
Published as a conference paper at ICLR 2025

FEDERATED DOMAIN GENERALIZATION WITH
DATA-FREE ON-SERVER MATCHING GRADIENT

Trong-Binh Nguyen1∗, Minh-Duong Nguyen1∗, Jinsun Park1†, Quoc-Viet Pham2, Won Joo Hwang1†

1 Pusan National University, Republic of Korea, 2 Trinity College Dublin, Ireland
∗ Equal contribution, † Corresponding author
{binhnguyentrong, duongnm, jspark, hwangwj}@pusan.ac.kr
viet.pham@tcd.ie

ABSTRACT

Domain Generalization (DG) aims to learn from multiple known source domains
a model that can generalize well to unknown target domains. One of the key
approaches in DG is training an encoder which generates domain-invariant repre-
sentations. However, this approach is not applicable in Federated Domain General-
ization (FDG), where data from various domains are distributed across different
clients. In this paper, we introduce a novel approach, dubbed Federated Learning
via On-server Matching Gradient (FedOMG), which can efficiently leverage domain
information from distributed domains. Specifically, we utilize the local gradients
as information about the distributed models to find an invariant gradient direction
across all domains through gradient inner product maximization. The advantages
are two-fold: 1) FedOMG can aggregate the characteristics of distributed models
on the centralized server without incurring any additional communication cost,
and 2) FedOMG is orthogonal to many existing FL/FDG methods, allowing for
additional performance improvements by being seamlessly integrated with them.
Extensive experimental evaluations on various settings demonstrate the robustness
of FedOMG compared to other FL/FDG baselines. Our method outperforms recent
SOTA baselines on four FL benchmark datasets (MNIST, EMNIST, CIFAR-10, and
CIFAR-100), and three FDG benchmark datasets (PACS, VLCS, and OfficeHome).
The reproducible code is publicly available 1.

1 INTRODUCTION

Federated Learning (FL) has gained widespread recognition due to its ability to train models collabo-
ratively across multiple clients while keeping their individual data secure. However, one practical
challenge, how to ensure that models trained on sites with heterogeneous distributions generalize
to target clients with unknown distributions, known as Federated Domain Generalization (FDG),
remains under-explored. While label distribution shift has been considered in traditional FL, FDG
focuses on the feature shift among clients and considers each client as an individual domain.

FDG shares a similar goal as standard Domain Generalization (DG) (Nguyen et al., 2022b; Li
et al., 2018), i.e., generalizing from multi-source domains to unseen domains. However, unlike DG,
where knowledge from various domains can be jointly utilized to develop an efficient algorithm,
FDG prohibits direct data sharing among clients, which makes most existing DG methods hardly
applicable. To address the challenges inherent to FDG, recent methods circumvent these difficulties
by adopting alternative strategies, e.g., unbiased local training within each isolated domain, local data
preprocessing (Huang et al., 2022; 2024), or knowledge sharing among users (Liu et al., 2021; Chen
et al., 2023). As a consequence, an open question remains for FDG:

How can knowledge across domains be effectively leveraged to design FDG algorithms that
achieve performance comparable to DG, while avoiding additional communication overhead?

1https://github.com/skydvn/fedomg
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Addressing the aforementioned question, we inherit the gradient matching rationale (Shi et al., 2022;
Rame et al., 2022). The rationale is straightforward: if the model θ is domain-invariant, the gradients
induced by θ across different domains should exhibit a high correlation with each other. To this end,
we propose a novel on-server invariant gradient aggregation approach for FDG, dubbed Federated
learning via On-server Matching Gradient (FedOMG). Specifically, we leverage the available local
gradients at the server to design a gradient-based approach for finding domain-invariant models.
To design an on-server optimization strategy, we draw inspiration from the Gradient Inner Product
(GIP) optimization problem introduced in Fish (Shi et al., 2022) to implement gradient matching.
However, the current GIP approach has two significant limitations for FDG: (1) directly minimizing
GIP, as described in (Shi et al., 2022, Alg. 2), incurs substantial computational overhead due to the
need to compute second-order derivatives of model parameters related to the GIP term; and (2) the
surrogate approach for Fish, as outlined in (Shi et al., 2022, Alg. 1), requires continuous transmission
of client models, leading to excessive communication overhead. To address these issues, we propose
an indirect optimization method that leverages surrogate optimization variables instead of model
parameters, thereby eliminating the need for second-order derivatives in GIP. Furthermore, to enhance
computational efficiency, we introduce an efficient convex optimization formulation to streamline the
on-server optimization process. The advantages of our design are as follows:

1. FedOMG can leverage local client knowledge to train a global model, similar to conventional
DG. Consequently, our global model has a better knowledge of all clients, thus, leading to
high generalization when applied to Out-Of-Distribution (OOD) data.

2. Due to the design of on-server gradient matching, our method is orthogonal to many classic
FDG methods, where current FDG methods focus on the local training (Huang et al., 2022;
2024). As a consequence, the integration of FedOMG with other FDG methods can achieve
improved performance.

3. Due to the utilization of available local gradients on server, our method does not require data
transmission from distributed devices to the server, or sharing data among users (Liu et al.,
2021; Chen et al., 2023). Consequently, we can maintain the efficiency of communication
and privacy in FL settings.

Contribution. Our contributions can be summarized as follows. 1) We propose FedOMG, a
communication-efficient method for learning domain-invariant models in FDG, which leverages the
local gradients to facilitate the on-server gradient matching. 2) We conduct theoretical analysis to
reveal that FedOMG is robust to the reduction of the generalization gap of the unseen target domains.
3) We conduct experimental evaluations under FL settings and FDG settings. In FL settings, we
consider four FL datasets (MNIST, EMNIST, CIFAR-10, and CIFAR-100). In FDG settings, we
consider the DG benchmark datasets (PACS, VLCS, and OfficeHome). Experimental results show
that FedOMG significantly outperforms existing FL methods in terms of IID, non-IID dataset, and
OOD generalization.

2 PRELIMINARIES

Notations: By default, ⟨·, ·⟩ and ∥ · ∥ denote the Euclidean inner product and Euclidean norm,
respectively. In our research, we use dM(·, ·) to represent any distance metric M between two
distributions. We denote ⊙ as Hadamard product. We denote P(θ;D) as the output distribution of
model θ given input as dataset D. We denote θ

(r)
g , θ

(r)
u , ϕ

(r)
u ,∈ R1×M as the global, local, trained

local model parameters used in the FL system at round r, respectively. Let g(θ(r,e)u ;Du) ∈ R1×M be
local gradient of client u at epoch e of round r, g(θ(r);Du) ∈ R1×M be gradient of client u at round
r. Without loss of generality, we abuse g(θ

(r,e)
u ;Du) = g

(r,e)
u , g(θ(r);Du) = g

(r)
u .

Problem Setup: We consider an FL system comprising a set of source clients US = {u|u =
1, 2, . . . , US}, and target clients UT = {u|u = US + 1, US + 2, . . . , US + UT }. Each client u
gains access to its data Du = {xi, yi}Nu

i=1 with Nu data samples, where u ∈ {US ;UT }. Source
and target clients are assigned to the source datasets DS = {Du|u ∈ US} and target datasets
DT = {Du|u ∈ UT }, respectively. Each client is trained for E epochs every round. The system
objectives are two-fold.
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Objective 1 (guarantee on the conventional FL setting) The method has to perform well on the
source clients set US , i.e., θ∗ = argminθ ES =

∑
u∈US

γuE(θ,Du), where E(θ,Du) is the local
empirical risk, γu represents the weight on client u, satisfying

∑
u∈US

γu = 1.

Objective 2 (guarantee on the FDG setting (Zhang et al., 2023b)) Let H be a hypothesis space
of VC-dimension M , dH△H(Du,Dv) is the domain divergence. For any δ ∈ (0, 1), the generalization
gap on an unseen domain DT is bounded by the following with a probability of at least 1− δ:

E(θ;DT ) ≤
∑
u∈US

γu

[
E(θ;Du) +

∑
v∈UT

dH△H(Du,Dv) +

√
logM + log 1

δ

2Nu

]
+ ζ∗, (1)

where ζ∗ is the optimal combined risk on DS and DT . One crucial challenge in FDG is the existence
of a domain shift between the sets of source clients’ data DS and target clients’ data DT , respectively.

Objectives 1 and 2 highlight two primary goals of FDG. While Objective 1 can easily be achieved
by training on source clients US , Objective 2 requires the FDG system to minimize the discrepancy
between data from source clients US and unseen target clients UT . However, Inequality 1 requires the
availability of both source and target data (i.e., Du ∈ DS ,Dv ∈ DT ,∀u, v ∈ US ,UT ). Consequently,
one of the most significant approaches to achieving generalization is to design a model θ that is
domain-invariant (Li et al., 2018; Zhao et al., 2019) by learning through the objective:

θ∗ = argmin
θ

E [θ;DS ] + λ
∑
u∈US

v ̸=u∑
v∈US

dM(P(θ;Du),P(θ;Dv)), (2)

where λ is the scaling coefficient of domain-invariant regularization. The principle of domain-invariant
learning is to learn a model that remains invariant across source domains, rather than reducing the
divergence between the source and unavailable target domains. As a consequence, domain-invariant
learning efficiently reduces the generalization gap between source and target domains (Li et al., 2018).
However, due to the decentralization of the data, each client does not have access to other clients’ data,
i.e., Du ∩ Dv = ∅,∀u, v ∈ US , u ̸= v. Consequently, it is challenging to find the domain-invariant
features within the FDG framework.

3 MOTIVATION BEHIND ON-SERVER OPTIMIZATION FEDERATED LEARNING

3.1 FROM FEDERATED LEARNING TO ON-SERVER OPTIMIZATION FEDERATED LEARNING

To efficiently aggregate knowledge from all clients, we propose an on-server optimization framework
designed to identify an optimal aggregated gradient for achieving domain invariance, thus, eliminating
the need for direct access to client data. This approach leverages meta-learning to decompose the
FDG optimization problem into two meta-learning steps. Specifically, we reformulate the FDG
optimization problem from Eq. (2) into two sequential stages: local update and meta update. Drawing
on the meta-learning principle (Hospedales et al., 2022), the problem is formulated as follows:

θ(r)g = θ(r−1)
g − ηg

∑
u∈US

[
∇E(ϕ(r)

u ;Du) + λ

v ̸=u∑
v∈US

∇dM(P(θ;Du),P(θ;Dv))
]
, (3a)

s.t. ϕ(r)
u = θ(r−1)

g − ηlg(θ
(r−1)
g ;Du), (3b)

where ηl and ηg are the local and global learning rate of FL system, respectively. The local update
in Eq. (3b) is designated for on-device training, while the meta update in Eq. (3a) is utilized for
on-server update. The on-server update in (3a) consists of two terms: the first term ∇E(ϕ(r)

u ;Du)
refers to the FL update, and the second term ∇dM(P(θ;Du),P(θ;Dv)) represents the update of
domain divergence reduction between any pair of clients from the source client set US . However, as
aforementioned in Section 2, the integration of Eq. (2) into Eq. (3) is infeasible due to the requirement
of accessibility to all source clients’ data.
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3.2 MOTIVATION OF INTER-DOMAIN GRADIENT MATCHING

Addressing the demand for local data access in conventional DG approach, we utilize Invariant
Gradient Direction (IGD):

Definition 1 (Invariant Gradient Direction (Shi et al., 2022)) Considering a model θ with task of
finding domain-invariant features, the features generated by the model θ is domain-invariant if
the two gradients g(θ;Du), and g(θ;Dv) point to a similar direction, i.e., g(θ;Du) · g(θ;Dv) > 0.
Otherwise, the invariance cannot be guaranteed if g(θ;Du) · g(θ;Dv) ≤ 0.

Given Definition 1, we can leverage the local gradients as data for on-server optimization. Recently,
many researches have been carried out to find the invariant gradient direction among domains.
However, most of the researches consider gradient minimization as a regularization of the joint
objective function. For instance, Fishr (Rame et al., 2022, Eq. (4)) considers

EFishr =
1

US

∑
u∈US

E(θ(r);Du) + λ
1

US

∑
u∈US

∥a(r)u − a(r)∥2, s.t. a(r)u =
1

Nu

Nu∑
i=1

(g
(r)
u,i − g(r)u )2, (4)

where g
(r)
u = 1

Nu

∑Nu

i=1 g
(r)
u,i , and a(r) = 1

US

∑
u∈US

a
(r)
u are the client mean gradient and global

mean gradient variance, respectively. Another approach is to use GIP as regularization. For instance,
Fish (Shi et al., 2022, Eq. (4)) considers

EFish =
1

US

∑
u∈US

E(θ(r);Du)− λ
2

US(US − 1)

∑
u∈US

v ̸=u∑
v∈US

〈
g(r)u , g(r)v

〉
. (5)

On-server data are required if we leverage Eq. (4) or Eq. (5) as the objective function for on-server
optimization. Acknowledge this shortcoming, we design a meta-learning based approach and apply
the gradient matching solely during the meta-update stage. Therefore, the FDG update can be
represented as follows:

θ(r)g = θ(r−1)
g − ηgg(θ

(r)
IGD; ·), (6a)

s.t. θ
(r)
IGD = argmax

θ

∑
u∈US

〈
g(θ; ·), g(ϕ(r)

u ;Du)
〉
, ϕ(r)

u = θ(r−1)
g − ηlg(θ

(r−1)
g ;Du). (6b)

Here, we abuse g
(r)
u = g(ϕ

(r)
u ;Du) as the local gradient of user u on round r after E epochs.

g(θ; ·) = θ − θ
(r−1)
g is the gradient computed by learnable parameter θ, thus, we do not consider

the dataset. Note that Eq. (6) has a high similarity with (Shi et al., 2022, Eq. (4)). Apart from (Shi
et al., 2022), we use

∑
u∈US

〈
g(θ; ·), g(ϕ(r)

u ; ·)
〉

instead of
∑

u∈US

∑
v∈US

〈
g
(r)
u , g

(r)
v

〉
because

⟨g(r)u , g
(r)
v ⟩ is double-edged bounded by ⟨g(θ; ·), g(r)v ⟩ and ⟨g(θ; ·), g(r)u ⟩, ∀u, v, as explained in the

following.

Lemma 1 (Triangle inequality for cosine similarity (Schubert, 2021)) Let g
(r)
u , g

(r)
v , g(θ; ·) be

three vectors in a M -hyperplane, then the following bounds hold:

⟨g(r)u , g(θ; ·)⟩⟨g(θ; ·), g(r)v ⟩ −
√
(1− ⟨g(r)u , g(θ; ·)⟩2)(1− ⟨g(θ; ·), g(r)v ⟩2) ≤ ⟨g(r)u , g(r)v ⟩

≤ ⟨g(r)u , g(θ; ·)⟩⟨g(θ; ·), g(r)v ⟩+
√

(1− ⟨g(r)u , g(θ; ·)⟩2)(1− ⟨g(θ; ·), g(r)v ⟩2). (7)

By proposing Eq. (6), we establish the meta objective function Eq. (6a), which leverages only
the clients’ gradient as training data. The remaining issues of Eq. (6) are two-folds. Firstly, the
optimization problem over the model θ may not achieve good generalization due to the lack of training
data at every optimization step (which is not applicable to model with large parameters). Secondly, as
noted by Shi et al. (2022), minimizing the GIP can result in significantly high computational overhead,
primarily due to the requirement of computing second-order derivatives of the model parameters
associated with the GIP term. In our proposed method, we will focus on making this objective function
feasible while not require extensive computational resources due to the second-order derivatives of
the model parameters.
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4 FEDOMG: DATA FREE ON-SERVER MATCHING GRADIENT

4.1 OVERALL SYSTEM ARCHITECTURE

We propose a novel method FedOMG, which efficiently aggregates the clients’ knowledge to learn a
generalized global model θg. The main differences between our approach and other current FL and
FDG approaches are two-fold. Firstly, to guarantee the communication efficiency of FL settings, we
leverage the available local gradients as training data for our on-server optimization.

g(r)u = θ(r,E)
u − θ(r,0)u , where θ(r,0)u = θ(r−1)

g . (8)

Secondly, we design a novel on-server optimization approach. The goal of this on-server optimization
is to find an encoder with the capability of generating domain-invariant features. To this end, we
leverage clients’ gradients in the global model θg that achieves the invariant gradient direction on all
domains.

4.2 INTER-CLIENT GRADIENT MATCHING

To make the objective function (6) feasible, we target to do the following: 1) limit the searching
space of the meta-update, 2) leverage Pareto optimality to reduce the computation overheads, and 3)
indirectly find invariant gradient direction.

Indirect Search of Invariant Gradient Direction. As mentioned in Section 3.2, the utilization of
GIP may induce significant computation overheads due to the on-server training, as the optimization
over model parameter θ requires the second order derivative. To this end, instead of finding a gradient
solution with M -dimensional optimization variable θ(r)IGD = argmaxθ

∑
u∈US

⟨g(θ; ·), g(ϕ(r)
u ; ·)⟩, we

consider the invariant gradient direction g
(r)
IGD as a convex combination of local gradients g(r)u .

g
(r)
IGD = Γg(r) =

∑
u∈US

γug
(r)
u , where, Γ = {γ1, . . . , γUS}, g(r) = {g(r)1 , . . . , g

(r)
US

}. (9)

By doing so, the FDG update in Eq. (6) is reduced to

θ(r)g = θ(r−1)
g − ηgg

(r)
IGD = θ(r−1)

g − ηgΓIGDg
(r), (10a)

s.t. ΓIGD = argmax
Γ

∑
u∈US

〈
Γg(r), g(ϕ(r)

u ;Du)
〉
, ϕ(r)

u = θ(r−1)
g − ηlg(θ

(r,E)
u ;Du). (10b)

By indirectly optimizing the joint gradients over the auxiliary optimization set Γ, the need for
computing second-order derivatives with respect to the model parameters θ is eliminated. Additionally,
the optimization variable dimensionality is reduced from M to US (M ≫ US ), which further improve
the computational efficiency.

Searching Space Limitation. The straightforward optimization of GIP, as formulated in Eq. (10),
may introduce an optimization bias toward gradients with the dominating magnitudes. This bias can
result in a loss of generalization, potentially causing the optimization process to overlook clients
that contribute less significantly during a given communication round. An alternative approach for
GIP involves leveraging cosine similarity. By doing so, the influence of gradient magnitudes among
local gradients is minimized, allowing the focus to shift to optimizing the angles between gradients.
However, this method is computationally intensive and challenging to simplify into a more practical
formulation. To this end, we limit the searching space into the M -ball. For instance,

ΓIGD = argmax
Γ

∑
u∈US

〈
Γg(r), g(r)u

〉
︸ ︷︷ ︸
Gradient matching

−γ
(
∥Γg(r) − g

(r)
FL ∥2 − κ∥g(r)FL ∥2

)
︸ ︷︷ ︸

Searching space limitation

, (11)

where g
(r)
FL represents the gradients of the referenced FL methods (e.g., FedAvg (McMahan et al.,

2017), where g
(r)
FL =

∑
u∈US

Nug
(r)
u /

∑
u∈US

Nu). Beside the aforementioned first term, Eq. (11)
consists of searching space limitation. Specifically, searching space limitation is activated by con-
straining the searching radius, preventing it from diverging too far from the specific range (i.e.,
g
(r)
IGD ∈ BM (g

(r)
FL ;κ∥g(r)FL ∥2), where BM (g

(r)
FL ;κ∥g(r)FL ∥2) is a M -ball centered at g(r)FL and having

5
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radius κ∥g(r)FL ∥2). Note that, the searching space limitation term reduces to argmaxΓ κ∥g
(r)
FL ∥∥g(r)Γ ∥

(after the relaxation in Theorem 1), which corresponds to the denominator in the application of
cosine similarity. By constraining the search space to remain close to the reference FL gradient,
the computational overhead of on-server optimization can be significantly reduced. This is because
the optimization process requires fewer iterations to converge to optimal results. Additionally, this
constraint mitigates the risk of the optimization process converging to suboptimal solutions.

Pareto-based Optimization. At every iteration, Eq. (11) consists of loop over US user, which
requires O(US) computation complexity. To reduce the objective’s complexity, we consider Pareto
front, which provides a trade-off among the different objectives. We have the following definitions:

Definition 2 (Pareto dominance (Zitzler & Thiele, 1999)) Let θa, θb ∈ RM be two points, θa is
said to dominate θb (θa ≻ θb) if and only if Eu(θa) ≤ Eu(θb),∀u ∈ U and Ev(θa) < Ev(θb),∃v ∈ U .

Definition 3 (Pareto optimality (Zitzler & Thiele, 1999)) θ∗ is a Pareto optimal point and E(θ∗)
is a Pareto optimal objective if it does not exist θ̂ ∈ RM satisfying θ̂ ≻ θ∗. The set of all Pareto
optimal points is called the Pareto set. The projection of the Pareto set onto the loss space is called
the Pareto front.

Leveraging Definitions 2 and 3, we have the following lemma:

Lemma 2 The average cosine similarity between given gradient vector g(r)IGD and the domain-specific
gradient is lower-bounded by the worst case cosine similarity as follows:

1

U

∑
u∈US

〈
g(r)u , g

(r)
IGD

〉
≥ min

u∈US

〈
g(r), g

(r)
IGD

〉
.

Lemma 2 allows us to realize that Eq. (11) can be reduced to maximizing the worst-case scenario.
Thus, we have the surrogate FDG update as follows:

θ(r)g = θ(r−1)
g − ηgg

(r)
IGD = θ(r−1)

g − ηgΓIGDg
(r), (12a)

s.t. ΓIGD = argmax
Γ

min
u∈US

[〈
Γg(r), g(r)u

〉
− γ

(
∥Γg(r) − g

(r)
FL ∥2 − κ∥g(r)FL ∥2

)]
. (12b)

However, solving Eq. (12) is complex due to the min-max problems with two variables. Thus, we
simplify the optimization problem Eq. (12) as follows:

Theorem 1 (FedOMG solution) Given Γ = {γ(r)
u |u ∈ US ,

∑
u∈US

γ
(r)
u = 1} is the set of learn-

able coefficients at each round r. Invariant gradient direction g
(r)
IGD is characterized as follows:

g
(r)
IGD = g

(r)
FL +

κ∥g(r)FL ∥
∥Γ∗g(r)∥

Γ∗g(r) s.t. Γ∗ = argmin
Γ

Γg(r) · g(r)FL + κ∥g(r)FL ∥∥g(r)Γ ∥. (13)

Proof of Theorem 1 is detailed in Appendix F.5. Theorem 1 provides an alternative solution for
aggregating local gradients at the server. By relaxing Eq. (12) into Theorem 1, the optimization
process becomes simplified. Instead of requiring iterative computations over all participating users
in argmaxΓ minu∈US ⟨Γg(r), g

(r)
u ⟩, the optimization can be performed through a straightforward

computation, e.g., argminΓ Γg
(r) · g(r)FL . The detailed algorithm is demonstrated as in Alg. 1

Integratability. g(r)FL represents the gradients of referenced FL algorithm, while the local gradients

g
(r)
u depend on that specific FL algorithm. Consequently, by using Theorem 1, we can integrate our

on-server optimization into other FL algorithms. Furthermore, Theorem 1 also indicates that the IGD
can be reduced to the chosen FL algorithms if we choose appropriate hyper-parameters:

Corollary 1 When the radius of the κ-hypersphere reduces to 0, the IGD is reduced to the referenced
FL algorithm. For instance, limκ→0 gIGD = g

(r)
FL .

6
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5 THEORETICAL ANALYSIS

To prove the generalization capability of FedOMG, we have the following lemma:

Lemma 3 For any θ ∈ Θ, the domain divergence dH△H(A,B) is bounded by the expectation of
gradient divergence between domain A and domain B.

dH△H(A,B) ≤ 1

µ
dG◦θ(A,B), (14)

where dG◦θ(A,B) is the gradient divergence of model θ when training in two domains A and B.

Proof of Lemma 3 is detailed in Appendix F.3. Lemma 3 establishes the connection between domain
divergence and the gradient divergence it induces. Consequently, the domain shift dH△H(Du,Dv)
from Eq. (1) can be interpreted as gradient divergence, which serves as the primary minimization
objective in our work. We then prove that the generalization gap on an unseen domain DT by
the optimal solution on DS is upper-bounded by the generalization gap in the source domains in
Theorem 2. From Theorem 2, the domain generalization gap on an unseen domain DT is bounded by
X and the domain divergence dH△H(Du,Dv).

Theorem 2 Let θR denote the global model after R rounds FL, θ∗u, and θ∗T mean the local optimal
for each client and the unseen target domain, respectively. The local objectives follow the µ strongly
convex from Assumption 2. For any δ ∈ (0, 1), the domain generalization gap for the unseen domain
DT can be bounded by the following equation with a probability of at least 1− δ.

EDT (θ
R)− EDT (θ

∗
DT

)

≤
∑
u∈US

γu

[
ED̂u

(θ) +
∑
v∈US

dG◦θ(D̂u, D̂v)

µ
+ dH△H(DS ,DT ) +

√
log M

δ +
√
log USM

δ√
2Nu

]
+ ζ∗,

where D̂u, D̂v are the sampled counterparts from the domain Du,Du, respectively. dG◦θ(D̂u, D̂v)

denotes the gradient divergence of model θ when training on two different domains D̂u and D̂v .

Proof of Theorem 2 is detailed in Appendix F.4. The generalization gap at round R on target domain
EDT (θ

R)− EDT (θ
∗
DT

) affected by the divergence among domains’ gradients dG◦θ(D̂u, D̂v). These
domain gradients are affected by the FedOMG algorithm, where our goal is to minimize the gradient
divergence at every round. By combining Theorem 2 and Lemma 1 , we obtain the upper-boundary
on the FedOMG.

Corollary 2 Assume FedOMG solution is given by g(r)IGD = argmaxG
∑

u∈US

∑
v∈US

dG◦θ(D̂u, D̂v).
Generalization gap of FedOMG is bounded by the followings with a probability of at least 1− δ.

EDT (θ
R)− EDT (θ

∗
DT

) ≤
∑
u∈US

γu

[
ED̂u

(θ) + max
G

1

µ

∑
v∈US

dG◦θ(D̂u, D̂v)

+ dH△H(DS ,DT ) +

√
log M

δ +
√
log USM

δ√
2Nu

]
+ ζ∗,

Consequently, the gradient matching can reduce the FedOMG generalization gap every round, thus
reducing the generalization gap on the unseen target data domain DT .

6 EXPERIMENTAL EVALUATIONS

6.1 ILLUSTRATIVE TOY TASKS

Fig. 1 presents the performance of FedOMG on Rect-4, revealing several key findings. Firstly, a
significant gradient conflict is observed when training in systems with heterogeneous users (e.g.,
feature divergence), while in the IID setting, the gradient is more aligned toward one direction.
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Secondly, in FedAvg, users 1 and 2 tend to steer the global model away from the ideal ERM (where
data is randomly sampled and not affected by heterogeneity). This issue is exacerbated in the FDG
setting, causing the gradient to shift upward, meaning the bias increases (ideally, the bias should be
close to zero). Thirdly, FedOMG demonstrates effective gradient matching, aligning closely with
ERM gradients in the FL setting or moving towards the optimal point in the FDG setting. The details
of experimental settings are demonstrated in Appendix C.
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Figure 1: Illustrative toy task on two settings. 1) FL settings, where all users are participating in the
training (left figure), 2) FDG setting: one user is excluded in the training (right figure).

6.2 EXPERIMENTAL MAIN RESULTS

FL performance comparison with baselines. Tab. 1 presents the results for our method in a
conventional FL setting. The best result is highlighted in pink, the second-best result is in bold, and
our proposed method is highlighted in yellow. We observe that our method consistently achieves
the best or second-best performance across all datasets compared to other methods. Notably, our
proposed algorithm demonstrates robustness, as it integrates effectively with other FL methods,
resulting in superior performance. Full results are shown in Appendix E.1.

Discussion on orthogonality of FedOMG with FL baselines. Performances of the integration
of FedOMG into three other FL algorithms (i.e., PerAvg, FedRod, FedBabu) are shown in Tab. 1.
The integration of advanced methods consistently outperforms standard FL algorithms. Notably,
the combination of FedRod and FedOMG yields a significant enhancement in performance. This
improvement can be attributed to the complementary nature of these two techniques. FedRod
introduces layer disentanglement, which enhances the personalization capabilities of FL clients. In
contrast, FedOMG focuses on on-server gradient matching, which improves the overall generalization
of the FL model. Together, these orthogonal approaches create a synergistic effect that boosts both
personalization and generalization in FL.

Table 1: Comparison of methods across different datasets and non-IID scenarios. The setups are 100
users at 20% user participation (i.e. α ∈ {0.1, 0.5}). Results are averaged after 5 times.

Setting Non-IID (α = 0.1) Non-IID (α = 0.5)
Dataset MNIST CIFAR10 CIFAR100 EMNIST MNIST CIFAR10 CIFAR100 EMNISTMethod
FedAvg 93.77 ± 0.33 60.89 ± 0.12 28.78 ± 0.10 86.45 ± 0.30 91.47 ± 0.26 59.12 ± 0.21 25.55 ± 0.22 84.23 ± 0.18
PerAvg 94.44 ± 0.26 64.76 ± 0.13 36.27 ± 0.32 87.87 ± 0.17 93.52 ± 0.32 64.46 ± 0.02 27.29 ± 0.20 84.87 ± 0.01
FedRod 98.09 ± 0.27 88.90 ± 0.19 44.33 ± 0.26 97.50 ± 0.24 96.85 ± 0.11 70.52 ± 0.31 28.17 ± 0.12 96.46 ± 0.22
FedPac 96.90 ± 0.03 87.81 ± 0.17 48.83 ± 0.04 97.74 ± 0.32 94.63 ± 0.22 73.02 ± 0.16 29.94 ± 0.24 94.10 ± 0.09
FedBabu 96.40 ± 0.08 88.19 ± 0.19 49.18 ± 0.09 96.76 ± 0.31 95.10 ± 0.24 70.91 ± 0.26 28.33 ± 0.23 93.11 ± 0.02
FedAS 97.91 ± 0.22 89.15 ± 0.06 50.37 ± 0.18 97.71 ± 0.15 96.78 ± 0.33 75.75 ± 0.21 32.57 ± 0.31 94.53 ± 0.12

FedOMG 98.75 ± 0.02 90.40 ± 0.03 48.76 ± 0.15 98.91 ± 0.02 98.58 ± 0.09 72.68 ± 0.02 30.64 ± 0.32 98.41 ± 0.02
PerAvg+OMG 95.04 ± 0.26 84.46 ± 0.13 44.52 ± 0.32 95.18 ± 0.32 94.52 ± 0.32 70.76 ± 0.02 28.29 ± 0.20 90.68 ± 0.01
FedRod+OMG 99.63 ± 0.08 95.81 ± 0.04 55.39 ± 0.16 99.62 ± 0.03 99.55 ± 0.08 76.80 ± 0.12 36.78 ± 0.04 99.10 ± 0.63
FedBabu+OMG 98.12 ± 0.04 92.19 ± 0.09 51.27 ± 0.09 98.62 ± 0.20 97.28 ± 0.09 75.41 ± 0.13 31.82 ± 0.16 97.25 ± 0.02

FDG performance. In Tab. 2 we report the results for domain generalization performance. Our
FedOMG consistently outperforms other methods, i.e., 5%− 6% gain in target domain accuracy.
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Discussion on orthogonality of FedOMG with FDG baselines. Performances of the integration of
FedOMG into three other FDG algorithms (i.e., PerAvg, FedRod, FedBabu) are shown in Tab. 1. The
integration of advanced methods consistently outperforms standard FDG algorithms. However, only
FedSAM+OMG outperforms the standalone FedOMG model. This is because FedSAM and FedOMG
address two orthogonal and fundamental aspects of FDG (i.e., FedSAM reduces the sharpness of
the loss landscape, while FedOMG focuses on mitigating gradient divergences across domains). In
contrast, the regularization techniques used in FedIIR and FedSR primarily aim to minimize domain
divergence on the client side, a contribution that overlaps to some extent with FedOMG’s approach.

Table 2: Domain generalization performance on VLCS, PACS, and OfficeHome Datasets

Algorithm
VLCS PACS OfficeHome

V L C S Avg P A C S Avg A C P R Avg

FedAvg 72.5 ± 0.8 61.1 ± 0.9 93.6 ± 1.0 65.4 ± 0.3 73.1 92.7 ± 0.6 77.2 ± 1.0 77.9 ± 0.5 81.0 ± 0.8 82.7 57.7 ± 0.9 48.3 ± 0.1 72.8 ± 0.2 75.3 ± 0.1 63.5

FedGA 74.4 ± 0.1 56.9 ± 1.0 94.3 ± 0.6 68.9 ± 0.9 73.4 93.9 ± 0.2 81.2 ± 0.7 76.7 ± 0.4 82.5 ± 0.1 83.5 58.5 ± 0.4 54.3 ± 0.6 73.3 ± 0.8 74.7 ± 1.0 65.2

FedSAM 74.5 ± 0.3 58.0 ± 0.4 92.9 ± 0.8 74.1 ± 0.7 74.8 91.2 ± 0.1 74.4 ± 0.9 77.7 ± 0.3 83.3 ± 0.2 81.6 55.3 ± 0.2 54.7 ± 0.4 73.5 ± 0.5 73.7 ± 0.7 64.3

FedIIR 76.1 ± 1.4 60.9 ± 0.2 96.3 ± 0.4 73.2 ± 0.8 76.6 94.2 ± 0.2 82.9 ± 0.8 75.8 ± 0.3 81.9 ± 0.8 83.7 57.1 ± 0.4 49.8 ± 0.6 74.2 ± 0.1 76.1 ± 0.1 64.4

FedSR 72.8 ± 0.3 62.3 ± 0.3 93.8 ± 0.5 74.4 ± 0.6 75.8 94.0 ± 0.6 82.8 ± 1.5 75.2 ± 0.5 81.7 ± 0.8 83.4 57.9 ± 0.2 50.3 ± 0.6 73.3 ± 0.1 75.5 ± 0.1 64.3

StableFDG 73.6 ± 0.1 59.2 ± 0.7 98.1 ± 0.2 70.2 ± 1.1 75.3 94.8 ± 0.1 83.0 ± 1.1 79.3 ± 0.2 79.7 ± 0.8 84.2 57.1 ± 0.3 57.9 ± 0.5 72.7 ± 0.6 72.1 ± 0.8 65.0

FedOMG 82.3 ± 0.5 67.5 ± 0.4 99.3 ± 0.1 79.1 ± 0.5 82.0 98.0 ± 0.2 89.7 ± 0.4 81.4 ± 0.8 84.3 ± 0.5 88.4 65.4 ± 0.4 58.1 ± 0.3 77.5 ± 0.4 78.9 ± 0.5 70.0

FedIIR+OMG 75.3 ± 1.3 64.0 ± 0.2 97.7 ± 0.1 72.8 ± 0.2 77.5 97.7 ± 0.1 83.0 ± 1.1 80.8 ± 0.2 79.3 ± 0.3 85.2 62.0 ± 0.3 52.8 ± 0.5 74.3 ± 0.6 76.9 ± 0.8 66.5

FedSAM+OMG 82.7 ± 0.7 69.4 ± 0.9 99.3 ± 0.3 78.5 ± 0.8 82.5 98.3 ± 0.1 88.9 ± 1.2 82.7 ± 0.3 85.5 ± 0.2 88.8 65.8 ± 0.2 58.9 ± 0.4 78.9 ± 0.5 79.3 ± 0.7 70.9

FedSR+OMG 73.6 ± 0.1 66.0 ± 0.3 94.8 ± 0.2 73.3 ± 3.3 76.9 97.2 ± 0.1 83.2 ± 1.1 79.8 ± 0.2 79.3 ± 3.3 84.8 61.7 ± 0.3 53.3 ± 0.5 73.6 ± 0.6 75.9 ± 0.8 66.1
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Figure 2: Performance comparison without pretrained models for α = 1, U = 20.

6.3 ABLATION STUDIES

Effects of training FL without pretrained models: Fig. 2 demonstrates the FL training without
pretrained models. FedOMG results in the more stable convergence than most other FL baselines
along with FedPAC and FedRod. Notably, the combination of FedOMG and FedRod shows a
substantial improvement in performance compared to other baselines. In summary, FedOMG, both
individually and in combination with other FL methods, offers enhanced robustness when training FL
models from scratch without relying on pretrained models.

Global learning rate η: In Fig. 3, we
present FedOMG results with varied η,
and fixed κ to 0.5, and each result is the
average of three runs. In EMNIST and
CIFAR-10, the gradient matching task
is straightforward. Therefore, higher η
accelerates convergence to the optimal
state. However, on more challenging
datasets with domain shift issues, i.e.,
PACS, VLCS, and OfficeHome, a lower
learning rate proves to be more effective.
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Figure 3: Global LR η.
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Figure 4: Searching ratio κ.

Searching radius ratio κ: In this evaluation, we test our method with four different values of γ
across seven benchmark datasets. Each experiment is run three times, and the results are averaged.
As shown in Fig. 4, FedOMG performs optimally when the radius is set to κ ≈ 0.5. When κ → 0, the
performance leans towards the FedAvg, while setting a high κ, the performance degrades gradually
as the searching space become large, thus, it is struggled to find the optimal solution.
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Figure 5: The evaluations on gradient invariance. Algorithms with stronger invariance properties
result in smaller gaps in cosine similarity between each domain’s and the global gradients. The
algorithms are evaluated on PACS dataset, where source domains are A, C, S, and target domain is P.

Evaluation on gradient invariance: To assess the invariant property of FedOMG, we calculate the
cosine similarity between the gradients of each source domain and the global gradient, and visualize
in Figs. 5a, 5b. As it can be seen from the figures, the significance of FedOMG compared to FedAvg
is two-fold. First of all, the cosine similarities of all domains in FedOMG hold a low variance among
domains. This mean that all of the domains share the same divergence compared with the global
gradients. Secondly, the overwhelmingly high cosine value in domain S of FedAvg may results
from the overfitting to domain S. As a consequence, the FedAvg significantly lacks generalization
capability compared to that of the FedOMG (see Fig. 5c).

Discussion on impact of local epochs and local
learning rate: Fig. 6 illustrates the fine-tuning of
FedOMG under varying numbers of local train-
ing epochs and learning rates. The results indi-
cate that FedOMG reaches optimal performance
when the number of local epochs is set to 5. This
suggests that after 5 epochs, the local gradients
adequately represent the users’ gradient direction
during each round. Extending the local training
duration beyond this point incurs higher compu-
tational overhead while reducing the generaliza-
tion of on-server gradient matching, potentially
due to overfitting to individual user datasets. Fur-
thermore, the optimal performance is observed
when the local learning rate is set to 0.001.
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Figure 6: Evaluations on local training epochs
and learning rate.

Additional results. Detailed results when training with different target domain on VLCS, PACS,
OfficeHome are demonstrated in Appendix E.3. Results on computation cost are demonstrated in
Appendix E.4. Additional results conducted on FDG benchmark (Bai et al., 2024) are demonstrated
in Appendix E.5.

7 CONCLUSION

In this paper, we present FedOMG, a novel and effective federated domain generalization method
aimed at addressing the challenge of heterogeneous client data distributions by learning an invariant
gradient. Our method introduces two key innovations: (1) utilizing the local gradient as a critical
factor for server-side optimization, and (2) devising a training strategy that identifies optimal coeffi-
cients to approximate the invariant gradient across client source domains. We provide theoretical
proof to ensure the global invariant gradient solution and conduct extensive experiments demon-
strating FedOMG’s significant improvements in both standard FL and domain generalization (FDG)
settings. This work establishes an optimal approach for server optimization, leading to enhanced FL
performance while maintaining privacy constraints.
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Appendix

The appendix is organised as follows:

• Appendix A provides the literature reviews.

• Appendix B provides details of proposed algorithm.

• Appendix C provides toy dataset description.

• Appendix D provides extensive experiment settings and hyper-parameters.

• Appendix E provides additional results for standard FL and ablation test for generalization
performance.

• Appendix F provides proof on theorems.

A RELATED WORKS

Federated Learning: To contextualize our paper’s contribution to on-server optimization, FL can
be divided into two primary categories: 1) local training and 2) on-server aggregation. In the first
category, substantial efforts have been dedicated to improving the performance of FL, particularly in
scenarios involving non-IID data. FedRod (Chen & Chao, 2022) proposes using balanced softmax
for training a generic model while utilizing vanilla softmax for personalized heads. FedBABU (Oh
et al., 2022) keeps the global classifier fixed during feature representation learning and performing
local adaptation through fine-tuning. FedPAC (Xu et al., 2023) adds a regularizer on local training to
learn task-invariant representations. Similar to FedPAC, FedAS (Yang et al., 2024) finds the shared
parameters which are task-invariant by leveraging the parameter alignment technique. Recently,
researchers have focused on on-server aggregation to improve the performance of FL. This approach
can be implemented by utilizing generative AI on the server with pseudo data (Zhu et al., 2021), or
leveraging local gradients to adjust the learning rate (Jhunjhunwala et al., 2023; Panchal et al., 2023).

Federated Domain Generalization and Adaptation: Huang et al. (2022) and Huang et al. (2024)
leverage unlabeled public data to reduce bias toward local data distributions. Nguyen et al. (2022a)
regularizes local training via conditional mutual information. Guo et al. (2023) adds a regularization
on the local training to implicitly align gradients between the local global models. Qu et al. (2022), Sun
et al. (2023) and Fan et al. (2024) leverage sharpness aware minimization to smooth the loss landscape.
Tang et al. (2024) utilizes the shared local hidden features to reduce the gradient dissimilarity. Zhang
et al. (2023b) introduces server-side weight aggregation adjustments leveraging the auxiliary local
generalization gap. Jiang et al. (2024) utilizes the divergence between source and target data gradients
to formulate a joint server aggregation rule. However, it requires access to target domain data, which
may not be feasible in domain generalization scenarios. Park et al. (2023) introduced a style-based
strategy to enhance the diversity of data on source client. Additionally, they integrated attention into
the network to highlight common and important features across different domains.

B DETAILED ALGORITHMS

In Algorithm 1, we present the detailed training procedure of our FedOMG approach. The primary
contribution of our method lies in the server-side optimization, while the client-side follows the
standard FedAvg algorithm (McMahan et al., 2017), ensuring no additional communication or com-
putation overhead. During each communication round, clients receive the global model parameters
and perform local training using SGD for E epochs. The locally updated parameters are then sent
back to the centralized server for optimization. On the server, local gradients are computed and used
as key components in solving Eq. (15). The resulting gradient closely approximates the invariant
gradient direction, as demonstrated in Section 4. Subsequently, the global gradient is computed as
shown in Eq. (16), and the global model is updated according to Eq. (17).
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Algorithm 1: Federated Learning via On-server Matching Gradient
Input: set of source clients US , number of communication rounds R, local learning rate η,

global learning rate ηg , searching space hyper-parameter κ.
Output: θ(R)

g

Clients Update:
for client u ∈ US do

Receive global model θ(r)u = θ
(r)
g ;

for local epoch e ∈ E do
Sample mini-batch ζ from local data Du;
Calculate gradient ∇E(θ(r,e)u , ζ);
Update client’s model: θ(r,e+1)

u = θ
(r,e)
u − η∇E(θ(r,e)u , ζ);

end for
Upload client’s model θ(r,E)

u to server;
end for
Server Optimization:
for round r = 0, . . . , R do

Clients Updates;
Calculate g

(r)
u = θ

(r,E)
u − θ

(r)
u , g(r) = {g(r)u |u ∈ US};

Calculate g
(r)
FL (e.g., g(r)FL = 1

U

∑U
u=1 g

(r)
u as the FedAvg update);

Solve for Γ∗:

Γ∗ = argmin
Γ

Γg(r) · g(r)FL + κ∥g(r)FL ∥∥Γg(r)∥, (15)

Update the model:

g
(r)
IGD = g

(r)
FL +

κ∥g(r)FL ∥
∥Γ∗g(r)∥

Γ∗g(r), (16)

θ(r)g = θ(r−1)
g − ηgg

(r)
IGD. (17)

end for
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C TOY DATASET DESCRIPTION

Dataset and Settings Descriptions. Based on Zhao et al. (2019), we design a toy dataset, coined
Rect-4, a synthetic binary classification dataset with 4 domains, according to 4 different users. In each
domain, a two-dimensional key point xd = (xd,1, xd,2) is randomly selected in the two-dimensional
space with varying region distributions. To visualize the gradient of the toy dataset, we design a
1-layer, 2-parameters network. To this end, we can visualize the gradients in a 3-D space, consisting
of 2 parameters and 1 weight.

We visualize the training data in Figs. 7 and 8. In the FDG setting, the users are from different
domains. To this end, we design the data where the point are distributed into rectangular with different
size and shape. The rationale of designing the data distribution is as follows:

• The global dataset consists of two classes from two rectangular regions, which has the
classification boundary equal to y = 0.

• Each domain-wise dataset has different classification boundary (e.g., x = −6 for domain 1).
We add the noisy data on every domains so that the user assign to each domain will tend to
learn the local boundary instead of the global boundary. Thus, we can observe the gradient
divergence more clearly, as the global boundary is not the optimal solution when learn on
local dataset.

• All of the local classification boundary is orthogonal from the global classification boundary,
thus, we can make the learning more challenging despite the simplicity of the toy dataset.
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Figure 7: Illustration of users with different domains.
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Figure 8: Illustration of users with same domains.
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D EXTENSIVE EXPERIMENTAL SETTINGS

D.1 DATASETS

MNIST (Lecun et al., 1998) consists of 70,000 grayscale images of handwritten digits and ten classes

EMNIST (Cohen et al., 2017) extension version of original MNIST dataset consists of 70,000
samples and 10 classes

CIFAR10 (Krizhevsky, 2012) consists of 60,000 images across 10 classes "Airplane", "Automobile",
"Bird", "Cat", "Deer", "Dog", "Frog", "Horse", "Ship" and "Truck"

CIFAR-100 (Krizhevsky, 2012) is a more challenging extension of CIFAR-10, consisting of 60,000
images distributed across 100 distinct classes.

VLCS (Torralba & Efros, 2011) includes 10,729 images from four domains: "VOC2007", "LabelMe",
"Caltech101", "SUN09" and five classes (’bird’, ’car’, ’chair’, ’dog’ and ’person’).

PACS (Li et al., 2017) includes 9,991 images from four domains: “Photos”, “Art”, “Cartoons”, and
“Sketches” and seven classes (‘dog’, ‘elephant’, ‘giraffe’, ‘guitar’, ‘horse’, ‘house’, and ‘person’).

OfficeHome (Venkateswara et al., 2017) includes four domains: “Art”, “Clipart”, “Product”, and
“Real”. The dataset contains 15,588 samples and sixty five classes.

D.2 BASELINES

FL Baselines. We consider the following baselines: FedAvg (McMahan et al., 2017), PerAvg (Fallah
et al., 2020), FedRod (Chen & Chao, 2022), FedBABU (Oh et al., 2022), FedPac (Xu et al., 2023)
and FedAS (Yang et al., 2024) comparing with our proposed method FedOMG.

FDG Baselines. We implement the following methods: FedAvg (McMahan et al., 2017), FedGA
(Zhang et al., 2023b), FedIIR (Guo et al., 2023), FedSam (Qu et al., 2022), FedSR (Nguyen et al.,
2022a) and StableFDG (Park et al., 2023).

D.3 EVALUATION METRIC

We report accuracy as the standard metric, defined as the ratio of correctly paired samples to the total
number of samples, with Top-1 accuracy being used. In FL scenarios, accuracy is reported as the
ratio of the total number of correct samples across all clients to the total number of samples. In FDG
scenarios, accuracy is reported for each test domain individually, and the average accuracy across all
domains is provided.

D.4 MODEL

For the standard FL task, we use a CNN architecture consisting of two convolutional layers (32 and
64 channels) followed by max pooling layers. It includes two fully connected layers with 512 and
number of output classes units, respectively, and ends with a softmax output for class probabilities.

For the domain generalization task, we employ a pretrained ResNet-18 backbone model (Zhang
et al., 2023b; Park et al., 2023; Guo et al., 2023), which is downloaded from PyTorch. The detailed
architecture of the ResNet-18 model used is outlined in Tab. 3.

Table 3: Summary of model architecture of ResNet-18 model for FDG.

Layer Name Number of Layers Parameters (M)
Conv1 1 0.009

Conv2_x (Residual Blocks) 4 0.073
Conv3_x (Residual Blocks) 4 0.231
Conv4_x (Residual Blocks) 4 0.919
Conv5_x (Residual Blocks) 4 3.673

Fully Connected 1 0.513
Total 18 11.69M
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D.5 HYPER-PARAMETERS

In this section, we present the hyper-parameters chosen for FedOMG across different datasets.

Table 4: Hyper-parameter Summary on PACS, VLCS, and OfficeHome

Method Hyper-parameter PACS VLCS OfficeHome

FedOMG

Global lr 5× 10−2 5× 10−2 5× 10−2

Training lr 25 25 25
Iteration 21 21 21
Momentum 0.5 0.5 0.5
Searching radius 0.5 0.5 0.5

FedSR+OMG

Global lr 5× 10−2 5× 10−2 5× 10−2

Training lr 25 25 25
Iteration 21 21 21
Momentum 0.5 0.5 0.5
Searching radius 0.5 0.5 0.5
L2 Regularizer 0.01 0.01 0.01
Cmi Regularizer 0.001 0.001 0.001

FedIIR+OMG

Hyper-parameter γ 1× 10−4 1× 10−4 1× 10−4

Global lr 5× 10−2 5× 10−2 5× 10−2

Training lr 25 25 25
Iteration 21 21 21
Momentum 0.5 0.5 0.5
Searching radius 0.5 0.5 0.5

FedSAM+OMG

Global lr 5× 10−2 5× 10−2 5× 10−2

Training lr 25 25 25
Iteration 21 21 21
Momentum 0.5 0.5 0.5
Searching radius 0.5 0.5 0.5
Perturbation control ρ 0.6 0.6 0.6
momentum parameter β 0.6 0.6 0.6

D.6 IMPLEMENTATION DETAILS

To evaluate the performance of our proposed FDG method, we adopt the methodologies described in
Lin et al. (2020); Acar et al. (2021) to simulate non-IID data. We utilize the Dirichlet distribution
with two levels of data heterogeneity, specifically α = 0.1 and α = 0.5. Our experimental setup
comprises three configurations of 100 clients, with join rate ratios of 1, 0.6, and 0.4, respectively, and
global communication rounds set at 800. Each client undergoes 5 local training rounds using a local
learning rate of 0.005, an SGD optimizer, and a batch size of 16. To ensure a fair comparison, all
methods are evaluated with the same network architecture and settings.

For FDG scenarios, we evaluate model performance using the conventional leave-one-domain-out
method (Guo et al., 2023; Fan et al., 2024), where one domain is designated as the test domain and all
other domains are used for training. Number of clients is set to match the number of source domains.
In line with Zhang et al. (2023b); Park et al. (2023); Guo et al. (2023), we use a pretrained ResNet-18
backbone model. Our experiments involve 100 global communication rounds with 5 local training
rounds, utilizing the SGD optimizer with a learning rate of 0.001 and a training batch size of 16. Each
experiment is conducted three times, and we report the average performance of the global model on
the test domain, with each domain serving as the test domain once.

E ADDITIONAL RESULTS AND ABLATION TESTS

In this section, we provide additional results and conduct an ablation test, including (1) FL accuracy
performance across different datasets, (2) convergence analysis, (3) the effect of using a pretrained
model, and (4) an ablation test on various global learning rates and hyper-sphere radius.
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Table 5: Comparison of methods across different datasets and non-IID scenarios.

Problem Non-IID (α = 0.1) Non-IID (α = 0.5)
Dataset MNIST CIFAR10 CIFAR100 EMNIST MNIST CIFAR10 CIFAR100 EMNISTMethod

Number of clients U = 100 and participation ratio = 0.4
FedOMG
(Ours) 98.07 ± 0.14 80.47 ± 0.03 42.31 ± 0.40 98.41 ± 0.02 96.84 ± 0.06 68.94 ± 0.17 29.64 ± 0.11 97.14 ± 0.03
FedOMG+Rod 99.34 ± 0.04 86.74 ± 0.05 51.70 ± 0.23 99.31 ± 0.01 98.90 ± 0.11 75.08 ± 0.12 33.97 ± 0.14 99.06 ± 0.01
PerAvg 89.18 ± 0.28 61.93 ± 0.23 30.52 ± 0.12 87.18 ± 0.24 87.04 ± 0.11 53.00 ± 0.12 24.09 ± 0.04 83.53 ± 0.12
FedRod 97.73 ± 0.17 82.09 ± 0.12 40.18 ± 0.10 95.25 ± 0.20 94.88 ± 0.29 68.03 ± 0.32 27.33 ± 0.16 92.46 ± 0.20
FedPac 95.05 ± 0.28 81.74 ± 0.15 40.78 ± 0.18 92.92 ± 0.09 93.36 ± 0.20 70.87 ± 0.25 28.56 ± 0.26 91.44 ± 0.05
FedBabu 94.92 ± 0.17 81.55 ± 0.18 41.30 ± 0.16 93.18 ± 0.13 93.62 ± 0.28 67.83 ± 0.02 28.06 ± 0.19 90.48 ± 0.18
FedAS 95.98 ± 0.24 83.35 ± 0.06 46.20 ± 0.76 93.71 ± 0.15 94.18 ± 0.33 72.29 ± 0.21 31.21 ± 0.31 92.53 ± 0.12
FedAvg 88.04 ± 0.22 55.75 ± 0.01 25.28 ± 0.05 85.83 ± 0.07 85.76 ± 0.17 49.44 ± 0.27 22.73 ± 0.19 82.57 ± 0.26

Number of clients U = 100 and participation ratio = 0.6
FedOMG
(Ours) 98.57 ± 0.15 86.50 ± 0.02 44.44 ± 0.10 98.79 ± 0.10 97.90 ± 0.05 70.33 ± 0.19 29.95 ± 0.21 97.92 ± 0.07
FedOMG+Rod 99.55 ± 0.15 93.72 ± 0.23 54.69 ± 0.12 99.61 ± 0.03 98.93 ± 0.11 75.84 ± 0.12 34.51 ± 0.10 99.08 ± 0.01
PerAvg 92.36 ± 0.24 62.19 ± 0.23 30.93 ± 0.01 87.34 ± 0.09 89.44 ± 0.24 60.74 ± 0.32 25.53 ± 0.26 83.74 ± 0.22
FedRod 97.92 ± 0.27 86.42 ± 0.09 40.39 ± 0.20 95.51 ± 0.09 95.82 ± 0.32 68.14 ± 0.32 28.56 ± 0.09 92.92 ± 0.28
FedPac 96.64 ± 0.30 86.35 ± 0.07 42.08 ± 0.21 93.92 ± 0.07 94.24 ± 0.30 72.23 ± 0.19 28.98 ± 0.04 91.55 ± 0.10
FedBabu 95.46 ± 0.25 86.36 ± 0.03 45.15 ± 0.29 93.58 ± 0.18 94.03 ± 0.26 69.52 ± 0.02 28.18 ± 0.12 90.03 ± 0.12
FedAS 97.12 ± 0.12 87.35 ± 0.13 48.46 ± 0.21 93.91 ± 0.15 95.18 ± 0.13 73.75 ± 0.31 31.70 ± 0.11 93.53 ± 0.12
FedAvg 90.17 ± 0.22 56.35 ± 0.06 27.46 ± 0.14 85.94 ± 0.15 87.90 ± 0.33 53.42 ± 0.21 24.07 ± 0.31 83.71 ± 0.19

Number of clients U = 100 and participation ratio = 1
FedOMG
(Ours) 98.75 ± 0.02 90.40 ± 0.03 48.76 ± 0.15 98.91 ± 0.02 98.58 ± 0.09 72.68 ± 0.02 30.64 ± 0.32 98.41 ± 0.02
FedOMG+Rod 99.63 ± 0.08 95.81 ± 0.04 55.39 ± 0.16 99.62 ± 0.03 99.55 ± 0.08 76.80 ± 0.12 36.78 ± 0.04 99.10 ± 0.63
PerAvg 94.44 ± 0.26 64.76 ± 0.13 36.27 ± 0.32 87.87 ± 0.17 93.52 ± 0.32 64.46 ± 0.02 27.29 ± 0.20 84.87 ± 0.01
FedRod 98.09 ± 0.27 88.90 ± 0.19 44.33 ± 0.26 97.50 ± 0.24 96.85 ± 0.11 70.52 ± 0.31 28.17 ± 0.12 96.46 ± 0.22
FedPac 96.90 ± 0.03 87.81 ± 0.17 48.83 ± 0.04 97.74 ± 0.32 94.63 ± 0.22 73.02 ± 0.16 29.94 ± 0.24 94.10 ± 0.09
FedBabu 96.40 ± 0.08 88.19 ± 0.19 49.18 ± 0.09 96.76 ± 0.31 95.10 ± 0.24 70.91 ± 0.26 28.33 ± 0.23 93.11 ± 0.02
FedAS 97.91 ± 0.22 89.15 ± 0.06 50.37 ± 0.18 97.71 ± 0.15 96.78 ± 0.33 75.75 ± 0.21 32.57 ± 0.31 94.53 ± 0.12
FedAvg 93.77 ± 0.33 60.89 ± 0.12 28.78 ± 0.10 86.45 ± 0.30 91.47 ± 0.26 59.12 ± 0.21 25.55 ± 0.22 84.23 ± 0.18

E.1 ADDITIONAL RESULTS

We show the additional performance comparison between our method FedOMG and FL baselines
under different data heterogeneity level α = {0.1, 0.5} in Table 5. FedOMG+ROD and FedOMG
achieve the best and second-best performance across all dataset.

E.2 PERFORMANCE OF FEDOMG AND BASELINES WITHOUT PRETRAINED MODELS
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Figure 9: Performance comparison of FL algorithms without pretrained models for α = 0.1, U = 20.
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Figure 10: Performance comparison of FL algorithms without pretrained models for α = 0.1, U = 40.
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Figure 11: Performance comparison of FL algorithms without pretrained models for α = 1, U = 40.
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Figure 12: Performance comparison of FL algorithms without pretrained models for α = 0.1, U = 60.
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Figure 13: Performance comparison of FL algorithms without pretrained models for α = 1, U = 60.
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E.3 DOMAIN PERFORMANCE

Table 6: Performance comparison on VLCS dataset.

Methods Backbone V L C S Avg
Centralized Methods

ERM ResNet-18 74.0 ± 0.6 67.9 ± 0.7 97.6 ± 0.3 70.9 ± 0.2 77.6
Fishr ResNet-18 75.7 ± 0.3 67.3 ± 0.5 97.6 ± 0.7 72.2 ± 0.9 78.2
Fish ResNet-18 74.4 ± 0.7 66.5 ± 0.3 97.6 ± 0.6 72.7 ± 0.6 77.8

Federated Methods
FedSR ResNet-18 72.8 ± 0.3 62.3 ± 0.3 93.8 ± 0.5 74.4 ± 0.6 75.8
FedGA ResNet-18 74.4 ± 0.1 56.9 ± 1.0 94.3 ± 0.6 68.9 ± 0.9 73.4
StableFDG ResNet-18 73.6 ± 0.1 59.2 ± 0.7 98.1 ± 0.2 70.2 ± 1.1 75.3

FedOMG ResNet-18 82.3 ± 0.5 67.5 ± 0.4 99.3 ± 0.1 79.1 ± 0.5 82.0

Table 7: Performance comparison on PACS dataset.

Methods Backbone P A C S Avg
Centralized Methods

ERM ResNet-18 96.2 ± 0.3 86.5 ± 1.0 81.3 ± 0.6 82.7 ± 1.1 86.7
Fish ResNet-18 97.9 ± 0.4 87.9 ± 0.6 80.8 ± 0.5 81.1 ± 0.8 86.9
Fishr ResNet-18 95.6 ± 0.3 84.7 ± 1.2 81.1 ± 0.2 80.6 ± 0.5 85.5

Federated Methods
FedSR ResNet-18 94.0 ± 0.6 82.8 ± 1.5 75.2 ± 0.5 81.7 ± 0.8 83.4
FedGA ResNet-18 93.9 ± 0.2 81.2 ± 0.7 76.7 ± 0.4 82.5 ± 0.1 83.5
StableFDG ResNet-18 94.8 ± 0.1 83.0 ± 1.1 79.3 ± 0.2 79.7 ± 0.8 84.2

FedOMG ResNet-18 98.0 ± 0.2 89.7 ± 0.4 81.4 ± 0.8 84.3 ± 0.5 88.4

Table 8: Performance comparison on OfficeHome dataset.

Methods Backbone A C P R Avg
Centralized Methods

ERM ResNet-18 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.1 76.2 ± 0.3 66.4
Fish ResNet-18 63.4 ± 0.8 54.2 ± 0.3 76.4 ± 0.3 78.5 ± 0.2 68.2
Fishr ResNet-18 60.2 ± 0.5 52.2 ± 0.6 75.0 ± 0.2 76.5 ± 0.3 66.0

Federated Methods
FedSR ResNet-18 57.9 ± 0.2 50.3 ± 0.6 73.3 ± 0.1 75.5 ± 0.1 64.3
FedGA ResNet-18 58.5 ± 0.4 54.3 ± 0.6 73.3 ± 0.8 74.7 ± 1.0 65.2
StableFDG ResNet-18 57.1 ± 0.3 57.9 ± 0.5 72.7 ± 0.6 72.1 ± 0.8 65.0

FedOMG ResNet-18 65.4 ± 0.4 58.1 ± 0.3 77.5 ± 0.4 78.9 ± 0.5 70.0
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E.4 EVALUATIONS ON COMPUTATION OVERHEAD

Fig. 14 demonstrates the computation time of FedOMG, FedROD, and FedPAC. The test are evaluated
on same number of communication rounds (i.e., R = 800). FedOMG shows the most computation
efficient on most of settings (e.g., MNIST, EMNIST, CIFAR-10). On CIFAR-100, FedOMG compu-
tation time is lower than FedROD. FedPAC tends to consume a significantly higher computation time
than that of FedROD and FedOMG (up to 10 times).
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Figure 14: Computation time comparison across different datasets.

E.5 EVALUATIONS ON FEDERATED DOMAIN GENERALIZATION BENCHMARK

As highlighted in (Bai et al., 2024), the performance of FDG is observed to decline when influenced by
the combined effects of domain shift and non-independent and identically distributed (non-IID) data.
To investigate this, we conducted experimental evaluations using the Celeb-A dataset, employing a
benchmark with two distinct non-IID settings (α = 0.1, 1). We compare FedOMG with FedADG
(Zhang et al., 2023a), FedSR (Nguyen et al., 2022a), Scaffold (Karimireddy et al., 2020), FedAvg
(McMahan et al., 2017) and FedProx (Li et al., 2020) The results of these evaluations are presented
in Figure 15.

0 4 8 12 18
Step

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

Test Accuracy Worst Group
FL_DG_FedADG
FL_DG_FedSR
FL_DG_FedOMG

FL_DG_Scaffold
FL_DG_FedAvg
FL_DG_FedProx

(a) Gradient cosine of FedAvg

0 4 8 12 18
Step

0.0

0.2

0.4

0.6

Ac
cu

ra
cy

Test Accuracy Worst Group
FL_DG_FedADG
FL_DG_FedSR
FL_DG_FedOMG
FL_DG_Scaffold

FL_DG_FedAvg
FL_DG_FedProx
FL_DG_AFL

(b) Gradient cosine of FedOMG

Figure 15: The evaluations of FDG and FL algorithms on CelebA on two non-IID settings. Fig. 15a
uses α = 0.1, and Fig. 15b uses α = 1.0). We use the worst group test accuracy as a metric to
evaluate the algorithms on Celeb-A.

As shown in Figs. 15a and 15b, FedOMG exhibits slower convergence during the initial stages.
However, unlike other algorithms that tend to reach saturation quickly, FedOMG demonstrates gradual
and consistent improvement over time. This behavior can be attributed to FedOMG’s tendency to
prioritize identifying a invariant gradient direction, effectively balancing rapid convergence with
stable and invariant updates. This approach enhances long-term generalization performance.
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F PROOF ON THEOREMS

F.1 TECHNICAL ASSUMPTIONS

Assumption 1 (L-smoothness) Each local objective function is Lipschitz smooth, that is,

∥∇E(x;Du)−∇E(y;Du)∥ ≤ L∥E(x;Du)− E(y;Du)∥,∀u ∈ US . (18)

Assumption 2 (µ-strongly convex) Each local objective function is Lipschitz smooth, that is,

∥∇E(x;Du)−∇E(y;Du)∥ ≥ µ∥E(x;Du)− E(y;Du)∥,∀u ∈ US . (19)

Assumption 3 (Domain triangle inequality (Zhao et al., 2019)) For any hypothesis space H, it
can be readily verified that dH(·, ·) satisfies the triangular inequality:

dH△H(D,D
′′
) ≤ dH△H(D,D

′
) + dH△H(D

′
,D

′′
). (20)

F.2 TECHNICAL LEMMAS

Lemma 4 If we have ED̂(θ) =
∑

u∈US
γuED̂u

, then for any unseen domain DT , we have:

dH△H(DS ,DT ) =
∑
u∈US

γudH△H(Du,DT ). (21)

Proof. From the definition of dH△H(·, ·) in (Arjovsky et al., 2020), we can get

dH△H(DS ,DT ) = 2 sup
A∈AH△H

|PrD̂(A)− PrDT (A)| = 2 sup
A∈AH△H

∣∣∣ ∑
u∈US

γuPrD̂(A)− PrDT (A)
∣∣∣

≤ 2 sup
A∈AH△H

∣∣∣ ∑
u∈US

γu

[
PrD̂(A)− PrDT (A)

]∣∣∣
≤ 2 sup

A∈AH△H

∑
u∈US

γu|PrD̂(A)− PrDT (A)|

≤ 2
∑
u∈US

γu sup
A∈AH△H

|PrD̂(A)− PrDT (A)|

=
∑
u∈US

γudH△H(D̂u,DT ). (22)

Lemma 5 For any θ ∈ Θ, the expectation risk gap between domain A and domain B is bounded by
the domain divergence dH△H(A,B).

|EA(θ)− EB(θ)| ≤
1

2
dH△H(A,B). (23)

Proof. By the definition of dH△H(·, ·) in (Arjovsky et al., 2020), we have:

dH△H(A,B) = 2 sup
θ,θ′∈Θ

∣∣∣Prx∼A[f(x; θ) ̸= f(x; θ
′
)]− Prx∼B [f(x; θ) ̸= f(x; θ

′
)]
∣∣∣, (24)

where f(x; θ) means the prediction function on data x with model parameter θ. We chose θ
′

as
parameter of the label function, then f(x; θ) ̸= f(x; θ

′
) means the loss function L(x; θ), so we have:

dH△H(A,B) = 2 sup
θ∈Θ

∣∣∣Prx∼A[L(x; θ)]− Prx∼B [L(x; θ)]
∣∣∣ ≥ 2|EA(θ)− EB(θ)|. (25)

Here, (a) holds due to Assumption 1.
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Lemma 6 (Guarantee of source domain invariance) If we have ED̂(θ) =
∑

u∈US
γuED̂u

, then for
any domain DS , we have:∑

u∈US

γudH△H(D̂u,DS) ≤
∑
u∈US

∑
v∈US

γudH△H(D̂u, D̂v). (26)

Proof. From the definition of dH△H(·, ·) in (Arjovsky et al., 2020), we can get∑
u∈US

γudH△H(D̂u,DS) = 2
∑
u∈US

γu sup
A∈AH△H

|PrD̂u
(A)− PrDS (A)|

= 2
∑
u∈US

γu sup
A∈AH△H

|PrD̂u
(A)−

∑
v∈US

γvPrD̂v
(A)|

= 2
∑
u∈US

γu sup
A∈AH△H

|
∑
v∈US

γvPrD̂u
(A)−

∑
v∈US

γvPrD̂v
(A)|

≤ 2
∑
u∈US

γu
∑
v∈US

γv sup
A∈AH△H

|PrD̂u
(A)− PrD̂v

(A)|

≤
∑
u∈US

∑
v∈US

γudH△H(D̂u, D̂v). (27)

F.3 PROOF ON LEMMA 3

Proof. By the definition of dH△H(·, ·) in (Arjovsky et al., 2020), we have:

dH△H(A,B) = 2 sup
θ,θ′∈Θ

∣∣∣Prx∼A[f(x; θ) ̸= f(x; θ
′
)]− Prx∼B [f(x; θ) ̸= f(x; θ

′
)]
∣∣∣, (28)

where f(x; θ) means the prediction function on data x with model parameter θ. We chose θ
′

as
parameter of the label function, then f(x; θ) ̸= f(x; θ

′
) means the loss function L(x; θ), so we have:

dH△H(A,B) = 2 sup
θ∈Θ

∣∣∣Prx∼A[L(x; θ)]− Prx∼B [L(x; θ)]
∣∣∣

= 2 sup
θ∈Θ

|EA(θ)− EB(θ)|.
(a)

≤ 2

µ
sup
θ∈Θ

|∇EA(θ)−∇EB(θ)| ≤
1

µ
dG◦θ(A,B). (29)

Here, dG◦θ(A,B) as the gradient divergence, given the model θ and (a) holds due to Assumption 2.

F.4 PROOF ON THEOREM 2

Let D̂u be the sampled counterpart from the domain Du, we have ED̂u
is an empirical risk of

Du, i.e., ED̂u
= 1/Nu

∑Nu

i=1 L(f(xi
u; θ), y

i
u). We also have expected risk EDu

defined as EDu
=

E(x,y∈Du)[L(f(x; θ), y)]. For a given θ ∈ Θ, with the definition of generalization bound, the
following inequality holds with at most δ

US
for each domain D̂u (US is the number of users, which is

also the number of domains).

ED̂u
(θ)− EDu(θ) >

√
logM + logUS/δ

2Nu
. (30)

Moreover, from Lemma 5, we have |EDu
(θ)− EDT (θ)| ≤ 1

2dH△H(Du,DT ) for each domain. Then
let us consider Eq. (30), we can obtain the following inequalities with the probability at least greater
than 1− δ

US
:

min
θ′

EDu
(θ

′
) ≤ ED̂u

(θ) +

√
logM + logUS/δ

2Nu

≤ EDT (θ) +
1

2
dH△H(D̂u,DT ) +

√
logM + logUS/δ

2Nu
. (31)
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We denote the local optimal on each client of source set u, u ∈ US as θ∗u. If we choose a specific
parameter θ∗T = minθ EDT (θ) which is the local optimal on the unseen domain T , the above third
inequality still holds. Then, we can rewrite the above inequalities into:

ED̂u
(θ∗u) ≤ EDT (θ

∗
u) +

1

2
dH△H(D̂u,DT ) +

√
logM + logUS/δ

2Nu
. (32)

Considering on each domain, Eq. (32) holds. By a similar derivation process, we can obtain the
inequality between T and D̂ with the probability at least greater than 1− δ.

∑
u∈US

γuED̂u
(θ∗u) ≤ EDT (θ

∗
u) +

∑
u∈US

γu

[
1

2
dH△H(D̂u,DT ) +

√
logM + logUS/δ

2Nu

]
. (33)

Combining the Eq. (33) and Objective 2, we have Theorem 2 with the global model θ after R rounds
FL. For instance,

EDT (θ
R)− EDT (θ

∗
DT

)

≤
∑
u∈US

γu

[
ED̂u

(θ)− ED̂u
(θ∗u) + dH△H(D̂u,DT ) +

√
logM + log 1

δ√
2Nu

+

√
logM + log US

δ√
2Nu

]
+ ζ∗

≤
∑
u∈US

γu

[
ED̂u

(θ) + dH△H(D̂u,DT ) +

√
log M

δ +
√
log USM

δ√
2Nu

]
+ ζ∗. (34)

To further analyze the convergence bound, we consider the Assumption 3. For instance,

EDT (θ
R)− EDT (θ

∗
DT

)

≤
∑
u∈US

γu

[
ED̂u

(θ) + dH△H(D̂u,DT ) +

√
log M

δ +
√
log USM

δ√
2Nu

]
+ ζ∗ (35)

≤
∑
u∈US

γu

[
ED̂u

(θ) + dH△H(D̂u,DS) + dH△H(DS ,DT ) +

√
log M

δ +
√
log USM

δ√
2Nu

]
+ ζ∗

(b)

≤
∑
u∈US

γu

[
ED̂u

(θ) +
∑
v∈US

dH△H(D̂u, D̂v)

µ
+ dH△H(DS ,DT ) +

√
log M

δ +
√
log USM

δ√
2Nu

]
+ ζ∗.

We have (b) holds due to Lemma 6. Applying Lemma 3, we have:

EDT (θ
R)− EDT (θ

∗
DT

)

≤
∑
u∈US

γu

[
ED̂u

(θ) +
∑
v∈US

dG◦θ(D̂u, D̂v)

µ
+ dH△H(DS ,DT ) +

√
log M

δ +
√
log USM

δ√
2Nu

]
+ ζ∗.
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F.5 PROOF ON THEOREM 1

To find the optimal solution of invariant gradient direction g
(r)
IGD in Eq. (12), we consider x = g

(r)
IGD and

consider the maximization problem with x as optimization variable. Denote ϕ = κ2∥g(r)FL ∥2. Note
that minu⟨g(r)u , g

(r)
FL ⟩ = minγ⟨

∑
u γuh

(r)
u , h

(r)
g ⟩ . The Lagrangian of the objective is

max
x

min
λ,γ

(
∑
u∈US

γuh
(r)
u )⊤x− λ

2
∥g(r)FL − x∥2 + λ

2
ϕ, s.t. λ ≥ 0. (36)

Since the problem is a convex programming and and Slater’s condition is satisfied for κ > 0
(meanwhile, if κ = 0, it can be easily verified that all results hold trivially), the strong duality holds.
Consequently, the order of the min and max operations can be interchanged. For instance,

min
λ,γ

max
x

(
∑
u∈US

γuh
(r)
u )⊤x− λ

2
∥g(r)FL − x∥2 + λ

2
ϕ︸ ︷︷ ︸

A1

, s.t. λ ≥ 0. (37)

Taking A1 into consideration. If we consider λ, γ as constant, x is the variable, x achieves the
optimal solution when ∂A1/∂x = 0. Another speaking, we have λ(x− g

(r)
FL )−

∑U
u=1 γuh

(r)
u = 0

or specifically,

x = g
(r)
FL +

( U∑
u=1

γuh
(r)
u

)
/λ. (38)

Therefore, we have the followings:

A1 = (

U∑
u=1

γuh
(r)
u )⊤

(
g
(r)
FL +

( U∑
u=1

γuh
(r)
u

)
/λ

)
− λ

2
∥g(r)FL −

(
g
(r)
FL +

( U∑
u=1

γuh
(r)
u

)
/λ

)
∥2 + λ

2
ϕ

= (

U∑
u=1

γuh
(r)
u )⊤

(
g
(r)
FL +

( U∑
u=1

γuh
(r)
u

)
/λ

)
− λ

2
∥ 1
λ

U∑
u=1

γuh
(r)
u ∥2 + λ

2
ϕ. (39)

Substituting g
(r)
Γ =

∑U
u=1 γuh

(r)
u . Consider the optimization problem of Eq. (39), we have:

A1 = g
(r)⊤
Γ

(
g
(r)
FL + g

(r)
Γ /λ

)
− λ

2
∥g(r)Γ /λ∥2 + λ

2
ϕ

= g
(r)⊤
Γ g

(r)
FL +

1

λ
g
(r)⊤
Γ g

(r)
Γ − 1

2λ
∥g(r)Γ ∥2 + λ

2
ϕ

= g
(r)⊤
Γ g

(r)
FL +

1

2λ
∥g(r)Γ ∥2 + λ

2
ϕ. (40)

Therefore, we have Eq. 37 is equivalent to

min
λ,γ

g
(r)⊤
Γ g

(r)
FL +

1

2λ
∥g(r)Γ ∥2 + λ

2
ϕ︸ ︷︷ ︸

A2

. (41)

Next, we consider λ as variable to find the optimal value. Subsequently, optimization problem
Eq. (41) is equivalent to the following relationship:

∂

∂λ
A2 = − 1

2λ2
∥g(r)Γ ∥2 + 1

2
ϕ = 0. (42)

Therefore, the equation achieves the optimality as λ = ∥g(r)Γ ∥/ϕ1/2. Combining with Eq. (41) and
Eq. (38), we have the followings:

g
(r)
IGD = g

(r)
FL +

κ∥g(r)FL ∥
∥g(r)Γ∗ ∥

g
(r)
Γ∗ s.t. Γ∗ = argmin

Γ
g
(r)
Γ · g(r)FL + κ∥g(r)FL ∥∥g(r)Γ ∥. (43)

This solves the problem.
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