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Abstract

Federated learning (FL) is a distributed learning paradigm that facilitates training a global
machine learning model without collecting the raw data from distributed clients. Recent
advances in FL have addressed several considerations that are likely to transpire in realistic
settings such as data distribution heterogeneity among clients. However, most of the existing
works still consider clients’ data distributions to be static or conforming to a simple dynamic,
e.g., in participation rates of clients. In real FL applications, client data distributions change
over time, and the dynamics, i.e., the evolving pattern, can be highly non-trivial. Further,
evolution may take place from training to testing. In this paper, we address dynamics in
client data distributions and aim to train FL systems from time-evolving clients that can
generalize to future target data. Specifically, we propose two algorithms, FedEvolve and
FedEvp, which are able to capture the evolving patterns of the clients during training and
are test-robust under evolving distribution shifts. Through extensive experiments on both
synthetic and real data, we show the proposed algorithms can significantly outperform the
FL baselines across various network architectures.

1 Introduction

Federated learning (FL) is a widely used distributed learning framework where multiple clients, using their
local data, train machine learning models collaboratively, orchestrated by a server (McMahan et al., 2017;
Yang et al., 2019; Zhang et al., 2021a). A problem that has been extensively studied in FL literature is
learning from heterogeneous clients, i.e., ensuring convergence of FL training and avoiding degradation of
accuracy when clients’ data are not identically and independently distributed (non i.i.d.) (Diao et al., 2021;
Achituve et al., 2021; Reisizadeh et al., 2020).

Although a variety of approaches such as robust FL (Reisizadeh et al., 2020) and personalized FL (Wang
et al., 2019) have been proposed to tackle the issue of data heterogeneity, most of them still assume that the
data distribution of each client is static and, in particular, remains fixed between training and testing. Some
recent works (Jiang & Lin, 2023; Gupta et al., 2022) move one step further by proposing test-robust FL
models when there exist distribution shifts between training and testing data. However, they only consider
one-step shift between training and testing while the training data distribution is still assumed to be static.
In practice, FL systems are trained and deployed in dynamic environments that may continually change over
time, e.g., satellite data evolve due to environmental changes, clinical data evolve due to changes in disease
prevalence, etc. Existing FL algorithms without considering such evolving distribution shifts may result in
inaccurate models and even fail to converge during the training phase.

In this paper, we will explore two questions:

• How can data stream with evolving distribution shifts impact FL systems (with or without client hetero-
geneity)?

• How can we exploit the evolving patterns from training data (source domains) and deploy our model on
the unseen future distribution (target domain)?

The goal is to continuously train an FL model from distributed, time-evolving data that can generalize well
on future target data. Figure 1 shows one motivating example.
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Note that although the problem of learning under evolving distribution shifts has been studied recently in
the centralized setting (typically known as evolving domain generalization), e.g., see Wang et al. (2022); Qin
et al. (2022), it remains unclear how evolving distribution shifts can impact FL training and how to design
FL algorithms when both evolving distribution shifts and data heterogeneity exist. The most relevant line of
research to ours is continual federated learning (CFL) (Yoon et al., 2021; Casado et al., 2022), which aims to
train an FL system continuously from a set of distributed time series. However, the primary objective of
these works is to stabilize the training process and tackle the issue of catastrophic forgetting (i.e., prevent
forgetting the previously learned old knowledge as the model is updated on new data). This differs from our
work where we aim to explicitly learn evolving patterns and leverage them to adapt the model on future
unseen data.

1920s 1950s 1980s 2010s
Source Domain Target Domain

Client 2

Client 1

Figure 1: Illustration of evolving distribution shifts and client heterogeneity: Consider an FL system trained
from distributed time-evolving photos (Ginosar et al., 2015) for gender classification. In this example, data
exhibits obvious evolving patterns (e.g., changes in facial expression and hairstyle, improvement in the quality
of images). Besides, clients are non-i.i.d and they have different class distributions. Our goal is to train an FL
model that captures the evolving pattern of source domains and generalizes it to the future target domain.

To answer the above two questions, we will examine the performance of existing FL methods on time-evolving
data, including a wide range of methods such as traditional FL methods, personalized FL methods, test-time
adaptation methods, domain generalization methods, and continual FL methods. We observe that existing
methods cannot capture evolving patterns and fail to generalize on future data. We then propose FedEvolve,
an FL algorithm that learns the evolving patterns of clients during the training process and can generalize to
future test data.

Specifically, FedEvolve learns the evolving pattern of source domains through representation learning. It
assumes there exists a mapping function for each client that captures the transition of any two consecutive
domains. To learn such transition, each client in FedEvolve learns two distinct representation mappings that
map the inputs of domains in two consecutive time steps to a representation/latent space. By minimizing the
distance between the distributions of these feature representations, FedEvolve captures the transition over
two consecutive steps.

Although FedEvolve shows superior performance in learning from evolving distribution shifts in empirical
experiments, the need for two distinct representation mappings brings double overhead during FL training.
To reduce the computation cost and communication overhead, we further develop FedEvp as a more efficient
and versatile version of FedEvolve by updating one representation mapping when evolving distribution shifts
occur. Moreover, FedEvp better tackles heterogeneous data by incorporating the personalization strategy to
partially personalize the model on each client’s local data.
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We illustrate via extensive experiments that our algorithms significantly outperform current benchmarks of
FL when the feature domain is evolving, on multiple datasets (Rotated MNIST/EMNIST, Circle, Portraits,
Caltran) using different models (MLP, CNN, ResNet). Our main contributions are:

• We identify the evolving distribution shift in FL that the current robust FL, personalized FL, and
test-robust FL frameworks have failed to consider.

• We propose FedEvolve to actively capture the evolving pattern from evolving source domains and generalize
to unseen target domains.

• We propose a more efficient and versatile version of algorithm FedEvp that learns domain-invariant
representation from evolving prototypes.

• We empirically study how FL systems are affected when both evolving shifts and local heterogeneity exist.
Experiments on multiple datasets show the superior performance of our methods compared to previous
benchmark models.

2 Related Work

We briefly review related previous works in this section.

Tackle client heterogeneity in FL. Many approaches have been proposed to tackling data heterogeneity
issues in FL and they can be roughly categorized into four classes. The first method is to add a regularization
term. For example, Li et al. (2020; 2021b) proposed to steer the local models towards a global model by
adding a regularization term to guarantee convergence when the data distributions among different clients are
non-IID. The second method is clustering (Briggs et al., 2020; Ghosh et al., 2020; Sattler et al., 2020). By
aggregating clients with similar distribution into the same cluster, the clients within the same cluster have
lower statistical heterogeneity. Then, a cluster model that performs well for clients within this cluster can be
found to reduce the performance degradation of statistical heterogeneity. The third method is to mix models
or data. For example, Zhao et al. (2018) proposed a data-sharing mechanism where clients update models
according to both the local train data and a small amount of globally shared data. Wu et al. (2022); Shin
et al. (2020) developed mixup data augmentation techniques to let local devices decode the samples collected
from other clients. Mansour et al. (2020) find a mixture of the local and global models according to a certain
weight. The fourth method is robust FL. For instance, Reisizadeh et al. (2020); Deng et al. (2020b) obtain
robust Federated learning models by finding the best model for worst-case performance. Notably, Reisizadeh
et al. (2020) only considers the affine transformation of data distributions and Deng et al. (2020b) focuses on
varying weight combinations over local clients. In addition, different personalization methods are applied to
local clients, such as personalization (Wang et al., 2019; Yu et al., 2020; Arivazhagan et al., 2019; Huang
et al., 2023; Bao et al., 2023), representation learning (Arivazhagan et al., 2019; Collins et al., 2021; Chen &
Chao, 2022; Jiang & Lin, 2023), and meta-learning (Fallah et al., 2020).

FL with dynamic data distributions. While most previous works on statistical heterogeneity have
considered static situations (i.e., the local heterogeneity stays constant during training), another line of
literature focuses on FL in a dynamic environment where various distribution drifts occur. Some works aim
to tackle drifts caused by time-varying participation rates of clients with local heterogeneity (Rizk et al.,
2020; Park et al., 2021; Wang & Ji, 2022; Zhu et al., 2021), while other works assume the global distributions
are also evolving (Guo et al., 2021; Casado et al., 2022; Yoon et al., 2021). However, among all previous
works, Jiang & Lin (2023); Gupta et al. (2022) are the only ones considering the distribution shift between
training and testing, but they assume the training distribution itself is static.

Evolving domain generalization. Domain Generalization (DG) has been extensively studied to generalize
ML algorithms to unseen domains where different methods including data manipulation (Khirodkar et al.,
2019; Robey et al., 2021), representation learning (Blanchard et al., 2017; Deshmukh et al., 2019), and domain
adversarial learning (Rahman et al., 2020; Zhao et al., 2020). To go one step further, a few works have
considered the evolving patterns of the domains (Hong Liu, 2020; Zhang & Davison, 2021; Kumar et al.,
2020; Wang et al., 2022; Qin et al., 2022), but only Wang et al. (2022); Qin et al. (2022) consider Evolving
Domain Generalization (EDG) where the target domain is not accessible. Wang et al. (2022) developed an
algorithm to learn embeddings of the previous domain and the current domain such that their representations
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Figure 2: Illustration of FedEvolve (left) and FedEvp (right): (i). FedEvolve consists of two distinct modules
ϕ and ψ, where ϕ calculates the prototypes for domain Sm, individually for each class, using mean values as
class representations. Then, ψ represents a data batch from the domain Sm+1. Both modules are updated
based on the distance between Sm+1 representations and Sm prototypes. During inference, ψ computes the
distance to the latest domain’s prototypes, then selects the minimal one as the prediction result. (ii). FedEvp
simplifies FedEvolve by removing ψ and integrating a classifier w with ϕ. This decreases the communication
cost during federated training. Instead of using localized prototypes from just Sm, FedEvp builds global
prototypes from domains S1 to Sm. These prototypes align with the representations of the succeeding domain
Sm+1, providing an integrated feature representation across diverse domains. By emphasizing consistent
feature representation, FedEvp ensures its classifier adeptly handles an unseen domain, making predictions
resilient and versatile across changing data contexts.

are invariant. Qin et al. (2022) developed a dynamic probabilistic framework to model the underlying latent
variables across domains. Wang et al. (2020) considers a similar problem under the domain adaptation
setting, where they use domain discriminators to learn domain-invariant features and adapt the model to
target domains. However, all these previous works consider the centralized setting. Thus, there is a gap for
EDG under distributed settings, and in particular for FL.

3 Problem Formulation

Consider a federated learning (FL) system consisting of K clients, whose data distributions vary dynamically
over time. Define {S1, ..., SM} as M consecutive domains that characterize the evolution of the clients’
global distribution. Let Dkm be the local dataset of client k ∈ {1, . . . ,K} at m-th domain. The clients are
heterogeneous and they may have access to different class labels. Given an FL model with parameter h, let
ℓ(x, y;h) be the corresponding loss evaluated on a labeled data sample (x, y). Our goal is to learn an FL
model h from K clients over M domains that can generalize on a subsequent target domain SM+1. That is,
we wish to find h∗ that minimizes the total loss at target domain SM+1 over K clients:

h∗ = arg min
h∈Rd

K∑
k=1

αkLk(h) (1)

where αk is the weight of client k (e.g., the proportion of sample size), and Lk(h) := E(xi,yi)∼Dk
M+1

ℓ(xi, yi;h)
is the local loss of client k evaluated on target domain SM+1.

4 Methodology

To learn an FL model from time-evolving data that generalizes well to the future domain, we need to learn the
evolving pattern of source domains during federated training. Motivated by (Wang et al., 2022; Snell et al.,
2017), we assume there is a pattern in the transition between every two consecutive domains Sm and Sm+1.
Instead of learning evolving patterns directly in the input space, we consider representation learning to learn
the evolution in a representation space. Next, we introduce two algorithms FedEvolve and FedEvp, which
align data representation from evolving domains and facilitate local personalization. Specifically, FedEvolve is
designed to actively identify the evolving pattern between two consecutive domains, while FedEvp first learns
invariant representation across all existing domains, then generalizes to the unknown evolving domain.
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4.1 FedEvolve

To actively capture the evolving patterns of source domains, FedEvolve learns two distinct learnable represen-
tation functions fϕ, fψ. Given two consecutive domain Sm and Sm+1:

• fϕ(Sm) is the estimated representation of subsequent domain Sm+1 using input Sm.

• fψ(Sm+1) is the representation of input domain Sm+1.

Because fϕ estimates the representation of a domain using the previous domain, , we can use it to estimate
unknown target domain SM+1 from source domains {S1, ..., SM}. Let ϕ, ψ be the trainable neural network
parameters of fϕ, fψ, respectively. To learn the evolving pattern, we aim to learn ϕ, ψ such that the estimated
future domain representation fϕ(Sm) is sufficiently accurate and close to the actual representation fψ(Sm+1),
i.e., we need minimize the distance between fϕ(Sm) and fψ(Sm+1). Inspired by (Wang et al., 2022), to
align the two representations while capturing the class characteristics across evolving domains, we leverage
prototypical learning (Snell et al., 2017) to directly align their representation prototypes.

Specifically, for each client k and domain Sm, we define the prototype Ckm,y of class y on the client’s local
dataset Dkm as the mean value of the representations produced by f

ϕ̃k
, where ϕ̃k is the local parameter learned

on client k, i.e.,
Ckm,y = 1

|Dk
m,y|

∑
x∈Dk

m,y
f
ϕ̃k

(x) (2)

where Dkm,y ⊆ Dkm is a subset of data instances with label y, |Dkm,y| is the cardinality of this set. For the
next domain Sm+1, FedEvolve minimizes the distance between its representation f

ψ̃k
(Sm+1) and f

ϕ̃k
(Sm)

estimated from Sm. This can be achieved by aligning the representation f
ψ̃k

for data points from the domain
Sm+1 to its corresponding class prototype Ckm,y. Mathematically, we minimize the loss defined below:

ℓ(x, y) = log
exp

(
−d

(
f
ψ̃k

(x), Ckm,y
))

∑
y′∈YDk

m+1

exp
(
−d

(
f
ψ̃k

(x), Ckm,y′

)) (3)

where (x, y) is a sample pair from Dkm+1 and YDk
m+1

including all class labels in Dkm+1. d is a distance measure
(e.g. Euclidean distance, cosine distance) that quantifies the difference between the feature representation
f
ψ̃k

(x) and the prototype Ckm,y of class y from the local dataset Dkm. In this paper, we employ Euclidean
distance.

By minimizing Eqn. equation 3 on all active clients, local models learn the evolving pattern by aligning
representations of domain Sm+1 with prototypes from the former domain Sm. After local updates, active
clients It send local parameters to the server and the server performs an average aggregation to update the
global parameters ϕ = 1

|It|
∑
k∈It ϕ̃k, ψ = 1

|It|
∑
k∈It ψ̃k. These aggregations encapsulate global information

with diverse data contributions of all clients. Once consolidated, these models can be directly dispatched to
the clients and facilitate continuous model adaptations to the evolving data distributions across the federated
network.

After training on source domains, we can use the learned representation functions fϕ, fψ to predict the target
domain SM+1. Specifically, we first compute the prototypes of fϕ(SM ) on SM . Then, we apply fψ to test
samples in SM+1 to generate representations fψ(SM+1) and classify them based on proximity to prototypes.
We present the pseudocode of FedEvolve in Algorithm 1 in Appendix A.

4.2 FedEvp

Because the two distinct representation functions fϕ and fψ in FedEvolve are usually large neural networks
such as ResNet (He et al., 2016) in real-world image datasets, there is a non-negligible additional overhead
to transmit extra parameters of the second representation mapping, rendering deployment challenges in
environments with limited computational resources or network bandwidth. To address the potential overhead,
we also present FedEvp, an efficient and streamlined strategy that achieves similar performance as FedEvolve.
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Unlike the dual model mechanism of FedEvolve, FedEvp adopts a single-model strategy to reduce commu-
nication costs while simultaneously accelerating training. As shown in the right plot of Figure 2, FedEvp
aims learn the evolving-domain-invariant representation using a representation function fϕ by continuously
aligning data to prototypes from previous domains. If we can develop a representation that is resilient to
evolving distributional shifts, a single classifier could effectively serve all domains. To further address local
heterogeneity, we also incorporate an efficient personalization step for the classifier.

To ensure a consistent learning process, FedEvp maintains evolving prototypes according to the classes of
consecutive domains. In essence, the prototypes learned by FedEvp consolidate the global information from
all previous domains to enable the learning of domain-invariant features. For each class y within client k, an
evolving prototype Ckm,y is established as follows: Ck0,y is set to zero; for other domains ranging from 1 to M ,
the prototype is updated as Eqn. equation 4,

Ckm,y = (m− 1)
m

Ckm−1,y + 1
m

(
1

|Dkm,y|

) ∑
x∈Dk

m,y

f
ϕ̃k

(x) (4)

where Dkm,y is the set of all instances in the current domain m that belongs to class y, and f
ϕ̃k

(xi) denotes
the representation of instance xi under the client k’s local model parameters ϕ̃k. Such an iterative update
mechanism ensures that the prototype Ckm,y evolves as new domains are introduced, gradually incorporating
information from each one. As a result, CkM,y becomes a representative prototype of class y across all available
training domains for client k.

We then align the data from domain Sm+1 to the prototypes Ckm to update parameter ϕ. We adopt the same
loss function as FedEvolve given in Eqn. equation 5,

ℓf (x, y) = log
exp

(
−d

(
f
ϕ̃k

(x), Ckm,y
))

∑
y′∈YDk

m+1

exp
(
−d

(
f
ϕ̃k

(x), Ckm,y′

)) (5)

where d is the same distance metric as in FedEvolve. And d(f
ϕ̃k

(x), Ckm,y) is the distance between the feature
representation f

ϕ̃k
(x) of instance x and the prototype Ckm,y of class y, YDk

m+1
is the set of classes in the m+ 1

domain.

Besides minimizing ℓf to learn domain-invariant representation, we introduce a classifier w̃k which is updated
by minimizing empirical risk ℓe defined as:

ℓe(x, y) = −y log
exp

(
gy
w̃k

(
f
ϕ̃k

(x)
))

∑
y′∈YDkm

exp
(
gy

′

w̃k

(
f
ϕ̃k

(x)
)) (6)

where gy
w̃k

(
f
ϕ̃k

(x)
)

is the predicted outputs of the class y for instance (x, y) ∈ Dkm,y, computed by the
classifier w̃k. In our experiments, ℓe is the classical cross-entropy loss.

After local updates, FedEvp aggregates the local parameters at the server ϕ = 1
|It|

∑
k∈It ϕ̃k, w = 1

|It|
∑
k∈It w̃k.

These aggregated global models are then sent back to clients for future updates. As FedEvp relies on the
classifier using evolving domain invariant features instead of directly using the difference between two
consecutive domain representations, the prediction may be influenced by the client’s heterogeneity. To handle
the issue raised by local heterogeneity, a personalization mechanism, akin to local fine-tuning, is further
incorporated. Specifically, we personalize each client by updating both the classifier w̃ and the last layer of
the feature extractor f̃ϕ for an additional epoch on the client’s local dataset. The pseudocode of FedEvp is
given in Algorithm 2 in Appendix A.
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5 Experiments

To evaluate our methods, we consider classification tasks using various network architectures and report
average accuracy and standard deviation over three runs. The detailed implementation can be found in
Appendix C. Dirichlet distribution is used to control the level of heterogeneity with parameter Dir ∈ [0,∞).
The smaller Dir implies that the clients are more heterogeneous. Heterogeneous clients may have access
to different class labels. We report the average performance across clients and the performance on the
server. Both are evaluated on the test domain after the last epoch. The federated training phase follows
typical FL steps. In each communication round t, a subset It of K clients join the system and the server
distributes aggeragated global model parameters to client k ∈ It. Upon receiving these parameters, each
client k initializes its local parameters to those and performs τ local updates.

5.1 Datasets and Networks

We evaluate FedEvolve and FedEvp on both synthetic data (Circle) and real data (Rotated MNIST,
Rotated EMNIST, Portraits, and Caltran). All datasets either come with evolving patterns or are adapted
to evolving environments. For all datasets, the last domain is viewed as the target domain. The feature
extractor in the neural network is viewed as ϕ and ψ, and the classifier is w mentioned in the previous section.

Circle (Pesaranghader & Viktor, 2016). This synthetic data has 30 evolving domains. 30000 instances
within these domains are sampled from 30 two-dimensional Gaussian distributions, with the same variance
but different means that are uniformly distributed on a half-circle. We use a 5-layer multilayer perception
(MLP) with 3 layers serving as a representation function (fϕ and fψ in FedEvolve, fϕ in FedEvp) and the
remaining 2 layers as a classifier (fw in FedEvp).

Rotated MNIST (Ghifary et al., 2015) and Rotated EMNIST (Cohen et al., 2017). The Rotated
MNIST is a variation of the MNIST data, where we rotate the original handwritten digit images to produce
different domains. Specifically, we partition the data into 12 domains and rotate the images within each
domain by an angle θ, beginning at θ = 0◦ and progressing in 15-degree increments up to θ = 165◦. We also
consider other increments spanning from 0◦ to 25◦ to simulate varying degrees of evolving shifts. EMNIST is
a more challenging alternative to MNIST with more classes including both hand-written digits and letters.
We use the hand-written letters subset and split it into 12 domains by rotating images with a degree of
θ = {0◦, 8◦, ..., 88◦}. We design a model consisting of a 4-layer convolutional neural network (CNN) for
representation layers, followed by two linear layers for classification.

Portraits (Ginosar et al., 2015). It is a real dataset consisting of frontal-facing American high school
yearbook photos over a century. This time-evolving dataset reflects the changes in fashion (e.g., high style
and smile). We resize images to 32 × 32 and split the dataset by every 12 years into 9 domains. We use
WideResNet (Zagoruyko & Komodakis, 2016) as the representation function to train the gender classifier.
Note that the data is only intended to compare various methods.

Caltran (Hoffman et al., 2014). This real surveillance dataset comprises images captured by a fixed
traffic camera. We divide the dataset into 12 domains where the samples from every 2-hour block form a
domain (evolving shifts arising from changes in light intensity). ResNet18 (He et al., 2016) backbone is used
as the representation function and the last linear layer is used as the classifier.

5.2 Baselines

We compare FedEvolve and FedEvp with various existing FL methods. These baselines cover a broad range of
methods including traditional FL, strong personalized FL (PFL), centralized test-time adaptation (TTA)
methods, federated TTA methods, and continual federated learning methods.
• FedAvg (McMahan et al., 2017): A FL method that learns the global model by averaging the client’s local

model.
• GMA (Tenison et al., 2022): A FL method using gradient masked averaging approach to aggregate local

models.
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Table 1: Average accuracy over three runs of experiments on rotated MNIST under i.i.d and non-i.i.d
distribution. The client heterogeneity(Dir) is determined by the value of Dirichlet distribution (Yurochkin
et al., 2019).

Dir→∞ Dir=1.0 Dir=0.1
Method Client Server Client Server Client Server
FedAvg 65.92±1.01 66.34±0.34 62.35±0.97 63.16±1.78 51.68±0.73 51.59±2.48
GMA 65.94±0.91 66.17±0.21 61.49±0.30 61.68±0.66 50.86±1.15 51.32±2.47
Memo(G) 65.94±1.34 66.78±2.30 61.39±0.94 62.91±2.55 49.76±5.58 52.06±1.23
FedAvgFT 48.70±1.03 66.61±0.59 57.95±2.91 62.61±1.02 69.51±1.97 51.59±1.70
APFL 62.37±1.08 65.57±1.54 67.58±1.09 63.98±2.31 70.37±2.19 50.66±0.47
FedRep 60.04±1.00 68.09±3.10 63.95±0.75 63.49±2.62 76.35±1.67 52.25±1.75
Ditto 65.23±0.87 65.35±1.50 68.14±0.92 64.64±1.45 75.55±2.56 50.89±2.79
FedRod 52.30±1.87 67.93±1.05 54.00±3.98 63.32±2.33 64.11±3.68 53.02±1.22
Memo(P) 51.70±2.48 65.35±1.47 59.84±0.61 64.75±1.59 69.46±2.77 50.27±2.85
T3A 53.94±0.76 66.61±0.59 61.60±2.49 62.61±1.02 71.73±1.63 51.59±1.70
FedTHE 66.84±1.51 67.43±0.23 67.98±0.43 62.55±1.98 78.52±3.92 53.40±0.74
Flute 62.97±1.39 63.27±1.13 68.86±0.75 61.46±0.16 78.44±3.54 54.71±3.28
FedSR 69.91±1.14 71.79±1.75 67.00±1.23 68.01±2.65 61.49±2.60 59.88±3.54
CFL 63.75±0.98 64.33±2.17 60.29±1.85 60.82±1.97 50.76±1.41 51.04±2.49
CFeD 70.22±0.63 71.66±0.66 68.07±0.72 68.64±1.38 60.41±2.33 61.27±2.93
FedEvolve 84.75 ±1.39 84.43±1.21 79.93±1.00 77.25±1.82 83.86±1.81 71.66±1.95
FedEvp 75.99±0.31 77.63±1.99 77.91±1.80 73.85±1.53 83.15±0.49 61.84±3.34

• FedAvg + FT : Fine-tunes the global model on local training data, an effective strategy for personalization
in FL.

• MEMO (Zhang et al., 2022): A TTA method and we adapt it to FL. Following (Jiang & Lin, 2023), we
term MEMO applied to the global model as MEMO(G) and to the FedAvg + FT model as MEMO(P).

• APFL (Deng et al., 2020a): A PFL method that leverages a weighted ensemble of personalized and global
models.

• FedRep (Collins et al., 2021) and FedRoD (Chen & Chao, 2021): PFL methods that use a decoupled
feature extractor and classifier to enhance personalization in FL.

• Ditto (Li et al., 2021a): A fairness-aware PFL method that has been shown to outperform other fairness
FL methods.

• T3A (Iwasawa & Matsuo, 2021): A TTA method that is adapted to personalized FL by adding test-time
adaptation to FedAvg + FT.

• FedTHE (Jiang & Lin, 2023): A TTA PFL method that tackles the data heterogeneity issue while learning
test-time robust FL under distribution shifts.

• FedSR (Nguyen et al., 2022): A TTA FL method using the regular domain generalization method.
• CFL (Guo et al., 2021): A continual federated learning method that learns from time-series data while

preventing catastrophic forgetting.
• CFeD (Ma et al., 2022): It uses distillation to tackle catastrophic forgetting in continual federated learning.
• Flute (Liu et al., 2024): Flute is a PFL method that facilitates the distillation of the subspace spanned by

the global optimal representation from the misaligned local representations.

5.3 Results

In Figure 3, we examine how the algorithm performance changes as the degree of evolving shifts varies.
Tables 1, 2 and 3 show the comparison with baselines, where we report both the averaged performance of
clients’ local models and the performance of the global model at the server. We also extend the experiments
in Table 3 to the setting when clients are heterogeneous (Dir = 1.0) and present the results in Table 4.

Impacts of distribution shifts and local heterogeneity. First, we examine the impact of distribution
shifts and client heterogeneity on FL systems. Figure 3 presents the results on RMNIST data under clients
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Table 2: Average accuracy over three runs of experiments on rotated EMNIST-Letter under i.i.d and non-i.i.d
distribution.

Dir→∞ Dir=1.0 Dir=0.1
Method Client Server Client Server Client Server
FedAvg 53.83±1.84 54.18±1.72 52.72±4.45 52.77±3.74 46.72±2.55 45.71±1.77
GMA 54.23±1.77 55.10±1.71 51.23±1.93 51.42±0.79 48.40±1.75 48.61±2.13
Memo(G) 53.32±1.38 53.85±0.72 50.33±2.06 50.37±1.10 47.53±2.09 47.20±1.86
FedAvgFT 44.20±2.54 54.09±1.30 52.16±4.62 53.82±2.13 66.96±0.68 46.87±0.60
APFL 44.98±1.57 54.33±1.12 49.84±1.48 50.99±0.62 66.80±0.37 46.42±2.58
FedRep 39.01±2.03 46.39±2.49 47.26±2.64 47.25±0.93 67.51±1.35 44.12±0.46
Ditto 42.38±1.77 53.90±1.20 53.80±1.89 56.22±1.58 72.66±0.61 55.48±1.94
FedRod 44.25±1.60 51.79±2.77 49.53±0.81 50.32±2.61 67.31±2.03 45.74±3.99
Memo(P) 45.42±2.39 53.47±1.33 51.23±4.94 51.10±1.10 68.37±1.48 47.73±2.26
T3A 48.80±2.84 54.49±0.46 55.93±2.28 53.29±1.12 71.80±1.95 52.08±2.84
FedTHE 52.40±3.87 53.27±3.60 58.08±1.44 53.45±1.87 69.34±2.10 46.15±2.17
Flute 48.89±3.04 51.52±4.63 55.10±3.88 46.71 ±2.73 64.99±3.35 40.27±3.01
FedSR 55.71±0.09 56.92±0.44 51.40±4.65 55.35±3.93 44.38±2.30 49.43±2.48
CFL 40.65±2.19 41.41±1.86 45.82±2.34 46.13±1.01 40.24±3.50 39.37±4.29
CFeD 56.76±0.65 56.17±1.39 55.50±4.33 55.53±5.73 47.20±1.37 47.76±2.22
FedEvolve 83.58±1.45 82.91±1.36 82.13±0.48 78.68±0.25 87.67±0.55 72.85±1.03
FedEvp 67.30±1.35 71.94±1.50 73.61±1.70 68.91±0.30 87.01±0.22 58.73±0.96

Table 3: Average accuracy across various datasets over three runs. We consider the i.i.d setting that Dir→∞.

Circle Portraits Caltran
Client Server Client Server Client Server

FedAvg 70.40±6.51 70.40±6.51 94.10±0.13 94.10±0.13 62.93±2.10 64.31±2.13
GMA 62.55±6.94 62.55±6.94 94.18±0.14 94.18±0.14 63.28±3.48 63.85±3.49
Memo(G) - - 94.38±0.07 94.63±0.31 63.41±2.81 63.82±2.92
FedAvgFT 60.85±3.07 63.55±5.67 90.99±0.74 93.21±1.86 63.82±0.70 63.98±3.22
APFL 59.90±2.48 63.55±5.67 90.54±0.29 94.64±0.16 62.11±1.85 63.17±3.29
FedRep 64.37±5.60 64.97±6.05 90.88±0.63 93.50±1.15 62.03±3.05 64.07±2.41
Ditto 62.60±2.64 63.10±6.00 91.46±0.13 94.07±0.30 62.44±2.59 63.58±3.43
FedRod 64.60±2.33 65.00±6.55 91.57±0.18 94.78±0.43 64.14±3.94 58.29±4.75
Memo(P) - - 91.30±0.16 94.34±0.28 63.66±2.93 63.58±3.43
T3A 62.20±4.11 66.50±4.95 91.84±0.61 94.59±0.34 63.90±0.60 63.98±3.22
FedTHE 64.03±4.79 63.27±5.05 94.13±0.24 93.48±0.98 60.48±1.44 58.17±3.18
Flute 65.69±3.81 63.04±3.31 94.25±0.10 94.53±0.18 61.71±2.19 61.46±3.70
FedSR 72.77±3.38 71.62±5.70 94.43±0.35 94.52±0.35 64.57±1.36 66.02±1.47
CFL 72.12±8.76 72.12±8.76 92.91±1.07 92.91±1.07 63.68±3.61 63.92±3.15
CFeD 71.60±6.77 71.60±6.77 93.64±0.27 93.64±0.27 63.48±3.87 63.55±3.27
FedEvolve 84.25±2.45 81.64±1.95 95.43±0.17 96.88±1.35 65.04±1.66 63.54±0.74
FedEvp 73.30±5.02 74.12±6.93 93.54±0.19 94.92 ±0.11 66.59±1.44 66.34±0.69
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Table 4: Accuracy of baselines across various datasets over three runs (Dir=1.0).

Circle Portraits Caltran
Client Server Client Server Client Server

FedAvg 66.53±4.74 66.53±4.74 94.37±0.86 94.37±0.86 66.34±2.41 65.12±4.87
GMA 65.93±6.01 65.93±6.01 93.75±0.68 93.75±0.68 65.12±1.95 63.05±4.51
Memo(G) - - 93.81±0.45 93.81±0.45 66.20±2.07 65.54±0.73
FedAvgFT 65.97±1.49 66.93±3.30 92.54±0.65 94.56±0.43 65.12±2.84 65.56±3.61
APFL 64.23±0.80 66.93±3.30 92.16±0.42 94.47±0.38 70.49±3.70 65.41±3.84
FedRep 66.87±4.91 69.07±5.42 92.50±0.65 94.19±0.56 65.27±1.86 65.90±3.39
Ditto 69.05±4.41 64.50±5.09 91.86±0.87 94.93±0.32 65.45±3.43 65.61±4.52
FedRod 63.70±1.96 77.20±4.98 92.64±0.58 95.26±0.31 73.27±3.35 64.88±4.03
Memo(P) - - 92.94±0.65 94.48±0.32 64.88±3.13 62.24±3.97
T3A 69.80±1.60 69.10±1.50 91.93±0.50 94.20±0.34 67.24±2.01 65.61±4.52
FedTHE 70.30±5.83 74.97±3.90 91.77±0.85 94.53±0.32 71.80±3.07 62.02±4.22
Flute 70.33±4.31 67.04±3.66 94.16±0.69 94.59±0.38 71.61±1.61 63.46±1.58
FedSR 73.88±3.10 72.08±4.85 93.99±0.79 94.22±0.77 62.99±2.11 68.35±0.53
CFL 70.82±5.43 70.82±5.43 93.84±0.30 93.84±0.30 64.50±3.17 65.28±3.50
CFeD 68.37±8.22 68.38±8.22 93.22±3.21 94.77±0.92 65.30±2.92 67.18±2.91
FedEvolve 82.52±1.94 83.59±5.91 93.84±1.62 96.54±1.39 75.04±4.03 64.06±3.83
FedEvp 74.80±1.69 77.93±4.20 94.50±0.28 93.91±2.19 73.46±0.90 68.24±1.08
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(c) Dir = 0.1

Figure 3: Performance comparison of various methods across different rotation angles on RMNIST for distinct
distributions.

with varying degrees of local heterogeneity (Dir = ∞, 1.0, 0.1). Each sub-figure shows how performance
changes as the extent of distribution shift changes from no distribution shift (0◦ incremental angle) to high
distribution shift (25◦ incremental angle):

• In the absence of significant distribution shifts (e.g. rotation incremental angle 0◦, 3◦, or 5◦), Figure 3a
shows that, when there is no client heterogeneity, our methods have similar performance as the traditional
FL methods. The learning task reduces to the standard FL task, and the classical FL methods maintain
competitive performance. As clients get more heterogeneous, Figures 3b and 3c show that all methods
experience the accuracy drop and the performance on the server for FedEvolve is marginally inferior to that
of FedAvg, while FedEvp with personalization still shows the robustness under heterogeneous clients. This
is further verified when Dir = 0.1. We also observe that FedEvolve is still robust when client heterogeneity
is large. The decline in performance due to heterogeneity mainly comes from the error of the classifier,
and FedEvolve avoids this by using representation distance to make predictions rather than relying on the
classifier.

• When the rotation increments increase, FedAvg experiences a significant performance drop (e.g., nearly
12% decrease when the incremental angle increases for 5 degrees, see Figure 3a). Such impacts are more
significant than the performance drop caused by client heterogeneity, indicating the challenge of evolving
shifts. However, our methods are still robust against such shifts and significantly better than baselines.
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When both strong local heterogeneity and distribution shifts are present (Figure 3c), both the baselines and
ours experience a performance drop while ours exhibit a relatively slower decline. The better performance
on the clients compared to the server for FedEvp further validates the effectiveness of the personalization
mechanism of FedEvp.

Comparison with Baselines. We conduct extensive experiments on five datasets with different levels of
client heterogeneity. Table 1 and 2 and the results of Circle data in Table 3 compare different methods in
scenarios with strong evolving patterns. We observe that both FedEvolve and FedEvp outperform the baseline
methods. In particular, FedEvolve attains the highest accuracy (84.75%, 83.58%, and 84.25% on RMNIST,
REMNIST, and Circle respectively), demonstrating its capability to learn from the evolving pattern and
effectively address the distribution shifts. This advantage also shows on other datasets (Portraits and Caltran)
in Table 3 with less obvious evolving patterns.

For PFL or TTA baselines tuned on local source domains, without client heterogeneity (Dir → ∞), the
performance may deteriorate compared to classical FL such as FedAvg. Specifically, methods such as
FedAvgFT, APFL, and FedRep may experience a drop in client performance compared to the server on certain
datasets. These methods originally designed to tackle client heterogeneity without learning evolving patterns
suffer performance degradation; this further highlights the importance of considering evolving distribution
shifts in FL systems. Nonetheless, when clients are heterogeneous (Dir is 1.0 or 0.1 in Table 1 and 2), their
personalization or test-time adaptation can still be beneficial.

General domain generalization methods like FedSR and continual FL methods tend to achieve better results
than other baselines, indicating their capability to mitigate the influence of evolving distribution shifts. But
the gap between their performance and that of ours still emphasizes the need for a specific design to solve the
problem.

Among all methods, our proposed FedEvolve and FedEvp show the best performance and are robust to both
client heterogeneity and evolving shifts. FedEvp achieves comparable performance with FedEvolve but only
uses half numbers of parameters as FedEvolve. Specifically, when Dir = 0.1, FedEvolve achieves accuracy of
83.86% and 87.67% on RMNIST and REMNIST, while FedEvp achieves similar accuracy of 83.15% and
87.01%. Thus, a careful design of personalization can prevent the unintended consequence of performance
degradation.

Impact of Straggler. Stragglers in FL systems introduce heterogeneity at the system level; therefore, we
also study how our methods could be resilient to the straggler problem. We report the results in Table 5
when stragglers are present during the training phase. The results show our methods are not significantly
affected by stragglers. In this experiment, the straggler ratio represents the probability that a client will
train fewer local iterations than the specified number τ . For stragglers, the actual number of local iterations
is randomly selected, ranging from 1 to τ .

Table 5: Performance under different straggler ratio.

R-MNIST(Dir=1.0) 0 0.1 0.3 0.5 0.7 0.9
FedEvolve 79.93±1.00 78.56±4.17 77.50±4.87 77.42±3.45 75.88±2.58 71.87±0.98

FedEvp 77.91±1.80 77.79±1.69 77.11±0.83 77.00±1.14 76.91±0.84 76.60±1.54

Overhead Comparison. Table 6 compares transmission overhead. We use an CNN as an example to
report the number of parameters and server-client transmission time in the MPI environment. Although
FedEvolve has the higher transmission overhead, its cost-efficient version FedEvp has comparable overhead as
the baselines.

Table 6: The number of model parameters and transmission time.

FedRod FedTHE FedSR FedEvolve(Ours) FedEvp (Ours) Others
Parameters 382106 382208 391937 741120 379392 379392
Time/ms 21.38± 0.45 21.95± 1.23 21.62± 0.87 46.32± 0.78 21.30± 0.86 21.26± 1.11
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Table 7: Ablation for FedEvp (Dir=0.1). We compare the average accuracy on clients for FedEvp with three
versions: one without any personalization, another that personalizes only the classifier, and a third that
personalizes all parameters.

Method MNIST Acc EMNIST Acc
FedEvp 83.15±0.49 87.01±0.22
FedEvp w/o personalization 63.59±2.38 57.67±1.64
FedEvp personalize C 79.21±2.29 86.59±0.35
FedEvp personalize all 73.06±1.07 82.78±0.54

Ablation study. We also study the influence of personalization mechanisms of FedEvp on the performance
in Table 7. The results show personalizing part of the feature extractor and classifier can achieve the best
results. We also notice that personalizing the classifier brings the most significant improvement which means
the classifier is most sensitive to the client heterogeneity with evolving distribution shifts.

We further investigate the impact of varying the number of source domains on the prediction performance
for the target domain. Specifically, we conduct experiments under the same settings as shown in Table 8,
while controlling for the number of domains. Our methods are compared to FedAvg using reduced numbers
of domains: 7 domains (rotation starting at 75◦ and increasing to 165◦), 10 domains (rotation starting at 30◦

and increasing to 165◦), and 12 domains (rotation starting at 0◦ and increasing to 165◦).

Table 8: Performance under different number of domains.

R-MNIST(Dir→∞) 7 10 12
FedAvg 74.92 ± 1.08 70.07 ± 1.48 65.92 ± 1.01

FedEvolve 78.24 ± 1.18 82.44 ± 1.40 84.57 ± 2.45
FedEvp 80.20 ± 2.09 74.17 ± 1.15 75.99 ± 0.31

R-MNIST(Dir=1.0) 7 10 12
FedAvg 71.44 ± 1.21 65.40 ± 0.58 62.35 ± 0.97

FedEvolve 75.07 ± 2.42 80.81 ± 2.33 79.93 ± 1.00
FedEvp 80.19 ± 1.26 78.99 ± 0.82 77.91 ± 1.80

R-MNIST(Dir=0.1) 7 10 12
FedAvg 61.18 ± 0.91 54.83 ± 1.24 51.68 ± 0.73

FedEvolve 78.56 ± 1.69 83.44 ± 2.25 83.86 ± 1.81
FedEvp 78.16 ± 4.26 83.92 ± 1.59 82.12 ± 1.84

As the number of domains increases, FedAvg shows significant performance degradation across all heterogeneity
settings. This indicates standard methods’ vulnerability to evolving distributional shifts. Both FedEvolve
and FedEvp display robustness against increasing domain numbers, maintaining or improving performance.
In particular, by incorporating more source domains, FedEvolve is able to fully learn the transition of two
consecutive domains. However, FedEvp remains less sensitive to domain transitions, performing consistently
well across different settings. The robustness of our methods contrasts sharply with the performance drop
observed in FedAvg, highlighting the importance of handling distribution variability in federated learning.

Discussion. The empirical evidence suggests that conventional FL algorithms cannot simultaneously
handle the evolving distributional shifts and clients heterogeneity. In addition, evolving distributional shifts
could be viewed as a specific form of data heterogeneity affecting client devices. Present personalization
strategies, designed for data heterogeneity, fail in adapting models to unseen distributions. Simply tuning
clients on known domains without considering shifts between training data and test data, these methods may
inadvertently increase the model’s bias towards training data resulting in performance that is sometimes
inferior to that of non-personalized algorithms. While continual FL frameworks take account of dynamic
distributional shifts during training, they primarily concentrate on preventing catastrophic forgetting of
prior tasks or domains rather than adapting to new, unseen ones. This focus makes them inadequate for
managing evolving distributional shifts effectively. However, when the distribution of a target domain is
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predictable based on existing data, our methods explicitly leverage and learn the pattern of distribution
transitions, enabling the extrapolation of the model to the target domain. Therefore, our methods mitigate
the performance drop and achieve the best results.

6 Conclusions

This paper studies FL under evolving distribution shifts. We explored the impacts of evolving shifts and
client heterogeneity on FL systems and proposed two algorithms: FedEvolve that precisely captures the
evolving patterns of two consecutive domains, and FedEvp that learns a domain-invariant representation
for all domains with the aid of personalization. Extensive experiments show both algorithms have superior
performance compared to SOTA methods.
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A Algorithm

We present the pseudo-code for FedEvolve and FedEvp in Alg.1 and Alg.2. We randomly sample a subset of
data from the dataset to train the model for each update instead of the whole dataset.

Algorithm 1 FedEvolve
Require: Number of clients K; client participation ratio r; step size η; the number of local training updates

τ ; communication rounds T ; the number of source domains M ; initial global parameter ϕ and global
parameter ψ; local datasets Dkm and their known classes YDk

m
for m ∈ {1, . . . ,M}, k ∈ {1, . . . ,K}.

1: for t ∈ {1, . . . , T} do
2: server samples rK clients as It from all clients
3: server sends ϕ, ψ to It
4: for each client k ∈ It in parallel do
5: client k initialize ϕ̃k := ϕ, ψ̃k := ψ
6: for τ local training iterations do
7: for m ∈ {1, . . . ,M − 1} do
8: A ← RandomSample(Dkm)
9: B ← RandomSample(Dkm+1)

10: for y ∈ YDk
m

do
11: Ay ← {(xi, yi) ∈ A|yi = y}
12: Ckm,y = 1

|Ay|
∑

(xi,yi)∈Ay
f
ϕ̃k

(xi)
13: end for
14: ℓ = 0
15: for (x, y) ∈ B do

16: ℓ = ℓ+ 1
|B| [log

exp
(

−d
(
f
ψ̃k

(x),Ckm,y

))
∑

y′∈Y
Dkm

exp
(

−d
(
f
ψ̃k

(x),Ck
m,y′

))
)
]

17: end for
18: ϕ̃k, ψ̃k = GradientDescent(ℓ; ϕ̃k, ψ̃k, η)
19: end for
20: end for
21: client k sends local parameters ϕ̃k, ψ̃k to server
22: end for
23: ϕ = 1

|It|
∑
k∈It ϕ̃k

24: ψ = 1
|It|

∑
k∈It ψ̃k

25: end for
26: Output ϕ and ψ
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Algorithm 2 FedEvp
Require: Number of clients K; client participation ratio r; step size η; the number of local training updates

τ ; communication rounds T ; the number of source domains M ; initial global parameter ϕ and global
parameter ψ; local datasets Dkm and their known classes YDk

m
for m ∈ {1, . . . ,M}, k ∈ {1, . . . ,K}.

1: for t ∈ {1, . . . , T} do
2: server samples rK clients as It from all clients
3: server sends ϕ, ψ to It
4: for each client k ∈ It in parallel do
5: client k initialize ϕ̃k := ϕ, w̃k := w
6: for τ local training iterations do
7: for y ∈ YDk

m
do

8: Ck0,y = 0
9: end for

10: for m ∈ {1, . . . ,M} do
11: A ← RandomSample(Dkm)

12: ℓe ← − 1
|A|

∑
(xi,yi)∈A

yi log
exp

(
gy

w̃k

(
f
ϕ̃k

(x)
))

∑
y′∈Y

Dkm

exp
(
gy

′

w̃k

(
f
ϕ̃k

(x)
))

13: for y ∈ YDk
m

do
14: Ay ← {(xi, yi) ∈ A|yi = y}
15: Ckm,y = (m−1)

m Ckm−1,y + 1
m

1
|Ay|

∑
(xi,yi)∈Ay

f
ϕ̃k

(xi)
16: end for
17: if m≥2 then
18: ℓf = 0
19: for (x, y) ∈ A do

20: ℓf = ℓf + 1
|A| log

exp
(

−d
(
f
ϕ̃k

(x),Ckm,y

))
∑

y′∈Y
Dkm

exp
(

−d
(
f
ϕ̃k

(x),Ck
m,y′

))
)

21: end for
22: ϕ̃k, w̃k = GradientDescent(ℓf + ℓe; ϕ̃k, w̃k, η)
23: end if
24: end for
25: end for
26: client k sends local parameters ϕ̃k, w̃k to server
27: end for
28: ϕ = 1

|It|
∑
k∈It ϕ̃k

29: w = 1
|It|

∑
k∈It w̃k

30: end for
31: Server Output ϕ, w
32: for each client k do
33: Client Output ϕ̃k, w̃k = personalize(ϕ, w, Dk)
34: end for

B Datasets

B.1 Rotated MNIST (Ghifary et al., 2015) and Rotated EMNIST (Ghifary et al., 2015)

For Rotated MNIST (RMNIST), We generate 12 domains by applying the rotations with angles of θ =
{0◦, 15◦, ..., 165◦} on each domain respectively. For Rotated EMNIST (REMNIST), we generate 12 domains
by applying the rotations with angles of θ = {0◦, 8◦, ..., 88◦} on each domain respectively.
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B.2 Circle (Pesaranghader & Viktor, 2016)

We follow (Pesaranghader & Viktor, 2016) to generate this dataset. In this synthetic data set, we have
30 Gaussian distributions centered on a half circle with standard deviation 0.6, and the radius r is set
to 10. Each data point has two attributes, and the number of classes is 2. The decision boundary is
(x− x0)2 + (y − y0)2 ≤ r2, where (x0, y0) are the coordinates of the circle’s center (we set it as (0, 0)).

B.3 Portraits (Ginosar et al., 2015)

The portraits dataset contains human face images from yearbooks spanning from 1905 to 2013. We partition
the data into nine domains by segmenting the dataset into 12-year intervals. All images are resized into
32×32 without any augmentation.

B.4 Caltran(Hoffman et al., 2014)

This real surveillance dataset comprises images captured by a fixed traffic camera deployed in an intersection.
The images in this dataset come with time attributes. We categorize the images into 12 distinct domains
based on their capture time throughout the day. Specifically, each domain represents a 2-hour interval. As
such, a 24-hour day is evenly divided into these 12 domains. We resize images in Caltran to 224×224.

C Implementation

All experiments are conducted on a server equipped with multiple NVIDIA A5000 GPUs, two AMD EPYC
7313 CPUs, and 256GB memory. The code is implemented with Python 3.8 and PyTorch 1.13.0 on Ubuntu
20.04 based on the implementation in Jiang & Lin (2023). To evaluate our methods, we consider classification
tasks using various network architectures and report average accuracy over three different random seeds.
Due to the constraints of our computing resources, our experiments involve between 10 to 20 clients and are
conducted over 50 communication rounds, the personalization epoch is 1 for PFL methods including FedEvp.

• RMNIST: For the Rotated MNIST dataset, we employ a CNN with four convolutional layers, each
equipped with a 3x3 kernel. Group Normalization is applied post-convolution for stabilization using
groups of 8 channels. Followed by convolutional layers, there are two linear layers with a hidden
dimension of 64. The four convolutional layers and the first linear layer form the representation
functions (fϕ and fψ in FedEvolve, fϕ in FedEvp) with the final linear layer serving as the classifier (fw
in FedEvp). We employ an SGD optimizer with a weight decay of 5e-4 and conduct local training for
10 epochs per communication round.

• REMNIST: For the Rotated EMNIST dataset, we employ the same CNN as the one in RMNIST. We
use Adam optimizer with weight decay of 1e-4 and run local training for 10 epochs per communication
round.

• Circle: For the Circle dataset, we utilize a five-layer Multi-Layer Perceptron (MLP). This includes
three dense layers (2x256, 256x256, 256x256) for feature representation (fϕ and fψ in FedEvolve,
fϕ in FedEvp), linked by ReLU activations, and two subsequent linear layers (256x64, 64x2) that
function as the classifier (fw in FedEvp). Given data constraints, we utilize 10 clients and train for 5
epochs using Adam with a weight decay of 5× 10−4.

• Portraits: For this dataset, images are resized to 32x32 and processed using a WideResNet
architecture. The convolution layers along with the average pooling layer act as the representation
function. A linear layer is designated as the classifier after representation. The model is trained
among 20 clients over 5 epochs using an Adam optimizer with a weight decay of 5e-4.

• Caltran: We deploy ResNet18 for the Caltran dataset, with the last linear layer used as the classifier.
The representation function comprises four residual convolution blocks and an average pooling layer.
With pre-trained weights, we tune the model using an SGD optimizer with a weight decay of 5e-4.
Given data limitations, training involves 10 clients over 5 epochs.
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Networks for each dataset are presented in Table 9

Dataset Input Number NetworkDimension of Classes
RMNIST 28 × 28 10 CNN
REMNIST 28 × 28 26 CNN
Circle 2 2 MLP
Portraits 32 × 32 2 WideResNet
Caltran 3 × 224 × 224 2 ResNet18

Table 9: Networks for datasets

For each dataset, we search the learning rate for each algorithm to find the best results. The training detail
is given in Table 10.

Dataset Num of Batch Learning Rate
Clients Size Range

RMNIST 20 32 1e-3, 1e-2, 1e-1
REMNIST 20 96 1e-3, 5e-3, 1e-2, 5e-2, 1e-1
Circle 10 32 1e-6, 5e-6, 1e-5, 5e-5, 1e-4
Portraits 20 32 1e-3, 5e-3, 1e-2
Caltran 10 32 1e-5, 5e-5, 1e-4, 5e-4

Table 10: Training Details for datasets

We use the same search strategy for hyperparameters to tune the models.

• For GMA(Tenison et al., 2022), we set the masking threshold as 0.1, searching from
{0.1, 0.2, 0.3, ..., 1.0}

• For FedRep(Collins et al., 2021), FedRod(Chen & Chao, 2022), and FedTHE(Jiang & Lin, 2023), the
last fc layer of the model is used as the head.

• For Ditto(Li et al., 2021a), the regularization factor λ is set to 0.1.

• For MEMO,(Zhang et al., 2021b) we use 32 augmentations and 3 optimization steps.

• For T3A(Iwasawa & Matsuo, 2021), M = 50 is used in our experiments.

• For FedSR(Nguyen et al., 2022), we follow the same setting in their paper: αL2R = 0.01 and
αCMI = 0.001.

D Supplementary Results

We compared the P-values of our proposed methods, FedEvolve and FedEvp, with various baseline federated
learning algorithms in Table 11. The p-values from our t-test statistical analysis indicated that our methods
significantly outperform the baseline methods.

Table 11: P-values comparing FedEvolve and FedEvp with baseline methods on rotated MNIST.

FedAvg GMA Memo(G) FedAvgFT APFL FedRep Ditto
FedEvolve 5.17 × 10−4 4.42 × 10−4 7.69 × 10−4 1.44 × 10−3 2.26 × 10−4 9.41 × 10−4 7.27 × 10−4

FedEvp 7.33 × 10−3 6.76 × 10−3 9.82 × 10−3 2.42 × 10−3 6.20 × 10−6 4.60 × 10−4 2.16 × 10−5

FedRod Memo(P) T3A FedTHE FedSR CFL CFeD
FedEvolve 6.21 × 10−4 1.04 × 10−3 8.09 × 10−4 8.92 × 10−4 6.27 × 10−4 2.46 × 10−4 1.41 × 10−3

FedEvp 2.71 × 10−3 1.20 × 10−3 7.71 × 10−4 2.27 × 10−4 2.77 × 10−2 4.04 × 10−3 4.40 × 10−2
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Table 12: Average accuracy over three runs of experiments on rotated MNIST with different rotation degrees
for the target domain.

Dir→∞ Dir=1.0 Dir=0.1
Method Client Server Client Server Client Server
FedAvg (110◦) 80.96±1.62 80.92±0.23 79.41±0.30 81.63±1.71 70.16±0.48 71.93±2.06
FedAvg (120◦) 66.39±0.92 66.61±1.17 64.30±1.36 65.08±1.89 54.74±1.40 53.62±1.01
FedAvg (130◦) 50.53±0.88 51.04±2.72 48.64±1.28 48.41±1.16 40.87±1.44 40.41±0.91
FedEvolve (110◦) 86.66±0.66 86.62±1.60 85.57±1.35 83.11±2.31 86.92±1.72 74.67±2.29
FedEvolve (120◦) 78.09±0.88 77.80±0.82 74.85±2.86 72.81±5.46 78.43±4.92 61.57±7.44
FedEvolve (130◦) 65.13±1.79 64.64±1.85 62.88±2.23 60.47±3.91 69.77±4.30 50.82±5.58
FedEvp (110◦) 84.68±1.51 86.07±1.38 85.84±1.33 83.33±3.50 84.99±2.32 69.41±2.47
FedEvp (120◦) 72.91±0.65 75.66±0.82 74.93±2.54 71.82±2.83 79.48±1.89 62.28±3.88
FedEvp (130◦) 61.67±0.31 64.64±0.16 65.79±2.36 62.99±2.11 72.11±3.01 53.84±4.05

D.1 Impact of Changing Pattern

In previous experiments, we primarily focus on invariant changing patterns in image rotation experiments.
Here we examine if our methods are robust against an unexpected pattern. In this experiment, we test the
robustness of our methods against an unexpected pattern. Specifically, we simulate an unexpected domain
by rotating images from the target domain by an additional 10◦ and 20◦. To prevent confusion between
numerals like 6 and 9 when rotated by 180◦, we set the incremental rotation degree as 10◦. Therefore, the
images experience a 120◦ rotation or a 130◦ rotation instead of the expected 110◦. This experiment aims to
evaluate whether our methods can handle deviations from anticipated patterns.

As shown in Table 12, all methods exhibit a significant performance drop when the test data distribution
changes substantially, however, our methods still outperform the baseline and the drop is less than the baseline.
Notably, FedEvp demonstrates superior performance compared to FedEvolve when clients are heterogeneous.
This difference arises because FedEvolve explicitly learns the distribution transition between consecutive
domains, while FedEvp learns evolving-domain-invariant features. Consequently, when the distribution
transition deviates from the learned pattern, the performance of FedEvolve is adversely affected, whereas
FedEvp remains less influenced by the change.
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