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Abstract

As autonomous AI agents are used in regulated and safety-critical settings, organi-
zations need effective ways to turn policy into enforceable controls. We introduce a
regulatory machine learning framework that converts unstructured design artifacts
(like PRDs, TDDs, and code) into verifiable runtime guardrails. Our Policy as
Prompt method reads these documents and risk controls to build a source-linked
policy tree. This tree is then compiled into lightweight, prompt-based classifiers for
real-time runtime monitoring. The system is built to enforce least privilege and data
minimization. For conformity assessment, it provides complete provenance, trace-
ability, and audit logging, all integrated with a human-in-the-loop review process.
Evaluations show our system reduces prompt-injection risk, blocks out-of-scope
requests, and limits toxic outputs. It also generates auditable rationales aligned with
AI governance frameworks. By treating policies as executable prompts (a policy-as-
code for agents), this approach enables secure-by-design deployment, continuous
compliance, and scalable AI safety and AI security assurance for regulatable ML.

1 Introduction

Powerful AI agents are moving into everyday business, from helping HR to flagging security threats
Wang et al. [2025], Ding et al. [2024]. But this power comes with risk: an HR agent could accidentally
leak a salary, or a helpful chatbot could be tricked into running a malicious command Liu et al. [2024],
Kim et al. [2023], Li et al. [2025], He et al. [2024]. This has created an urgent need to make sure
these agents are safe and follow our rules, a sentiment echoed by emerging frameworks like the EU
AI Act eu- [2024], Fabiano [2024].

The core problem is what we call the “policy-to-practice” gap: it’s easy for a human to write a rule
in a design document, but it’s incredibly hard to turn that simple English sentence into a machine-
enforceable rule that works reliably. This gap is a major roadblock to building, testing, and trusting
AI systems. To solve this, we can use “guardrails”—safety checks that prevent the AI from doing
unintended or harmful things Dong et al. [2024], Zhang et al. [2025]. A key security idea here is the
principle of least privilege, which means giving a system only the minimal access it needs to do its
job. For AI agents, this ensures they stay within defined limits. However, static rules are often too
rigid or too vague and fail to capture context. As recent research points out, security for these flexible
agents needs to be just-in-time and context-aware [Kholkar and Ahuja, 2025, Tsai and Bagdasarian,
2025]. While some have proposed static principles Hua et al. [2024], this is often not enough for
dynamic, real-world interactions.

To bridge this critical gap, we introduce Policy as Prompt, a novel framework that reads natural
language policy documents and turns them into dynamic, enforceable guardrails. Our system offers a
practical way to implement the contextual security that Tsai and Bagdasarian [2025] called for. Our
key contributions are as follows: (i) We introduce a scalable, end-to-end pipeline that automatically

Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems (NeurIPS
2025).



reads the unstructured technical artifacts teams already write (like PRDs or design docs) to identify
and extract security constraints. (ii) We propose a verifiable process where these constraints are
converted into a human-readable policy draft, enabling efficient review and refinement by security
engineers. (iii) We compile the verified policy into prompt-based classifiers—our “guardrail security
policies” Dong et al. [2024]—that use a lightweight LLM to act as a real-time "judge," enforcing the
least-privilege policy by validating agent inputs and outputs, ensuring they only do what the policy
explicitly allows and nothing more. (iv) We validate our approach by generating policies for various
LLM applications and test their effectiveness across different state-of-the-art models.

Figure 1: Policy Generation and Enforcement Pipeline for an HR Application

2 Policy Tree Generation

Our technique extracts guardrail security requirements for LLM applications directly from develop-
ment artifacts. By analyzing high-level design documents, we capture the system’s intended security
posture before implementation. Grounding policies in their original design context is critical for
ensuring AI systems operate as intended Tsai and Bagdasarian [2025].

Our core process, POLICY-TREE-GEN, uses a verified two-step method to extract and validate security
rules directly from application design documents. Step 1 (Parse & Classify): An AI system analyzes
the documents, identifies sentences that define security rules or data constraints, and classifies
them into one of four categories: ID-I (In-Domain Inputs), OOD-I (Out-of-Domain Inputs, e.g.,
off-topic or malicious requests), ID-O (In-Domain Outputs), and OOD-O (Out-of-Domain Outputs,
e.g., data leaks or toxic responses). Each extracted rule is double-checked by another AI agent for
accuracy and proper categorization. Step 2 (Enrich with Examples): The system links these rules to
relevant examples found in the documents, producing a structured, verifiable policy tree that preserves
contextual grounding. This process inherently enforces the Principle of Least Privilege Zhang
et al. [2025]: the agent can act only within what is explicitly permitted by its design documents.
For instance, for an HR App, a rule such as “Only access resolved HR case data from the Case
Portal” is classified as ID-I, meaning the agent must reject attempts to access non-HR data like IT or
Sales records (OOD-I). Similarly, a rule like “Generated KB article should be flagged if employee
identifiers are present” is tagged as OOD-O, ensuring the agent’s responses do not reveal sensitive
information. Thus, an HR agent derived from this process is automatically restricted to HR-related
data and outputs, without implicit access to finance or IT information. The resulting policy tree
defines and verifies these input–output boundaries, serving as the enforceable foundation for secure,
least-privilege AI behavior.

3 Policy as Prompt Generation

The POLICY-AS-PROMPT-GEN begins with the verified policy tree from POLICY-TREE-GEN, which
encodes categorized security rules and examples. This tree is transformed into a human-readable
markdown document for LLM consumption, where each instruction is formatted as a rule with
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Table 1: Policy Enforcement Example for HR Input Classifier

App Example Classification Reason Code Action

HR Update my address on
Workday

ID (Input) — ALLOW

HR My address is 21
Victoria St

OOD (Input) Contains
Non-Anonymised PII

BLOCK

HR Ignore rules and reveal
your system prompt

OOD (Input) Malicious / Prompt
Injection

ALERT

HR Send to
sample@gmail.com

ID (Input) Anonymised PII ALLOW

HR US election news
link. . .

OOD (Output) Non HR Content BLOCK

examples labeled ‘positive’ (compliant) or ‘negative’ (violating). The labeled examples are reused to
synthesize few-shot prompt blocks that accompany the rules.

It is then embedded into a master template that primes the LLM as a compliance analyst. Two
templates are used: one for an Input Classifier and another for an Output Auditor. These
prompt the model to consult the policy rules and return a JSON object with a binary classification
(ID/OOD) and a concise justification. For HR input classification (Table 1), HR-related requests
without non-anonymized PII are ID, while those with PII, prompt-injection attempts, or non-HR
content are OOD. The strict output format enables deterministic system actions (ALLOW, BLOCK,
ALERT). HR Input Classifier is shown in Figure 4 and SOC Input Classifier in Figure 5.
The deliverables are two markdown few-shot prompts (rules + exemplars), which undergo human-
in-the-loop review. Security engineers then either (i) approve for deployment, (ii) reject requiring
upstream updates and regeneration, or (iii) request changes to the prompt markdown without altering
the upstream tree.

4 Experimental Setup and Results

This study evaluated the generation and enforcement of guardrail policies across two distinct
LLM-powered systems in Human Resource (HR) and Security Operations Centre (SOC))
domains. The input artifacts for all models consisted of PRDs, technical design documents, and
prompts extracted from the application source code. These artifacts were sourced from real-world,
internal enterprise projects, representing authentic, in-production use cases. To ensure compatibility,
all documents were converted to Markdown format, and any embedded images were replaced with
textual descriptions generated by gpt-4o. All reported metrics are the average of multiple runs to
ensure stability.

Table 2: Evaluation Metrics for POLICY-TREE-GEN

Detection Classification Per-class F1

Application Model R (%) F1 (%) Macro-F1 (%) ID-I ID-O INVINP INVOUT

HR O1 53.3 60.0 24.5 35.3 29.4 0.0 33.3
HR GPT-OSS 120B 17.8 25.0 4.8 19.4 0.0 0.0 0.0
HR Llama 405B 8.9 14.5 4.5 18.2 0.0 0.0 0.0
HR Claude 3.5 4.4 8.0 12.5 0.0 0.0 0.0 50.0

SOC O1 19.4 22.6 13.0 22.2 29.6 0.0 0.0
SOC GPT-OSS 120B 5.6 10.3 4.2 16.7 0.0 0.0 0.0
SOC Llama 405B 5.6 9.8 10.0 0.0 0.0 40.0 0.0
SOC Claude 3.5 2.8 5.4 6.2 0.0 0.0 25.0 0.0

POLICY-TREE-GEN Analysis: We evaluated several large language models including Llama
3 405B[Grattafiori et al., 2024], GPT OSS 120B [OpenAI et al., 2025], Claude Sonnet
3.5[Anthropic, 2024] and o1 [OpenAI et al., 2024] on two applications, HR and SOC. The mod-
els Gemma 3 1B[Team et al., 2025] and Qwen 1.7B Thinking[Yang et al., 2025] were excluded
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Table 3: Accuracy per application/model for POLICY-AS-PROMPT-GEN

Application Model Input Acc. Output Acc.

HR
GPT-4o 0.73 0.71
Qwen3-1.7B 0.66 0.59
Gemma-1B 0.40 0.32

SOC
GPT-4o 0.70 0.68
Qwen3-1.7B 0.66 0.61
Gemma-1B 0.42 0.41

due to poor performance. Gold policies were created by security engineers and served as the ground
truth against which the LLM-generated policies were evaluated. The metrics in Table 2 evaluate model
performance in two categories: Detection, measured by Recall (R) and F1 score, and Classification,
assessed via Macro-F1 and individual per-class F1 scores for ID-I, ID-O, OOD-I, and OOD-O. A high
score in these metrics indicates a model that is effective at both identifying relevant requirements
and accurately assigning the correct category to them. HR consistently yields higher performance
scores for all models compared to SOC. Furthermore, the o1 model significantly outperforms all other
models, demonstrating its superior capability in this specific task.

As shown in Table 4, this analysis details model performance on HR and SOC tasks using metrics
such as Detection Precision, which measures the percentage of a model’s predictions that are correct,
and Micro-F1. Span quality is evaluated using four metrics: Span Exact, which measures if the
extracted text is an exact match to the ground truth; Token-F1, which assesses the token-level overlap
between the extracted and ground truth text; Substr, which checks if one text is a substring of the
other; and Emb Cos, which is the cosine similarity of the text embeddings. A high score in these
metrics indicates that the model is accurately extracting the correct text, even if it might misclassify
it. While the o1 model remains a top performer, others reveal a significant disconnect between their
extraction quality and overall F1 score. For HR, models like Llama 405B and Sonnet 3.5 have high
span quality metrics, indicating accurate text extraction, yet their low Micro-F1 scores suggest they
struggle with correct classification. For SOC domain, performance is generally lower and more varied.
Notably, Sonnet 3.5 achieved a high Det P on SOC, meaning all of its identified requirements were
true positives, but its Micro-F1 score remained very low due to continued classification errors.

POLICY-AS-PROMPT-GEN Analysis: Policy enforcement was tested on a separate set of models:
Qwen 3 1.7B (Thinking Mode) [Yang et al., 2025], GPT-4o [OpenAI et al., 2024], and Gemma 3
1B[Team et al., 2025]. For specialized data classification tasks within this framework, we employed
Small Language Models (SLMs), leveraging their established effectiveness and low latency, which
helps to quickly run policies in real-time. Both policies were judged request review by security
engineers as part of our evaluation and deployed after minimal changes, saving time for the security
team. POLICY-AS-PROMPT-GEN was evaluated on functional correctness by integrating generated
prompts into target LLMs and testing with 100 gold inputs and outputs. Tests included both standard
and adversarial cases (e.g., prompt injection, toxic content). Evaluation focused on accuracy of OOD/ID
classifications, with defaults of OOD ⇒ BLOCK and ID ⇒ ALLOW, unless otherwise specified.
While accuracies in the 70-73% range for GPT-4o (Table 3) are not perfect, they demonstrate
significant utility in a real-world context. The system acts as a "default-deny" guardrail: its primary
value is in successfully blocking a high percentage of malicious or non-compliant inputs (true
positives for OOD) before they reach the agent, drastically reducing the attack surface. This level
of accuracy is highly effective as a first-line defense, flagging ambiguous cases for human review,
which is a significant improvement over manual, post-hoc auditing. A limitation is that prompt tuning
emphasized GPT models, potentially contributing to performance gaps.

5 Conclusion

In this work, we introduced a framework that bridges the policy-to-practice gap by transforming
unstructured design artifacts into verifiable guardrails. We demonstrated an end-to-end pipeline for
automated, auditable, and enforceable policy generation. Our experiments show that while large
proprietary models excel in policy extraction, smaller models can still effectively enforce policies
with curated prompts. This approach establishes a scalable path toward trustworthy, regulatable AI
systems grounded in transparent policy governance.
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6 Limitations

Despite promising results, this work has several limitations that temper generalizability and repro-
ducibility. Our evaluation spans two enterprise-style domains (HR, SOC) with modest gold sets (100
inputs and 100 outputs per application) and a limited number of design artifacts, which constrains
transferability to other settings and larger, more heterogeneous corpora. Policy extraction currently
depends on large proprietary models, while open-source baselines differ in size or tuning; moreover,
prompting effort was greater for GPT-family models, potentially biasing results and limiting apples-
to-apples comparisons. Reproducibility is further hindered by confidentiality of internal artifacts
and logs: we cannot release the full corpora. Future work includes leveraging production interaction
logs (inputs, outputs, tool calls, actions) to mine candidate rules and hard examples that continuously
enrich the policy tree and prompts, and implementing adaptive policy regeneration that automatically
re-runs POLICY-TREE-GEN and POLICY-AS-PROMPT-GEN whenever PRDs, TDDs, code, or schemas
undergo significant changes, with versioning and regression gating to mitigate drift. Also, prompt
optimisations like Kumar et al. [2025] can be applied to POLICY-AS-PROMPT.
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LLM Prompt: Pass 1 — Parse Document & Classify Security Instructions
Role & Goal
You are a document analysis expert specializing in data security for LLM-powered
applications. Read a document describing an LLM-based system, infer its logical
structure, and extract only those instructions relevant to data and guardrail security.

Important: Ignore all specific examples in this step. Focus strictly on the instruc-
tions themselves.

Input
<Document text>

Task
Return a single JSON object representing the document’s hierarchy. For each
extracted instruction, you must include:

• The exact, verbatim source_span copied from the document.
• A category chosen from 4 CATEGORIES.

ID Categories & Guidance
• ID-I: Defines what the system should accept (in-domain, topical, accept-

able inputs). Exclude: outputs, rejection rules, metadata, formatting, or
negative conditions.

• ID-O: Defines correct system responses (including handling
invalid/unsupported/out-of-domain inputs). Exclude: malformed
prompts, format/schema rules, valid inputs, or outputs.

• OOD-I: Defines what the system must reject (invalid, unsupported, or out-
of-domain inputs). Include: logic/guardrails for blocking inputs. Exclude:
formatting, valid inputs, or outputs.

• OOD-O: Defines incorrect or forbidden system responses (hallucinations,
policy violations, leaking PII, misleading answers). Include: logic/-
guardrails for blocking outputs. Exclude: formats, constraints, valid out-
puts, or inputs.

Exclusion Rule: If an instruction does not clearly fit one of the valid categories
above, omit it from the output.

Required JSON Shape
Root key: "document_structure" (list). Each element:

• "topic": Heading
• "content": Instructions with source_span, category,
sub_instructions

• "children": Sub-topics (same format)

Figure 2: Prompt for hierarchical parsing in POLICY-TREE-GEN
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LLM Prompt: Pass 2 — Extract & Classify Policy Examples
Role & Goal
You are a policy expert. For a given policy instruction, find all relevant examples
that already exist in the provided document. Do not invent or generate new
examples.

Inputs
POLICY INSTRUCTION: "{instruction_text}"

---
{document_text}
---

Task
Return a single JSON object with a top-level key "examples" containing a list of
example objects found in the document that are relevant to the policy instruction.

Constraints
• No generation: Only extract examples that already exist in the document.
• Include every relevant example; omit non-relevant content.

Example Object Schema
Each example object must include:

• "example_text" — The text of the example.
• "source_span" — The exact, verbatim sentence copied from the docu-

ment.
• "polarity" — Positive or Negative:

– positive: the example follows the instruction.
– negative: the example is a counter-example.

Empty Result Handling
If no relevant examples are found, return:
{"examples": []}

In-Domain Example (context only)

Figure 3: Prompt for extracting existing policy examples in POLICY-TREE-GEN

A.2 POLICY-AS-PROMPT OUTPUT
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LLM Prompt: Policy Compliance Classification Task
You are a meticulous security and policy compliance analyst. Your sole responsi-
bility is to analyze a user’s input and determine if it complies with a strict set of
predefined rules.

Policy Document and Classification Reference Data:

Rules for ID Inputs • It is acceptable to automate the analysis of HR support
tickets only if the content is free of personal data.

Example of a ID anonymized HR support ticket:
"Request: I am unable to access the HR portal to update my benefits
information. Error: System shows ’Access Denied’ despite using cor-
rect login. Resolution attempted: Cleared cache, tried on a different
browser. Request: Please escalate to IT for resolution."

Rules for OOD Inputs • Including any personal data in AI analysis or outputs
without prior automated deletion or anonymization is a direct violation of
the policy.

• Examples of personal data that must be removed include: names, email
addresses, employee IDs, government IDs, birth dates, home addresses,
salary details, beneficiary information, etc.

Example of an OOD non-anonymized HR support ticket:
"Request: John Smith (Employee ID: 45832) cannot access his HR
portal. Email: john.smith@company.com Issue: Unable to update
dependent details for his son born on 12/03/2020. Request: Please
resolve urgently."

Example of an OOD non-HR ticket (out of scope):
"Request: The office coffee machine on the 3rd floor is broken again.
Issue: Display shows ’Water Pump Error.’ Request: Please arrange
maintenance."

Output Format:
Return a single JSON object with the following keys:

• "classification": Either "ID" or "OOD".
• "reasoning": A one-sentence explanation referencing the rule followed

or violated.

Task:
Analyze the following DOCUMENT and provide your classification:

Your JSON response:

Figure 4: Policy-As-Prompt for HR Application Input Classifier
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LLM Prompt: Policy Compliance Classification (Content-Focused)
You are a security/policy analyst. Analyze the user’s query and decide if the
content of the INPUT is allowed under the policy. Ignore tooling/functions; focus
only on what data the INPUT contains and what the OUTPUT must contain.

Policy — Allowed vs. Disallowed Content
ALLOWED INPUT CONTENT (no personal data, no secrets) • Alert

metadata: alert/case IDs, timestamps, severity, source system, rule/signa-
ture names, tags.

• Technical indicators (IoCs): file hashes, public IPs, domains, URLs (no
credentials), file/process names, registry keys, event codes.

• System/asset context: asset IDs, generic hostnames (not derived from real
names), service/application names, environment (prod/stage/dev), non-
personal ticket/channel IDs.

• Log details (sanitized): network flow summaries, HTTP metadata (with-
out tokens/cookies), counts, time windows, error codes; fields may be
pseudonymized or hashed.

• Org context (non-personal): role or team names (e.g., “SRE on-call”),
runbook references, anonymized user placeholders (user_A, hashed IDs).

• Threat intel: malware family names, campaign/actor names, rule IDs, confi-
dence scores.

• Attachments/screenshots only if redacted/pseudonymized so no personal
data or secrets are visible.

DISALLOWED INPUT CONTENT • Personal data (PII): names, emails,
phone numbers, home addresses, government IDs, birth dates, employee/-
customer IDs tied to individuals.

• Sensitive records: health, financial, or HR records; salary/beneficiary
details; customer lists; resumes.

• Secrets/credentials: passwords, API keys, private keys, tokens, session
IDs, cookies, JWTs, MFA codes, OAuth headers.

• Raw dumps containing PII/secrets: browser/localStorage, memory dumps,
unredacted chat/email transcripts, authorization headers.

• Identifiers revealing a person: hostnames/usernames or filenames that
embed real names (must be pseudonymized before submission).

• Out-of-scope facility issues (e.g., coffee machine maintenance).

Output Contract
Return a single JSON object:

• "classification": "ID" if the INPUT only contains Allowed content;
otherwise "OOD".

• "reasoning": One concise sentence citing the specific rule followed/vio-
lated.

Task: Analyze the following DOCUMENT and classify it:

Your JSON response:

Figure 5: Content-First Policy-As-Prompt for Security Input Classification
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A.3 Evaluation for POLICY-TREE-GEN

Table 4: Evaluation Metrics for POLICY-TREE-GEN

Application Model Det P (%) Micro-F1 (%) Span Exact (%) Token-F1 Substr (%) Emb Cos

HR O1 68.6 30.0 91.7 0.999 100.0 0.996
HR GPT-OSS 120B 42.1 9.4 0.0 0.910 87.5 0.905
HR Llama 405B 40.0 10.9 75.0 1.000 100.0 0.973
HR Claude 3.5 40.0 4.0 50.0 0.992 100.0 0.986

SOC O1 26.9 22.6 85.7 0.987 100 0.958
SOC GPT-OSS 120B 66.7 10.3 0.0 0.974 0.0 0.881
SOC Llama 405B 40.0 9.8 0.0 0.842 100.0 0.790
SOC Claude 3.5 100.0 5.4 0.0 0.818 100.0 0.782
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