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ABSTRACT

Differential privacy (DP) auditing is essential for evaluating privacy guarantees in
machine learning systems. Existing auditing methods, however, pose a significant
challenge for large-scale systems since they require modifying the training dataset—
for instance, by injecting out-of-distribution canaries or removing samples from
training. Such interventions on the training data pipeline are resource-intensive and
involve considerable engineering overhead. We introduce a novel observational
auditing framework that leverages the inherent randomness of data distributions,
enabling privacy evaluation without altering the original dataset. Our approach
extends privacy auditing beyond traditional membership inference to protected
attributes, with labels as a special case, addressing a key gap in existing techniques.
We provide theoretical foundations for our method and perform experiments on
Criteo and CIFAR-10 datasets that demonstrate its effectiveness in auditing label
privacy guarantees. This work opens new avenues for practical privacy auditing in
large-scale production environments.

1 INTRODUCTION

Differential privacy (DP) auditing has become an important tool for evaluating privacy guarantees
in machine learning systems. Recent advances in auditing methods that require only a single run
have made it feasible to evaluate privacy for large-scale models without prohibitive computational
costs (Steinke et al., 2024; Mahloujifar et al., 2025b). However, existing auditing approaches still
require modifying the training dataset by injecting known entropy or canary data, which limits their
applicability in industry-scale environments, where modifications to the training data pipeline require
significant engineering overhead.

In this work, we propose a novel auditing methodology that eliminates the need for dataset modifica-
tion. Our approach enables privacy evaluation using the natural nondeterminism present in the data
distribution itself. We formalize and empirically validate this methodology in the setting of auditing
Label DP, generalizable to privacy guarantees for any protected attribute. This capability addresses a
significant gap in current auditing techniques, which have primarily focused on membership inference
attacks (Shokri et al., 2017; Carlini et al., 2022) rather than attribute inference. In particular, existing
methods for auditing Label DP either require adding out-of-distribution canaries to the training
set (Malek et al., 2021) or are applicable only to a limited set of mechanisms (Busa-Fekete et al.,
2024).

Observational privacy auditing cannot be done unconditionally, without making certain assumptions
about the underlying distribution (Hernán & Robins, 2020, Chapter 3). Unlike anecdotal instances of
privacy violations (Barbaro & Zeller Jr, 2006; Narayanan & Shmatikov, 2008; Carlini et al., 2021),
auditing seeks to provide statistically valid measurements of memorization. In other words, the
objective of privacy auditing is to establish causality—demonstrating that a model behaves in a certain
way because it was trained on specific data. Traditionally, most rigorous membership inference
attacks establish and measure causal effects through randomized control trials (RCTs), which require
interference with the training data. By reframing auditing as a security game between two adversarial
parties, our approach eliminates the need for training-time intervention.

Our key assumption is the availability of a distribution that approximates the ground truth. Concretely,
the Label-DP auditing mechanism relies on access to a proxy label-generating distribution. The
proxy does not need to match the ground truth distribution, provided the adversary cannot distinguish
between them (with reasonable computational resources). Under this assumption, the counterfactual
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examples generated by the challenger can be used to evaluate the attack on the model’s claimed
Label-DP guarantees without training data intervention. The attack can be made practical by using
a model other than the target model as the proxy distribution. Further, in an incremental learning
setting, earlier model checkpoints can be used as the proxy distribution, thus requiring no additional
model training and minimal engineering overhead.

We demonstrate that our observational auditing framework provides accurate privacy bounds that
match those obtained by interventional methods and provable privacy guarantees. Through a series of
cryptography-inspired games we establish the theoretical foundations for auditing privacy without
training data manipulation. By lowering the complexity of privacy auditing, our approach enables its
application in a wider variety of contexts.

2 BACKGROUND AND PRIOR WORK

Differential Privacy (DP) introduced by Dwork et al. (2006) is a leading framework for providing
rigorous privacy guarantees in statistical data analysis and machine learning. In its standard formula-
tion, DP bounds the impact that any single individual’s record has on the outcome of a computation
by constraining how much the distribution of outputs may differ between neighboring datasets. The
definition’s strong theoretical guarantees, resilience to arbitrary auxiliary data, and compositional
properties have driven its adoption in academic research and industry deployments (Fioretto &
Hentenryck, 2025).

The general DP framework can be adapted to settings where only certain parts of a dataset are
considered private. This paper focuses on Label DP, which has emerged as an important objective for
PPML, particularly in the domain of recommendation systems (Chaudhuri & Hsu, 2011; Ghazi et al.,
2021; Malek et al., 2021; Wu et al., 2023). The following factors motivate Label DP as a uniquely
valuable privacy concept:

• The label—representing the user’s choice, expressed preference, or the outcome of an
action—may be the only sensitive part of the record, with the rest being publicly available,
static, non-sensitive data.

• In machine learning, labels are particularly vulnerable to memorization compared to other
attributes since they most directly influence the loss function.

• In settings with mixed public/private features, instead of applying privacy-preserving tech-
niques to sensitive features, one may exclude them from the model, potentially sacrificing
some accuracy. In supervised learning, however, labels are indispensable—there is no
analogous alternative to omitting sensitive features. In further separation, once training
completes, labels can be safely discarded, whereas features must be available for inference.

Complementing the strong worst-case guarantees of DP that bound the privacy loss from above on
all inputs, privacy auditing empirically measures the privacy loss on concrete instances, providing a
lower bound on DP’s numerical parameters. Privacy auditing can be used for finding bugs in claimed
implementations of DP algorithms (Ding et al., 2018), advancing understanding of complex DP
mechanisms (Malek et al., 2021; Nasr et al., 2023; 2025), or guardrailing models in a production
environment (Agrawal & Book, 2025).

Privacy auditing consists of two components: a privacy game between the challenger and the attacker,
and an auditing analysis that translates the attacker’s success into lower bounds on the (ϵ, δ)-DP
guarantee (or other forms of DP). The privacy game is characterized by the capabilities and resources
of the parties, and the attacker’s goals, such as reconstruction, membership or attribute inference.
Auditing analyses, typically used for membership inference, can be applied to any stochastic privacy
game (Swanberg et al., 2025). We show theoretical results for our label inference attack building on
Steinke et al. (2024) and Mahloujifar et al. (2025b).

Membership inference attacks (MIAs)—where an adversary uses model access and knowledge of
the data distribution to determine whether a sample was part of training—have received significant
attention in the literature (Shokri et al., 2017; Yeom et al., 2018; Salem et al., 2019; Sablayrolles
et al., 2019; Song & Shmatikov, 2019; Nasr et al., 2019; Leino & Fredrikson, 2020; Carlini et al.,
2022; Ye et al., 2022; Zarifzadeh et al., 2024; Bertran et al., 2024). This attack category directly maps
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to the differential privacy guarantee where two neighboring datasets differ in the presence of one
training sample.

A less studied category is attribute inference attacks (Yeom et al., 2018) where the adversary recon-
structs a protected attribute given access to a partial record, of which label inference attacks are a
special case (Malek et al., 2021; Busa-Fekete et al., 2024). A difficulty and common pitfall with such
attacks is to properly account for the adversary’s baseline success, achieved by exploiting knowledge
of the data distribution and correlations between the public and protected attributes (Jayaraman &
Evans, 2022). The label inference attack of Malek et al. (2021) uses canaries with random binary
labels, which sets the adversary’s baseline accuracy to 0.5 and allows Label DP to be audited via
standard MIA analyses. However, this attack interferes with the training dataset and can affect model
performance if too many out-of-distribution samples are injected.

Most auditing methods in the literature are “interventional,” as their privacy game involves manipu-
lating the training dataset: MIAs require excluding a subset of the data from training (Steinke et al.,
2024; Mahloujifar et al., 2025b), whereas Malek et al. (2021) modifies the training labels. These
requirements severely restrict applications of these auditing methods. Instead, our label inference
attack can run entirely post-training. MIAs can be stated as observational privacy games if the
challenger is able to sample fresh samples from the distribution (Ye et al., 2022). However, obtaining
new samples from the distribution (or from its close approximation), without affecting the training
pipeline, remains an extremely challenging open problem (Meeus et al., 2025).

The closest observational auditing mechanism to ours is the recent work of Busa-Fekete et al. (2024),
which measures the label reconstruction advantage of the adversary with and without access to the
model. This metric is not translated into a lower bound on ϵ; in fact, such translation would be difficult
because the adversary has a different baseline success (prior) for each sample. Additionally, this
approach requires estimating probabilities of the mechanism’s output given a particular label, limiting
its applicability to simple mechanisms like randomized response and random label aggregation. In
contrast, our label inference attack is observational and applicable to all mechanisms. It can audit
label privacy in a statistically valid manner because it sets up a game where the baseline accuracy of
the adversary is 0.5 for all samples.

3 PRELIMINARIES

Notation We use calligraphic letters such as X ,Y,D to denote sets and distributions. Capital letters
such as X,Y,D denote random variables and datasets, and lowercase letters denote their values. Xn

is the set of all datasets of size n with elements from X , whereas X ∗ is the set of all finite-size data
sets with elements from X . We use Supp(X) to denote the support of a random variable X .

In this work, we audit the simulation-based definition of differential privacy. It generalizes the
traditional add/remove (or “leave-one-out”, or “zero-out”) notion of DP to support a privacy unit that
is a subset of the sample’s attributes. The definition compares the distribution of a mechanism M on
dataset D with that of a simulator that emulates the output of M on D without seeing the protected
attribute of a record. See Appendix A for further discussion of this definition.
Definition 1 (Simulation-based privacy for protected attributes (Mahloujifar et al., 2025a)). Let
records (x, y) ∈ X × Y be such that x is public or non-sensitive and thus need not be protected. We
say that a randomized mechanism M : (X × Y)∗ → Z is (ϵ, δ)-Sim-DP with respect to a simulator
Sim: (X × Y)∗ × X → Z if for all datasets D ∈ (X × Y)∗, (x, y) ∈ D, and D′ = D \ {(x, y)}
we have

M(D) ≈ϵ,δ Sim(D′, x) (1)

For the more advanced notion of f -DP (Dong et al., 2020), a mechanism is f-Sim-DP if

M(D) ≈f Sim(D′, x). (2)

We also say M is (ϵ, δ)-SIM-DP (resp. f-SIM-DP) if there exists a simulator Sim for which (1) (resp.
2) holds.

Our auditing guarantees are stated for a family of generic simulators that treat M as a black-box.
Such a simulator imputes the missing part y of the record based on the public part x and runs the
original mechanism.
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Definition 2 (Imputation-based simulator). For a mechanism M : (X × Y)∗ → Z , a data distri-
bution D supported on X × Y , a dataset D ∈ (X × Y)∗ and public part of a record x ∈ X , the
imputation-based simulator SimM,D is defined as

SimM,D(D,x) ≜ M(D ∪ {(x, y′}), where y′ ∼ D | x.

Finally, we define empirical privacy auditing. A similar definition holds for (ϵ, δ)-Sim-DP.
Definition 3 (Auditing simulation-based DP). An audit procedure takes the description of a mech-
anism M , a trade-off function f , a simulator Sim and decides whether the mechanism satisfies
f -Sim-DP. We define it as a two-step process.

• Game:M×S → O. The auditor runs a potentially randomized experiment/game using
the description of mechanism M ∈ M and the simulator Sim. The auditor receives the
game output o ∈ O.

• Evaluate : O × F → {0, 1}. The output is 0 if the auditor rejects the hypothesis that M
satisfies f -Sim-DP based on evidence o, and 1 otherwise.

4 OBSERVATIONAL VERSUS INTERVENTIONAL PRIVACY GAMES

An observational privacy game considers the training dataset as a given. In contrast, an interventional
privacy game interferes with the training data pipeline and the eventual dataset used for training. In
this section, we formalize our observational privacy auditing framework. To that end, we introduce a
generic attack game, generalizing Swanberg et al. (2025), as Algorithm 1.

The privacy game occurs between two parties: a challenger and an adversary. A key difference from
Swanberg et al. (2025) is that we split the challenger algorithm into two stages: determining the
training data (Gintervention) and determining the additional outputs provided to the adversary (Ghint).
With this, we can separate observational games from interventional ones. Further we distinguish
between the training dataset D and additional game artifacts S, which are used by the challenger to
set up a stochastic game (e.g., sampling random bits).

Algorithm 1 Generic Attack Game (adapted from Swanberg et al. (2025))

Input Mechanism M(·), data distribution D, distribution for game artifacts Dprior, adversary A
1: Sample training dataset D = (x1, . . . , xm) where xi ∼ D.
2: Sample game artifacts S ∼ Dprior.
3: Let D ← Gintervention(D,S). ▷ Gintervention determines the training dataset for M
4: Let o1 ←M(D).
5: Let o2 ← Ghint(o1, D, S). ▷ Ghint determines additional input provided to the attacker A
6: Run attack A(o1, o2) with access to D, Dprior,M .
7: Measure adversary success with loss metric L(A(o1, o2), S).

The algorithm Gintervention determines the training dataset for M , obtained from a potential modifica-
tion of the fixed training set D. For instance, in the one-run MIA (Steinke et al., 2024) the artifacts
are S = (Si ∼ Uniform(0, 1) : i ∈ [m]), where m is the number of canaries. The training dataset D
is obtained from D by including all samples xi ∈ D where Si = 1 and excluding all samples where
Si = 0.

The role of Ghint is to collect additional information the challenger provides to the adversary, based
on game artifacts, training data, and the of the trained model M(D)). In the one-run MIA, o2 is the
vector of targets x1, . . . , xm from the training set D.
Definition 4 (Observational games). We call a privacy game, as outlined in Algorithm 1, observa-
tional if D = D (and as a result o1 = M(D)). That is, M is trained on the original D, and the
observations of the adversary consist of (1) output of M(D) and (2) additional postprocessing of D,
M(D) according to the game artifacts S.

An observational versus an interventional membership inference attack We have described how
the (interventional) one-run MIA (Steinke et al. (2024)) can be framed as Algorithm 1. We now
present an observational one-run MIA (following Ye et al. (2022)).
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Given data distribution D, sample a sequence S of game artifacts Si = (bi, x
′
i) ∼ {0, 1} × D for

i ∈ [m]. The bit bi is sampled uniformly at random from {0, 1}, whereas xi is a fresh sample from the
distribution (which is highly unlikely to be in D). Then, train model M on D = D. Let o2[i] = xi if
bi = 0 and o2[i] = x′

i if bi = 1 for i ∈ [m]. That is, the adversary receives either a training sample xi

or a sample x′
i from the distribution with probability 0.5. The adversary has to guess bi, i.e., which

of the samples it is seeing. This game is observational because the training dataset for M remains
unchanged.

From the adversary’s perspective, the observational one-run MIA has the same distribution as the
interventional MIA. For the challenger, the difference matters as the observational game does not
alter the training pipeline. In this game, the source of counterfactual samples x′

i can be a distribution
that approximates D sufficiently well.

5 OBSERVATIONAL ATTRIBUTE INFERENCE

In this section, we describe our observational attribute inference attack. It allows privacy measurement
with respect to any set of protected attributes, which can be the entire record (as in the observational
MIA, Section 4) or just the label, for Label DP auditing. We provide theoretical results for obtaining
empirical privacy lower bounds from our game. In particular, our analysis provides lower bounds on
simulation-based DP in the add/remove privacy model (see Appendix A).

Algorithm 2 Observational attribute inference in one run

Input Oracle access to a mechanism M(·), data distribution D and approximate distribution D′

supported on X × Y , attacker A
1: Let D0 =

(
(x1, y

0
1), . . . , (xm, y0m)

)
, where (xi, y

0
i ) ∼ D for i ∈ [m].

2: Run mechanism M on D0 to get output o1.
3: Sample game artifacts

(
(b1, y

1
1), . . . , (bm, y1m)

)
such that (bi, y1i ) ∼ Bernouilli(0.5)×D′ | xi.

4: Construct a dataset Db =
(
(x1, y

b1
1 ), . . . , (xm, ybmm )

)
.

5: Run attack A with input o1 = M(D0), o2 = Db, and access to D, D′.
6: Reconstruct a vector of predictions b′ = (b′1, . . . , b

′
m) which is supported on {0, 1,⊥}m.

7: Count c, the number of correct guesses where b′i = bi, and c′, the total number of guesses where
b′i ̸= ⊥. ▷ ⊥ indicates abstention from guessing

8: return (c, c′).

Similar to prior auditing papers (Mahloujifar et al., 2025b; Steinke et al., 2024) the adversary can
choose to abstain from guessing on samples where it is least confident, to boost its positive likelihood
ratio. The observational game can use the entire dataset as canaries (i.e., m = n).

Obtaining approximate distributions. A key aspect in implementing the observational attribute in-
ference attack is to produce the proxy distributionD′ from which the counterfactual partial records y1i
are sampled. One option is to train an additional model M ′ to predict the missing attribute(s). For
label inference attacks, which are a special case of Algorithm 2, we sample counterfactual label yii
from Multinoulli(M ′(xi)). In an online machine learning system, where the model trains incremen-
tally as more recent data becomes available, one can use a prior model checkpoint as the model M ′

(and run the attack on the newer data). This eliminates the need for training any additional models,
making our proposed label inference attacks very lightweight in terms of computational overhead
and implementation complexity.

Auditing guarantees when D = D′. We first establish auditing guarantees for the simpler case
where D = D′, i.e., when we can sample counterfactual records from the ground truth distribution.
Our bounds are stated for auditing f -DP, following an analogous argument in Mahloujifar et al.
(2025b), which gives the tightest DP auditing analysis and can be translated to the language of (ϵ, δ).
The auditing applies an evaluation procedure, Algorithm 3, described and analyzed in Appendix B.
Theorem 5 (Auditing f -DP with no distribution shift). Let M : (X × Y)∗ → Z be a mechanism,
D the data distribution, and SimM,D the imputation-based simulator (Definition 2). Let C =∑

i∈[m] 1[b
′
i = bi] be the total number of correct answers from the one-run observational attribute

5
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inference attack (Algorithm 2) for an adversary that makes c′ guesses. If M is f -SimM,D-DP and
Algorithm 3 returns True on (c′, c,M, f, τ = 0.05), then Pr[C ≥ c] ≤ τ.

Auditing guarantees under distribution shift. Now we consider the more general case when
D ≠ D′. We state an information-theoretic bound, which depends on the total variation (TV) distance
between D and D′. Intuitively, the larger the distance between the two distributions, the weaker the
lower bound we can obtain on the privacy guarantee. The value τ in Theorem 6 is an upper bound
on the adversary’s a priori (i.e., before having access to the target model) success probability in
distinguishing whether a sample (x, yb) is from D or D′.

Theorem 6 can also be stated in terms of the adversary’s ability to distinguish between D and D′

given its resource constraints. Such a bound is particularly meaningful for Label-DP auditing, where
we can assume that the adversary cannot distinguish y | x from Multinoulli(M ′(x)) if M ′ is the best
classifier on D available to the adversary.

We state here a bound akin to Steinke et al. (2024), that is easier to interpret in the case of distribution
shift. We present a bound on auditing f -DP under distribution shift in Appendix B.
Theorem 6 (Auditing (ϵ, δ)-DP under distribution shift). Let M : (X ×Y)∗ → Z be a mechanism,D
the data distribution, D′ the approximate distribution, and SimM,D′ the imputation-based simulator.
Let C =

∑
i∈[m] 1[b

′
i = bi] be the total number of correct answers from the one-run observational

attribute inference attack (Algorithm 2). IfM is (ϵ, δ)-SimM,D′-DP and TV(D|xi,D′|xi) ≤ τ for
all xi ∈ D, then

Pr
S,D

[C ≥ c | A(o1, o2) = b′] ≤ Pr
Ĉi∼Bernoulli(β)

[ ∑
i∈[m]

Ĉi ≥ c
]
+ nδ (3)

where β = eϵ

eϵ+ 1−τ
1+τ

.

A full theorem statement and its proof are deferred to Appendix C.

6 EXPERIMENTS ON AUDITING LABEL-DP

We validate our theoretical framework with experiments on two real representative datasets: CIFAR-
10 (Krizhevsky, 2009) for image classification and Criteo (Criteo AI Lab, 2015) for tabular data
with sensitive labels. For each dataset, we train classifiers using standard Label-DP mechanisms and
empirically evaluate the privacy guarantees using our audit procedure. We also evaluate our Label
DP auditing technique for Randomized Response (Warner, 1965) on synthetic data.

6.1 LABEL-DP LEARNING ALGORITHMS

The earliest approach to achieving Label DP is the Randomized Response (RR) mechanism (Warner,
1965). In RR, each training label is randomly replaced according to a fixed probability distribution
before being shared with the learning algorithm. This randomization helps protect the privacy of
individual labels. We briefly review several recent Label DP mechanisms that improve on RR.

Label Private One-Stage Training (LP-1ST, Ghazi et al. (2021)) Instead of using a fixed distribution
as in RR, LP-1ST samples each training label yi from a learned prior distribution P (y|Xi). The prior
can be estimated by observing the top-k predictions from a pretrained model (either in domain or
out-of-domain), restricting RR to the most probable labels. Alternatively, the training can be split
into multiple stages, where an earlier model provides the prior for the next (LP-MST).

Private Aggregation of Teacher Ensembles with FixMatch (PATE-FM, Malek et al. (2021))
PATE-FM combines the FixMatch semi-supervised learning algorithm (Sohn et al., 2020) with private
aggregation. Multiple teacher models are trained, each using all features but only a unique, disjoint
subset of the labels. The predictions from these teachers are then aggregated in a differentially private
manner using the PATE framework (Papernot et al., 2017) to train a student model.

Additive Laplace with Iterative Bayesian Inference (ALIBI, Malek et al. (2021)) ALIBI achieves
Label DP by adding Laplace noise to the one-hot encoded labels (Ghosh et al., 2012), making the
released labels differentially private. Bayesian inference is applied to the noisy labels to obtain the
most likely original (discrete) label, as differential privacy is preserved under post-processing.

6
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6.2 ATTACK IMPLEMENTATION AND ADVERSARIAL STRATEGY

A key ingredient in implementing our label inference attack is generating the reconstructed label y1
given features x (see Algorithm 2). We generate y1 from the predictions of a reference model M ′,
trained on separate data (but from approximately the same distribution) as the target model M .
Specifically, y1 ∼ Multinoulli(M ′(x)), where M ′(x) are the predictions of M ′ on x for each class.

For the Criteo dataset, where data is collected over 28 consecutive days, we train M ′ on Day 0 data
and the target model on Day 1 data. While there may be some distributional shift between Day 0 and
Day 1 data, we assume this is small, and that the adversary cannot distinguish between the true labels
y0 and the reconstructed labels y1 (before having access to the model).

For CIFAR-10 experiments we randomly split the training data (n = 50K samples) into two. We
train M ′ on the first half, and the target model M on the second half.

We run the attack on m = 200K canaries for Criteo and m = 10K canaries for CIFAR-10. For the
MIA experiments we use the same number of canaries for the non-members (taken from the test set).

The adversary obtains its guesses by computing per-example scores. Let x be the features and
yb ∈ {y0, y1} be the label received by the adversary. The adversary computes a score that correlates
with whether yb is the reconstructed or the training label. The score consists of two components. The
first component s1(x, yb) is the difference in probabilities that yb came from the training set versus
the reconstructed distribution:

s1(x, y
b) = Pr[y0 = yb |M(x)]− Pr[y1 = yb |M ′(x)]

= M(x)[yb]−M ′(x)[yb],

where M(x)[yb] is the prediction of M on x for class yb. Since the adversary’s performance is
measured at the tails of the score distribution, the adversary prefers to guess on samples where
Pr[y0 ̸= y1] is high. Thus the second component of the score is defined as

s2(x, y
b) = Pr[y0 ̸= y1] = 1−M ′(x)[yb].

The final score combines the two components as s(x, yb) = s1(x, y
b) · s2(x, yb)t with a hyperparam-

eter t ≥ 0 that allows for weighting the two components separately. We use t = 2, as t > 1 gives
tight lower bounds for RR. The adversary guesses on c′% of samples with highest absolute scores.
We sweep c′ ∈ {1, 2, . . . , 100} and report the highest ϵ achieved at 95% confidence, averaged over
100 repetitions of the game (resamplings of counterfactual labels).

6.3 CIFAR-10 EXPERIMENTS

For CIFAR-10, we treat the image classes as sensitive labels. We train standard convolutional
neural networks with varying privacy budgets ϵ ∈ {1.0, 10.0,∞} (see model accuracy in Table 4,
Appendix E). We then audit Label DP using our observational game and report results in Table 1.

Table 1: CIFAR-10. Auditing Label-DP algorithms under different ϵ with δ = 10−5.

Label-DP Algorithm CIFAR-10
ϵ =∞ ϵ = 10.0 ϵ = 1.0

LP-1ST 2.13 ± .22 2.02 ± .33 0.43 ± .05
LP-1ST (out-of-domain prior) 2.26 ± .22 1.86 ± .25 0.90 ± .07
PATE-FM 2.42 ± .32 2.22 ± .24 0.79 ± .09
ALIBI 2.53 ± .33 2.18 ± .27 0.67 ± .07

6.4 CRITEO EXPERIMENTS

The Criteo dataset contains user click-through data with demographic information encoded as 13
numerical features and 26 categorical features. A binary label indicates whether the user clicked on
the ad. The distribution of the labels is highly imbalanced, with only 3% of positives (clicks). The
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Table 2: Criteo. Auditing Label-DP algorithms under different ϵ with δ = 10−5. Similarly Wu et al.
(2023), for LP-1ST (domain prior) at ϵ ∈ {0.1, 1, 2} the training process did not produce meaningful
outcomes.

Label-DP Algorithm ϵ =∞ ϵ = 8 ϵ = 4 ϵ = 2 ϵ = 1 ϵ = 0.1

LP-1ST 1.37 ± .14 1.29 ± .12 1.22 ± .17 0.59 ± .05 0.34 ± .02 0.06 ± .01
LP-1ST (domain prior) 1.47 ± .22 1.37 ± .10 1.28 ± .21 — — —

LP-1ST (noise correction) 1.31 ± .12 1.26 ± .11 1.04 ± .16 0.52 ± .07 0.40 ± .08 0.06 ± .01
LP-2ST 1.52 ± .14 1.46 ± .11 1.24 ± .15 0.75 ± .05 0.61 ± .07 0.06 ± .01
PATE 1.60 ± .15 1.48 ± .14 1.28 ± .12 0.71 ± .07 0.59 ± .05 0.06 ± .01

overall dataset contains over 4 billion click log data points over a period of 24 days. We followed the
same setup in Wu et al. (2023) where 1 million data points are selected for each day. We divide the
data into 80% for training, 4% for validation, and 16% for testing. Model performance is evaluated
using the log-loss metric on the test set.

We train gradient boosting decision trees with the CatBoost library (Prokhorenkova et al., 2018) with
varying privacy budgets ϵ ∈ {0.1, 1.0, 2, 0, 4.0, 8.0,∞} and evaluate label privacy using observa-
tional privacy auditing (Table 2). Table 5 (in Appendix E) shows model performance under different
Label-DP algorithms and privacy budgets ϵ.

6.5 COMPARISON WITH EXISTING METHODS

We compare our observational auditing approach against traditional canary-based methods to demon-
strate the effectiveness and practicality of our framework. More specifically, we evaluate against
the lightweight difficulty calibration MIA in Watson et al. (2022), where membership scores are
adjusted to the difficulty of correctly classifying the target sample. For each canary datapoint, we
set the calibrated membership scores as the difference in the loss between the target model and the
reference model M ′. Fig. 1 shows how our method achieves similar auditing results when compared
to MIA on the CIFAR-10 and Criteo datasets.

We leave for future work a comparison with more computationally intensive methods, such as
Zarifzadeh et al. (2024), which require training multiple auxiliary (shadow) models to achieve
state-of-the-art attack performances.

6.6 SYNTHETIC DATA AND AUDITING RANDOMIZED RESPONSE

We empirically demonstrate the tightness of our Label-DP auditing algorithm for Randomized
Response using synthetic data. The distribution consists of k balanced classes, each generated from a
5-dimensional Gaussian with the same covariance but a shifted mean. We generate n = 106 samples
and experiment with k ∈ {2, 5, 10}. Counterfactual labels y1 are generated using either the true
distribution or the predictions of a logistic regression model. Figure 2 shows empirical epsilon lower
bounds at 95% confidence when the adversary makes 0.1% non-abstaining guesses. We obtain tight
lower bounds for ϵ ∈ [1, 4]. At lower epsilons the audit overestimates privacy loss due to a higher
variance induced by a small number of guesses. Using more guesses at lower epsilon fixes the issue
(Appendix D). Obtaining tight lower bounds at very high epsilon is a limitation of current auditing
methodology (Steinke et al., 2024; Mahloujifar et al., 2025b).

7 DISCUSSION

In this paper, we establish a framework for auditing privacy without any intervention during the
training process. This enables a principled privacy evaluation in settings where the training process
is outside the control of the privacy auditor. This may sound counterintuitive as privacy auditing
is a form of causal analysis. However, our method can provide provable guarantees on auditing
performance under certain assumptions about the data distribution. We envision that our framework
will broaden the scope of privacy auditing applications, as it does not require any supervision of the
training process and can be conducted by third parties.
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(a) CIFAR-10

(b) Criteo

Figure 1: Comparison with MIA for different Label-DP Algorithms on CIFAR-10 and Criteo datasets.
The error bar represents the standard deviation across 100 different repetitions.

Figure 2: Auditing randomized response when the adversary guesses on 0.1% of samples. The
counterfactual labels are generated either from the ground-truth distribution or a proxy distribution
obtained from the predictions of logistic regression model.
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A SIMULATION-BASED DIFFERENTIAL PRIVACY

In this section, we motivate and formally define the simulation-based notion of differential privacy.
We recall the standard definition of differential privacy, which we are going to extend and adapt to
our setting.
Definition 7 (Differential privacy). A randomized mechanism M : X ∗ → Z satisfies (ϵ, δ)-
differential privacy if for all pairs of neighboring D,D′ ⊂ X ∗ and E ⊂ Z the following holds:

Pr[M(D) ∈ E] ≤ eϵPr[M(D′) ∈ E] + δ ≈ϵ,δ M(D′),

The definition depends on the notion of neighboring datasets, which is a symmetric binary relation
on X ∗ denoted as D ∼ D′. Choosing the neighboring relationship is an important part of mechanism
design and has direct implications on the type of privacy guarantee. See Table 3 for some common
definitions of neighboring datasets and the resulting DP notions.

Differentially private mechanisms are often applied to datasets containing records with both public
and private components. Consider records of the form (x, y) ∈ X ×Y , where x represents the public
(non-sensitive) data and y the sensitive attributes that require protection. Differential privacy for this
setting can be defined by letting D ∼ D′ if they differ only in the sensitive attributes of a single
record: that is, D and D′ are identical except for one record being (x, y) in D and (x, y′) in D′. This
is a generalization of the original definition of Dwork et al. (2006), which modeled D as an indexed
vector. In current terminology, this is the replacement model of differential privacy: the sensitive
portion of a record is replaced with a different value. Semantically, this guarantees that an adversary
observing M ’s output cannot distinguish between two possible private values y and y′ of a user any
better than without M , within an (ϵ, δ)-slack.

The alternative to the replacement model is add/remove, which stipulates that M ’s output on inputs
with and without the user are (ϵ, δ)-indistinguishable. In addition to protecting the user’s data, this
model also hides the user’s membership status and the size of the dataset. DP in the add/remove
model implies DP in the replacement model (via the two-step hybrid, with looser parameters) but not
vice versa.

We target the add/remove model of differential privacy. For datasets containing both public and
private attributes, one way to define this model is by introducing a class of records where the sensitive
parts are removed. In this formulation, two datasets D and D′ are neighboring if they differ only in
the pairs (x, y) and (x,⊥). We propose an equivalent definition that is more explicit, as it introduces
the notion of a simulator:
Definition (more formal version of Definition 1, Simulation-based privacy for protected attributes).
Let records (x, y) ∈ X × Y be such that x is public or non-sensitive and thus need not be protected.
We say that a randomized mechanism M : (X×Y)∗ → Z is (ϵ, δ)-Sim-DP with respect to a simulator
Sim: (X × Y)∗ × X → Z if for all datasets D ∈ (X × Y)∗, (x, y) ∈ D, D′ = D \ {(x, y)}, and
E ∈ Supp(M(·)) we have

Pr[M(D) ∈ E] ≤ eϵ Pr[Sim(D′, x) ∈ E] + δ.

We can also define the more advanced notion of f -differential privacy, where we call a mechanism
f -Sim-DP if

Pr[M(D) ∈ E] ≤ f(Pr[Sim(D′, x) ∈ E] + δ.)

Semantically, (ϵ, δ)-SIM-DP means that anything that can be inferred about (x, y) from M(D) could
also be inferred without ever exposing y to M , within the standard (ϵ, δ)-bounds.

Note that f -DP generalizes (ϵ, δ)-DP by allowing a more complex relation between the probabil-
ity distributions of M(D) and M(D′). The following proposition shows how one can express
approximate DP as an instantiation of f -DP.
Proposition 8 (Dong et al. (2020)). A mechanism is (ϵ, δ)- Sim-DP if it is f -Sim-DP for a function
f such that 1− f(x) = eϵ · x+ δ.

Whenever we say that a mechanism satisfies f -(Sim)-DP, we implicitly imply that f is a valid
trade-off function. That is, f is defined on the domain [0, 1] and has a range of [0, 1]. Moreover, f is
decreasing and convex with f(x) ≤ 1− x for all x ∈ [0, 1]. This is without loss of generality. That
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DP definition Difference between D ∼ D′

Replacement, DP x, x′

Add/remove, DP x
Replacement, Label DP (x, y), (x, y′)
Add/remove, Label DP (x, y), (x,⊥)

Table 3: The difference between which two neighboring datasets D,D′ under various DP definitions.

is, if a mechanism is f -DP for a an arbitrary functionf : [0, 1]→ [0, 1], then it is also f ′ -(Sim)-DP
for valid trade-off function f ′ with f ′(x) ≤ f(x) for all x ∈ [0, 1] (See Proposition 2.2 in Dong et al.
(2020)).

B AUDITING GUARANTEES FOR f -DIFFERENTIAL PRIVACY

In this section, we prove Theorem 5 which provides guarantees similar to Mahloujifar et al. (2025b)
for auditing f -SIM-DP with our observational attribute inference attack.

Before stating the main theorem, we describe how the accuracy of the adversary from the observational
attribute inference attack can be translated into a lower bound on f -SIM-DP.
Definition 9 (Obtaining empirical epsilon from f -SIM-DP auditing). Let (Game,Evaluate) be an
audit procedure. The empirical privacy of a mechanism M for a family F of trade-off functions
and a simulator Sim is the random variable distributed according to the output of the following
process:

1: Obtain observation o← Game(M,Sim).
2: Construct Fo = maximal{f ∈ F : Evaluate(o, f) = 1}, where the partial order on F is defined

as f ≺ g iff f(x) ≤ g(x) for all x ∈ [0, 1].
3: Compute

ϵ(δ) = min
f∈Fo

max
x∈[0,1]

log

(
1− f(x)− δ

x

)
.

The empirical lower bound ϵ(δ) is a random variable since it is a function of the output o of a
randomized process Game. The point estimate of ϵ(δ) is the lowest ϵ given δ guaranteed by an
f -SIM-DP not rejected by the auditing procedure.

In Algorithm 3 we show how to audit a particular trade-off function f given number of non-abstaining
guesses c′ and number of correct guesses c. (This is the Evaluate function in Step 2 of Definition 9).
The choice of a family of trade-off functions in Definition 9 should be based on the expectations of
the true privacy curve. For example, if one expects the privacy curve of a mechanism to be similar to
that of a Gaussian mechanism, then they would choose the set of all trade-off functions imposed by a
Gaussian mechanism as the family. This is the choice we use in our experiments.

Finally, we state and prove a more general version of Theorem 5 that allows for the case when we
sample counterfactual partial records from a proxy distribution D′ different from D.
Theorem 10 (Auditing f -DP with distribution shift). Let M : (X ,Y)∗ → Z be a mechanism, D
the data distribution, D′ an approximate distribution, and SimM,D′ the imputation-based simulator
(Definition 2). Let C =

∑
i∈[m] 1[b

′
i = bi] be the total number of correct answers from the one-

run observational attribute inference attack (Algorithm 2) for an adversary that makes c′ guesses.
Let TV (D|x,D′|x) ≤ τ for all x in the dataset D and define g : [0, 1] → [0, 1] such that g(s) =
f(min(1, s+ τ)). If M is f -SimM,D′-DP and Algorithm 3 returns True on (c′, c,M, g, γ = 0.05),
then Pr[C ≥ c] ≤ γ.

Proof. The proof follows similarly to the proof of Theorem 3.2 in Mahloujifar et al. (2025b). We
only need to prove a similar Lemma to that of their Lemma A.1 that is adapted to our setting of
simulation based differential privacy with distribution shift.

Lemma 11. Let M : (X × Y)∗ → Z be a mechanism, D a distribution on X × Y and SimM,D′ the
imputation-based simulator (Definition 2). Assume TV (D,D′) ≤ τ . If M is f -SimM,D′-DP, then
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Algorithm 3 Iteratively deciding an upper bound probability of making more than c correct
guesses (Mahloujifar et al., 2025b)

Input description of trade-off function f , number of guesses c′, number of correct guesses c, number
of samples m, probability threshold γ (default is γ = 0.05).

1: ∀0 ≤ i ≤ c set h[i] = 0, and r[i] = 0.
2: set r[c] = γ · c

m .
3: set h[c] = γ · c

′−c
m .

4: for i ∈ [c− 1, . . . , 0] do
5: h[i] = f̄−1

(
r[i+ 1]

)
▷ f(x) = 1− f(x)

6: r[i] = r[i+ 1] + i
c′−i ·

(
h[i]− h[i+ 1]

)
.

7: end for
8: if r[0] + h[0] ≥ c′

m then
9: Return True; (Probability of c correct guesses (out of c′) is less than γ)

10: else
11: Return False; (Probability of having c correct guesses (out of c′) could be more than γ).
12: end if

for any attack algorithm A and event E we have

f ′′
τ (Pr[M(D) ∈ E]) ≤ Pr[M(D) ∈ E & b1 = b′1] ≤ f ′

τ (Pr[M(D) ∈ E]),

where

f ′
τ (x) = sup{t ∈ [0, s]; t+ f(s− t+ τ) ≤ 1} and f ′′

τ (s) = inf{t ∈ [0, 1]; f(t)+ s− t ≤ 1− τ}

Proof. Fix a sample (x1, y
0
1) with counterfactual label y11 . For simplicity, we drop the sample index

1 and use x, y0, y1. Let D denote the dataset containing (x, y0) and let D′ be a dataset obtained
from D by replacing y0 with y1. We assume b′1 is a deterministic function of M(D) and yb1 . Let
p = Pr[M(D) ∈ E & b1 = b′1] and q = Pr[M(D) ∈ E]. We have

p = Pr[M(D) ∈ E & b1 = b′1]

= Pr[M(D) ∈ E & b1 = 1 & b′1 = 1]

+ Pr[M(D) ∈ E & b1 = 0 & b′1 = 0]

= E
y1,y0,b1,θ∼M(D)

[I(θ ∈ E & b1 = 1 & b′1(θ, y
1) = 1)]

+ E
y1,y0,b1,θ∼M(D)

[I(θ ∈ E & b1 = 0 & b′1(θ, y
0) = 0)]

= 0.5 · E
y1,y0,b1,θ∼M(D)

[I(θ ∈ E & b′1(θ, y
1) = 1) | b1 = 1]

+ 0.5 · E
y1,y0,b1,θ∼M(D)

[I(θ ∈ E & b′1(θ, y
0) = 0) | b1 = 0]

= 0.5 · E
y1,y0,b1,θ∼M(D),θ′∼M(D′)

[I(θ ∈ E & b′1(θ, y
1) = 1) | b1 = 1]

+ 0.5 · E
y1,y0,b1,θ∼M(D),θ′∼M(D′)

[I(θ ∈ E & b′1(θ, y
0) = 0) | b1 = 0]

≤ 0.5 ·
(
1− f( E

y1,y0,b1,θ∼M(D),θ′∼M(D′)
[I(θ′ ∈ E & b′1(θ

′, y1) = 1) | b1 = 1])
)

+ 0.5 ·
(
1− f( E

y1,y0,b1,θ∼M(D),θ′∼M(D′)
[I(θ′ ∈ E & b′1(θ

′, y0) = 0) | b1 = 0])
)

≤ 1− f( E
y1,y0,b1,θ∼M(D),θ′∼M(D′)

[I(θ′ ∈ E & b1 ̸= b′1(θ
′, y1−b1

1 )]) (By convexity of f .)

≤ 1− f(q − p+ τ). (By the fact that f is decreasing.)

This implies p+ f(q − p+ τ) ≤ 1 which in turn implies p ≤ f ′(q). Similarly, for the other side we
repeat the argument up until the last 3 steps. That is
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q = 0.5 · E
y1,y0,b1,θ∼M(D),θ′∼M(D′)

[I(θ ∈ E & b′1(θ, y
1) = 1) | b1 = 1]

+ 0.5 · E
y1,y0,b1,θ∼M(D),θ′∼M(D′)

[I(θ ∈ E & b′1(θ, y
0) = 0) | b1 = 0]

≥ 0.5 ·
(
f−1

(
1− E

y1,y0,b1,θ∼M(D),θ′∼M(D′)
[I(θ′ ∈ E & b′1(θ

′, y1) = 1) | b1 = 1]
))

+ 0.5 ·
(
f−1

(
1− E

y1,y0,b1,θ∼M(D),θ′∼M(D′)
[I(θ′ ∈ E & b′1(θ

′, y0) = 0) | b1 = 0]
))

≥ f−1(1− E
y1,y0,b1,θ∼M(D),θ′∼M(D′)

[I(θ′ ∈ E & b1 ̸= b′1]) (By convexity of f .)

= f−1(1− q + p+ τ) (By the fact that f−1 is decreasing.).

This implies p ≥ f−1(1 − q + p) which in turn implies f(p) + q − p + τ ≤ 1. So we have
p ≥ f ′′(q).

We can now plug Lemma 11 in the proof of Theorem 3.2 in Mahloujifar et al. (2025b). Note that g
is a valid trade-off function and hence f ′

τ has all the desired properties proved in Proposition A.2.
Therefore, we can adopt the same proof to finish the proof of our Theorem.

C AUDITING GUARANTEES FOR (ϵ, δ)-DIFFERENTIAL PRIVACY

In this section, we prove similar guarantees as in Steinke et al. (2024); Swanberg et al. (2025), which
can be translated into empirical lower bounds on (ϵ, δ)-SIM-DP. The proofs are very similar to the two
prior works, thus to avoid repetition, we provide a proof only for the more simple (ϵ, 0)-differential
privacy case.

We first state Theorem 12, which an analytical version of Theorem 6, and yields better lower bounds
than Theorem 6.

Theorem 12 (Auditing (ϵ, δ)-SIM-DP). Let M : (X ,Y)∗ → Z be a mechanism, D the data distri-
bution, D′ the approximate distribution, and SimM,D′ the imputation-based simulator (Definition 2).
Let C =

∑
i∈[m] 1[b

′
i = bi] be the total number of correct answers from the one-run observational

attribute inference attack (Algorithm 2). If M is (ϵ, δ)-SimM,D′-DP and TV (D|xi,D′|xi) ≤ τ for
all xi ∈ D, then

Pr
S,D

[C ≥ c | A(o1, o2) = b′] ≤ Pr
Ĉi∼Bernoulli(β)

[ ∑
i∈[m]

Ĉi ≥ c
]
+ α ·m · δ, (4)

where β = eϵ

eϵ+ 1−τ
1+τ

and

α = max
{1
j

([ ∑
i∈[m]

Ĉi ≥ c− j
]
−

[ ∑
i∈[m]

Ĉi ≥ c
])

: j ∈ [m]
}
.

Then, we state and prove the version of Theorem 6 for pure-SIM-DP.

Theorem 13 (Auditing (ϵ, 0)-SIM-DP). Let M : (X ,Y)∗ → Z be a mechanism, D the data distri-
bution, D′ the approximate distribution, and SimM,D′ the imputation-based simulator (Definition 2).
Let C =

∑
i∈[m] 1[b

′
i = bi] be the total number of correct answers from the one-run observational

attribute inference attack (Algorithm 2). If M is (ϵ, 0)-SimM,D′-DP and TV (D|xi,D′|xi) ≤ τ for
all xi ∈ D, then

Pr
S,D

[C ≥ c | A(o1, o2) = b′] ≤ Pr
Ĉi∼Bernoulli(β)

[ ∑
i∈[m]

Ĉi ≥ c
]
, (5)

where β = eϵ

eϵ+ 1−τ
1+τ

.
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Proof. The proof is Bayesian and proceeds iteratively. Conditioned on the output of the game (both
challenger and adversarial output), we determine the probability of a successful guess at step i. Let g
be a function which determines the adversary’s answer b′i ∈ {0, 1} given a sample (xi, y

bi
i ), where

bi ∈ {0, 1}, y0i ∼ D|x, and y1i ∼ D′|x. The adversary has knowledge of D and D′. We can assume
w.l.o.g. that g is deterministic. Note that if D ≡ D′ then Pr[g(xi, y

bi
i ) = bi] =

1
2 , where randomness

is over the sampling of y0i , y
1
i , and b. In general,

Pr[g(xi, y
b
i ) = b] =

1

2
+

1

2
TV (D|xi,D′|xi) ≤

τ + 1

2
, (6)

based on the success of the Bayes optimal classifier.

Let D<i be the dataset consisting of the samples {(xj , y
bj
i )} for j < i. We condition on the value of

D<i and abuse notation by using D<i as a random variable and as a fixed value.

Applying Bayes’ theorem and the law of total probability we obtain

Pr
y0
i ,y

1
i

[g(xi, y
0
i ) = 0 | A(o1, o2) = b′, D<i] =

1

1 +
Pr[A(o1,o2)=b′|g(xi,y1

i )=0,D<i]·Pr[g(xi,y1
i )=0|D<i]

Pr[A(o1,o2)=b′|g(xi,y0
i )=0,D<i]·Pr[g(xi,y0

i )=0|D<i]

.

From Equation 6,

Pr[g(xi, y
1
i ) = 0 | D<i]

Pr[g(xi, y0i ) = 0 | D<i]
=

Pr[g(xi, y
1
i ) = 0]

Pr[g(xi, y0i ) = 1]
≥ 1− τ

1 + τ
.

Finally, since M is (ϵ, 0)-SimM,D′-DP then A is also (ϵ, 0)-SimM,D′-DP as it post-processes M .
From the definition of simulation-based DP, we obtain

Pr
y0
i ,y

1
i

[g(xi, y
0
i ) = 0 | A(o1, o2) = b′, D<i] ≤

eϵ

eϵ + 1−τ
1+τ

.

As a result,

Pr
y0
i ,y

1
i ,bi

[bi = b′i | A(o1, o2) = b′, D<i] ≤
eϵ

eϵ + 1−τ
1+τ

.

We now prove the result by induction, using the concept of stochastic dominance (Definition 4.8
of Steinke et al. (2024)). We assume inductively that Cm−1 =

∑m−1
i=1 1[b′i = bi] is stochastically

dominated by
∑m−1

i=1 Ĉi, where Ĉi ∼ Bernoulli(β). We have obtained that, conditioned on Cm−1,
the variable 1[b′i = bi] is stochastically dominated by Bernoulli(β). Applying Lemma 4.9 from
Steinke et al. (2024) concludes the proof.

To obtain an empirical epsilon lower bound from Theorems 12 and 13, we fix δ and choose a desired
confidence γ < 1 (e.g., γ = 0.05 and δ = 10−5 for our experiments). Then, we find an ϵ ≥ 0 so that
the left hand side of the inequality in Theorems 12 and 13 is equal to γ. This value of ϵ is our lower
bound.

D AUDITING RANDOMIZED RESPONSE

We empirically demonstrate the tightness of our Label-DP auditing algorithm for Randomized
Response on synthetic data sampled from a mixture of Gaussian distributions.

We experiment with binary and multi-class labels. For binary labels, y is sampled from Bernoulli(p).
For multi-class labels y are sampled from a generalized Bernoulli distribution with equal probabilities
for each class. Given a label y, the features x are sampled as:

x | y ∼ N (µy, Id),

where Id is the d-dimensional identity matrix, and µy = ey , where ey is a d-dimensional index vector
that is 1 at index y.

The output of the randomized response mechanism are the noisy labels. Recall that y0i is the training
set label and y1i is the reconstructed label. We generate y1i in two ways:
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Figure 3: Auditing randomized response when the adversary guesses on 1% of samples. The
counterfactual labels are generated either from the ground-truth distribution or a proxy distribution
obtained from the predictions of logistic regression model.

• Ground truth: By using the posterior D | x where D is the data-generating distribution.
• Proxy: By using the predictions of a Logistic Regression model trained on fresh data from

the distribution (with default hyper-parameters from sciki-learn).

This way, we compare the effect of using a proxy distribution instead of the ground truth for generating
the labels y1i . In Figures 2 and 3, we see that the two methods for generating y1 give similar results,
as Logistic Regression can approximate a mixture of Gaussians quite well.

We use n = 106, d = 5, and the number of classes in {2, 5, 10}. We run our attack on the output
of Randomized Response and with a fraction of non-abstaining guesses in {0.1%, 1%}. We use
Theorem 13 to obtain the empirical epsilon achieved at 95% confidence. For each dataset and RR
output, we repeat the game 102 times (with a fresh vector of reconstructed labels) and compute the
average and standard deviation of the empirical epsilon.

While Figure 2 shows that with 0.1% adversarial guesses we overestimate the privacy loss given by
the theoretical epsilon, the lower bound is tight with 1% guesses in the low-epsilon regime. However,
the lower bounds are not as tight in the medium epsilon regime [1, 4]. These experiments show that
choosing the number of adversarial guesses should take into consideration the privacy regime we are
targeting.

E ACCURACY OF MODELS TRAINED ON CRITEO AND CIFAR-10

Tables 4 and 5 show models performance on the test set respectively on CIFAR 10 and Criteo.

Table 4: CIFAR-10. Model test accuracy of label-DP models under different ε.

Label-DP Algorithm CIFAR-10
ε =∞ ε = 10.0 ε = 1.0

LP-1ST 91.3 91.07 60.4
LP-1ST (out-of-domain prior) 92.1 91.5 87.9
PATE-FM 92.5 92.3 91.3
ALIBI 90.1 87.1 66.9
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Table 5: Criteo. Log-loss of Label-DP algorithms on the test set under different ε.

Label-DP Algorithm ε =∞ ε = 8 ε = 4 ε = 2 ε = 1 ε = 0.1

LP-1ST 0.130 0.130 0.136 0.206 0.362 0.653
LP-1ST (domain prior) 0.130 0.130 0.136 - - -
LP-1ST (noise correction) 0.130 0.130 0.131 0.156 0.171 0.645
LP-2ST 0.130 0.130 0.123 0.207 0.342 0.527
PATE 0.130 0.151 0.156 0.188 0.255 0.680
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