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Figure 1: An overview of our method. A set of input images with known camera positions (a) and target camera and MPI
plane locations (b) are passed to our live view synthesis network (c), which processes the input to produce a synthesized
target view (d).

Abstract

Existing Multi-Plane Image (MPI) based view-synthesis
methods generate an MPI aligned with the input view using
a fixed number of planes in one forward pass. These meth-
ods produce fast, high-quality rendering of novel views, but
rely on slow and computationally expensive MPI generation
methods unsuitable for real-time applications. In addition,
most MPI techniques use fixed depth/disparity planes which
cannot be modified once the training is complete, hence of-
fering very little flexibility at run-time.

We propose LiveView - a novel MPI generation and ren-
dering technique that produces high-quality view synthesis
in real-time. Our method can also offer the flexibility to
select scene-dependent MPI planes (number of planes and
spacing between them) at run-time. LiveView first warps in-
put images to target view (target-centered) and then learns
to generate a target view centered MPI, one depth plane at
a time (dynamically). The method generates high-quality

renderings, while also enabling fast MPI generation and
novel view synthesis. As a result, LiveView enables real-
time view synthesis applications where an MPI needs to be
updated frequently based on a video stream of input views.
We demonstrate that LiveView improves the quality of view
synthesis while being 70× faster at run-time compared to
state-of-the-art MPI-based methods.

1. Introduction
Light fields offer a compelling way to capture the five-

dimensional plenoptic function describing all possible light
rays for a scene. However, a dense light field captured at
the Nyquist rate is practically challenging. Recent work
in view synthesis demonstrates a way to synthesize novel
views from a sparse set of images. [30, 15, 2]. These tech-
niques enable applications in 360-degree imaging and im-
mersive displays [18, 23] as well as real-time augmented
and virtual reality (AR/VR) which can provide a live and
interactive experience [19, 20, 7, 10]. Live interactive view-
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Figure 2: Accuracy vs run time for Stereo Mag [30], LLFF [15],
Ours 64 MPI planes, Ours 16 MPI planes, DeepView [8] and
NeRF [16]. SSIM accuracy is borrowed from [16] and [8]. Er-
ror bars indicate standard deviation across different tesing scenes.
Run-time is in log scale for better interpretability. Our method
with 16 plane MPI has the best run-time performance while
achieving similar or better accuracy compared to other methods.

ing experiences require view synthesis algorithms with the
following key attributes:
• Photo-realistic view synthesis, especially for nearby ob-

jects that produce large binocular disparity.
• Real-time processing of input views to generate target

views at interactive frame rates.
Recently, Multi Plane Image (MPI) have become a fa-

vorable representation for real-time view synthesis of static
scenes, achieving high quality results for many applications
[30, 24, 8, 25]. One key benefit of MPI representations
is that they are computationally efficient to render, achiev-
ing real-time speeds for static scenes. However, state-of-
the-art MPI methods require high-capacity neural networks
and large amounts of computing power to generate the MPI
from input views. Crucially, MPI generation is typically
treated as a computationally expensive preprocessing step.

VR passthrough applications [4] require view synthesis
as the input cameras cannot be co-located with the viewer’s
eyes, and scene representations cannot be pre-processed.
Consequently, there is a demand for a live view synthesis
algorithm that can update MPIs as the scene changes over
time. Due to the huge computational cost of generating an
MPI, its use in such applications has been limited. Most cur-
rent MPI generation methods have a fixed number of planes,
where each plane has a fixed pixel disparity range, yet real-
world scenes have variable disparity ranges that depend on
scene depth and sensor resolution. To overcome this, cur-
rent MPI-based methods require training with a high num-
ber of MPI planes and high capacity CNN to cover the large
disparity range of real-world scenes. This results in slower
run-time performance. To address all of these challenges,
an entirely new method of generating an MPI is needed.
Specifically, a fast MPI generation technique must avoid

disparity-dependent plane density and CNNs which require
a large number of FLOPS. A method that can dynamically
generate MPI planes regardless of their number and spacing
would allow for run-time efficiency by strategically placing
fewer scene-dependent MPI planes.

In this paper, we propose a new MPI method with two
novel properties, which we call dynamic target-centered
MPI. First, we dynamically generate the MPI one plane at
a time at a depth chosen at run-time using multiple forward
passes (or in batches), in contrast to existing work which
generates all MPI planes, at preset depths, in one forward
pass. Second, we propose to generate the MPI directly at
the target view (target-centered), differing from a conven-
tional MPI generated with respect to one input view. We
show that these two changes allow us to use fewer param-
eters in the MPI generation network, in turn enabling fast
run-time performance in spite of the need to evaluate the
network for each generated MPI plane.

Our experiments demonstrate we can achieve state-of-
the-art performance using an MPI representation for view
synthesis with fewer floating-point operations per pixel
(OPX) using a significantly smaller MPI generation net-
work compared to existing MPI methods. We also show the
dynamic selection of MPI planes can help us achieve high-
quality results even with a low number of MPI planes at
run-time, and can further boost the real-time performance.
In summary, we make the following technical contributions:

• We present a novel MPI method that can achieve state-of-
the-art accuracy for MPI based view synthesis

• We show our MPI method allows for dynamic selection of
the number and spacing between MPI planes at runtime
(without re-training).

• To the best of our knowledge, we show the first MPI-
based method, which can achieve photo-realistic live
view synthesis and runs 70× faster than Local Lightfield
Fusion [15] (existing state-of-the-art using MPI) with the
same or better pixel accuracy.

2. Related Work
View synthesis is a well-studied problem in computer vi-

sion and computer graphics. Early attempts at view synthe-
sis involve simple pixel interpolation [6] of images taken
from different views. Levoy et al. [12] developed an image-
based rendering technique by sampling the plenoptic func-
tion using multiple views. While these methods work well
for low-resolution images, good quality results depend on
the availability of dense views as well as small disparities.

Image Based Rendering IBR [22] is a broad class of
view synthesis methods comprising of techniques ranging
from interpolation of lightfields and the plenoptic function
[1, 12] to an explicit estimation of the 3D shape, appear-
ance, and scene geometry [31, 26, 21]. Lightfield inter-
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polation methods are simple and inexpensive, but require
dense sampling of the input views, while explicit scene ge-
ometry estimation is complex and computationally expen-
sive, but works with fewer input views. A typical pipeline
involves depth estimation from multi-view input and sub-
sequent warping to achieve view synthesis [3, 5]. How-
ever, these methods are only as good as the underlying
depth estimation and forward projection warping method
used. More recently, machine learning techniques, partic-
ularly those employing deep learning, are able to train on
large datasets of image pairs to learn the synthesis of novel
views. One such method [11] uses two separate networks,
one for disparity estimation and another for fusing the dis-
parity warped input views to target view. However, tech-
niques dependent on backward projection warping are poor
at handling disoccluded regions, especially with few input
views.

Implicit Representations Recently there is remarkable
progress using Multi-Layer Perceptrons (MLPs) to repre-
sent the scene as a continuous function, e.g. NeRF [16] and
its variants [13]. Recent methods extend NeRF to lever-
age internet images [14] and freely captured images [28].
Such representations have demonstrated state-of-the-art re-
sults for multi-view synthesis, with challenging geometry,
lighting, and view-dependent effects. However, these ap-
proaches require tens of GPU computation hours to train
one MLP per scene. Rendering a high-resolution image
with a pre-trained MLP model can take minutes. Although
recent work [13] improved the rendering speed with local
volumetric priors, the speeds achieved are still not suitable
for any real-time applications.

Multi Plane Image (MPI) MPI representation offers the
best combination of speed and quality. The scene is rep-
resented using a number of planar images. Each plane is
associated with a depth/disparity and the image is repre-
sented by four values (3 color and 1 alpha) at each pixel.
Novel view synthesis from an MPI is performed by simply
warping the depth planes to a novel view (via homography)
and back-to-front alpha compositing to generate the target
view. Since this involves only a few matrix operations, ren-
dering from an MPI is very fast, especially on a GPU. Zhou
et al. [30] used a CNN-based approach to generate an MPI
from input views in a single forward pass. Since then a
number of MPI-based approaches [24, 15] have been pro-
posed and shown to reconstruct high-fidelity novel views in
a single shot. Flynn et al. [8] generate MPIs for a scene by
iteratively refining the MPI to fit input views using simple
gradient-based optimization methods or learned gradients
for fast convergence.

Our method is essentially an MPI-based method. How-
ever, our MPI generation differs from existing approaches
by rendering directly at the target view and generating

RGBA values for each MPI plane individually (or batch
processing for efficiency).

3. Preliminary Background
A Multi-Plane Image (MPI) represents a scene using a

set of D depth planes from a camera viewpoint vmpi. Each
MPI plane consists of four channels (three RGB and an al-
pha channel) Conventional MPI methods input V RGB im-
ages and output D RGBA images. They first generate a
plane sweep volume (PSV) with D depth planes from the
input images. The PSV is formed by applying homogra-
phy warping from the input camera view to the target MPI
camera view for a few pre-determined depths for all input
images. Before passing the input to a CNN, these warped
images are either concatenated along the channel dimen-
sion [30] for 2D CNN or stacked along a separate depth
dimension for input to a 3D CNN [24, 15]. Existing MPI
generation methods rely on two significant assumptions:

• Static MPI: Early MPI methods [30] assumed the same
number and spacing of planes at training and rendering.
Recent 3D CNN approaches [15] allow for varying num-
bers of uniformly spaced MPI planes, but the perfor-
mance quickly degrades when the number and spacing
of planes differ in training and rendering. We perform
an ablation study in Sec. 5.2 and Fig. 7 summarizes this
finding.

• Input centered MPI: Existing MPI methods assume that
the MPI planes will only be generated once with an input
reference view (pre-generation). Then a novel view can
be quickly rendered to various target views at run-time
via back-to-front composition.

However, the assumption that MPIs can be precomputed
to increase run-time efficiency only holds for pre-recorded
scenes intended for offline playback. For live view synthe-
sis, each input-centered MPI is used only once to generate
the target novel view(s) at each time instance. In this case,
the total time to render a novel view for a dynamic scene is
the sum of MPI generation and novel view render time. For
existing methods, this time is dominated by the exorbitant
computational cost of MPI generation.

4. Proposed Method
We propose a novel MPI method that can address the

limitations in conventional MPI representations to enable
the fast run-time generation and maintain high reconstruc-
tion fidelity for live view synthesis. Our method differs
from existing MPI generation and subsequent view synthe-
sis in two distinct ways (see Fig. 3):

• Dynamic MPI: In contrast to static MPI, which uses a
CNN to output all RGBA images (or the corresponding
blending weights) at all planes in a single forward pass,
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Figure 3: A block schematic of our approach. Our target-
centered MPI generation (left) warp the input images to the tar-
get view via homography prior to passing to the network (a ho-
mography warped volume, or HWV), whereas conventional input-
centered MPI generation (right) transforms the input views to a
reference input view, which is passed to the network (a plane
sweep volume, or PSV), and then applies a homography to trans-
form to the output view.

our network generates a single RGBA image in a single
run. We run the network multiple times to generate all
the planes of the MPI. We can dynamically choose the
number and spacing of the MPI planes at run-time, which
existing methods cannot.

• Target-centered MPI: In contrast to input-centered MPI,
which first generates MPI at a fixed input camera pose
and then warps the MPI planes to the target view at run-
time, we first warp input images to a target view (target
centered), and then pass it through a CNN.

Target-centered MPI generation results in better recon-
struction quality, even with a relatively shallow CNN, al-
lowing for fast evaluation. Dynamic MPI generation al-
lows us to learn a depth plane agnostic network that gen-
eralizes well when the MPI planes (number and spacing) do
not match during input and output. Dynamic MPI genera-
tion also enables dynamic plane selection, which further im-
proves run-time performance without sacrificing accuracy.

Overall Pipeline To generate a target view with D MPI
planes, we run D forward passes, one for each of the D
MPI planes. In each forward pass, we first warp all input
images to the target view to generate a homography warped
volume (HWV). We pass HWV volume to a CNN to gener-
ate the blending weights and alpha corresponding to a single
depth plane. We then perform a weighted alpha composite
of the blending weights, alpha, and HWV to render the tar-
get image. We describe the key steps in the following.

Homography Warped Volume (HWV) First, we select
D disparity (eqi-disparity for simplicity) planes. The in-
put views are warped to target view for each disparity plane
using homography warping, resulting in an HWV Φ ∈

Layer k s chns in out input
conv1 3 1 3V / 16 1 1 PSV
conv2 3 2 16 / 32 1 2 conv1
conv3 3 2 32 / 64 2 4 conv2
conv4 3 2 64 / 128 4 8 conv3
conv5 3 1 128 / 128 8 8 conv4
ups5 128 / 128 8 4 conv5

conv6 3 1 192 / 64 4 4 ups5 + conv3
ups6 64 / 64 4 2 conv6

conv7 3 1 96 / 32 2 2 ups6 + conv2
ups7 32 / 32 2 1 conv7

conv8 3 1 48 / 16 1 1 ups7 + conv1
conv9 3 1 16 / V 1 1 conv8

Table 1: Network architecture. k is the kernel size, s is the
stride, chns denote the input and the output channels for the corre-
sponding layer. We also show in and out denoting the accumulated
output stride of each layer. Layers named ConvX are convolutional
layers followed by batchnormalization and ReLU activation (ex-
cept last layer which is just a convolutional layer), whereas layers
named upsX are bilinear upsampling layers in the spatial dimen-
sion. The input has 3V channels and output has V channels, where
V is the number of input views.

RD×V×3×H×W , where H and W are the height and width
of the input images. This aligns pixels at a specific depth
when viewed from the target viewpoint while misaligning
the pixels from different depths. The following network is
only expected to learn to assign high alpha values (and RGB
weights) to pixels that align well, and low alpha values to
pixels that don’t align well. This is a relatively simple map-
ping to learn compared to generating output views from the
plane sweep volume that is conventionally used.

Neural Network We use a 2D CNN fθ to learn the
weights W ∈ RD×(V−1)×H×W and alpha α ∈ RD×H×W

corresponding to the target MPI from the input HWV Φ

fθ : Φ→W, α (1)

We use a standard U-Net structure with five convolution
layers followed by a transpose convolution with a skip con-
nection. Given the network output tensor, we use a sigmoid
operation on the first channel to predict α and a softmax
layer on the other to generate the weights W. We show the
network architecture in Tab. 1.

Rendering the MPI Given predicted W, α, we first nor-
malize Wi based on the Euclidean distance of the input
view the target, and then blend using alpha composition to
generate the final RGB image at the target view.

Dynamic Plane Selection Our method allows for prefer-
entially choosing depth planes at run-time. Ideally, we want
to have MPI planes at depths that match the object’s position
in the scene. We employ a simple depth histogram-based
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Figure 4: Reconstruction results for 10-view Spaces dataset test scenes. Insets show a comparison against Local Lightfield Fusion
(LLFF) [15] using two 5-view MPI and absolute difference from ground truth. Note our method generates better results around occlusion
boundaries in the first scene and thin structures in the second scene. Supplementary materials contain video results for continuous viewpoint
motion.

strategy to selectK (< D) planes fromD uniform disparity
MPI planes. Each output pixel is assigned a depth index di
based on the depth plane its alpha value achieves maximum
value. We then create a histogram of the depth index for
all pixels by binning them into D bins. Depth planes cor-
responding to top K bins are selected for rendering a novel
view. We plot the performance of the view synthesized with
these K MPI planes. Fig. 8 shows that the performance of
dynamically selected planes is more favorable than uniform
disparity planes for the same number of MPI planes.

We demonstrate this plane selection scheme can be par-
ticularly useful for live video synthesis in Sec. 5.4, where
we use the first frame of a video to determine the depth
planes to use for the rest of the sequence.

5. Experiments
Implementation Our method involves homography
warping input views to target view, followed by forward
pass of our CNN described in table 1for each depth plane
and subsequently weighted alpha compositing. For training
our CNN network, we use Adam optimizer with a learning
rate of 10−4, β1 = 0.9 and β2 = 0.999. For results on the
Deepfocus dataset, each network is trained on the Deepfo-

cus dataset with the specific input view configuration for
100K iterations. For results on Spaces dataset, network
pre-trained on Deepfocus dataset were used as initialization
and trained on Spaces dataset for another 100K iterations.

Baselines We compare to the following methods:

• Stereo Magnification [30]: We modified it to take 5 input
views.

• Soft3D [17]: This method provides a baseline using vol-
ume rendering without learning. We use the test images
generated by authors of Soft3D on Spaces dataset with 4
views and a large baseline [8].

• Local Light field Fusion (LLFF) [15] : This method takes
multiple neighboring pre-rendered MPIs to synthesize a
specific view at run-time.

• Local Lightfield (Local LF): It is the 3D CNN used to
generate MPIs at specific grid points for LLFF [15].

• DeepView [8]: It provides a baseline for using iterative
learned gradient descent to generate MPI planes. We use
the test images generated by authors on Spaces dataset
with 4-view, large baseline, and 80 MPI planes [8].

We trained and tested our implementation of Stereo
Magnification, LocalLF, and LLFF methods on Spaces and
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Model Deepfocus Spaces
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

4-View
Soft3D[17] - - - 30.14 0.9273 0.1177
DeepView [8] (80 planes) - - - 32.92 0.9607 0.0766
Ours 31.98 0.9576 0.0743 32.01 0.9475 0.0992

5-View
Stereo Magnification[9] 29.23 0.9301 0.0769 27.98 0.8928 0.1231
Local LF [15] 33.8 0.9611 0.0581 30.44 0.9324 0.1181
Ours 34.29 0.9678 0.0565 31.05 0.947 0.1017

10-View LLFF[15] 36.08 0.9841 0.0421 33.06 0.949 0.1149
Ours 36.69 0.9863 0.0402 34.18 0.9631 0.085

Table 2: Performance summary for different view synthesis methods on the Deepfocus [27] and Spaces [8] datasets. Results shown for 4,
5, and 10 input views to provide a fair comparison. 5 views are used for Stereo Magnification [30] and Local LF (base network for LLFF
[15]), which achieve best results when the MPI is centered at one of the input views. For LLFF, we need 2 MPIs generated using Local LF,
requiring 10 views. The number of MPI planes was fixed at 64 eqi-disparity planes, except for DeepView, which had 80 MPI planes. Our
method outperforms Soft3D, Stereo Magnification, Local LF, LLFF, while achieving comparable results to DeepView, an iterative method.

Deepfocus datasets. We couldn’t compare Soft3D and
DeepView with other camera configurations and Deepfo-
cus datasets as there is no existing public implementation
of their method.

Our method is flexible with the number of input views.
We perform experiments with three different input cam-
era configurations with a different number of input views.
We evaluate on 4 input views to match the 4-view, large
baseline configuration used in DeepView [8] and compare
against DeepView and their implementation of Soft3D on
Spaces dataset. We use five input views to compare per-
formance against modified Stereo Magnification [30] and
Local Lightfield 3D CNN [15] which requires the MPI to
be centered at one input view for best performance. We use
ten input views to compare against Lightfield Fusion [15]
which requires at least two MPIs as input, each requiring
five input views.

Metrics We provide a quantitative evaluation in Tab. 2
using standard image metrics PSNR and SSIM as well as
perceptual metric LPIPS [29].

Datasets We test our performance on two datasets:

• Deepfocus[27]: It consists of 86 synthetic rendered
scenes of objects with challenging texture and lighting
conditions. We perform all ablations on this dataset.

• Spaces[8]: It consists of 100 real world (outdoors + in-
doors) from camera rig of 16 cameras.

We first provide both quantitative and qualitative evalua-
tion of our method compared to baselines on existing static
novel view synthesis datasets in Sec. 5.1, and then we fur-
ther demonstrate a few ablations in Sec. 5.2. We evaluate
our method for speed by comparing the run-time perfor-
mance in Sec. 5.3. We also show the performance of our
video view synthesis in Sec. 5.4 using the rendered scene

from the First Contact used in Deepfocus [27]. We include
the video results in the supplementary materials.

5.1. Evaluation on Novel View Synthesis

Tab. 2 shows a summary of our performance of ours as
well as other state-of-the-art methods on different datasets.
It shows the superiority of our reconstructions in terms of
PSNR, SSIM, and LPIPS metrics. Continuous view interpo-
lation video results are included in the supplementary ma-
terials.

We show visual comparisons of the 10 view input with
LLFF in Fig. 4 as well as a 5 view input comparison with
Local LF and Stereo-Magnification in Fig. 5. Zoomed in
insets with the corresponding absolute error map shows that
our method achieves better results in challenging regions
like occlusion boundaries and thin structures.

5.2. Ablation Study

We perform a few ablations to better understand our dy-
namic target-centered MPI. We use the same network in
Tab. 1 as comparing it against the 3D CNN architecture of
Local Lightfield Fusion [15] which we refer to as Local LF.

Combinations of MPI representation. Fig. 6 shows the
performance of all four combinations of target-centered /
input-centered and static/dynamic plane generation. The
zoom inset on the right shows that target-centered methods
improve accuracy, while the trend of static vs dynamic plots
on the left shows that dynamic processing improves perfor-
mance when the training and testing number of planes are
different.

Varying number of output planes Figure 7 shows the
performance of static vs dynamic networks on different
numbers of output planes when trained for 32 planes (red
curve) and 16 planes (green curve). We see that the perfor-
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Figure 5: Reconstruction results of our method on a 5-view test scene from the Spaces dataset. Insets show a comparison against
Stereo-Magnification [30] and Local Lightfield (without fusion) using 5-view MPIs [15], as well as absolute difference from ground truth.
Supplementary materials contain video results for continuous viewpoint motion.
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Figure 6: Performance of all four combination of input-centered / target-centered and static / dynamic MPI generation methods. All
method were trained with 64 MPI planes and tested with variable number of planes ranging from 8 to 64. We find that target-centered
approach helps achieve better peak accuracy, while dynamic MPI generation shows a favourable falloff when training and testing number
of planes do not match.

mance of Local LF peaks when tested on the same number
of planes as training but quickly degrades with a change in
the number of testing planes. Our dynamic MPI generation
method yields a monotonically improving performance as
we increase the number of testing planes.

5.3. Speed

The primary advantage of our MPI method is its fast run-
time performance compared to other view synthesis meth-
ods when considering the time taken to generate the MPI.
Tab. 3 shows the performance of modified Stereo Magnifi-
cation, Local LF (base network for LLFF), LLFF, and our
method on 64, 32, and 16 planes, on an image resolution
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Figure 7: Performance of target-centered static (Local Light-
field 3D CNN adapted for target-centered MPI generation) vs our
target-centered dynamic generation by training networks with dif-
ferent number of equi-disparity planes. Solid colored dot indicates
where training and testing plane counts match. Note that dynamic
MPI generation shows a more favorable falloff when the number of
planes decreases from 64 to 8 uniformly spaced disparity planes.

Model run-time (s) ↓ OPX ↓ Parameters
Stereo Magnification (64 planes) 0.127 1.39 M 14.9 M
Local LF [15](64 planes) 1.73 2.96 M 835 K
LLFF [15] (64 planes) 3.53 5.92 M 835 K
Ours (64 planes) 0.172 1.79 M 391 K
Ours (32 planes) 0.095 894 K 391 K
Ours (16 planes) 0.050 447 K 391 K

Table 3: Performance without pre-generating the MPI, in terms
of run time, OPX (FLOPS per pixel), and number of parameters.
Our approach has significantly lower complexity and better run-
time speed.

of 350 x 500. We benchmark it via a Pytorch implementa-
tion using 32-bit floating-point precision on a single Nvidia
Quadro V100 GPU. Tab. 3 shows that our method is signif-
icantly faster compared to all existing MPI methods, requir-
ing significantly fewer parameters to learn, and significantly
fewer OPX at run-time.

Fig. 8 shows the importance of dynamic plane selection
discussed in Sec. 4. By using our dynamic plane render-
ing, we achieve an SSIM score of 0.9575 with only K = 16
planes, which is less than a 1% drop from the performance
of 0.966 at 64 uniform disparity planes (same as training).
This essentially allows us to render a static scene in about
50 ms, corresponding to 20 FPS. Compared to Local Light-
field Fusion, this is about 70 times faster while achieving
higher accuracy.

5.4. Video View Synthesis

We demonstrate novel view synthesis on videos using the
First Contact robot scene from the Deepfocus dataset [27]
in our supplementary materials. Our method can achieve
about 20FPS rendering with dynamic plane selection with

0 10 20 30 40 50 60 70
Number of Planes

0.75

0.80

0.85

0.90

0.95

1.00

SS
IM

Performance of depth histogram based plane selection

Uniformly spaced
Depth histogram selected planes

Figure 8: Performance comparison of our depth histogram based
dynamic plane selection method described in Sec. 5.3 vs uniformly
spaced disparity planes using the same network. The network was
trained using 64 uniform disparity planes. We see that dynamic
plane selection improves performance with fewer planes while
matching performance with many planes.

minimal loss in accuracy. Optimally selecting MPI planes
requires prior knowledge about a scene (e.g., from a depth
sensor or densely sampling the scene). For a proof-of-
concept with video input, we sample 64 uniform disparity
planes for the first frame, then downselect to 16 planes using
our dynamic plane selection method described in Sec. 4 and
then reuse them for the remainder of the video. This amor-
tizes the computational cost of generating a large number of
planes for the first frame. Our experiments show less than
1% loss in SSIM scores using this dynamic plane strategy
compared to running all 64 MPI planes frame-by-frame.

6. Limitations
Though our method is favorable for live view synthe-

sis where pre-generating MPI is not feasible, for appli-
cations including static scene rendering or video replay,
rendering can still be more efficient using existing MPI
methods or preprocessing MPI videos to a more compact
representation[2], compared to our method. Our method as
well as existing methods also require the orientation of the
input cameras to be fixed at training and testing and hence
requires re-training for different camera configurations.

7. Conclusion and Future Work
We propose a novel MPI representation to achieve high-

quality view synthesis compared to existing techniques that
use a pre-generated MPI. We show that our method achieves
a better quality of rendering results compared to existing
state-of-the-art methods on both synthetic as well as real-
world datasets while being orders of magnitude faster. We
further show that our method offers the flexibility to choose
MPI depth planes at run-time without significant perfor-
mance degradation. By combining our fast view synthesis

8



with a histogram-based depth selection technique, we were
able to achieve real-time video view synthesis.

We believe that sampling a scene at run time with dy-
namically selected MPI planes can further boost perfor-
mance for real-time live view synthesis applications. Lastly,
our results point to a promising direction for future im-
provements exploiting spatio-temporal coherence within
MPI representations, thereby reducing complexity in gen-
erating separate MPIs for successive frames. We leave this
for future work.
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