( nf ox(w) + &~ ') + g sy - ul.

Farg min gy (u) + ¢x () + a5 |1k — ull3,
u€ER”

Tpi1 = aigefé}?ngy(u) + g5y | Brrss — ull3,

where g, : @ — —log p(y|x) and where we have simplified the computation of &}, 11/, by assuming
that v < dn (Pereyral |2016). The optimization problems described above are strongly convex and
can be efficiently approximated by using a small number of iterations of a specialized solver. In
particular, to compute &1, we employ a few iterations of the conjugate gradient algorithm with
warm-starting (Hestenes & Stiefel| |1952). For the computation of &1 /2> WE recommend using a
proximal splitting optimizer (Chambolle & Pock, [2011)), or a warm-started Adam optimizer (Kingma
& Bal [2014)), both of which are effective in practice. Please see Appendix @ for more details.

Refer to Algorithm [I]for more details about LVTINO, and to Figure[2]for its schematic representation.

4 EXPERIMENTS

Models. We implement LVTINO by using Causvid as VCM prior. We adopt the standard
bidirectional WaN architecture, fine-tuned as a CM. The model also supports an autoregressive
configuration, which we do not utilize here, leaving the exploration of autoregressive priors for longer
video restoration to future work. Concerning the ICM, we use DMD2, following |Spagnoletti et al.
(2025). For our experiments, we use tEV) € {757,522, 375,255,125} and tgl) € {374,249, 124,63}
for the VCM and ICM respectively. This results in a total of 9 NFEs, where applying the ICM across
all frames counts as a single NFE. Regarding the text prompt specifying VCM and ICM, in the same
spirit as Kwon & Ye|(2025b), we do not perform any prompt optimization and instead use the generic
prompt “A high resolution video/image”. Exploring prompt optimization by leveraging the maximum
likelihood strategy of [Spagnoletti et al.[(2025) remains a key direction for future work.

Dataset and Metrics. We evaluate methods on 435 video clips of 25 frames each from the
Adobe240 dataset (Su et al.| [2017), and 239 video clips of 25 frames each from the GoPR0O240
test dataset|Nah et al.|(2016). These datasets contain high-quality, high-frame-rate video sequences
that we rescale to a spatial resolution of 1280 x 768 pixels to match our targeted resolution.

We assess reconstruction quality using peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM) (Wang et al.l 2004). Additionally, we evaluate two perceptual metrics: Learned
Perceptual Image Patch Similarity (LPIPS) (Zhang et al., [2018)), along with the recently proposed
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Algorithm 1 LVTINO (LAtent Video consisTency INverse sOlver)

1: given degraded video y, operator A, initialization xq = A'y, video lenght T + 1, steps N =5
2: given video CM (Ey, Dy, fY), image CM (£, Dy, f1), schedules {t, (V) J (1) , 0k 1, A}k o ,gy
3: fork=0,..., N—1do
4: # VCM prior half-step (temporal coherence)

: €v ~ N(O Id(1y7/a)x H/8xW/8%C

5:
6: tw) — ja g 5V($k 1) /1 — Oét;cv) €y

7. @ & Dy(fY (Z(X/)), ) > VCM
8: # First likelihood - Solved with proximal splitting or Adam iterations
9: ik+1/2 < arg minueR(T+1)><H><Wx3 gy(u) + gb,\(u) + lenn:i]“rl/‘i — u||§
10: if £ < N then
11: # ICM prior half-step (per-frame detail)
12: €r NN(O Idh/8><w/8><c>
13: azk+3/4 — stack -0 'D1<f9 ( /O(t](f) 8](@164_1/2)7-) +,/1— Ottgcz) €1, té”)) > ICM
14: # Likelihood prox (2nd) - Solved with conjugate gradient iterations
15: Tp argminueR(TJrl)xwam gy(’U,) + Wll—n)”ik‘Fs/‘l — u||%
16: else
17: # Final iteration: skip ICM and second likelihood
18: Ty :f}k+1/2
19: end if
20: end for

21: return x N

Fréchet Video Motion Distance (FVMD) (Liu et al.,|2024) which is tailored for assessing motion
smoothness and perceptual quality in videos.

Inverse Problems. We consider three linear inverse problems for high-resolution video restoration.
Letx = (z,)1_, € RIT+DXHXWXC denote the unknown high-resolution video and y = Az + n
the observed degraded video with additive Gaussian noise n. For fair comparisons, we consider a
mild noise regime o,, = 0.001, which addresses the noiseless case.

* Problem A - Temporal SRx4 4+ SRx4: here A first applies temporal average pooling with
factor 4 (reducing the frame rate), followed by frame-wise spatial downsampling by factor
4, simulating a low frame rate and low resolution video. E]Temporal upsampling to generate
the missing frame is highly challenging here, as it requires prior knowledge of motion.

* Problem B - Temporal blur + SRx8: here A first applies a uniform blur kernel of size 7
pixels along the temporal dimension, followed by frame-wise spatial downsampling by a
factor 8, simulating a motion-blurred and low-resolution video (Kwon & Yel 2025azb).

e Problem C - Temporal SRx8 + SRx8: is a harder version of Problem A, where A first
applies temporal average pooling with factor 8 and then a spatial downsampling by factor 8.

Problem A: Temp. SRx4 + SRx4 Problem B: Temp. blur + SRx8 Problem C: Temp. SRx8 + SRx8
Method NFE| FVMD] PSNRt SSIMt LPIPS| NFE| FVMD| PSNRt SSIMt LPIPS] NFE| FVMD| PSNRt SSIMt LPIPS]
LVTINO 9 371.1 27.25 0.837 0.249 9 42.65 2491 0.741 0.370 7 602.5 23.11 0.697 0.411
VISION-XL 8 1141 26.03 0.672 0.439 8 82.92 26.18 0.749 0.468 8 1604 23.38 0.652 0.520
VIDUE - - - - - - - - - - 1 142.5 21.78 0.624 0.505
ADMM-TV - 427.6 18.04 0.767 0.297 - 128.2 21.18 0.644 0.452 - 1645 18.15 0.663 0.439

Table 1: Results on the Adobe24( dataset across the three problems. Best results are in bold, second
best are underlined.

>Temporal SR xk is also a coarse (Riemann sum) approximation of motion blur due to moving objects or
camera during full continuous exposure between frames (Zhang et al., 2021).
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Problem A: Temp. SRx4 + SRx4 Problem B: Temp. blur + SRx8 Problem C: Temp. SRx8 + SRx8
Method NFE| FVMD| PSNRT SSIMt LPIPS| NFE| FVMD! PSNRT SSIMt LPIPS| NFE|! FVMD] PSNRt SSIMt LPIPS|
LVTINO 9 189.4 24.01 0.775 0.315 9 46.20 2246 0.687 0.433 1 232.6 2291 0.677 0.445
VISION-XL 8 282.2 26.06 0.792 0.326 8 52.03 24.05 0.697 0.486 8 995.9 22.67 0.669 0.474
VIDUE - - - - - - - - - - 1 84.45 20.66 0.571 0.548
ADMM-TV - 265.8 24.32 0.745 0.406 - 1459 20.83 0.618 0.527 - 969.3 17.70 0.631 0.527

Table 2: Results on the GoPro240 dataset across the three problems. Best results are in bold, second
best are underlined.

Frame from measurement y

GT slice LVTINO slice  VISION-XL slice

Figure 3: Comparison between slices from 81 consecutive frames for Problem C (seq. C2). Slice
images (i, 7) are obtained from the video tensor (4, j, 7) by fixing a column index j shown in green.

Computational Efficiency. While NFEs provide a

hardware-agnostic measure of complexity, practical de- _ethed NFE| Time(s)| Mem.(GB){
ployment requires considering runtime and memory foot- b};ﬂﬁ? XL z :;é }2;2
prints. Table @] reports the wall-clock time and peak GPU ~ ADMM-TV - 13.6 2201
memory usage for restoring a 25-frame video, measured LVIINO-V. 3 1 D4
on one A100 GPU. VISION-XL, by only loading an image
model, exchanges memory usage for time, as it needs to
perform sequentially each frame. LVTINO offers a com-
petitive trade-off thanks to the VCM, which scales better
for longer videos. Notably, the lighter variant LVTINO-V
(see Appendix [A-6] for more details) achieves the fastest
runtime among deep generative approaches with a moder-
ate memory cost, as it only loads the VCM component.

Table 3: Runtime and memory usage.
Measured on a single video clip of 25
frames at 1280 x 768 resolution. Best
results are in bold, second best are
underlined.

Results. Experiments in Tablerefer to Problems A, B and C, and are obtained with different
numerical schemes for (7). We fix the hyperparameters per problem to better tackle the different
degradations; see Table[d]in Appendix [A.6|for more details and for an ablation study.

For the more challenging Problem C, to stabilize and warm-start LVTINO, we use the joint deblur-
ring/interpolation network of |Shang et al. (]2023[E|t0 produce a temporally interpolated version of y,
which we then upsample via bilinear spatial interpolation so that it can be used as initialization x.
This warm-start allows us to reduce the number of integration steps, bringing the NFEs to 7. The
same model, referred to as VIDUE, is used as a baseline comparison in Tablemand Table@

We further provide a visual analysis of motion quality using fixed vertical slices of video frames,
following |(Cohen et al.|(2024), who observed that spatiotemporal slices of natural videos resemble
natural images. Figureand Appendixin Figures and show (i, 7) slices. These reveal that
even for small motions, LVTINO more closely preserves ground truth temporal continuity.

Qualitative and quantitative evaluation. Figures [T} [ [5] and [f]show the results of our algorithm
compared to the measurements, ground truth and VISION-XL (see also the videos by following the
links in the captions). Table[§]in Appendix [B]provides additional results. These results demonstrate
that LVTINO yields more detailed and temporally coherent videos than VISION-XL. The ICM
prior enhances spatial detail, while the VCM prior and T'V3} jointly improve temporal coherence,
particularly in the challenging upsampling tasks B and C. For example, in Figure[6] LVTINO achieves
noticeably sharper results with minimal motion blur and strong temporal coherence, whereas VISION-

*Which is trained on the GoPRO240 train dataset (Nah et al| 2016).
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XL shows a staircase effect with repeated frames and unresolved blur, also evident in Figure[d In
Figure 5] VISION-XL exhibits temporal flickering, which our method eliminates via the VCM and
TV models. Table [I] supports these visual findings: LVTINO achieves strong FVMD and LPIPS
scores, reflecting accurate spatiotemporal dynamics and fine spatial detail.

Other baselines. We also report comparisons with ADMM-TYV, a classical optimization-based
method (we use the hyperparameters of (Kwon & Yel [20254)). We also considered comparing
with VDPS (Kwon et al.} [2025), however the backpropagation through Wan’s DiT and Decoder at
resolution 1280 x 768 pixels required > 80 Gb of VRAM, exceeding the memory capacity of GPUs
available in our academic HPC facility. Since LVTINO’s conditioning mechanism does not rely on
automatic differentiation, it has significantly lower memory usage.

5 CONCLUSION

We introduced LVTINO, the first VCM-based zero-shot or PnP inverse solver for Bayesian restoration
of high definition videos. By combining a VCM, a frame-wise ICM and TV3 regularization, LVTINO
can recover subtle spatial temporal dynamics, as evidenced by its strong performance on challenging
tasks and datasets involving both moving objects and camera shake. Moreover, LVTINO’s condi-
tioning mechanism ensures strong measurement consistency and perceptual quality, while requiring
as few as 8 NFEs and no automatic differentiation. We anticipate that upcoming advancements in
distillation of VCMs will further improve the accuracy and computational efficiency of LVTINO.

Future research will explore sequential and auto-regressive Bayesian strategies for the restoration
of long videos, as well as better Langevin sampling scheme through the use of more sophisticated
numerical integrators. Another promising research direction is the incorporation of automatic prompt
optimization by maximum likelihood estimation, as considered in|[Spagnoletti et al.| (2025) for image
restoration tasks. Furthermore, it would be interesting to specialize LVTINO for particular tasks
through the unfolding and distillation framework of [Kemajou Mbakam et al.|(2025).

LVTINO

=
%
Z
=
=
7
Z
>

Figure 4: Visual comparison for Problem A (seq. A1). The continuity of the motion is retrieved as
the hand moves from right to left. See full videos: LVTINO) and VISION-XL.


https://streamable.com/hpoijy
https://streamable.com/mptmed
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VISION-XL LVTINO

Figure 5: Visual comparison for Problem B (seq. B2). The flickering problem is solved by LVTINO
(see darker and lighter area behind the chair). See full videos: [LVTINO) and VISION-XL!.

VISION-XL LVTINO

Y

Figure 6: Visual comparison for Problem C (seq. C2). The motion is retrieved by the reconstruction.
See full videos (81 frames for a better direct comparison): LVTINO and VISION-XL!|

REPRODUCIBILITY STATEMENT

To allow complete reproducibility, we commit to publishing the full code on GitHub upon acceptance.
Furthermore, the LYTINO algorithm is fully described as pseudo-code in Algorithm|[I]and the details
contained in Table [ and Sections [ [A-T] [A.2]describe the implementations of the key components.
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A APPENDIX

A.1 IMPLEMENTATION OF THE FORWARD OPERATORS

For all the inverse problems considered, we use the following formulation
A = SpatialSRo TemporalSR.

For Temporal SRx4 + Spatial SRx4, we apply a temporal average pooling with factor 4 (with
end padding if T is not divisible), followed by frame-wise spatial downsampling with factor 4
(DeepInv.Downsampling [Tachella et al) (2025)). The adjoint A" first applies the spatial
adjoint (back-projection to HR) and then the adjoint of temporal averaging (nearest upsample by 4
divided by 4, with folding of the padded tail back to the last frame when 7" is not a multiple of 4).
The same approach, but with x8, is adopted for the Temporal SRx8 + Spatial SR <8 problem. For
the Temporal blur + Spatial SR <8 task, we use a 1D temporal uniform convolution with circular
boundary conditions via FFT of window size of 7, followed by frame-wise spatial downsampling
with factor 8; the adjoint corresponds to spatial back-projection and time-reversed temporal filtering
via FFT.

A.2 IMPLEMENTATION OF LIKELIHOOD PROXIMAL STEPS

We will now describe the implementation of the likelihood updates in the splitting scheme (Equa-
tion(7)) instantiated by task-specific linear operators A over videos & € R(T+1*xH*Wx3_We remind
that we have to solve the following problems:

arg min gy(u) + ox(u) + Wlnnik#ﬁx - UH%v ®)
uER(T+1)><H><W><3
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and

argmin gy (w) + gy 1 @er — ul3, ©)
WER(TH1) X HX W x3

where g, () = 2|4 -~y

Starting from Equation lgi we notice that this is exactly the shape of the proxsu - )| A—yli2 (u),
we thus provide details about the computation of this step.

Quadratic proximal (/> data term). Given ¢ > 0 (which may include ¢, n as well as the noise
variance o2), the quadratic likelihood proximal operator

Drox | 4. —yj3(w) = argmin 5[ Az — g3+ §lo — ul?
reduces to the normal equations
(Id + e.AT.A) x =u+edAly,

where Id is the identity operator. The exact solution is computationally tractable in high dimensions
when A admits a closed-form and fast SVD (Zhang et al.,| 2020ﬂ, but to make our method applicable
to general operators, we solve this linear system approximately using ~ 10 Conjugate Gradient
(CG) (Hestenes & Stiefel, |1952) iterations.

CG is a Krylov-subspace method that iteratively refines an approximate solution z*) without
explicitly inverting Id + e AT A. Starting from the initial guess (°) = u, we iteratively update:

r®) =b— (Id+ AT A)2z®), b:=u+cA'y,
(k)2
(k) — (k) 4 g(k)py(k=1) . ™5
p =r + ﬁ p ) 5 — W,
a® — l=*]13
(p®), (Id + eAT A)p®))’
2D — 0 4 () pk) pFD) — n(B) (R (1d + GAT_A)p(k)_

The algorithm terminates after a fixed number of iterations or once the residual norm ||(*)||, falls
below a tolerance (e.g. 107%). Because Id + A" A is symmetric positive definite, CG converges
rapidly.

This iterative scheme is memory-efficient, requiring only matrix—vector products with A and AT,
and avoids the explicit computation of A " 4, making it suitable for large-scale inverse problems and
long video sequences.

Spatio-temporal TV; proximal (PDHG). For the regularised subproblem (8], we solve

min gl [l Au — y|3 + gk llu — Fraul} + oauw), (10)
u n \ ,
f(w) 9(Dxu)
where
2 2 2
oa(u) = TVga(u) = Y \/Aﬁ(DhuT,c,m) + A2 (Dyttrcij)” + A2 (Drthrei)” s
i

and Dy := [\, Dy, AyDy, A-D; ], sothat g(Dyu) = || Dyulf.

*For Problems A, B, C, the SVD of A can be expressed in terms of Fourier transforms, only if convolutions
are periodic, which is not always the case for the kind of spatial and temporal blur we have in our case.
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The associated subproblem in (I0) is convex and can be solved using the primal—-dual hybrid gradient
(PDHG, Chambolle-Pock) algorithm [Chambolle & Pock|(2011). Let p = (pp, pv, p-) denote the
dual variable with three components per voxel. Given stepsizes p, o > 0 such that po||D,||? < 1 and
extrapolation 6 € [0, 1], the iterations read:

pk + UD)\’lfl,]C
max(1, |[p¥ + oD u*|2)

karl = proxgg*(pk + (TD)\’llk) =

(projection onto unit ¢, ball),

k+1

u = prox,y (uk — pDkaH),

obtained by solving (I + p(A" A+ ﬁ[))u’”l =z+ p(ATy + 5%]531@4-1/4);

with z = u® — pD pF+!,
ﬁk+1 _ ukJrl + g(ukJrl _ uk)

Here D:\r pP=An D,—'L—ph + Ao D;r Py + /\TD;'— p, is the weighted divergence, and the proximal step for
f(u) = 52 | Au—y||3 + ﬁ | — &j1,4||3 is implemented by solving the normal equations. As

in our implementation d7 is often > 10°, to simplify the computations we remove the regularization
term ﬁ | — &j41/.]13. Around 10 iterations of the CG algorithm can be used to solve the normal
equations, as they are warm-started with u”.

In practice, we apply Chambolle—Pock (~ 200 iterations) only in the pure temporal TV case (A, =
Ay = 0). When spatial weights are nonzero (A, > 0 or A, > 0), we instead minimise directly
with ADAM (Kingma & Ba, |2014) (learning rate 1073, 100 iterations), which proved more robust in
this setting.

A.3 THE LATINO ALGORITHM

In order to clarify the practical implementation of the splitting scheme introduced in Equation (), we
provide here the pseudo-code to implement LATINO as described in Spagnoletti et al.| (2025)).

Algorithm 2 LATINO

1: given xq = Ay, text prompt ¢, number of steps N, latent consistency model f, latent space
decoder D, latent space encoder &, sequences {tx, d k}g;()l.

2. fork=0,...,N—1do

3: € ~ N(0,1d)

4: zt(f) — Jag () + /1T — oy, € > Encode
5: u®) D(fg(zgf), tg, ) > Decode
6: Tpt1 ¢ ProXy, g (u(k)) > gy : @ — —logp(y|x)
7: end for

8: return x N

A.4 THE VISION-XL ALGORITHM

VISION-XL Kwon & Ye|(2025b) (Video Inverse-problem Solver using latent diffusION models) is a
SOTA framework for high-resolution video inverse problems, LDMs such as SDXL to restore videos
from measurements affected by spatio-temporal degradations.

Components VISION-XL integrates three main contributions: (i) Pseudo-batch inversion, which
initializes the sampling process from latents obtained by DDIM-inverting the measurement frames.
(ii) Pseudo-batch sampling, which splits latent video frames and samples them in parallel using
Tweedie’s formula |Efron| (2011)), reducing memory requirements to that of a single frame. (iii)
Pixel-space data-consistency updates, where each denoised batch &, is refined using [ iterations of a
quadratic proximal step

i =arg min |y - A(z)|3,
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typically solved via conjugate gradient (CG). This enforces alignment with the measurement before
re-encoding to the latent space and re-noising for the next step.

Overall Algorithm. Starting from z, = DDIM ™! (Ey(y)) with p =~ 0.3T, VISION-XL alternates
denoising in latent space and proximal data-consistency refinement in pixel space. After decoding
the denoised latent batch &; = Dy(Z2;), a low-pass filter is applied to suppress high-frequency
inconsistencies before re-encoding and re-noising, yielding z;_1. This process is repeated until ¢ = 0,
as shown in Algorithm [3]

Algorithm 3 VISION-XL

Require: Pretrained VAE encoder £y, decoder Dy, denoiser E(St), measurement x, forward operator
A, initial DDIM inversion step p, CG iterations [, low-pass filter widths {o }, noise schedule
{a}i,

1 zg < Ep(y)
20 zp DDIM*I(zO) > Step 1: Pseudo-batch inversion (informative latent initialization)
3: fort=p,...,2do

zZt — \/1 — Eét) (Zt)
Vay

4: Z > Step 2: Pseudo-batch sampling (Tweedie’s formula)

5: Ii?t — De (2t)
: &y + argmingez, i, || ¥y — A(zx) |3 > Step 3: Data-consistency refinement (multi-step
proximal via [ CG steps)
Ty Tt * hy, > Step 4: Scheduled low-pass filtering (mitigate VAE error accumulation)
Zt <— 89 (Q_It)
Zi—1 — Jou—1Z + /1T — a1 > Step 5: Renoising (batch-consistent noise)
end for
21 —VI—a1 ESY (z)
Vai

12: return xy < Dy(zo)

,_.
@Y ®A

11: zg <

A.5 CONNECTION WITH PNP-FLOW ALGORITHMS

The PnP-Flow Martin et al.| (2025) algorithm designed to leverage Flow Matching image priors
has some direct connections to LATINO [Spagnoletti et al.[(2025]). For this reason, we now briefly
introduce their setting and state how this idea can be extended to Video Flow models.

Let Xy ~ Py denote a latent variable and X; ~ P, a data variable, with joint law (X¢, X;) ~ .
Assume we are given a pre-trained Flow Matching model with velocity field

vg : [0,1] x RY — RY, (t,x) — vy(t, x),

learned by minimizing the Conditional Flow Matching (CFM)[Lipman et al.| (2023)) loss along the
straight-line interpolation [Liu et al|(2022); Benton et al.| (2024)

X = (it(X(),Xl) = (17t)X()+ﬁX1, te [0, 1}

Time-dependent denoiser from Flow Matching. From the velocity field vy we define a family of
time-dependent denoisers

Di(x) := x4+ (1 —t)vy(t, x), t €[0,1]. (11)

To motivate this choice, recall that for each ¢ € [0, 1] the population minimizer v} of the CFM loss
satisfies

*

vi(x) = E[X; — Xo| Xy =],
so that in the ideal case vg(t,-) = vy () one has

Di(x) = .+ (1—t)vi(z) = E[X|X, =a]. (12)
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Thus D, coincides with the minimum mean-square-error (MMSE) estimator of the clean variable X
given a noisy point X; on the interpolation path. Equivalently, D; solves the regression problem

D, € argmgin E[|| X1 — g(Xo)|?],

and can be interpreted as a time-indexed denoiser that projects points lying along the straight path
(Xt)te[o,1] onto the target distribution P;.

In particular, if the FM flow is straight-line in the sense that X; = (1 — ¢) Xy + ¢ X is realized by the
associated flow ODE, then D; can perfectly recover X from X,. Under mild regularity assumptions,
one can show that the mean-squared error E || D;(X;) — X1[|] vanishes for all ¢ € [0, 1] if and only
if the learned flow forms a straight-line Flow Matching pair between X, and X3 ElThis highlights

the particular suitability of straight-line FM models (e.g. OT-FM [Pooladian et al.| (2023); [Tong et al.
(2024)) as building blocks for PnP priors.

PnP Flow Matching algorithm. Martin et al.|(2025) incorporates the denoisers { D; }4¢|o,1] into a
Forward-Backward Splitting (FBS) scheme for solving imaging inverse problems of the form

in F R
min F(z) + R(z),

where F'is a differentiable data-fidelity term (e.g. negative log-likelihood), and R is an implicit

prior induced by the generative model. Classical PnP-FBS [Meinhardt et al.] (2017)); [Sun et al] (2019);

Hurault et al.| (2022)); [Tan et al.| (2024) replace the proximal operator of R by a time-independent
denoiser, applied directly after the gradient step on F'.

In contrast, PnP-Flow introduces two key modifications:

1. A time-dependent denoiser Dy as in (L)), indexed by a schedule (t,,),, C [0, 1] with ¢,, 1.

2. An intermediate interpolation/reprojection step that maps the gradient iterate back onto the
straight FM path before denoising.

Given an initial guess xo € RY, a sequence of times (), witht,, € [0,1] and ¢,, — 1, and stepsizes
(Yn)n» each PnP-Flow iteration at time ¢,, proceeds as follows:

1. Gradient step. Move towards data consistency by a gradient descent step on F":
Zn = Tp — Y VE(2).

2. Interpolation (reprojection) step. The denoiser D, is trained to act on points distributed as
X, , i.e. lying on the straight-line FM path. The output z,, of the gradient step does not
follow this distribution, so we “reproject” it onto the FM trajectory by drawing a latent
sample € ~ P and forming

Zn=(1—t,)e+ty zn. (13)

Intuitively, Z,, mimics a point at time ¢,, on a straight path between a latent sample from P
and the current gradient iterate.

3. PnP denoising step. Finally, we apply the FM-induced denoiser at time ¢,,,
Tp+1 = Dtn(in) - 2n + (1 - tn) U@(tn; én)a (14)

which pushes z,, towards the data distribution while still respecting the measurement model
encoded in F'.

The resulting discrete-time algorithm, summarized in Algorithm[] alternates between a data-fidelity
gradient step, an interpolation onto FM trajectories, and a generative PnP denoising step. The time
parameter t¢,, controls the relative weight of the prior: for small ¢,,, the denoiser has a strong effect
(large factor 1 — ¢,, in ), while as ¢,, — 1 the updates gradually become more likelihood-driven.
Comparing Algorithm[]to Algorithm[J] it is clear that both adapt the same core idea: data-term —
add noise — denoise and repeat. Both LATINO and PnP-Flow reproject the intermediate step «,, to a
point in the Flow ODE, to which is applied, in one case, the CM, and in the other, the FM denoiser.

3See Proposition 1 in (2025) for a precise statement and proof.
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Algorithm 4 PnP-Flow Matching

1: Input: Pre-trained Flow Matching network vy, time sequence (¢y,),, with ¢, € [0,1] and ¢,, 7 1,
step sizes (Y )n, data-fidelity F' : R? — R, prior Py (e.g. standard Gaussian), initial iterate

o € R4
2: forn=20,1,2,... do
3: Zn — Ty — Y VF () > gradient step on data-fidelity
4: Sample € ~ P > latent noise
5: Zn+— (1—tp)e+ty 2z, > interpolation along the flow path
6: Tpi1 < Zn+ (1 —t,) ve (tn, in) > PnP denoising with FM-induced denoiser D,
7: end for
8: Output: Reconstruction x,, 11

The other difference is in the type of data-fidelity term adopted; in one case, it is a proximal step as
a result of an implicit Euler step, while in the other, it is a gradient one, which is equivalent to an
explicit Euler step and requires many more iterations to converge due to the limitations on 7,,.

Given these similarities, it is natural to think about merging the two frameworks by leveraging few-
step FMs|Liu et al.|(2022)); [Kornilov et al.| (2024) in place of CMs. This would lead to a Flow-SAE
that could be plugged into the LATINO algorithm and provide a different way to integrate the prior
term in Equation (3. As a direct consequence, given a video FM prior, it can be deployed in place
of the VCM in our Algorithm[I] and benefit from the modular framework introduced in this work,
as it can be coupled with an ICM, or an image FM prior, and the TV3 term. We believe that future
research may benefit from this Flow-LVTINO formulation to improve the quality of restorations and
further generalize our setting.

A.6 ABLATION STUDY

To better understand the impact of the data-consistency updates in LVTINO, we perform an ablation
study comparing different strategies for the likelihood proximal steps appearing in Equation (7).
Furthermore, we provide results on Problem A and Problem B obtained with a lighter version of
LVTINO that only includes the VCM prior. We call this version LVTINO-V and we provide in
Algorithm [3]its implementation.

In Tab}e@ we find the hyperparameters used to get Ta- . piem s Aos Ar) 5 (1—n)s
ble[Ilin Sectiondl These values were chosen after an - S

. . A (0, 0, 0.005) 10 10
extensive grid search on A = (A, Aw, A7), 7, v; never- ¢ (0, 0, 0) 10°  2x103
theless, other combinations also produced satisfactory re- ¢ (107%,107%,107% 10°  10°
sults, and we want to illustrate some alternative choices
in this section. Table 4: Hyperparameters used in .

LVTINO: w\ and w\o TV. As we can see from Table Ié-_lL it seems better to keep the TV prior term
¢ when we solve Problem A, while it is better to fall back on the prox-only case (i.e. A = (0,0,0))
when we tackle Problem B. We then show in Table [5] what happens in the two symmetric cases,
meaning when we switch the optimal configurations of Problem A with those of Problem B. We can
observe how the metrics do not change much for Problem B, as we are still able to beat the SOTA
VISION-XL method in half of the metrics (in particular, we focus on the FVMD that tells us how
temporally consistent the reconstruction is). As opposed to this, we see that we lose a lot of precision
for Problem A in all the metrics. This can be explained by the fact that the TV prior is crucial when
dealing with temporal interpolation, as it prevents the ICM from creating flickering effects.

LVTINO-V as a lighter alternative. As anticipated, we also provide some results when we turn
off the ICM part of the LVTINO algorithm, meaning that we set = 1. This solution, described
in Algorithm 3} only presents choices in one data-fidelity step, which we can again tune as a TV-
regularized step or as a classical prox-only step. We provide in Table [5]both cases. The values of
A and § are the same as Table ] meaning that the TV case will follow the Problem A row and the
prox case the Problem B row. We see how this lighter version can still beat VISION-XL in almost
all metrics with only 5 NFEs. In particular, since we no longer have the ICM, the TV prior loses its
importance, and the prox case emerges as the best option. LVTINO-V is capable of getting highly
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temporally coherent reconstructions, as shown by the low FVMD values, only losing to LVTINO,
especially in LPIPS, as its single frame quality suffers from the limitations of the VCM. We believe
that further research could fill the gap between LVTINO and LVTINO-V, developing new SOTA
methods that solely use VCMs, without the need for its image counterpart, to increase spatial quality.

Temp. SRx4 + SRx4 Temp. blur + SRx8
Method (Data-Consistency Config) NFE| FVMD| PSNR1 SSIM{1 LPIPS| FVMD| PSNR{1 SSIM{1 LPIPS|
LVTINO-V (prox) 5 4252 2500 0.811 0270 3170 2380 0.737 0375

LVTINO (ICM: prox, VCM: prox) 9 607.5 2259 0614 0475 42.65 2491 0.741  0.370

LVTINO-V (TV) 5 5033 2444 0776  0.338 5780 22.01 0.684 0.441

LVTINO (ICM: prox, VCM: TV) 9 3711 27.25  0.837  0.249 5152 2318 0.725 0418
8

VISION-XL 1141 26.03 0.672  0.439 8292  26.18 0.749  0.468
ADMM-TV 4276  18.04 0.767  0.297 1282  21.18 0.644 0452

Table 5: Ablation study on data-consistency schemes. Left block: results for temporal SRx4 +
SR x4, Problem A. Right block: results for temporal blur + SR <8, Problem B.

Algorithm 5 LVTINO-V

1: given degraded video y, operator A, initialization 2y = A'y, video lenght T + 1, steps N = 5
2: given video CM (Ev, Dy, f)), schedules {tj, 0k, A} p—g'» gy

3: fork=0,..., N—1do

4: € ~ N(0,1d (14 7/4)x H/sx W/8xC)

5 zt(f) — Vo, Ev(zr) + VI—ay, € > encode & diffuse to ¢,
6 Ty < Dy(fY (zt(:) Jtk)) > VCM prior contraction
7 L1 ¢ argming cprrnxaxwxs gy(w) + dx(u) + ﬁ”izk#h —u||3 > data-consistency
Solved with a few CG iters; TV-in-time can be used here.

end for
9: return xy

[ee]

A.7 ADDITIONAL EXPERIMENTS AND ANALYSES

Comparisons to other baselines. To provide a more comprehensive evaluation, we extend our
comparison to include non-zero-shot methods, such as VIDUE |Shang et al.[(2023)), which is explicitly
trained for joint motion-blur removal and frame interpolation. This makes it a highly relevant
baseline for the combined blur and interpolation tasks of Problem C, whereas standard Video Frame
Interpolation (VFI) methods often fail to address motion blur. We indeed specifically compare VIDUE
against the recent BiM-VFI[Seo et al] (2023)). As shown in Figure[7] because BiM-VFL is trained
specifically for interpolation, it fails to remove the degradation caused by motion blur. In contrast,
VIDUE addresses the joint problem more effectively. As VIDUE does not perform super-resolution,
we apply bicubic upsampling (x8) to its output for fair comparison to LVTINO. The results are
shown in Table[Tland Table

We also acknowledge that Diff[R2VR is a relevant competitor to VISION-XL, and thus to LVTINO.
However, the specific Stable Diffusion v2.1 checkpoint required to reproduce their method
is no longer publicly available, which prevents a fair comparison.

BiM-VFI VIDUE

Figure 7: Visual comparison on Problem C. Left: BiM-VFI preserves blur artifacts. Right: VIDUE
removes some motion blur.
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Noisier cases. We now show results computed on the Adobe240 dataset for a higher noise scenario
with o, = 0.01. As expected, the optimization step in VISION-XL fails to properly restore the video
sequences in this case, as VISION-XL is not conceived to deal with noisy measurements, yielding
NaN values. In contrast, LVTINO and ADMM-TV handle this case without difficulty. Their results
are reported in Table[f] together with VIDUE for Problem C.

Problem A: Temp. SRx4 + SRx4 Problem B: Temp. blur + SRx8 Problem C: Temp. SRx8 + SRx8
Method NFE| FVMD,| PSNRt SSIMt LPIPS| NFE| FVMD| PSNRT SSIMT LPIPS| NFE| FVMD,| PSNRt SSIMt LPIPS|

LVTINO 9 256.5 2495 0.782 0331 9 62.6 2191  0.671  0.448 7 310.6 2342 0.688  0.428
VIDUE - 1 121.5 2133 0.603  0.511
ADMM-TV - - 1665 18.12  0.652 0475

1455 21.35 0.646 0471

424.1 17.85 0.758  0.373

Table 6: Results on the Adobe240 dataset with noise o, = 0.01 across the three problems. Best
results are in bold, second best are underlined.

Non-linear Inverse Problems. Although for presentation clarify we present LVTINO in the context
of linear inverse problems, LVTINO can be applied to non-linear problems too. The main requirement
is the ability to evaluate the proximal operator of the log-likelihood, which is feasible for many

non-linear degradations, as already shown in [Spagnoletti et al.| (2025).

To demonstrate this, we consider a non-linear degradation: Additive Gaussian noise (o = 0.01) fol-
lowed by JPEG compression (quality=10) applied to each frame independently. Figure[§]shows frames
extracted from the reconstruction results. LVTINO successfully recovers high-frequency details and
suppresses compression artifacts, confirming its applicability to non-linear inverse problems.

Measurement y LVTINO

Figure 8: Results on a non-linear inverse problem (Gaussian Noise + JPEG compression). Top row:
Example from Adobe240. Bottom row: Example from GoPRO240. LVTINO effectively removes
blocking artifacts and noise in both cases.

Hyperparameter Sensitivity. We analyze the stability of LVTINO with respect to the step size J and
the regularization weight . Figure[9] plots PSNR and LPIPS metrics on a representative sequence
from the challenging Problem C. We observe that performance remains stable across a reasonable
range of values (e.g., § € [2-10%,2 - 10°]). This indicates that the parameters reported in TableEIare
not brittle, and e-good hyperparameters can be found without exhaustive fine-tuning.

In a similar way, it is also possible to analyse the parameter 1), which controls the balance between the
VCM and the ICM in our theoretical framework (see equation (6)). It must be translated into practice
by choosing the corresponding evaluation times ¢y and ¢;. In particular, when 7 increases, the ¢y is
larger, and the ICM is evaluated at a smaller ¢;. Because pretrained Consistency Models are only
accurate on a restricted subset of timesteps, this severely limits how finely we can tune 7 in practice.

To approximate different effective values of 7, we therefore perform an ablation in which we vary
the possible video timesteps ¢y, and image timesteps ¢; within the valid finetuned ranges of the two
backbones. Operationally, we choose among the subsets:
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Figure 9: Sensitivity analysis for Problem C. The method shows robust performance across a wide
range of step sizes (J) and regularization weights ().

* VCM (video model): ([757, 522, 375, 255, 125])

* ICM (image model): ([749,624,499, 374,249,124, 63])
and pairing them to simulate “larger n” (larger VCM steps + smaller ICM steps) and “smaller n”
(smaller VCM steps + larger ICM steps).

For clarity, Table[7]shows some configurations evaluated to provide a comparison for Problem B
(Temporal SRx4 + SRx4). Each configuration is evaluated on the same sample sequence:

Experiment ¢y (video) t; (image) PSNR 1t SSIM 1 LPIPS |
EXP 1 [375, 255, 125] [499, 374] 2290  0.752 0.296
EXP 2 [757, 522, 375] [249, 124] 2256  0.714 0.308
EXP 3 [522, 375, 255] [374, 249] 22.80  0.762 0.290
EXP 4 [522, 255, 125] [749, 624] 22.36  0.720 0.317

BASELINE [757, 522, 375,255, 125] [374,249,124,63] 2396  0.770 0.272
VISION-XL — 2436 0.667 0.488

Table 7: Ablation study on scheduling strategies (¢ and ¢;) for Problem B. EXP 1-4 represent
varying balances of 7, while BASELINE represents the configuration used in the main paper.

For comparison, the values used for the experiments shown in the other tables are: ty €
[757,522,375,255,125] and t; € [374, 249,124, 63]. We notice how, even with fewer steps and
varying the configurations, the metrics remain stable.

Error Map Analysis. To better visualize the nature of the residuals, we provide Lo error maps
in Figure |10] for Problem C on an example sequence. Comparing LVTINO against VISION-XL
and ADMM-TYV, we observe that our method yields lower residuals, particularly around motion
boundaries and fine structural details where competing methods exhibit larger errors due to unresolved
blur or temporal inconsistencies.

B ADDITIONAL EXAMPLES

We provide in Table[8|qualitative video comparisons for Problem A, Problem B, and Problem C.
Each triplet corresponds to the Ground Truth (GT), the observed degraded input (y), and the restored
sequence. For Problem C, we provide longer sequences (81 frames) to better appreciate the results.

Additional examples are shown in Figures [[2]T3|[T4[T3][T6] We also include additional sliced images

in Figures[ITa)and [T10}]
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Frame n Framen + 1

21 R [T
i

can

LVTINO VISION-XL

ADMM-TV

Figure 10: Lo error maps between reconstructions and Ground Truth. LVTINO (middle row)
demonstrates lower error magnitude compared to VISION-XL and ADMM-TYV, particularly in
dynamic regions.

GT y LVTINO VISION-XL

Problem A (seq. A1) 1ink| link link link
Problem B (seq. B1) 1ink| link link link
Problem B (seq. B2) |1ink| |[1ink| |1ink link
Problem C (seq. C1) |1ink| |[1ink link link
Problem C (seq. C2) |1ink| |[1ink link link

Table 8: Results of our method compared to those obtained by VISION-XL, ground truth, and
measurements (input sequence). Click the links to see the videos.
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GT slice LVTINO slice VISION-XL slice

(a) Comparison between slices from 25 consecutive frames. Problem A (seq. A1)

Frame from measurement y LVTINO slice VISION-XL slice

- . B .

(b) Comparison between slices from 81 consecutive frames. Problem C (seq. C1)

Figure 11: Slice comparisons across two sequences. In green, the sliced column. Slice images are
obtained from the three-dimensional video tensor (i,j,7) by fixing a column index j. This leads to a
2D tensor with indices (i,7) that is represented as an image, where the i index represents the row and
the t index represents the column.
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VISION-XL  LVTINO

Figure 12: Visual comparison for Problem A.

VISION-XL  LVTINO

Figure 13: Visual comparison for Problem B.
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Figure 15: Visual comparison for Problem C.
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Figure 16: Visual comparison for Problem C.
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