002 003 Leveraging Knowledge Distillation to Mitigate Model Collapse

Anonymous authors Paper under double-blind review

Abstract

Since the amount of data generated by neural networks on the Internet is growing rapidly due to widespread access to corresponding models, it is logical to inquire about the impact of this surge in synthetic data on the training of subsequent models that will utilize it during training. Previous work has demonstrated a concerning trend: models trained predominantly on synthetic data often experience a decline in performance, which can escalate to a complete loss of the ability to reproduce the initial distribution of realworld data. This phenomenon, now referred to as model collapse, highlights the potential pitfalls of over-reliance on synthetic datasets, which may lack the diversity and complexity inherent in genuine data.To address this issue, we propose a novel method that leverages the well-established technique of knowledge distillation. Our approach aims to mitigate the adverse effects of synthetic data by facilitating a more effective transfer of knowledge from high-performing teacher models to student model. By doing so, we seek to enhance not only the qualitative aspects—such as the richness and variability of the generated outputs—but also the quantitative metrics that gauge model performance. Through extensive experimentation, we demonstrate that our method improves the robustness and generalization capabilities of models trained on synthetic data, for instance for DDPM enhancement is 68.8%, in terms of the FID metric, contributing to a more sustainable and effective use of synthetic datasets in machine learning applications.

030 031 032

033 034

1 Introduction

035 036 037 038 039 040 041 042 043 Generative models have become ubiquitous, what has caused increase of synthetic data available. Consequently, future models will inevitably be trained on such kind of data, what can have detrimental effects on their performance — a phenomenon now commonly referred to as Model Collapse [\(Shumailov et al., 2023\)](#page-10-0). As the proportion of synthetic data within a training subset increases, the behavior of the trained models becomes more unpredictable. For example, language models trained on synthetic data are prone to generate less likely or coherent responses compared to those trained on real-world data. Furthermore, it is not uncommon to observe repetitive words or phrases in the outputs of language models exposed to synthetic data during training.

044 045 046 047 048 The primary cause of this issue lies in the distributional properties of the synthetic data. Since synthetic data is generated from a finite number of samples, its distribution only approximates that of real data. As synthetic pipelines becomes deeper $-$ through repeated cycles of data generation and model retraining — the resultant data distribution diverges progressively from the original, leading to degraded model performance over time.

049 050 051 052 053 Knowledge distillation [\(Hinton et al., 2015\)](#page-9-0) has emerged as an effective technique for transferring the knowledge and capabilities of a larger model to a smaller one. This approach has shown considerable potential. [\(Sanh et al., 2020;](#page-10-1) [Muralidharan et al., 2024\)](#page-10-2). Motivated by this, we explore the application of knowledge distillation to mitigate the problem of Model Collapse by transferring the knowledge of a model trained on real data to a model that has been trained on synthetic data. In particular, since the models used in knowledge distilla**054 055 056** tion in our case have the same number of parameters and architecture, we apply so-called self-distillation [\(Mobahi et al., 2020\)](#page-10-3).

To sum up, the main contributions of this paper are:

057 058 059

1. We propose the use of knowledge distillation as a solution to address Model Collapse.

2. We perform experiments across different modalities and architectures, providing empirical evidence of the effectiveness of our approach.

Our research is structured as follows: at first we consider papers, related to ours, then describe the technique itself. After that we demonstrate the effectiveness of our method on unconditioned image generation task on such architectures as Variational Autoencoder (VAE) [\(Kingma & Welling, 2013\)](#page-10-4) and Denoising diffusion probabilistic model (DDPM) [\(Ho](#page-10-5) [et al., 2020\)](#page-10-5). Further we consider causal language modelling task, i.e. abstractive text summarization. In conclusion, we discuss the obtained results.

069 070 2 Related work

071 In this section, we describe existing works, related to our.

072 073 074 075 076 077 Model Collapse [\(Shumailov et al., 2023\)](#page-10-0) is a process of losing performance, while being progressively trained on synthetic data. The higher the percentage of synthetic data in the training dataset, the higher the divergence between the output distribution and the initial one. It has been showed, that this behavior is intrinsic for every modality and architecture, regardless of number of parameters, except that small models are more susceptible to collapse.

078 079 080 081 082 083 084 Knowledge distillation [\(Hinton et al., 2015\)](#page-9-0) is an effective technique of transferring the capabilities of one trained model (teacher) to another with fewer parameters (student). It is achieved by adding to the initial loss function an extra term, that penalizes student for the difference between its outputs and teacher ones. In our case, architectures and numbers of parameters stay constant, and we use so-called self-distillation [\(Mobahi et al., 2020\)](#page-10-3). But main difference of our approach is that the dataset used for training the student model consists completely of generated data.

085 086 087 088 089 090 091 092 093 094 095 Approaches, aimed to mitigate model collapse include several techniques. First of all, we can simply keep some percentage of the real-world data and do not replace it with synthetic, but accumulate all the data in one dataset [\(Gerstgrasser et al., 2024\)](#page-9-1). This approach helps to reduce effect of Model Collapse, but it is noticeable, that this method does not make synthetic data itself more applicable for training purposes. In other words, we still have skewed data distribution in our dataset. Our approach is aimed at making synthetic data have more information about initial distribution, what can also benefit while training with accumulation, like in the mentioned case [\(Gerstgrasser et al., 2024\)](#page-9-1). Another way of mitigating Model Collapse implies using so-called corrective functions [\(Gillman et al.,](#page-9-2) [2024\)](#page-9-2). This approach was widely tested on the human motion synthesis task and significantly less on image generation. Our research is aimed more at generating images and text.

096 097

098

3 Distillation for synthetic pipeline

099 100 101 102 103 104 105 106 Our approach involves employing a method analogous to self-distillation [\(Mobahi et al.,](#page-10-3) [2020\)](#page-10-3) to mitigate Model Collapse. Let L_M be the loss function of some generative model M , training on dataset D . We denote the resulting trained by minimizing L_M model as M_0 . Additionally, we define D_{M_0} as the dataset, sampled by M_0 . Now, drawing parallels with self-distillation, we define the model M_1 as the student model and the model M_0 as the teacher model. Then $L_{(M_0,M_1)}$ is loss function between student and teacher outputs. We emphasize that loss can be computed not only between predictions of models but also, for instance, between outputs of particular layers.

107 We define the final loss as a weighed sum of the original loss function L_M and the loss function between predictions of teacher and student: $L_{SD} = L_M + \lambda L_{(M_0,M_1)}$, where λ

124 125 126 127 Figure 1: Comparison of distillation with various λ . An analysis of model performance relative to variations in the λ coefficient reveals that setting λ to zero does not significantly diminish the model's capabilities when compared to instances where λ assumes nonzero values.

129 130

131

is the weight of distillation. We refer to this function as the loss function of synthetic distillation (SD). Then the model, trained by minimizing this loss, is denoted as $M_{distilled}$.

132 133 134 By minimizing L_{SD} , we simultaneously enable the student model to learn to solve the task in the conventional manner while also assimilating the skills acquired by the model trained on real data, which significantly enhances the model performance.

135 136 137 We note that we did not utilize data accumulation [\(Gerstgrasser et al., 2024\)](#page-9-1); that is, the dataset used to train models subsequent to M_0 does not contain real-world data and maintains the same size.

- **138 139**
- 4 Image generation
- **140 141 142**

143

We now turn our attention to experiments involving image generating models. We will begin with a simple example of using the VAE [\(Kingma & Welling, 2013\)](#page-10-4) architecture and subsequently explore more advance architecture DDPM [\(Ho et al., 2020\)](#page-10-5).

148

4.1 VAE

149 150 151 152 153 154 We commence our examination of generative image models with the Variational Autoencoder (VAE). For our experiments, we selected MNIST [\(LeCun et al., 2010\)](#page-10-6) dataset. We denote $L_{VAE} = L_{rec} + \lambda D_{KL}$, where L_{rec} represents the reconstruction loss, D_{KL} denotes KL-Divergence, λ is distillation weight. Chosen architecture has encoder and decoder inside, each of which consist of two linear layers with ReLU nonlinearity between. Output is 32x32 pixels single-channel picture. Each of models, has approximately 887K parameters.

155 156 157 158 159 The training is conducted on train subset of MNIST size of 60000 examples, models are evaluated on test subset size of 10000 examples. For optimization AdamW optimizer [\(Loshchilov](#page-10-7) [& Hutter, 2019\)](#page-10-7) is used with learning rate 0.001. The training lasts for 70 epochs with a batch size of 256 pictures, equivalently 16450 optimization steps. Evaluation is performed after each epoch, in other words, on every 236th step.

160 161 After training M_0 , we sample a dataset size of 60000, using the best weights in terms of the magnitude of loss function on test subset $L_M(Test)$, on which we conduct following experiments. This principle is also true for other architectures.

176 177 178 Figure 2: Comparison of distillation with various coefficients β and γ . Left: comparison of different β . The less the β , the greater $L_M(Test)$, setting β to zero leads to performance even worse, than our synthetic baseline M_1 ; Right: there is no clear conclusion about $L_M(Test)$, but γ equals zero has the worst results, while other nonzero values show comparable results.

Figure 3: Comparison of samples generated by models. Left: samples generated by model M_1 (without using our method); **Right**: samples generated by model $M_{distilled}$.

Let Y be ground-truth labels, \hat{Y}_s be predictions of student (M_1) , and \hat{Y}_t be predictions of teacher (M_0) . Moreover let E_s , E_t , Var_s , Var_t be predictions of means and variances for reparametrization respectively.

Thus, $M_{distilled}$ is model, minimizing following loss:

$$
L_{SD} = L_{VAE}(\hat{Y}_s, Y) + \lambda L_{VAE}(\hat{Y}_s, \hat{Y}_t) + \beta L_{MSE}(E_s, E_t) + \gamma L_{MSE}(Var_s, Var_t)
$$
 (1)

205 206 where, λ , β , γ are some coefficients, L_{VAE} is VAE loss function, L_{MSE} is mean squared error (MSE).

207 208 209 210 The results of our approach are depicted in Figure [1,](#page-2-0) depending on λ , whilst other coefficients are fixed: $\beta = 1.0, \gamma = 1.0$. As a result, we have found out, that $L_{VAE}(\hat{Y}_s, \hat{Y}_t)$ term has little significance in terms of minimizing $L_M(Test)$. In general, we can see the greater λ , the worse the results.

211 212 213 214 Now we move on to β , other coefficients are fixed: $\lambda = 0.5$, $\gamma = 1.0$. As we can see in Figure [2](#page-3-0) (Left), a decrease of β leads to worse results. Setting it to zero shows performance even worse, than M_1 . Increase of β leads to better results to a certain extent.

215 Now consider coefficient γ . Comparison is in Figure [2](#page-3-0) (**Right**), other coefficient are fixed: $\lambda = 0.5, \beta = 1.0$. No significant difference is noticed in range from 0.25 to 2.0. Nonetheless,

231 232 233 234 235 Figure 4: Results of our approach applied to DDPM architecture. Our method shows results comparable with the initial model M_0 . In the legend, MSE refers to the model that minimizes L_{SD} while incorporating an additional MSE penalty between the encoder outputs.

237 238 setting to zero reduces model performance significantly, though the model still outperforms M_1 .

239 240 241 242 Results for all models can be found in Table [1.](#page-4-0) Best model has following coefficient: $\lambda = 0.5$, $\beta = 1.0, \gamma = 1.0$. Meanwhile, setting λ to zero leads to a loss of 0.12% regarding other coefficients being fixed in terms of $L_M(Test)$, β to 12.91% and γ to 4.83%. Last row corresponds to M_1 , regarding this model, the performance has improved by 9.6%.

243 244 245 246 Besides quantitative results, samples of model M_1 and model $M_{distilled}$ are presented in Figure [3.](#page-3-1) As we can see, $M_{distilled}$ (Right) generates not only more various examples, but also more accurate.

	$\frac{1}{2}$ results depending \sim			
λ	ß	γ	$L_M(Test)$	
1.0	1.0	1.0	0.05739	
0.75	1.0	1.0	0.05692	
0.5	1.0	1.0	0.05630	
0.25	1.0	1.0	0.05639	
0.0	1.0	1.0	0.05637	
0.5	2.0	1.0	0.05639	
0.5	1.5	1.0	0.05651	
0.5	0.5	1.0	0.05851	
0.5	0.0	1.0	0.06357	
0.5	1.0	2.0	0.05694	
0.5	1.0	1.5	0.05708	
0.5	1.0	0.75	0.05651	
0.5	1.0	0.5	0.05654	
0.5	1.0	0.25	0.05677	
0.5	1.0	0.0	0.05902	
0.0	0.0	0.0	0.06228	

Table 1: VAE results depending on coefficients values

4.2 DDPM

236

269 Next architecture is DDPM [\(Ho et al., 2020\)](#page-10-5). The training was conducted on subset size of 15000 images, each size of 64x64 pixels, from CelebA dataset [\(Liu et al., 2015\)](#page-10-8). We

290 291 292

270

Figure 5: Results of our approach applied to DDPM architecture depicted in generated samples. Left: samples from M_0 are the most various, we can see different colors and even accessories on the face, but sometimes images are repeated. **Middle**: Samples from M_1 . There are much less differences between generated images, people have predominantly blond hair and lighted faces. Right: Samples from $M_{distilled}$ with λ set to 0.5. Our approach shows comparable results with high diversity in faces and hair.

289 293 294 take a batch of size 32 for training and 1 for evaluation. For optimization AdamW was used with learning rate 0.0001. For linear noise scheduler we use T equals 1000. Each model is trained for 30000 optimization steps, with evaluation on hold-out subset size of 5000 examples every 400 steps. Our model has default DDPM architecture of UNet [\(Ho](#page-10-5) [et al., 2020\)](#page-10-5), with attention intermediate layer and residual connections between Encoder and Decoder. Every model has 39M parameters.

295 296 297 As the DDPM loss function L_{DDPM} we take SmoothL1Loss. Than our L_{SD} has following form:

$$
L_{SD} = L_{DDPM}(\hat{Y}_s, Y) + \lambda L_{DDPM}(\hat{Y}_s, \hat{Y}_t)
$$
\n(2)

298 299 where, Y are ground-truth labels, \hat{Y}_s are predictions of M_1 , \hat{Y}_t are predictions of M_0 , λ is some coefficient.

300 301 302 303 304 305 306 307 308 The results of applying our method to the DDPM model are presented in Figure [4.](#page-4-1) As we can see, the distilled models consistently outperform M_1 . We explore various values of λ , with the best performance observed at $\lambda = 0.5$. In addition to experimenting with λ , we also attempted to add to the Equation [2](#page-5-0) MSE term between encoder outputs, scaled by 0.5 (denoted in Figure [4](#page-4-1) as MSE), but this did not result in any improvement in performance. Furthermore, all models were used to sample 5000 images, which were then compared in terms of the Frechet Inception Distance (FID) [\(Heusel et al., 2018\)](#page-9-3) with the evaluation subset. The complete results for all models are presented in Table [2.](#page-5-1) As shown, the model with $\lambda = 0.5$ yields the best results, first row with $\lambda = 0.0$ corresponds to the model M_1 .

318 319 320

321 322 323 Now we consider the qualitative enhancement, that provides our approach. In Figure [5](#page-5-2) we can the the comparison between samples from M_0 (Left), M_1 (Middle) and $M_{distilled}$ with λ set to 0.5. As we can see, our method helps to increase variety in generated samples, which means that the resulting distribution bears more resemblance to the initial one.

Figure 6: Results of our approach in terms of metrics ROUGE-1 and ROUGE-2. Left: Evaluation of ROUGE-1. As we can see, our models with λ equals 5.0, 2.0, and 0.5 outperform M_1 . Right: Evaluation of ROUGE-2. Our models mostly outperform M_1 , in particular, model with λ equals 5.0 shows significantly better results, comparable to M_0 .

Overall, our approach substantially reduces the performance gap between M_0 and M_1 , achieving a notable 68.8% improvement in terms of the FID metric and improves outputs diversity. These findings highlight the effectiveness of our method in enhancing model quality within the DDPM architecture.

5 Text summarization

363 364

350 351 352 353 354 355 356 357 358 359 360 361 Consider now our approach applying to causal language modelling task. In particular, we have chosen abstractive text summarization task. As a model we take small version of pretrained T5 [\(Raffel et al., 2023\)](#page-10-9) and fine-tune it by minimizing L_{CE} cross-entropy loss on newspaper dataset CNN/Daily Mail [\(See et al., 2017\)](#page-10-10). Train subset includes 287K articles with corresponding highlights, validation subset has 13K examples. Training was conducted for 20000 steps with evaluation on every 5000th. Every article is cut to 1024 first tokens, every highlight to 128 first tokens, also during generation of synthetic data. For optimization we use a batch size of 32 articles, AdamW optimizer with learning rate 0.00002 and cosine scheduler with warmup for first 2500 steps and the number of waves equals 0.5. Overall, during training 655M tokens pass through the model. On every evaluation step we compute metrics ROUGE-1, ROUGE-2 and ROUGE-L [\(Lin, 2004\)](#page-10-11). During generation we use greedy decoding.

362 Our L_{SD} has the following form:

$$
L_{SD} = L_{CE}(\hat{Y}_s, Y) + \lambda L_{CosDist}(\hat{Z}_s, \hat{Z}_t)
$$
\n(3)

365 366 367 where, Y are ground-truth labels, \hat{Y}_s are student model (M_1) predictions, \hat{Y}_t are teacher model (M_0) predictions, \hat{Z}_s , \hat{Z}_t are outputs from the last layer of corresponding models, $L_{CosDist}$ is cosine distance and λ is some coefficient.

368 369 370 371 372 373 374 375 376 377 Results of experiments in terms of metrics ROUGE-1 and ROUGE-2 can be found in Figure [6.](#page-6-0) As we can see, in case of ROUGE-1 (Figure 6 (Left)), where unigrams of sentences are compared, our approach shows better results than M_1 , but distilled models still underperform M_0 . Model with λ equals 0.5 shows best results, while worst results has the model with λ equals 10.0, which are even lower than with λ being zero. In case of ROUGE-2 (Figure [6](#page-6-0)) (Right)), where bigrams are compared, we get some interesting results. We did not expect our approach enhance the results of ROUGE-2 more than ROUGE-1. Model with λ equals 5.0 shows results, even comparable with M_0 . We also can see similar behaviour in models with λ equals 2.0 and 0.5. So, the best coefficients for enhancing ROUGE-1 results are between 0.5 and 5.0. Thus, the best coefficients for enhancing ROUGE-1 and ROUGE-2 are between 0.5 and 5.0.

Figure 7: Results of models in terms of metric ROUGE-L. As we can see it is much more complicated for all models trained on synthetic data to close the gap. Nonetheless, our method improves the results of model M_1 .

Results of testing models on metric ROUGE-L can be found in Figure [7.](#page-7-0) This metric is based on the longest common subsequence, what has certain implications. Our models do not perform as well as M_0 , comparing with ROUGE-1 and ROUGE-2 cases, but still outperform M_1 . Notably, the model with λ set to 5.0 yields poorer results in terms of ROUGE-L metric. In contrast, λ values of 0.5 and 2.0 demonstrate the best performance overall. In general, we think, that λ should be between 0.5 and 2.0, for maximizing all the ROUGE metrics.

Table 3: Summarization experiments results.

	ROUGE-1, $%$	ROUGE-2, %	ROUGE-L, %	Mean perplexity
0.0	41.3489	18.9637	29.0863	30.6956
0.25	41.3469	18.9437	29.1009	32.0119
0.5	41.3749	18.9759	29.1384	31.8875
2.0	41.3647	18.9765	29.1285	31.7536
5.0	41.3839	18.9837	29.0942	31.3973
10.0	41.3102	18.9423	29.1119	31.4995

413 414

415 416 417 418 419 420 421 422 423 424 425 Besides ROUGE metric, we also evaluate perplexity per token for each model, with results presented in Figure [8.](#page-8-0) For this evaluation, we utilize the open HuggingFace library and the GPT-2 model [\(Radford et al., 2019\)](#page-10-12) and use weights of our models, obtained after the last evaluation step. As illustrated, model M_1 truncates the tail of the tokens distribution and frequently generates tokens that the original model would not produce so often. In contrast, our model is less prone to this behavior, resulting in a broader distribution. The mean perplexity of each model, along with other evaluation metrics, is summarized in Table [3.](#page-7-1) Interestingly, the model with $\lambda = 0.25$ achieves the best perplexity performance, despite its relatively lower performance on the ROUGE framework. For clarity, we do not present histograms of perplexities of other models, as their distributions are approximately similar in shape.

426 427 428 429 430 The results of generating all models are shown in Table [4.](#page-8-1) As we can see, M_1 loses a lot in generation and falls into repeating the same phrase, while our model outputs a comparable summarization. We use version of distillation with λ equals 0.25. Another example of generation can be found in Table [5.](#page-9-4) M_1 shows much better results, but our model $M_{distilled}$ generates summarization with more details.

431 In conclusion, our approach shows promising potential for improving performance in causal language modeling tasks. The evaluation using both ROUGE and Perplexity metrics reveals

Figure 8: Perplexity per token in outputs of model M_0 (trained on real data), M_1 (trained on synthetic data) and our distilled version of M_1 with $\lambda = 0.25$. As we can see, our model demonstrates lower tendency to "narrowing" of distribution.

that, while ROUGE scores provide insight into the summary accuracy of the model, perplexity offers a deeper understanding of token-level generation quality. Notably, the model with $\lambda = 0.25$ achieves the best perplexity results, highlighting the effectiveness of our method, despite its relatively lower performance on ROUGE. These findings suggest that our model is less prone to undesirable token generation.

6 Discussion

 In conclusion, our paper presents a novel approach to self-distillation, demonstrating that distillation between a model trained on real-world data (teacher) and one trained on synthetic data (student) can significantly enhance the performance of the last one. Our method, which is simple to implement, proves effective in mitigating Model Collapse in both image and text generation tasks. While the method has shown promising results, its impact on models utilizing data accumulation strategies [\(Gerstgrasser et al., 2024\)](#page-9-1) remains an open

516 518 question. Although we hypothesize that our approach could offer improvements in such scenarios, further empirical investigation is needed. Overall, we have shown that our selfdistillation method increases the utility of synthetic data for training, suggesting a practical solution for improving performance across a variety of generative tasks. Future work will focus on exploring these open questions and extending the applicability of approach to a broader range of models and tasks.

References

- **524 526** Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, Henry Sleight, John Hughes, Tomasz Korbak, Rajashree Agrawal, Dhruv Pai, Andrey Gromov, Daniel A. Roberts, Diyi Yang, David L. Donoho, and Sanmi Koyejo. Is model collapse inevitable? breaking the curse of recursion by accumulating real and synthetic data, 2024. URL [https://arxiv.org/abs/2404.01413.](https://arxiv.org/abs/2404.01413)
	- Nate Gillman, Michael Freeman, Daksh Aggarwal, Chia-Hong Hsu, Calvin Luo, Yonglong Tian, and Chen Sun. Self-correcting self-consuming loops for generative model training, 2024. URL [https://arxiv.org/abs/2402.07087.](https://arxiv.org/abs/2402.07087)
- **534 535 536** Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018. URL [https://arxiv.org/abs/1706.08500.](https://arxiv.org/abs/1706.08500)
- **537**

517

525

538 539 Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. In NIPS Deep Learning and Representation Learning Workshop, 2015. URL [http://arxiv.org/abs/1503.02531.](http://arxiv.org/abs/1503.02531)

- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL [https://arxiv.org/abs/2006.11239.](https://arxiv.org/abs/2006.11239)
- Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.
- Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.
- Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL [https://www.aclweb.org/anthology/W04-1013.](https://www.aclweb.org/anthology/W04-1013)
- Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild, 2015. URL [https://arxiv.org/abs/1411.7766.](https://arxiv.org/abs/1411.7766)
	- Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL [https://arxiv.org/abs/1711.05101.](https://arxiv.org/abs/1711.05101)
	- Hossein Mobahi, Mehrdad Farajtabar, and Peter L. Bartlett. Self-distillation amplifies regularization in hilbert space, 2020. URL [https://arxiv.org/abs/2002.05715.](https://arxiv.org/abs/2002.05715)
- Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact language models via pruning and knowledge distillation, 2024. URL [https://arxiv.org/abs/2407.14679.](https://arxiv.org/abs/2407.14679)
	- Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019.
	- Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer, 2023. URL [https://arxiv.org/abs/1910.10683.](https://arxiv.org/abs/1910.10683)
- Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter, 2020. URL [https://arxiv.org/abs/](https://arxiv.org/abs/1910.01108) [1910.01108.](https://arxiv.org/abs/1910.01108)
- Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1073– 1083, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1099. URL [https://www.aclweb.org/anthology/P17-1099.](https://www.aclweb.org/anthology/P17-1099)
- Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Anderson. The curse of recursion: Training on generated data makes models forget, 2023. URL [https://arxiv.org/abs/2305.17493.](https://arxiv.org/abs/2305.17493)
-

-
-
-
-
-
-
-
-
-
-
-