
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Leveraging Knowledge Distillation to Mitigate Model
Collapse

Anonymous authors
Paper under double-blind review

Abstract

Since the amount of data generated by neural networks on the Internet is
growing rapidly due to widespread access to corresponding models, it is logi-
cal to inquire about the impact of this surge in synthetic data on the training
of subsequent models that will utilize it during training. Previous work has
demonstrated a concerning trend: models trained predominantly on syn-
thetic data often experience a decline in performance, which can escalate
to a complete loss of the ability to reproduce the initial distribution of real-
world data. This phenomenon, now referred to as model collapse, highlights
the potential pitfalls of over-reliance on synthetic datasets, which may lack
the diversity and complexity inherent in genuine data.To address this issue,
we propose a novel method that leverages the well-established technique of
knowledge distillation. Our approach aims to mitigate the adverse effects
of synthetic data by facilitating a more effective transfer of knowledge from
high-performing teacher models to student model. By doing so, we seek to
enhance not only the qualitative aspects—such as the richness and variabil-
ity of the generated outputs—but also the quantitative metrics that gauge
model performance. Through extensive experimentation, we demonstrate
that our method improves the robustness and generalization capabilities of
models trained on synthetic data, for instance for DDPM enhancement is
68.8%, in terms of the FID metric, contributing to a more sustainable and
effective use of synthetic datasets in machine learning applications.

1 Introduction

Generative models have become ubiquitous, what has caused increase of synthetic data
available. Consequently, future models will inevitably be trained on such kind of data, what
can have detrimental effects on their performance — a phenomenon now commonly referred
to as Model Collapse (Shumailov et al., 2023). As the proportion of synthetic data within a
training subset increases, the behavior of the trained models becomes more unpredictable.
For example, language models trained on synthetic data are prone to generate less likely
or coherent responses compared to those trained on real-world data. Furthermore, it is not
uncommon to observe repetitive words or phrases in the outputs of language models exposed
to synthetic data during training.

The primary cause of this issue lies in the distributional properties of the synthetic data.
Since synthetic data is generated from a finite number of samples, its distribution only
approximates that of real data. As synthetic pipelines becomes deeper — through repeated
cycles of data generation and model retraining — the resultant data distribution diverges
progressively from the original, leading to degraded model performance over time.

Knowledge distillation (Hinton et al., 2015) has emerged as an effective technique for trans-
ferring the knowledge and capabilities of a larger model to a smaller one. This approach has
shown considerable potential. (Sanh et al., 2020; Muralidharan et al., 2024). Motivated by
this, we explore the application of knowledge distillation to mitigate the problem of Model
Collapse by transferring the knowledge of a model trained on real data to a model that has
been trained on synthetic data. In particular, since the models used in knowledge distilla-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

tion in our case have the same number of parameters and architecture, we apply so-called
self-distillation (Mobahi et al., 2020).

To sum up, the main contributions of this paper are:

1. We propose the use of knowledge distillation as a solution to address Model Collapse.
2. We perform experiments across different modalities and architectures, providing

empirical evidence of the effectiveness of our approach.

Our research is structured as follows: at first we consider papers, related to ours, then
describe the technique itself. After that we demonstrate the effectiveness of our method
on unconditioned image generation task on such architectures as Variational Autoencoder
(VAE) (Kingma & Welling, 2013) and Denoising diffusion probabilistic model (DDPM) (Ho
et al., 2020). Further we consider causal language modelling task, i.e. abstractive text
summarization. In conclusion, we discuss the obtained results.

2 Related work

In this section, we describe existing works, related to our.

Model Collapse (Shumailov et al., 2023) is a process of losing performance, while being
progressively trained on synthetic data. The higher the percentage of synthetic data in the
training dataset, the higher the divergence between the output distribution and the initial
one. It has been showed, that this behavior is intrinsic for every modality and architec-
ture, regardless of number of parameters, except that small models are more susceptible to
collapse.

Knowledge distillation (Hinton et al., 2015) is an effective technique of transferring the
capabilities of one trained model (teacher) to another with fewer parameters (student). It is
achieved by adding to the initial loss function an extra term, that penalizes student for the
difference between its outputs and teacher ones. In our case, architectures and numbers of
parameters stay constant, and we use so-called self-distillation (Mobahi et al., 2020). But
main difference of our approach is that the dataset used for training the student model
consists completely of generated data.

Approaches, aimed to mitigate model collapse include several techniques. First of
all, we can simply keep some percentage of the real-world data and do not replace it with
synthetic, but accumulate all the data in one dataset (Gerstgrasser et al., 2024). This
approach helps to reduce effect of Model Collapse, but it is noticeable, that this method
does not make synthetic data itself more applicable for training purposes. In other words,
we still have skewed data distribution in our dataset. Our approach is aimed at making
synthetic data have more information about initial distribution, what can also benefit while
training with accumulation, like in the mentioned case (Gerstgrasser et al., 2024). Another
way of mitigating Model Collapse implies using so-called corrective functions (Gillman et al.,
2024). This approach was widely tested on the human motion synthesis task and significantly
less on image generation. Our research is aimed more at generating images and text.

3 Distillation for synthetic pipeline

Our approach involves employing a method analogous to self-distillation (Mobahi et al.,
2020) to mitigate Model Collapse. Let LM be the loss function of some generative model
M , training on dataset D. We denote the resulting trained by minimizing LM model as
M0. Additionally, we define DM0 as the dataset, sampled by M0. Now, drawing parallels
with self-distillation, we define the model M1 as the student model and the model M0 as
the teacher model. Then L(M0,M1) is loss function between student and teacher outputs.
We emphasize that loss can be computed not only between predictions of models but also,
for instance, between outputs of particular layers.

We define the final loss as a weighed sum of the original loss function LM and the loss
function between predictions of teacher and student: LSD = LM + λL(M0,M1), where λ

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

0 10 20 30 40 50 60 70
Epoch

0.045

0.050

0.055

0.060

0.065

0.070

0.075

L M
(T

es
t)

Distillation with various

M0
M1

= 1.0
= 0.75
= 0.5
= 0.25
= 0.0

Figure 1: Comparison of distillation with various λ. An analysis of model performance
relative to variations in the λ coefficient reveals that setting λ to zero does not significantly
diminish the model’s capabilities when compared to instances where λ assumes nonzero
values.

is the weight of distillation. We refer to this function as the loss function of synthetic
distillation (SD). Then the model, trained by minimizing this loss, is denoted as Mdistilled.

By minimizing LSD, we simultaneously enable the student model to learn to solve the task
in the conventional manner while also assimilating the skills acquired by the model trained
on real data, which significantly enhances the model performance.

We note that we did not utilize data accumulation (Gerstgrasser et al., 2024); that is,
the dataset used to train models subsequent to M0 does not contain real-world data and
maintains the same size.

4 Image generation

We now turn our attention to experiments involving image generating models. We will
begin with a simple example of using the VAE (Kingma & Welling, 2013) architecture and
subsequently explore more advance architecture DDPM (Ho et al., 2020).

4.1 VAE

We commence our examination of generative image models with the Variational Autoencoder
(VAE). For our experiments, we selected MNIST (LeCun et al., 2010) dataset. We denote
LV AE = Lrec + λDKL, where Lrec represents the reconstruction loss, DKL denotes KL-
Divergence, λ is distillation weight. Chosen architecture has encoder and decoder inside,
each of which consist of two linear layers with ReLU nonlinearity between. Output is 32x32
pixels single-channel picture. Each of models, has approximately 887K parameters.

The training is conducted on train subset of MNIST size of 60000 examples, models are eval-
uated on test subset size of 10000 examples. For optimization AdamW optimizer (Loshchilov
& Hutter, 2019) is used with learning rate 0.001. The training lasts for 70 epochs with a
batch size of 256 pictures, equivalently 16450 optimization steps. Evaluation is performed
after each epoch, in other words, on every 236th step.

After training M0, we sample a dataset size of 60000, using the best weights in terms of
the magnitude of loss function on test subset LM (Test), on which we conduct following
experiments. This principle is also true for other architectures.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

0 10 20 30 40 50 60 70
Epoch

0.045

0.050

0.055

0.060

0.065

0.070

0.075
L M

(T
es

t)

Distillation with various

M0
M1

= 2.0
= 1.5
= 1.0
= 0.5
= 0.0

0 10 20 30 40 50 60 70
Epoch

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

L M
(T

es
t)

Distillation with various

M0
M1

= 2.0
= 1.5
= 1
= 0.75
= 0.5
= 0.25
= 0.0

Figure 2: Comparison of distillation with various coefficients β and γ. Left: comparison of
different β. The less the β, the greater LM (Test), setting β to zero leads to performance even
worse, than our synthetic baseline M1; Right: there is no clear conclusion about LM (Test),
but γ equals zero has the worst results, while other nonzero values show comparable results.

Figure 3: Comparison of samples generated by models. Left: samples generated by model
M1 (without using our method); Right: samples generated by model Mdistilled.

Let Y be ground-truth labels, Ŷs be predictions of student (M1), and Ŷt be predictions of
teacher (M0). Moreover let Es, Et, V ars, V art be predictions of means and variances for
reparametrization respectively.

Thus, Mdistilled is model, minimizing following loss:

LSD = LV AE(Ŷs, Y) + λLV AE(Ŷs, Ŷt) + βLMSE(Es, Et) + γLMSE(V ars, V art) (1)

where, λ, β, γ are some coefficients, LV AE is VAE loss function, LMSE is mean squared
error (MSE).

The results of our approach are depicted in Figure 1, depending on λ, whilst other coefficients
are fixed: β = 1.0, γ = 1.0. As a result, we have found out, that LV AE(Ŷs, Ŷt) term has
little significance in terms of minimizing LM (Test). In general, we can see the greater λ,
the worse the results.

Now we move on to β, other coefficients are fixed: λ = 0.5, γ = 1.0. As we can see in Figure
2 (Left), a decrease of β leads to worse results. Setting it to zero shows performance even
worse, than M1. Increase of β leads to better results to a certain extent.

Now consider coefficient γ. Comparison is in Figure 2 (Right), other coefficient are fixed:
λ = 0.5, β = 1.0. No significant difference is noticed in range from 0.25 to 2.0. Nonetheless,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

400 4400 8400 12400 16400 20400 24400 28400
Step

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.015

L M
(T

es
t)

Comparison of DDPM across different settings
M0
M1

= 1.0
= 0.75
= 0.5
= 0.25

MSE

Figure 4: Results of our approach applied to DDPM architecture. Our method shows
results comparable with the initial model M0. In the legend, MSE refers to the model
that minimizes LSD while incorporating an additional MSE penalty between the encoder
outputs.

setting to zero reduces model performance significantly, though the model still outperforms
M1.

Results for all models can be found in Table 1. Best model has following coefficient: λ = 0.5,
β = 1.0, γ = 1.0. Meanwhile, setting λ to zero leads to a loss of 0.12% regarding other
coefficients being fixed in terms of LM (Test), β to 12.91% and γ to 4.83%. Last row
corresponds to M1, regarding this model, the performance has improved by 9.6%.

Besides quantitative results, samples of model M1 and model Mdistilled are presented in
Figure 3. As we can see, Mdistilled (Right) generates not only more various examples, but
also more accurate.

Table 1: VAE results depending on coefficients values
λ β γ LM (Test)

1.0 1.0 1.0 0.05739
0.75 1.0 1.0 0.05692
0.5 1.0 1.0 0.05630
0.25 1.0 1.0 0.05639
0.0 1.0 1.0 0.05637
0.5 2.0 1.0 0.05639
0.5 1.5 1.0 0.05651
0.5 0.5 1.0 0.05851
0.5 0.0 1.0 0.06357
0.5 1.0 2.0 0.05694
0.5 1.0 1.5 0.05708
0.5 1.0 0.75 0.05651
0.5 1.0 0.5 0.05654
0.5 1.0 0.25 0.05677
0.5 1.0 0.0 0.05902
0.0 0.0 0.0 0.06228

4.2 DDPM

Next architecture is DDPM (Ho et al., 2020). The training was conducted on subset size
of 15000 images, each size of 64x64 pixels, from CelebA dataset (Liu et al., 2015). We

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 5: Results of our approach applied to DDPM architecture depicted in generated
samples. Left: samples from M0 are the most various, we can see different colors and even
accessories on the face, but sometimes images are repeated. Middle: Samples from M1.
There are much less differences between generated images, people have predominantly blond
hair and lighted faces. Right: Samples from Mdistilled with λ set to 0.5. Our approach
shows comparable results with high diversity in faces and hair.

take a batch of size 32 for training and 1 for evaluation. For optimization AdamW was
used with learning rate 0.0001. For linear noise scheduler we use T equals 1000. Each
model is trained for 30000 optimization steps, with evaluation on hold-out subset size of
5000 examples every 400 steps. Our model has default DDPM architecture of UNet (Ho
et al., 2020), with attention intermediate layer and residual connections between Encoder
and Decoder. Every model has 39M parameters.

As the DDPM loss function LDDPM we take SmoothL1Loss. Than our LSD has following
form:

LSD = LDDPM (Ŷs, Y) + λLDDPM (Ŷs, Ŷt) (2)

where, Y are ground-truth labels, Ŷs are predictions of M1, Ŷt are predictions of M0, λ is
some coefficient.

The results of applying our method to the DDPM model are presented in Figure 4. As we
can see, the distilled models consistently outperform M1. We explore various values of λ,
with the best performance observed at λ = 0.5. In addition to experimenting with λ, we
also attempted to add to the Equation 2 MSE term between encoder outputs, scaled by 0.5
(denoted in Figure 4 as MSE), but this did not result in any improvement in performance.
Furthermore, all models were used to sample 5000 images, which were then compared in
terms of the Frechet Inception Distance (FID) (Heusel et al., 2018) with the evaluation
subset. The complete results for all models are presented in Table 2. As shown, the model
with λ = 0.5 yields the best results, first row with λ = 0.0 corresponds to the model M1.

Table 2: DDPM experiments results.
λ LM (Test) FID

0.0 93.49 ×10−5 59.94
1.0 89.53 ×10−5 49.35
0.75 89.82 ×10−5 54.04
0.5 88.09× 10−5 48.81
0.25 90.98 ×10−5 52.24

0.5 +MSE 90.01 ×10−5 50.12
M0 83.32 ×10−5 43.77

Now we consider the qualitative enhancement, that provides our approach. In Figure 5 we
can the the comparison between samples from M0 (Left), M1 (Middle) and Mdistilled with
λ set to 0.5. As we can see, our method helps to increase variety in generated samples,
which means that the resulting distribution bears more resemblance to the initial one.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

5000 10000 15000 20000
Step

0.4105

0.4110

0.4115

0.4120

0.4125

0.4130

0.4135

0.4140

0.4145
RO

UG
E-

1

Comparison of models by ROUGE-1

M0
M1

= 10.0
= 5.0
= 2.0
= 0.5
= 0.25

5000 10000 15000 20000
Step

0.1865

0.1870

0.1875

0.1880

0.1885

0.1890

0.1895

0.1900

RO
UG

E-
2

Comparison of models by ROUGE-2

M0
M1

= 10.0
= 5.0
= 2.0
= 0.5
= 0.25

Figure 6: Results of our approach in terms of metrics ROUGE-1 and ROUGE-2. Left: Eval-
uation of ROUGE-1. As we can see, our models with λ equals 5.0, 2.0, and 0.5 outperform
M1. Right: Evaluation of ROUGE-2. Our models mostly outperform M1, in particular,
model with λ equals 5.0 shows significantly better results, comparable to M0.

Overall, our approach substantially reduces the performance gap between M0 and M1,
achieving a notable 68.8% improvement in terms of the FID metric and improves outputs
diversity. These findings highlight the effectiveness of our method in enhancing model
quality within the DDPM architecture.

5 Text summarization

Consider now our approach applying to causal language modelling task. In particular, we
have chosen abstractive text summarization task. As a model we take small version of
pretrained T5 (Raffel et al., 2023) and fine-tune it by minimizing LCE cross-entropy loss on
newspaper dataset CNN/Daily Mail (See et al., 2017). Train subset includes 287K articles
with corresponding highlights, validation subset has 13K examples. Training was conducted
for 20000 steps with evaluation on every 5000th. Every article is cut to 1024 first tokens,
every highlight to 128 first tokens, also during generation of synthetic data. For optimization
we use a batch size of 32 articles, AdamW optimizer with learning rate 0.00002 and cosine
scheduler with warmup for first 2500 steps and the number of waves equals 0.5. Overall,
during training 655M tokens pass through the model. On every evaluation step we compute
metrics ROUGE-1, ROUGE-2 and ROUGE-L (Lin, 2004). During generation we use greedy
decoding.

Our LSD has the following form:

LSD = LCE(Ŷs, Y) + λLCosDist(Ẑs, Ẑt) (3)

where, Y are ground-truth labels, Ŷs are student model (M1) predictions, Ŷt are teacher
model (M0) predictions, Ẑs, Ẑt are outputs from the last layer of corresponding models,
LCosDist is cosine distance and λ is some coefficient.

Results of experiments in terms of metrics ROUGE-1 and ROUGE-2 can be found in Figure
6. As we can see, in case of ROUGE-1 (Figure 6 (Left)), where unigrams of sentences are
compared, our approach shows better results than M1, but distilled models still underper-
form M0. Model with λ equals 0.5 shows best results, while worst results has the model with
λ equals 10.0, which are even lower than with λ being zero. In case of ROUGE-2 (Figure 6
(Right)), where bigrams are compared, we get some interesting results. We did not expect
our approach enhance the results of ROUGE-2 more than ROUGE-1. Model with λ equals
5.0 shows results, even comparable with M0. We also can see similar behaviour in models
with λ equals 2.0 and 0.5. So, the best coefficients for enhancing ROUGE-1 results are
between 0.5 and 5.0. Thus, the best coefficients for enhancing ROUGE-1 and ROUGE-2
are between 0.5 and 5.0.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

5000 10000 15000 20000
Step

0.2890

0.2895

0.2900

0.2905

0.2910

0.2915

0.2920

0.2925

0.2930

RO
UG

E-
L

Comparison across models on ROUGE-L
M0
M1

= 10.0
= 5.0
= 2.0
= 0.5
= 0.25

Figure 7: Results of models in terms of metric ROUGE-L. As we can see it is much more
complicated for all models trained on synthetic data to close the gap. Nonetheless, our
method improves the results of model M1.

Results of testing models on metric ROUGE-L can be found in Figure 7. This metric is
based on the longest common subsequence, what has certain implications. Our models
do not perform as well as M0, comparing with ROUGE-1 and ROUGE-2 cases, but still
outperform M1. Notably, the model with λ set to 5.0 yields poorer results in terms of
ROUGE-L metric. In contrast, λ values of 0.5 and 2.0 demonstrate the best performance
overall. In general, we think, that λ should be between 0.5 and 2.0, for maximizing all the
ROUGE metrics.

Table 3: Summarization experiments results.
λ ROUGE-1, % ROUGE-2, % ROUGE-L, % Mean perplexity

0.0 41.3489 18.9637 29.0863 30.6956
0.25 41.3469 18.9437 29.1009 32.0119
0.5 41.3749 18.9759 29.1384 31.8875
2.0 41.3647 18.9765 29.1285 31.7536
5.0 41.3839 18.9837 29.0942 31.3973
10.0 41.3102 18.9423 29.1119 31.4995

Besides ROUGE metric, we also evaluate perplexity per token for each model, with results
presented in Figure 8. For this evaluation, we utilize the open HuggingFace library and
the GPT-2 model (Radford et al., 2019) and use weights of our models, obtained after the
last evaluation step. As illustrated, model M1 truncates the tail of the tokens distribution
and frequently generates tokens that the original model would not produce so often. In
contrast, our model is less prone to this behavior, resulting in a broader distribution. The
mean perplexity of each model, along with other evaluation metrics, is summarized in Table
3. Interestingly, the model with λ = 0.25 achieves the best perplexity performance, despite
its relatively lower performance on the ROUGE framework. For clarity, we do not present
histograms of perplexities of other models, as their distributions are approximately similar
in shape.

The results of generating all models are shown in Table 4. As we can see, M1 loses a lot in
generation and falls into repeating the same phrase, while our model outputs a comparable
summarization. We use version of distillation with λ equals 0.25. Another example of
generation can be found in Table 5. M1 shows much better results, but our model Mdistilled

generates summarization with more details.

In conclusion, our approach shows promising potential for improving performance in causal
language modeling tasks. The evaluation using both ROUGE and Perplexity metrics reveals

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 100 200 300 400 500 600 700
Tokens

0

100

200

300

400

500

600

Pe
rp

le
xi

ty

Comparison of models in terms of perplexity per token
M0
M1

= 0.25

Figure 8: Perplexity per token in outputs of model M0 (trained on real data), M1 (trained
on synthetic data) and our distilled version of M1 with λ = 0.25. As we can see, our model
demonstrates lower tendency to "narrowing" of distribution.

that, while ROUGE scores provide insight into the summary accuracy of the model, perplex-
ity offers a deeper understanding of token-level generation quality. Notably, the model with
λ = 0.25 achieves the best perplexity results, highlighting the effectiveness of our method,
despite its relatively lower performance on ROUGE. These findings suggest that our model
is less prone to undesirable token generation.

Table 4: Models outputs comparison.
Original highlight The average WNBA player makes $72K; the average NBA

player makes $5 million. There are huge disparities between
men’s and women’s sports, a former Olympic champ says.
A recent survey says both men and women believe men are
better at sports.

M0 output Women’s sports have a long way to go before we get to true
gender equality. The women are still young, with Title IX
only a few decades old. The women are a story without a
photo deep in the sports section.

M1 output Women’s sports are the one area where they believe there
are differences. The women? A story without a photo deep
in the sports section. The women? A story without a photo
deep in the sports section.

Mdistilled output The women’s basketball team hasn’t had a great season for
years. The Princeton women’s basketball team hasn’t had
a great season for years. The women’s sports are the one
area where they believe there are differences. The women’s
sports is still young, with Title IX only a few decades old.

6 Discussion

In conclusion, our paper presents a novel approach to self-distillation, demonstrating that
distillation between a model trained on real-world data (teacher) and one trained on syn-
thetic data (student) can significantly enhance the performance of the last one. Our method,
which is simple to implement, proves effective in mitigating Model Collapse in both image
and text generation tasks. While the method has shown promising results, its impact on
models utilizing data accumulation strategies (Gerstgrasser et al., 2024) remains an open

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 5: Examples of summarization.
Original highlight Kenneth Golightly, 29, charged with aggravated robbery.

Accused of holding up MedStar ambulance driver at knife-
point in Fort Worth, Texas. Video from inside the ambu-
lance shows Golightly running a red light and doing speeds
of more than 70mph before crashing through a fence.

M0 output Kenneth Golightly, 29, charged with aggravated robbery in
connection to the armed hijacking of a MedStar ambulance
in Fort Worth, Texas. Police say Golightly pulled a knife on
the driver and forced him out of the ambulance. The vehicle
eventually crashed through a metal fence. Golightly fled
the ambulance on foot after the collision. Police say a Good
Samaritan witnessed the crash and Golightly’s getaway, and
followed him until officers responded to the scene and placed
him under arrest.

M1 output Kenneth Golightly, 29, was arrested last Wednesday for
allegedly carjacking an ambulance and taking it on wild
joyride. Police say Golightly pulled a knife on the driver
and forced him out of the ambulance. He then took the
vehicle on a high-speed ride that lasted several blocks. The
vehicle eventually crashed through a metal fence.

Mdistilled output Kenneth Golightly, 29, was arrested last Wednesday and
charged with aggravated robbery in connection to the
armed hijacking of a MedStar ambulance in Fort Worth,
Texas. Police say Golightly pulled a knife on the driver
and forced him out of the ambulance. He then took the
vehicle on a high-speed ride that lasted several blocks. The
vehicle eventually crashed through a metal fence.

question. Although we hypothesize that our approach could offer improvements in such
scenarios, further empirical investigation is needed. Overall, we have shown that our self-
distillation method increases the utility of synthetic data for training, suggesting a practical
solution for improving performance across a variety of generative tasks. Future work will
focus on exploring these open questions and extending the applicability of approach to a
broader range of models and tasks.

References
Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John

Hughes, Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, Daniel A.
Roberts, Diyi Yang, David L. Donoho, and Sanmi Koyejo. Is model collapse inevitable?
breaking the curse of recursion by accumulating real and synthetic data, 2024. URL
https://arxiv.org/abs/2404.01413.

Nate Gillman, Michael Freeman, Daksh Aggarwal, Chia-Hong Hsu, Calvin Luo, Yonglong
Tian, and Chen Sun. Self-correcting self-consuming loops for generative model training,
2024. URL https://arxiv.org/abs/2402.07087.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium,
2018. URL https://arxiv.org/abs/1706.08500.

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. In NIPS Deep Learning and Representation Learning Workshop, 2015. URL
http://arxiv.org/abs/1503.02531.

10

https://arxiv.org/abs/2404.01413
https://arxiv.org/abs/2402.07087
https://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1503.02531

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.
URL https://arxiv.org/abs/2006.11239.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Sum-
marization Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Com-
putational Linguistics. URL https://www.aclweb.org/anthology/W04-1013.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild, 2015. URL https://arxiv.org/abs/1411.7766.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL
https://arxiv.org/abs/1711.05101.

Hossein Mobahi, Mehrdad Farajtabar, and Peter L. Bartlett. Self-distillation amplifies
regularization in hilbert space, 2020. URL https://arxiv.org/abs/2002.05715.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski,
Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo
Molchanov. Compact language models via pruning and knowledge distillation, 2024.
URL https://arxiv.org/abs/2407.14679.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter, 2020. URL https://arxiv.org/abs/
1910.01108.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summariza-
tion with pointer-generator networks. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1073–
1083, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1099. URL https://www.aclweb.org/anthology/P17-1099.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross
Anderson. The curse of recursion: Training on generated data makes models forget, 2023.
URL https://arxiv.org/abs/2305.17493.

11

https://arxiv.org/abs/2006.11239
https://www.aclweb.org/anthology/W04-1013
https://arxiv.org/abs/1411.7766
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2002.05715
https://arxiv.org/abs/2407.14679
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://www.aclweb.org/anthology/P17-1099
https://arxiv.org/abs/2305.17493

	Introduction
	Related work
	Distillation for synthetic pipeline
	Image generation
	VAE
	DDPM

	Text summarization
	Discussion

