
Automatic Variational Inference with Cascading Flows

Luca Ambrogioni 1 Gianluigi Silvestri 1 2 Marcel van Gerven 1

Abstract
The automation of probabilistic reasoning is one
of the primary aims of machine learning. Re-
cently, the confluence of variational inference and
deep learning has led to powerful and flexible au-
tomatic inference methods that can be trained by
stochastic gradient descent. In particular, normal-
izing flows are highly parameterized deep models
that can fit arbitrarily complex posterior densities.
However, normalizing flows struggle in highly
structured probabilistic programs as they need
to relearn the forward-pass of the program. Au-
tomatic structured variational inference (ASVI)
remedies this problem by constructing variational
programs that embed the forward-pass. Here, we
combine the flexibility of normalizing flows and
the prior-embedding property of ASVI in a new
family of variational programs, which we named
cascading flows. A cascading flows program in-
terposes a newly designed highway flow archi-
tecture in between the conditional distributions
of the prior program such as to steer it toward
the observed data. These programs can be con-
structed automatically from an input probabilis-
tic program and can also be amortized automat-
ically. We evaluate the performance of the new
variational programs in a series of structured in-
ference problems. We find that cascading flows
have much higher performance than both normal-
izing flows and ASVI in a large set of structured
inference problems.

1. Introduction
The aim of probabilistic programming is to provide a fully
automated software system for statistical inference on ar-
bitrary user-specified probabilistic models (also referred to
as probabilistic programs) (Milch et al., 2007; Sato, 1997;

1Donders Centre for Cognition, Radboud University, Nether-
lands 2OnePlanet Research Center, imec-the Netherlands, Wa-
geningen, Netherlands. Correspondence to: Luca Ambrogioni
<l.ambrogioni@donders.ru.nl>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Kersting and De Raedt, 2007; Pfeffer, 2001; Park et al.,
2005; Goodman et al., 2012; Wingate et al., 2011; Patil
et al., 2010; Dillon et al., 2017; Bingham et al., 2019; Tran
et al., 2017; 2016). When the probabilistic programs are
built from differentiable components, stochastic variational
inference (VI) by automatic differentiation offers an effec-
tive and computationally efficient solution (Bishop et al.,
2002; Kucukelbir et al., 2017; Tran et al., 2017). However,
the performance of stochastic VI depends strongly on the
choice of a variational program (also known as variational
family or variational guide) (Bishop and Winn, 2003).

Until recently, automatic variational program construction
was limited to simple mean field and multivariate normal
coupling approaches (Kucukelbir et al., 2017). These pro-
grams are highly constrained and exploit only minimally
the structure of the original probabilistic program. For ex-
ample, the multivariate normal approach only depends on
the number of variables and their support. More recently,
normalizing flows revolutionized the field of variational
inference by offering a highly flexible parametric model
for complex multivariate distributions. Normalizing flows
can be easily used to construct automatic variational pro-
grams by mapping all the variables to a spherical normal
latent space through a learnable diffeomorphism (Rezende
and Mohamed, 2015; Papamakarios et al., 2019). While
highly flexible, the normalizing flow approach still uses
only minimal information concerning the input probabilistic
program. This leads to poor performance in highly struc-
tured probabilistic programs with complex computational
flows (Ambrogioni et al., 2021). For example, consider an
inference problem defined by a highly parameterized natural
language model (Brown et al., 2020). A typical problem
of this kind is controlled language generation, where the
goal is to steer the model to general text conditioned on its
past output and future targets (e.g. the presence of some
specific words). The controlled network can be formulated
in probabilistic programming terms as a posterior distribu-
tion that is parameterized by the variational program. In a
problem like this, most of the complexity of the posterior is
encoded in the structure of the prior probabilistic program
(the language model). The model just needs to be steered in
the right direction. However, normalizing flow completely
disregards this structure and has to relearn all the structure
embedded in the prior.

Automatic structured variational inference with cascading flows

This problem was discussed in a recent work that introduced
a form of automatic structured variational inference (ASVI)
with an automated variational program that incorporates the
prior probabilistic program as a special case. ASVI has been
shown to have very good performance in time series analysis
and deep learning problems in spite of being very parsimo-
niously parameterized compared to normalizing flows (Am-
brogioni et al., 2021). However, the convex-update families
used in ASVI have two main limitations: I) they cannot
model statistical dependencies arising from colliders in the
graphical model (the "explaining away" effect) and II) they
constrain the conditional posterior distributions to be in the
same family as the prior. In this paper we integrate ASVI
and normalizing flows to obtain a new form of automatic VI,
which we refer to as cascading flows (CF). The approach
incorporates the forward-pass of the probabilistic program
while being capable of modeling collider dependencies and
arbitrarily complex conditional distributions. To this end,
we make use of a novel highway flow architecture. CF
respects the following design principles:

• Automation: It can be constructed using a fully auto-
matic algorithm that takes the prior probabilistic pro-
gram as input.

• Locality: It is constructed by locally transforming each
conditional distribution in the conditional prior so that
it inherits the graphical structure of the input program
(with potentially some extra coupling). This ensures
scalability and modularity.

• Prior information flow: It embeds the forward-pass of
the probabilistic program.

2. Related work
Automatic algorithms for VI date back to VIBES (Bishop
et al., 2002; Bishop and Winn, 2003). These older works
are based on self-consistency equations and variational mes-
sage passing (Winn and Bishop, 2005). The use of gradient-
based automatic VI for probabilistic programming was pi-
oneered in (Wingate and Weber, 2013) using a mean field
approach. Automatic differentiation VI (ADVI) perfected
this approach by exploiting the automatic-differentiation
tools developed in the deep learning community (Kucukel-
bir et al., 2017). ADVI uses fixed invertible transformations
to map each variable into an unbounded domain where the
density can be modeled with either univariate of multivari-
ate normal distributions. Structured stochastic VI (Hoffman
and Blei, 2015) exploits the local conjugate update rules
of locally conjugate models. This has the major benefit of
preserving the local structure of the probabilistic program
but it severely limits the class of possible input programs
since local conjugacy is a stringent condition. Automatic
structured VI (ASVI) lifts this constraint as it applies a

trainable convex-update rule to non-conjugate links (Am-
brogioni et al., 2021). Several other papers introduced new
techniques for constructing structured variational programs.
Copula VI introduces the use of vine copulas to model the
statistical coupling between the latent variables in the pro-
gram (Tran et al., 2015). Similarly, hierarchical VI uses
auxiliary latent variables to achieve the same goal (Ran-
ganath et al., 2016). Neither of those approaches are truly
automatic however, as they do not prescribe a unique way
to construct the coupling functions.

Normalizing flows are very expressive and highly parame-
terized models that use deep learning components to ap-
proximate complex multivariate densities (Rezende and
Mohamed, 2015; Dinh et al., 2014; 2017). Normalizing
flows can approximate arbitrarily complex densities and
can therefore be turned into powerful automatic VI meth-
ods (Rezende and Mohamed, 2015; Kingma et al., 2016).
However, conventional normalizing flows do not exploit
the input probabilistic program. Structured conditional con-
tinuous normalizing flows are a newly introduced class of
flows constrained to have the same conditional indepen-
dence structure of the true posterior (Weilbach et al., 2020).
However, these flow architectures only inherit the graphical
structure of the input program, without incorporating the
forward pass (i.e. the form of the conditional distributions
and link functions).

Modern deep probabilistic programming frameworks pro-
vide automatic implementation of many of variational pro-
grams. For example, PyMC (Patil et al., 2010) provides an
implementation of ADVI, Pyro (Bingham et al., 2019) im-
plements the automatic construction of mean field, multivari-
ate normal and normalizing flow programs (i.e. variational
guides) and TensorFlow probability also offers an automatic
implementation of ASVI (Dillon et al., 2017; Ambrogioni
et al., 2021).

Our new highway flow architecture is a key component
of our new approach and it is inspired by highway net-
works (Srivastava et al., 2015). To the best of our knowl-
edge, highway flows are the first form of residual-like flows
with a tractable Jacobian determinant that can be expressed
in closed form. Existing residual flows express the log de-
terminant of the Jacobian as an infinite series that needs
to be estimated using a “Russian roulette” estimator (Chen
et al., 2019). We achieve tractability by applying a highway
operator to each single layer of the network.

The use of auxiliary variables has proved to be an effective
way to improve the expressiveness of Normalizing Flows by
operating in an augmented space (Huang et al., 2020; Cor-
nish et al., 2020; Caterini et al., 2020). Our use of auxiliary
variables is similar to the approach adopted in (Dupont et al.,
2019) and (Weilbach et al., 2020). The bound we use for
training the augmented model was derived in (Ranganath

Automatic structured variational inference with cascading flows

et al., 2016).

Structured variational programs have the most clear bene-
fits in timeseries analysis problems (Eddy, 1996; Foti et al.,
2014; Johnson and Willsky, 2014; Karl et al., 2016; Fortu-
nato et al., 2017). Our approach, together with ASVI, differs
from the conventional timeseries approach by exploiting the
structure of both temporal and non-temporal variables in the
model.

3. Preliminaries
In this section we introduce the notation used in the rest of
the paper and discuss in detail the methods that form the
basis for our work.

3.1. Differentiable probabilistic programs

We denote the values of (potentially multivariate) random
variables using lowercase notation and arrays of random
variables using boldface notation. We consider probabilistic
programs constructed as a chain of conditional probabilities
over an array of random variables x = (x1, . . . , xN). We
denote the array of values of the parents of the j-th variable
as πj ⊆ {xi}i 6=j , which is a sub-array of parent variables
such that the resulting graphical model is a directed acyclic
graph. Using this notation, we can express the joint density
of a probabilistic program as follows:

p (x) =

N∏
j=1

ρj (xj | θj(πj)) , (1)

where θj(πj) is a link function that maps the values of the
parents of the j-th variable to the parameters of its density
ρj (· | ·). For example, if the density is Gaussian the link
function outputs the value of its mean and scale given the
values of the parents. Note that θj is a constant when the
array of parents is empty.

3.2. Convex-update variational programs

An automatic structured variational inference method pro-
vides an algorithm that takes a probabilistic program as in-
put and outputs a variational program q(x). Convex-update
variational programs (Ambrogioni et al., 2021) are defined
by the following transformation:

p(x) 7→
CU
q(x) =

N∏
j

Uαj

λj
ρj (xj | θj(πj)) , (2)

with convex-update operator

Uαj

λj
ρj (xj | θj(πj)) = ρj(xj |λj � θj(πj) (3)

+ (1− λj)� αj) ,

where λj and αj are (potentially vector-valued) learnable
parameters and � is the element-wise product. This reduces
to the prior probabilistic program for λj → 0 and to a mean
field variational program for λj → 1. Convex-update ASVI
has the advantage of preserving the forward-pass of the
probabilistic program, which is often a major source of sta-
tistical coupling in the posterior distribution. The variation
program can be trained to fit the posterior by minimizing
the evidence lower bound (ELBO) by stochastic gradient
descent (SGD) on the differentiable parameters λj and αj .

3.3. Variational inference with normalizing flows

Normalizing flows express the density of arbitrary multi-
variate distributions as the push forward of a known base
distribution through a differentiable invertible function (i.e.
a diffeomorphism). The base distribution is usually a spheri-
cal normal distribution, hence the "normalizing" in the name.
Consider a d-variate probability density p0(z) and a diffeo-
morphism Ψ : Rd → Rd. We can derive the density of the
new random variable x = Ψ(z) using the change of variable
formula

pX(x) = |det J(Ψ−1(x))|p0(Ψ−1(x)) , (4)

where Ψ−1 is the inverse transformation and J(z) is the
Jacobi matrix of Ψ. We can write this more compactly
using the push-forward operator TΨ associated to Ψ that
maps the density p0(z) to the density pX(x) given in Eq. 4:
pX(x) = TΨ [p0(·)] (x).

Now consider a flexible family of functions Ψw(x) parame-
terized by the "weights" w. We can use Eq. 13 to approx-
imate arbitrarily complicated target densities by training
w by SGD. Given a probabilistic program p(x, y) with y
observed, we can approximate the posterior p(x | y) by
minimizing the evidence lower bound:

ELBO(w) = Ew
[
log

p(x, y)

|det Jw(Ψ−1(x))|p0(Ψ−1(x))

]
(5)

where the expectation is taken with respect to the trans-
formed distribution TΨw [p0(·)] (x). Since Ψ is differen-
tiable, we can obtain the reparameterization gradient for the
ELBO as follows:

∇wELBO(w) = E0

[
∇w log

p(Ψw(z), y)

|det Jw(z)|p0(z)

]
(6)

where the expectation is now taken with respect to the fixed
distribution p0(z). In the following we refer to this approach
as global flow (GF) since the transformation is applied syn-
chronously to all variables in the model.

4. Variational inference with cascading flows
Now that we have covered the relevant background, we
will introduce our new approach that combines ASVI with

Automatic structured variational inference with cascading flows

normalizing flows.

4.1. Cascading flows variational programs

The convex-update parameterization poses strong con-
straints on the form of the conditional posteriors. On the
other hand, normalizing flow programs do not embed the
potentially very complex structure of the input program. In
this paper we combine the two approaches by replacing
the convex-update operator in Eq. 2 with the push-forward
operator used in normalizing flows. More precisely, con-
sider a family of diffeomorphisms Ψw = (Ψw1

1 , . . . ,ΨwN

N)
depending on the array of parameters w = (w1, . . . , wN).
Using these transformations, we can define the cascading
flows variational program associated with a program defined
by Eq. 1:

p(x) 7→
CF
qw (x) =

N∏
j

T wj [ρj (· | θj(πj))] (xj) , (7)

where we denoted the push-forward operator induced by the
diffeomorphism Ψ

wj

j (as defined by Eq. 4) as T wj to simplify
the notation. A cascading flows variational program can be
trained by SGD using gradient estimators of the ELBO with
the reparameterization given in Eq. 6.

The name cascading flows comes from the fact that, since
the transformation is performed locally for each conditional
distribution, its effects cascade down the variational model
through the (transformed) conditional dependencies of the
prior program. However, in order to preserve the forward-
pass of the probabilistic program it is crucial to use a param-
eterized diffeomorphism that can be initialized around the
identity function and whose deviation from the identity can
be easily controlled. Specifically, we opt for transformations
of the following form:

Ψ
wj

j (x) = γx+ (1− γ)fj(x;wj) , (8)

where γ ∈ (0, 1). The resulting architecture of a cascading
flows variational program is visualized in Fig 1. From the
diagram it is clear that a cascading flow is constructed by
inserting transformation layers within the architecture of the
probabilistic program. Transformations of the form given
in Eq. 8 with tractable Jacobians are not currently present
in the normalizing flow literature. Therefore in the next
subsection we will introduce a new flow architecture of this
form, which we named highway flow.

4.2. Highway flow architecture

Here we introduce highway flow blocks gated by a learn-
able scalar gate parameter. As also visualized in Fig. 2, a
highway flow block is comprised by three separate highway
layers:

Layer j

Layer j + 1

Layer j + 2

Layer j

Layer j + 1

Layer j + 2

CF Layer j

CF Layer j + 1

A) B)

Figure 1. Diagram of a cascading flows architecture. A) Detail of
architecture of an input probabilistic program. B) Detail of the
associated cascading flows architecture.

Upper Tri

Lower Tri

Activation

Figure 2. Diagram of a highway flow block.

1. Upper triangular highway layer:

lU (z;U, λ) = λz + (1− λ) (Uz + bU) (9)

log detJU =
∑
k

log (λ+ (1− λ)Ukk) (10)

2. Lower triangular layer:

lL(z;L, λ) = λz + (1− λ) (Lz + bL) (11)

log detJL =
∑
k

log (λ+ (1− λ)Lkk) (12)

3. Highway activation functions:

f(z;λ) = λz + (1− λ)g(z) (13)

log det
df(xk)

dx
=
∑
k

log

(
λ+ (1− λ)

dg(xk)

dx

)
(14)

where U is an upper-triangular matrix with positive-valued
diagonal, L is a lower-triangular matrix with ones in the
diagonal and g(x) is a differentiable non-decreasing acti-
vation function. A highway flow layer is a composition of
these three types of layers:

lh(·) = f ◦ lL ◦ lU (·) . (15)

Automatic structured variational inference with cascading flows

A highway network is a sequence ofM highway layers with
a common gate parameter and different weights and biases.
Note that a highway flow can be expressed in the form given
in Eq. 8 by defining γ as follows:

γ = λ3M , (16)

which is clearly equal to one (zero) when λ is equal to one
(zero).

4.3. Auxiliary variables and infinite mixtures of flows

The expressiveness of a normalizing flow is limited by the
invertible nature of the transformation. This is particularly
problematic for low-dimensional variables since the expres-
sivity of many flow architectures depends on the dimen-
sionality of the input (Papamakarios et al., 2019). This
limitation can be a major shortcoming in cascading flows
as they are particularly useful in highly structured problems
characterized by a large number of coupled low-dimensional
variables. Fortunately, we can remedy this limitation by in-
troducing a set of auxiliary variables. For each variable
xj , we create a D-dimensional variable εj following a base
distribution pj(εj). We can now use an augmented diffeo-
morphism Ψ̂

wj

j (xj , εj) and define the joint posterior over
both xj and εj :

q (xj , εj | πj) = T̂ wj [ρj (· | θj(πj)) pj(·)] (xj , εj) ,

(17)

where the push-forward operator now transforms the (inde-
pendent) joint density of xj and εj . The conditional varia-
tional posterior is then obtained by marginalizing out εj :

q (xj | πj) =

∫
q (xj , εj | πj) dεj . (18)

This infinite mixture of flows is much more capable of mod-
eling complex and potentially multi-modal distributions.

The use of latent mixture models for VI was originally
introduced in (Ranganath et al., 2016). Given a set of obser-
vations y, the ELBO of any mixture variational probabilistic
program can be lower bounded using Jensen’s inequality:

Ex
[
log

p(x,y)∫
q (x, ε) dε

]
≥ Ex,ε

[
log

p(x,y)r(ε)

q (x, ε)

]
︸ ︷︷ ︸

Augmented ELBO

, (19)

where q(ε) =
∫
q (x, ε) dx is the marginal variational pos-

terior and r(ε) is an arbitrarily chosen distribution over the
auxiliary variables.

This result justifies the use of the augmented ELBO for train-
ing the variational posterior. In practice, the distribution r(ε)
can be chosen to be a mean field variational density. The
gap between the mixture ELBO (Eq. 19) and the augmented

ELBO can be reduced by training these mean field parame-
ters by minimizing the augmented ELBO such as to match
q(ε) (Ranganath et al., 2016).

The highway flow architecture can be easily adapted to the
augmented variable space. Since there is no need to gate the
flow of the auxiliary variables, the scalar λ in Eq. 9, Eq. 11
and Eq. 13 should be replaced by the vector l whose entries
corresponding to the original variables are equal to λ while
the entries corresponding to the auxiliary variables are equal
to zero.

4.4. Modeling collider dependencies with auxiliary
coupling

A) B)

Figure 3. Backward auxiliary coupling. A) Example graphical
model. B) Cascading flows model coupled with reversed local
linear Gaussian model.

So far, we outlined a model that has the same conditional in-
dependence structure of the prior and is therefore incapable
of modeling dependencies arising from colliders. Fortu-
nately, the local auxiliary variables that we introduced in
order to increase the flexibility of the local flows can assume
a second role as "input ports" that can induce non-local cou-
plings. In fact, by coupling their auxiliary variables we can
induce statistical dependencies between any subset of vari-
ables in the model. Importantly, this coupling can take a very
simple form since additional complexity can be modeled by
the highway flows. We will now introduce a local auxiliary
model with a non-trivial conditional independence structure
inspired by the forward-backward algorithm. The graphical
structure of the posterior probabilistic program is a sub-
graph of the moralization of the prior graph (Bishop, 2006).
Therefore, in order to be able to capture all the dependencies
in the posterior, it suffices to couple the auxiliary variables
by reversing the arrows of the original prior model. In fact,
all the parents of every node get coupled by the reversed
arrows. As an example, consider the following probabilistic
model (Fig. 3A): ρ1(x1 | x2, x3)ρ2(x2)ρ3(x3 | x4)ρ4(x4) .
We couple the auxiliary variables by reversing the arrows, as

Automatic structured variational inference with cascading flows

Table 1. Predictive and latent log-likelihood (forward KL) of variational timeseries models. Error are SEM estimated over 10 repetitions.
CF ASVI MF GF MVN CF (non-res)

BR-r Pred −2.27± 0.26 −2.23 ± 0.21 −3.79± 0.82 −2.81± 0.56 −2.88± 0.53 −3.33± 0.65
Latent −1.48± 0.19 −1.45 ± 0.14 −4.02± 0.63 −2.41± 0.52 −2.02± 0.48 −3.63± 0.74

BR-c Pred 1.61± 0.18 1.45± 0.14 1.04± 0.03 2.00 ± 0.29 1.02± 0.03 1.31± 0.18
Latent −1.53 ± 0.21 −1.55± 0.19 −5.78± 0.89 −2.06± 0.53 −2.82± 0.77 −5.07± 0.85

LZ-r Pred −2.89 ± 0.17 −4.48± 0.60 −8.26± 0.28 −8.03± 0.37 −8.24± 0.29 −8.25± 0.27
Latent −2.39 ± 0.45 −4.38± 0.67 −10.28± 0.18 −9.44± 0.20 −9.45± 0.22 −10.00± 0.18

LZ-c Pred 5.10 ± 0.52 0.92± 0.03 0.90± 0.003 0.86± 0.15 0.89± 0.001 0.88± 0.04
Latent −4.19 ± 0.66 −7.47± 0.30 −9.89± 0.19 −8.71± 0.32 −8.58± 0.34 −9.59± 0.29

PD-r Pred −3.19 ± 0.22 −3.25± 0.11 −4.42± 0.22 −3.84± 0.28 −4.30± 0.22 −4.29± 0.25
Latent −2.32 ± 0.19 −3.14± 0.12 −9.12± 0.29 −4.16± 0.33 −7.72± 0.30 −8.27± 0.36

PD-c Pred 1.97 ± 0.07 1.65± 0.06 0.86± 0.003 01.07± 0.02 1.09± 0.02 0.96± 0.01
Latent −2.77 ± 0.18 −3.09± 0.15 −8.40± 0.43 −6.20± 0.40 −7.45± 0.42 −8.41± 0.43

RNN-r Pred −1.68± 0.05 −2.30± 0.18 −5.20± 0.94 −1.60 ± 0.09 −4.47± 0.92 −1.97± 0.21
Latent −1.34 ± 0.33 −1.95± 0.35 −10.30± 0.20 −6.39± 1.27 −6.61± 0.50 −10.47± 0.22

RNN-c Pred 5.77 ± 1.40 1.05± 0.06 0.81± 0.03 2.81± 0.36 0.86± 0.02 1.39± 0.04
Latent −2.30± 0.61 −2.05 ± 0.32 −10.22± 0.29 −10.75± 0.15 −10.22± 0.29 −11.22± 0.04

formalized in the graphical model p1(ε1)p2(ε2, | ε1)p3(ε3, |
ε1)p4(ε4 | ε3) . The graphical structure of the resulting aug-
mented model is shown in Fig. 3B. The auxiliary variables
can be coupled in a very simple manner since the diffeo-
morphisms can add arbitrary complexity to the final joint
density. Here we use a simple linear normal model:

εk | υk =

K∑
j=1

aj � υj + a0 � ξk , (20)

where aj ≥ 0 and
∑
n an = 1. In this expression, ξk is a

standard Gaussian vector and υk = (υ1, ..., υK) is an array
containing all the parents auxiliary variables (the auxiliaries
of the children of xk in the original graph).

4.5. Inference amortization

We will now discuss a strategy to implement automatic infer-
ence amortization in cascading flows models. The problem
of inference amortization is closely connected to the prob-
lem of modeling collider dependencies as the latter arise
from the backward messages originating from observed
nodes (Bishop, 2006). It is therefore not a coincidence that
we can implement both collider dependencies and amorti-
zation by shifting the statistics of the local auxiliary vari-
ables. This results in a very parsimonious amortization
scheme where data streams are fed locally to the various
nodes and propagate backward through the linear network
of auxiliary Gaussian variables. We denote the set of aux-
iliary variables associated to the children of xk in the in-
put probabilistic program as υk. Furthermore, we denote
the observed value of xk as yk and the set of observed
values of the j-th child of xk as yk = (yk1 , ..., y

k
K). The

Auxiliary graph

Forward pass connection

Auxiliary connection

Amortization input

Latent node
Observable node

Auxiliary node

Figure 4. Visualization of the backward amortization algorithm.

amortized auxiliary model can then be obtained as a mod-
ification of Eq. 20: p0(εk | υk) = N

(
mk, σ

2I
)

with
εk | υk = B(k)[yk] +

∑K
j=1 aj � υj + a0 � ξk , where

B(k) are learnable affine transformations (i.e. linear layers
in deep learning lingo).

5. Automation
Cascading flow variational programs can be constructed
automatically given an input probabilistic program. We

Automatic structured variational inference with cascading flows

provide an open-source implementation of this algorithm
in TensorFlow Probability (Dillon et al., 2017). The code
for the spacial case without amortization and backward
auxiliary coupling is shown in Figure 5.

def build_cascading_flows_surrogate_posterior(prior):

q_vars = {}

@tfd.JointDistributionCoroutineAutoBatched

def cascading_flows_surrogate_posterior():

Step the model to yield the first RV.

prior_gen = prior._coroutine_fn()

rv = next(prior_gen)

while True: # Run model to termination.

If this is a new RV, initialize variables.

if rv.name not in q_vars:

q_vars[rv.name] =

build_cascading_flows_bijector(

width=rv.width,

num_highway_flows_blocks=3)

Sample from the Cascading Flows.

q_sample = yield tfd.TransformedDistribution(

distribution=rv,

bijector=q_vars[rv.name])

Step to the next RV.

rv = prior_gen.send(q_sample)

return cascading_flows_surrogate_posterior

Figure 5. TFP code for automatically constructing a Cascading
Flows variational program given the prior program.

6. Experiments
Our experiments are divided into three sections. In the first
section we focus on highly structured timeseries problems
exhibiting linear and non-linear dynamics. Bayesian prob-
lems of this nature have relevance for several scientific fields
such as physics, chemistry, biology, neuroscience and pop-
ulation dynamics. In the second section we compare the
capacity of several variational programs to model depen-
dencies arising from colliders in the graphical structure. In
fact, the inability of modeling collider dependencies was the
main limitation of the original convex-update ASVI fam-
ily (Ambrogioni et al., 2021). Finally, in the third section we
test the performance of the automatic amortization scheme.
All the code used in the experiments is included in the
supplementary material and documented in Supplementary
A. Architectures: In all experiments, the CF architectures
were comprised of three highway flow blocks with softplus
activation functions in each block except for the last which
had linear activations. CF programs use an independent
network of this form for each latent variable in the program.
Each variable was supplemented with 10 auxiliary variables,
the width of each network was therefore equal to the dimen-
sionality of the variable plus 10. Weights and biases were
initialized from centered normal distributions with scale
0.01. The λ variable was defined independently for each
network as the logistic sigmoid of a learnable parameter l,

which was initialized as 4 in order to keep the variational
program close to the input program. For each variable, the
posterior auxiliary distributions r(ε) (see Eq. 19) were spher-
ical normals parameterized by mean and standard deviation
(i.e. Gaussian mean field).

CF ASVI

0 0.80.4 0 0.80.4

0 0.80.4 0 0.80.4

R
eg
re
ss
io
n

C
la
ss
ifi
ca
tio
n

Figure 6. Example of qualitative results in the Lorentz system (first
coordinate). The gray shaded area is observed through noisy mea-
surements. The dashed lines are the ground-truth timeseries while
the thin colored lines are samples from the trained variational
program.

6.1. Timeseries analysis

We consider discretized SDEs, defined by conditional densi-
ties of the form:

ρt(xt+1 | xt) = N
(
xt+1;µ(xt, t)dt, σ2(xt, t)dt

)
, (21)

where µ(xt, t) is the drift function and σ(xt, t) is the volatil-
ity function. Specifically, we used Brownian motions (BR:
µ(x) = x, σ2(x) = 1), Lorentz dynamical systems (LZ:
µ(x1, x2, x3) = (10(x2 − x1), x1(28 − x3) − x2, x1x2 −
8/3x3), σ2 = 2), Lotka-Volterra population dynamics
models (PD: µ(x1, x2) = (0.2x1 − 0.02x1x2, 0.1x1x2 −
0.1x2), σ2 = 3) and recurrent neural dynamics with ran-
domized weights (RNN, see Supplementary B). The initial
distributions were spherical Gaussians (see Supplementary
B for the parameters). For each dynamical model we gen-
erated noisy observations using Gaussian emission models
(denoted with an "r" in the tables):

p(yt | xt) = N ([xt]1, σ
2
lk) (22)

or Bernoulli logistic models ("c" in the tables):

p(yt | xt) = Bernoulli(g(k[xt]1)) , (23)

where [xt]1 denotes the first entry of the vector xt, σlk
is the standard deviation of the Gaussian emission model,

Automatic structured variational inference with cascading flows

Table 2. Multivariate latent log-likelihood (forward KL) of variational binary tree models. Error are SEM estimated over 15 repetitions.
CF ASVI MF GF MN

Linear-2 1.24 ± 0.01 0.49± 0.05 0.6± 0.01 0.97± 0.01 1.00± 0.01
Linear-4 5.42± 0.35 3.56± 0.26 1.68± 0.02 6.56 ± 0.04 6.52± 0.01
Tanh-2 1.20 ± 0.01 −7.86± 3.47 0.24± 0.01 0.90± 0.01 1.15± 0.01
Tanh-4 3.29± 3.17 −55.44± 4.53 −43.24± 8.87 10.32 ± 0.05 5.37± 2.61

g(·) is the logistic sigmoid function and k is a gain fac-
tor. All the numeric values of the parameters in different
experiments are given in Supplementary B. For each task
we evaluate the performance of the cascading flows pro-
grams (CF) against a suite of baseline variational posteriors,
including convex-update ASVI (Ambrogioni et al., 2021),
mean field (MF) and multivariate normal (MN) (Kucukelbir
et al., 2017). We also compare our new cascading flows
family with the more conventional global normalizing flow
(GF) approach where a single diffeomorphism transforms
all the latent variables in the probabilistic program into
a spherical normal distribution (Rezende and Mohamed,
2015). For the sake of comparison, we adopt an archi-
tecture identical to our highway flow model (including 10
auxiliary variables) except for the absence of the highway
gates. Note however that the global architecture has much
greater width as it is applied to all variables in the pro-
gram. Finally, we compare the performance of CF with a
modified version of CF that does not use highway gates.
Ground-truth multivariate timeseries x̃ = (x̃1, . . . , x̃T)
were sampled from the generative model together with sim-
ulated first-half observations y1:T/2 = (y1, . . . , yT/2) and
second-half observations yT/2:T = (yT/2+1, . . . , yT). All
the variational models were trained conditioned only on
the first half observations. Performance was assessed us-
ing two metrics. The first metric is the average marginal
log-probability of the ground-truth given the variational pos-
terior: 1

TJ

∑T
t

∑J
j log q([x̃t]j | y1:T/2) , where J is the

dimensionality of the ground-truth vector x̃t. The marginal
posterior density q([x̃t]j | y1:T/2) was estimated from 5000
samples drawn from the variational program using Gaus-
sian kernel density estimation with bandwidth 0.9σ̂N−1/5 ,
where σ̂ is the empirical standard deviation of the samples.
Our second metric is log p(yT/2:T | y1:T/2): the predic-
tive log-probability of the ground-truth observations in the
second half of the timeseries given the observations in the
first half, estimated using kernel density estimation from
5000 predicted observation samples drawn from the exact
likelihood conditioned on the samples from the variational
program. Each experiment was repeated 10 times. In each
repetition, all the variational programs were re-trained for
8000 iterations (enough to ensure convergence in all meth-
ods) given new sampled ground-truth timeseries and ob-
servations. The reported results are the mean and SEM of
the two metrics over these 10 repetitions. Results: The

results are given in Table 1. The cascading flows family
(CF) outperforms all other approaches by a large margin in
all non-linear tasks. Convex-update ASVI consistently has
the second highest performance, easily outperforming the
highly parameterized global normalizing flow (GF). This
result is consistent with (Ambrogioni et al., 2021), where
ASVI was shown to outperform inverse autoregressive flow
architectures (Kingma et al., 2016). Finally, the CF model
without highway gates (CF non-res) has very low perfor-
mance, proving the crucial importance of our new highway
flow architecture. A qualitative comparison (LZ-r and LZ-c)
between CF and ASVI is shown in Fig. 6.

6.2. Binary tree experiments

In our second experiment we test the capability of the vari-
ational programs to model statistical dependencies arising
from colliders. We tested this in a Gaussian binary tree
model where the mean of a scalar variable xdj in the d-th
layer is a function of two variables in the d − 1-th layer:
xdj ∼ N

(
link(πd−1

j1 , πd−1
j2), σ2

)
, where πd−1

j1 and πd−1
j2 are

the two parents of xdj . All the 0-th layer variables have
zero mean. The inference problem consists of observing
the only variable in the last layer and computing the pos-
terior of all the other variables. We considered a setting
with linear coupling link(x, y) = x− y and tanh coupling
link(x, y) = tanh (x)− tanh (y) with 2 and 4 layers. Per-
formance was estimated using the posterior log-probability
of the ground-truth sample estimated using a multivariate
Gaussian approximation that matches the empirical mean
and covariance matrix of 5000 samples drawn from the
trained variational program. We compared performance
with ASVI, mean-field (MF), global flow (GF) and multi-
variate normal (MN). Note that neither ASVI nor MF can
model collider dependencies. Full details are given in Sup-
plementary C. The reported results are the mean and SEM
of the two metrics over 15 repetitions. Results: The results
are given in Table 2. The CF model always outperforms
ASVI and MF, proving that it can capture collider dependen-
cies. CF has the highest performances in shallow models
but lower performance than GF and MN in deeper models.

6.3. Inference amortization

Finally, we evaluate the performance of the amortization
scheme in non-linear timeseries inference problems. We

Automatic structured variational inference with cascading flows

Table 3. Latent log-likelihood (forward KL) of amortized time-
series models. Error are SEM estimated over 50 repetitions.

CF MF GF
PD −2.8 ± 0.2 −8.0± 0.2 −5.1± 0.2
LZ −2.7 ± 0.2 −10.0± 0.2 −9.1± 0.2

used the population dynamics (PD) and the Lorentz (LZ)
systems. The CF program was amortized using the approach
described in Sec. 4.5. The MF and normalizing flow base-
lines were amortized using inference networks (see Supple-
mentary D). All the details were identical to the timeseries
experiments except for the fact that all time points were
observed. Performance was again quantified as the average
marginal log-probability of the ground-truth kernel density
estimated from the samples from the amortized variational
programs. Each amortized program was trained once and
tested on 50 new sampled timeseries/observations pairs. The
reported results are the mean and SEM of these 50 repeti-
tions. Results: The results are reported in Table 3. Like in
the non-amortized case, CF greatly outperforms both MF
and GF in both timeseries inference problems.

7. Discussion
Our CF approach solves the two main limitations of ASVI
as it can model collider dependencies and can be amortized
automatically. We show that cascading flows programs
have extremely high performance in structured inference
problems. However, their ability to capture deep collider de-
pendencies is lower than normalizing flows. In our opinion,
designing principled ways to model collider dependencies
is a promising research direction.

References
B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and

A. Kolobov. Blog: Probabilistic models with unknown
objects. Statistical Relational Learning, page 373, 2007.

T. Sato. Prism: A symbolic-statistical modeling language.
In Proceeding of the Intl. Joint Conference on Artificial
Intelligence, 1997.

K. Kersting and L. De Raedt. Bayesian logic programming:
Theory and tool. Statistical Relational Learning, page
291, 2007.

A. Pfeffer. Ibal: A probabilistic rational programming lan-
guage. In Proceeding of the Intl. Joint Conference on
Artificial Intelligence, 2001.

S. Park, F. Pfenning, and S. Thrun. A probabilistic language
based upon sampling functions. ACM SIGPLAN Notices,
40(1):171–182, 2005.

N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and
J. B. Tenenbaum. Church: A language for generative
models. arXiv preprint arXiv:1206.3255, 2012.

D. Wingate, A. Stuhlmüller, and N. Goodman. Lightweight
implementations of probabilistic programming languages
via transformational compilation. In Proceedings of the
International Conference on Artificial Intelligence and
Statistics, 2011.

A. Patil, D. Huard, and C. J. Fonnesbeck. Pymc: Bayesian
stochastic modelling in python. Journal of Statistical
Software, 35(4):1, 2010.

J. V Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasude-
van, D. Moore, B. Patton, A. Alemi, M. Hoffman, and
R. A Saurous. Tensorflow distributions. arXiv preprint
arXiv:1711.10604, 2017.

E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer,
N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip, P. Hors-
fall, and N. D. Goodman. Pyro: Deep universal proba-
bilistic programming. The Journal of Machine Learning
Research, 20(1):973–978, 2019.

D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Mur-
phy, and D. M. Blei. Deep probabilistic programming.
arXiv preprint arXiv:1701.03757, 2017.

D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang,
and D. M. Blei. Edward: A library for probabilis-
tic modeling, inference, and criticism. arXiv preprint
arXiv:1610.09787, 2016.

C. Bishop, D. Spiegelhalter, and J. Winn. Vibes: A varia-
tional inference engine for bayesian networks. Neural
Information Processing Systems, 15:793–800, 2002.

A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M.
Blei. Automatic differentiation variational inference. The
Journal of Machine Learning Research, 18(1):430–474,
2017.

C. Bishop and J. Winn. Structured variational distributions
in vibes. In International Conference on Artificial Intelli-
gence and Statistics, 2003.

D. J. Rezende and S. Mohamed. Variational inference with
normalizing flows. In International Conference on Ma-
chine Learning, 2015.

G. Papamakarios, E. Nalisnick, Danilo J. Rezende, S. Mo-
hamed, and B. Lakshminarayanan. Normalizing flows
for probabilistic modeling and inference. arXiv preprint
arXiv:1912.02762, 2019.

L. Ambrogioni, K. Lin, E. Fetig, S. Vikram, M. Hinne,
D. Moore, and M. van Gerven. Automatic structured

Automatic structured variational inference with cascading flows

variational inference. In International Conference on
Artificial Intelligence and Statistics, 2021.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al. Language models are few-shot learners.
Neural Information Processing Systems, 2020.

J. Winn and C. M. Bishop. Variational message passing.
Journal of Machine Learning Research, 6(Apr):661–694,
2005.

D. Wingate and T. Weber. Automated variational in-
ference in probabilistic programming. arXiv preprint
arXiv:1301.1299, 2013.

M. D. Hoffman and D. M. Blei. Structured stochastic varia-
tional inference. In Proceedings of the Artificial Intelli-
gence and Statistics, pages 361–369, 2015.

D. Tran, D. Blei, and E. M. Airoldi. Copula variational
inference. In Neural Information Processing Systems,
2015.

R Ranganath, D Tran, and D Blei. Hierarchical variational
models. In International Conference on Machine Learn-
ing, pages 324–333, 2016.

L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density esti-
mation using real NVP. In International Conference on
Learning Representations, 2017.

D. P Kingma, T. Salimans, R. Jozefowicz, X. Chen,
I. Sutskever, and M. Welling. Improved variational infer-
ence with inverse autoregressive flow. In Neural Informa-
tion Processing Systems, 2016.

C Weilbach, B Beronov, F Wood, and W Harvey. Structured
conditional continuous normalizing flows for efficient
amortized inference in graphical models. In International
Conference on Artificial Intelligence and Statistics, pages
4441–4451. PMLR, 2020.

R K Srivastava, K Greff, and J Schmidhuber. Highway
networks. arXiv preprint arXiv:1505.00387, 2015.

R. T.Q. Chen, J. Behrmann, D. K. Duvenaud, and J. Jacob-
sen. Residual flows for invertible generative modeling.
In Neural Information Processing Systems, pages 9916–
9926, 2019.

C. Huang, L. Dinh, and A. Courville. Augmented normaliz-
ing flows: Bridging the gap between generative flows and
latent variable models. arXiv preprint arXiv:2002.07101,
2020.

R. Cornish, A. Caterini, G. Deligiannidis, and A. Doucet.
Relaxing bijectivity constraints with continuously in-
dexed normalising flows. In International Conference on
Machine Learning. PMLR, 2020.

A. Caterini, R. Cornish, D. Sejdinovic, and A. Doucet. Vari-
ational inference with continuously-indexed normalizing
flows. arXiv preprint arXiv:2007.05426, 2020.

E Dupont, A Doucet, and Y W Teh. Augmented neural
ODEs. In Neural Information Processing Systems, pages
3140–3150, 2019.

S. R. Eddy. Hidden Markov models. Current Opinion in
Structural Biology, 6(3):361–365, 1996.

N. Foti, J. Xu, D. Laird, and E. Fox. Stochastic variational
inference for hidden Markov models. In Neural Informa-
tion Processing Systems, 2014.

M. Johnson and A. Willsky. Stochastic variational infer-
ence for Bayesian time series models. In International
Conference on Machine Learning, 2014.

M. Karl, M. Soelch, Ju. Bayer, and P. Van der Smagt.
Deep variational Bayes filters: Unsupervised learning
of state space models from raw data. arXiv preprint
arXiv:1605.06432, 2016.

M. Fortunato, C. Blundell, and O. Vinyals. Bayesian recur-
rent neural networks. arXiv preprint arXiv:1704.02798,
2017.

C. M. Bishop. Pattern recognition and machine learning.
Springer, 2006.

