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ABSTRACT

Video generative models have made remarkable progress, yet they often yield
visual artifacts that violate grounding in real-world physical dynamics. Recent
works such as PhysGen3D tackle single image-to-3D physics through mesh re-
construction and Physically-Based Rendering, but challenges remain in modeling
fluid dynamics and photorealism. This work introduces 3DPhysVideo, a novel
training-free pipeline that generates physically realistic videos from a single im-
age. We repurpose an off-the-shelf video model for two stages. First, we use it
as a novel view synthesizer to reconstruct complete 360-degree 3D scene geome-
try by guiding the image-to-video (I2V) flow model with rendered point clouds
derived from an initial 3D estimation. Second, after applying Material Point
Method (MPM) physics simulation to this geometry, the simulated point cloud
is used to guide the same I2V flow model to synthesize final, high-quality videos.
Consistency-Guided Flow SDE, which decomposes the predicted velocity of the
I2V flow model into denoising and consistency bias, allows us to effectively re-
purpose the model for both 3D reconstruction and simulation-guided video gen-
eration. Our method successfully bridges the gap from single-images to physi-
cally plausible videos while remaining efficient to run on a single consumer gpu.
In the extensive experiments, our approach outperforms state-of-the-art baselines
on both GPT-based evaluations and VideoPhy physics-consistency benchmark,
across diverse scenarios including single-object, multi-object, and fluid interac-
tion sequences.

1 INTRODUCTION

Recent advances in image-to-video (I2V) synthesis have achieved impressive fidelity of generated
videos. These data-driven models (Blattmann et al., 2023; OpenAI, 2024; Google, 2025; Germanidis
& Research, 2024), however, often lack fundamental understanding of real-world physics, resulting
in implausible dynamics and photonics as demonstrated by several physics benchmarks (Motamed
et al., 2025; Bansal et al., 2024; Meng et al., 2024). Several works aim to enhance the data-driven
video generation models with physics awareness for general scenes from single images. Force
Prompting (Gillman et al., 2025) exploits physics-informed data to induce physics interactions into
its model, while VLIPP (Yang et al., 2025b) employs vision-language models(VLM) for physics
reasoning prior to data-driven video generation. However, these approaches break down in out-of-
domain physics scenarios due to their reliance on data-driven video models.

To achieve better generalisation and accurate physics modeling, another line of works integrate
explicit physical simulation into 3D Gaussian Splatting (Kerbl et al., 2023) by directly applying
simulation results (Xie et al., 2024) or learning differentiable simulators (Zhang et al., 2024; Huang
et al., 2025; Liu et al., 2025) with video model priors. These physics-equipped Gaussians are then
rendered to generate physically plausible videos. The 3D GS-based methods typically require multi-
view inputs, which are difficult to obtain in practical settings. Recent attempts combine simulation
accuracy with improved visual synthesis. PhysMotion (Tan et al., 2024) reconstructs 3D GS using
LGM (Tang et al., 2024) before applying simulation and refining the rendered output with video
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models. PhysGen3D (Chen et al., 2025a), which extends PhysGen (Liu et al., 2024) to 3D, mod-
els 3D physics from a single image using mesh reconstruction and Physically-Based Rendering
(PBR). Both approaches, however, rely on object-centric 3D reconstruction models, and the mesh
representation in PhysGen3D leads to fabric-like artifacts and limitations in fluid dynamics where
maintaining vertex connectivity is challenging.

In this work, we propose a novel pipeline, named 3DPHYSVIDEO, for single image-to-3D dynamics
video generation, via two non-trivial stages: single-view 3D reconstruction and simulation-guided
video generation. We propose Consistency-Guided Flow SDE, which decomposes the predicted ve-
locity of I2V flow model into denoising bias and consistency bias, repurposing the I2V model as
both a novel-view synthesizer and a simulation-guided video generation model with its reinforced
consistency. As a novel-view synthesizer, the I2V model generates a 360-degree orbit video with ge-
ometry guidance obtained by unprojecting a single-view to the world coordinate using a point cloud
reconstruction model (Wang et al., 2025b). Since the orbit video obtained by Consistency-Guided
Flow SDE is inherently world-consistent, we then obtain 3D scene geometry by simply unproject-
ing it using the same feedforward model. Subsequently, using the I2V model as a simulation-guided
video generator, we generate the high quality output videos following 3D physics dynamic of various
materials including solids, fluids, and viscous substances simulated through MPM. 3DPHYSVIDEO
(1) obtains 3D geometry of more generic scenes not relying on any object-centric 3D data-driven
models, (2) offers high controllability by allowing users to specify desired conditions such as veloc-
ity, mass, and material properties in 3D space through physics simulation, and (3) generates pho-
torealistic videos that follow this simulated physics dynamics. We validate our approach through
extensive experiments, both quantitatively via human evaluation, GPT-scores and VideoPhy (Bansal
et al., 2024) benchmarks, and qualitatively, in comparison to state-of-the-art data-driven video gen-
eration models (e.g., Gen-3, Sora, VEO), the most-relevant work PhysGen3D, physics-aware video
model VLIPP, and MotionClone (Ling et al., 2025), Go-with-the-Flow (Burgert et al., 2025), Mag-
icMotion (Li et al., 2025) as well as ablation studies on the effectiveness of our consistency-guided
SDE. Results show that our method significantly improves physical realism and semantic consis-
tency while maintaining competitive photorealism, particularly in challenging multi-object and fluid
interaction scenarios. Our major contributions are:

• We propose 3DPHYSVIDEO, a novel training-free pipeline that combines pre-trained I2V
model priors with physics simulation to generate 3D physically plausible videos from a
single image. The I2V model serves as both a novel-view synthesizer and a simulation-
guided video generation model.

• We propose Consistency-Guided Flow SDE, a novel method that decomposes the predicted
velocity of I2V flow model into denoising bias and consistency bias, yielding videos that
are consistent with input and guided images, while maintaining the photorealism.

• Extensive experiments demonstrate that our pipeline generates videos with superior phys-
ical and photo realism compared to state-of-the-art methods across diverse scenes, while
providing flexible user-intended generation.

2 RELATED WORK

3D Physics Dynamics. 3D Gaussian Splatting (3D GS) (Kerbl et al., 2023) has been widely adopted
to represent 3D scenes. PhysGaussian (Xie et al., 2024) and subsequent works (Huang et al., 2025;
Zhang et al., 2024; Cai et al., 2024; Liu et al., 2025; Lin et al., 2025; Mittal et al., 2025) have
integrated physics modeling using the Material Point Method (MPM) (Stomakhin et al., 2013; Jiang
et al., 2016) to assign physical properties to each Gaussian particle. Recent advances in single-
image 3D reconstruction have enabled recovering structure from a single view. Some methods
directly predict 3D shapes (Xu et al., 2024), while others adopt a two-step approach: synthesizing
multi-view images (Liu et al., 2023; Shi et al., 2024) then reconstructing geometry (Tang et al.,
2024; Chen et al., 2025b). Beyond object-centric scenarios, several studies (Wang et al., 2025b; Yu
et al., 2025a;b) extend to scene-level reconstruction. Building on these advances in single-view 3D
reconstruction, several works (Chen et al., 2025a; Tan et al., 2024) have enabled physics simulation
directly from single images using MPM-based approaches combined with visual synthesis models.
These methods reveal the feasibility of generating physically realistic dynamic scenes directly from
single-view inputs.
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Motion Conditioned Video Generation. A wide variety of methods have been explored for control-
lable video generation. Optical flow, the most widely used motion representation or related motion
fields, has been employed in methods (Ni et al., 2023; Liang et al., 2024; Chen et al., 2023; Burgert
et al., 2025), as conditioning signals, enabling temporal coherence and global motion controls but of-
ten lacking fine physical details. On the progress of point tracking models (Xiao et al., 2024; 2025),
another line of work explores trajectory and point-based control (Geng et al., 2025; Jeong et al.,
2025), which flexibly handles both dense and sparse point conditions. Region and entity-based ap-
proaches (Wu et al., 2024; Li et al., 2025; Haonan Qiu et al., 2024) provide fine-grained controls
via masks, bounding boxes, or landmarks, though they tend to overlook high-frequency cues from
simulation. Unified controllers such as (Zhang et al., 2025; Wang et al., 2024) aim to combine het-
erogeneous signals within a single framework. In parallel, training-free paradigms (Jain et al., 2024;
Ling et al., 2025) demonstrate the feasibility of repurposing pretrained video diffusion models with-
out additional training. Camera control and 3D-aware methods have also gained attention, including
(He et al., 2025; Yang et al., 2024; Wu et al., 2025) which improve multi-view consistency and en-
able explicit camera trajectory conditioning. Beyond the trajectory or mask-based conditioning, the
recent work on force prompting (Gillman et al., 2025) introduces physical forces as control signals
for video generation, enabling both localized point interactions and global effects. This approach
demonstrates that video models can generalize intuitive force-based dynamics from limited synthetic
training, highlighting an alternative paradigm for incorporating physically meaningful controls.

Flow-based Editing. Flow matching (Lipman et al., 2023) has demonstrated computational advan-
tages through straight-line oridinary differential equation (ODE) trajectories over diffusion models.
Recent works have explored various editing applications including text-driven image or video editing
through inversion methods using score distillation (Yang et al., 2025a), rectified stochastic differen-
tial equation (SDE) (Song et al., 2021; Rout et al., 2025), Taylor expansion solvers (Wang et al.,
2025a), and predictor-corrector frameworks (Jiao et al., 2025). However, editing for image-to-video
flow matching models that leverages consistency with input images remains underexplored.

3 3DPHYSVIDEO

Given a single RGB image I ∈ RH×W×3, our goal is to generate a physically plausible video
Vsim through physics simulation. Our pipeline is designed to fully exploit the rich prior of a video
generation model G (Zhang & Agrawala, 2025). The first stage repurposes G as a novel view
synthesizer, producing an orbit video Vorb and corresponding 3D geometry from the input image
I (Sec. 3.1). We then run physics simulation based on the 3D reconstruction, yielding simulated
point trajectories P = {Pi}Li=1. In the second stage, we map these raw simulated trajectories P
into a photorealistic and temporally coherent final video Vsim (Sec. 3.2). Both stages are done by
our novel Consistency-Guided Flow SDE, ΦCF, introduced in (Sec. 3.3).

3.1 STAGE 1: SINGLE IMAGE TO 3D

Obtaining 3D geometry from a single image is fundamentally ill-posed, due to regions invisible
from the input view. Hence, it is critical to exploit the strong priors of generative models. Un-
like previous works (Chen et al., 2025a) that rely on object-level reconstruction (Xu et al., 2024),
which individually process each object and therefore discard inter-object information such as rela-
tive poses and spatial relationships, we instead leverage a generic video generation model G (Zhang
& Agrawala, 2025) to reconstruct the entire scene jointly. Throughout our pipeline, all necessary
masks are obtained using SAM2 (Ravi et al., 2025).

Point Cloud Unprojection. Given the image I, we unproject a point cloud into the world coordi-
nate system using a point cloud reconstruction model (Wang et al., 2025b). To retain only foreground
points of interest for physics modeling, we apply the foreground mask of I to remove background
points.

Mesh Orbit Rendering. As shown in Fig. 1, the unprojected point cloud provides correct ge-
ometry for visible regions from the input view. Therefore, to utilize it as a geometry guidance for
generating a world-consistent orbit video, we convert it to a mesh to fill gaps between sparse points
and render it by moving the camera along a 360-degree orbit trajectory. This produces a mesh orbit
video {forbi }Ki=1 in black background, which yet has a significant number of missing pixels due to
occlusions.
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Figure 1: Overall Pipeline. Starting from a single image, 3DPHYSVIDEO reconstructs 3D scene
geometry via 360-degree orbit video synthesis, then conducts particle-based physics simulation to
produce photorealistic videos from the simulation results.

World-Consistent Orbit Video Generation. To obtain a world-consistent orbit video Vorb fol-
lowing the geometry guidance of {forbi }Ki=1, we repurpose the video model G as a novel-view syn-
thesizer. We achieve this using our Consistency-Guided Flow SDE, ΦCF (Sec. 3.3) along with mask-
ing and inversion strategies (Mokady et al., 2023; Wang et al., 2025a).

Vorb = ΦCF({forbi }Ki=1, I,M
orb;G). (1)

Where Morb is the video mask obtained by concatenating the per-frame masks of {f orb
i }Ki=1. This

mask helps preserve the geometry guidance regions, while enabling the use of video model G that
iteratively fills the empty regions to be semantically consistent with the input image I.
3D Scene Geometry. Since Vorb is inherently world-consistent by following the geometry guid-
ance, we obtain 3D scene geometry by simply unprojecting it back to the world coordinate using
the same point cloud reconstruction model, without requiring any object-centric 3D reconstruc-
tion models as in prior-arts. This scene-level strategy preserves inter-object relationships during
reconstruction, such as relative poses and spatial relationships, which are absent in object-centric
approaches.

3.2 STAGE 2: SIMULATION TO VIDEO

Per-object Segmentation & Post-processing. The point cloud from Sec. 3.1 captures the scene
structure but lacks explicit object separation and interior points needed for simulation. We get per-
object segment masks and apply it on the scene reconstruction to yield per-object point clouds. Then,
we remove outliers, reconstruct watertight meshes via Poisson reconstruction (Kazhdan et al., 2006),
and sample volumetric points to form MPM-ready point clouds {Qo

i } with colors interpolated from
the input point cloud. We also detect the ground plane π via RANSAC (Fischler & Bolles, 1981).
Note that mesh reconstruction serves only for volumetric point sampling, not 3D representation.
Point cloud and mesh processing details are provided in the supplementary material.
MPM Simulation & Rendering. Following (Chen et al., 2025a), we obtain the initial velocity
v0 and physical properties Θ through either automatic inference using GPT-5 or direct user specifi-
cation, including material-specific parameters such as object elasticity, density, and surface friction
coefficients required for realistic physics simulation. With the obtained object-level point clouds
{Qo

i } and parameters π, v0 and Θ, we run an MPM simulator (Jiang et al., 2016; Hu et al., 2019)
to generate simulated output P = MPM({Qo

i }, π,v0,Θ), where P = {Pi}Li=1 represents point
trajectories that captures physically accurate deformations and motions. We then render the raw
simulated trajectories P using a point cloud renderer (Meta, 2024), preserving the color information
throughout the simulation. These rendered frames are then overlaid onto the inpainted background
image Ibg, yielding the simulation-rendered video {f sim

i }Li=1.
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Figure 2: Consistency-Guided Flow SDE ΦCF. The masked inversion process (left) combines
inverted and noisy latents to obtain the starting latent for optimization. The iterative consistency
optimization (right) via consistency-guided flow SDE refines this latent to produce semantically or
photorealistically consistency-optimal videos.

Photorealistic Video Generation. The rendered video {fsimi }Li=1 shows physically accurate de-
formations and motions. Since it is rendered from points, however, it lacks photorealism with
missing shadows and lighting effects. To address this, we now repurpose the video model G as
a simulation-guided video generation model using ΦCF with the masking and inversion strategies,
similar to Sec. 3.1.

Vsim = ΦCF({fsimi }Li=1, I, I
bg,Msim;G). (2)

Where Msim is the video mask obtained by concatenating the per-frame masks of {f sim
i }Li=1. This

mask with the background image enforces adherence to the simulated motion guidance regions
and allows the video model G to iteratively refine the appearance for consistency with the input
image I. As a result, the final video Vsim is both physically faithful to the simulated dynamics and
photorealistic.

3.3 CONSISTENCY-GUIDED FLOW SDE ΦCF

A key contribution of our framework lies in leveraging the consistency-guided Flow SDE ΦCF across
two distinct stages. In Sec. 3.1, ΦCF yields a world-consistent orbit video from an incomplete mesh
orbit video. In Sec. 3.2, ΦCF translates simulation-rendered video into a photorealistic video. By
reusing the same mechanism with different guidances (geometry in the first stage and physics sim-
ulation in the second), our method unifies geometry reconstruction and physics-based animation
under a single coherent framework.

Masked Inversion Strategy. From Eq. 1 and Eq. 2, we first encode the inputs of ΦCF - the
{f orb

i }Ki=1 or {f sim
i }Li=1, I, and Ibg - to obtain zorb or zsim, zI , and zbg respectively. Then, as shown

in Fig. 2, we obtain two intermediate latents at a diffusion step t = τ : zinv
τ through the inversion

process on zorb or zsim, and znoisy
τ through the forward process on zorb or zbg for the two stages re-

spectively. Finally, we obtain the combined video latent zτ = M · zinv
τ + (1−M) · znoisy

τ , where M
is the video mask, Morb or Msim. This masked inversion strategy allows zτ to preserve the guidance
regions corresponding to M through the inversion process while enabling the use of video model G
through the intermediate latent space at τ .
Consistency-Guided Flow Stochastic Differential Equation (SDE). The velocity prediction
model vθ of the I2V flow model G (Lipman et al., 2023; Zhang & Agrawala, 2025) acquires a
consistency bias through training to guide a intermediate video latent zt toward consistency with
input image. Hence, a straightforward approach to obtain a video more semantically or photoreal-
istically consistent with zI from zτ is to follow the standard generation process using the velocity
predicted by vθ. However, since vθ inevitably possesses both consistency bias and denoising bias,
we empirically verified that the generation process guided by both biases produces consistency-
suboptimal videos (see Fig. 6). To achieve consistency-optimal video generation, we decompose
vθ into a velocity prediction model vc that captures the consistency bias and a velocity prediction
model vϵ that captures the denoising bias:

vθ(zt, zI , t) = vc(zt, zI , t) + vϵ(zt, zI , t). (3)
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Specifically, our goal is to leverage vc at the intermediate diffusion step t = τ to optimize the video
latent zτ into a consistency-optimal video latent z∗τ in Fig. 2. By leveraging vϵ to maintain the orig-
inal distribution q = N ((1− τ)µ, τ2I) at τ , we ensure that the enforced consistency does not lean
toward high-frequency details (t ≈ 0) and low-frequency components (t ≈ T ). Accordingly, our
objective is to find the target distribution p∗ that enables sampling z∗τ which maximize C(·, zI)(the
consistency with zI ) while minimizing KL divergence (Kullback & Leibler, 1951) with q, balanced
by a regularization parameter β:

p∗ = argmax
p

Ezτ∼p [C(zτ , zI)]−
1

β
DKL(p ∥ q). (4)

To solve this optimization, the consistency bias model vc approximates ∇C(zτ , zI) to maximize
the first term, while the denoising bias model vϵ is utilized to approximate the score function
∇zτ log q(zτ ) for the KL divergence term. Using these approximated gradients, we formulate an
overdamped Langevin stochastic differential equation(SDE) (Risken, 1989; Song et al., 2021) to
sample from the optimal distribution p∗ and discretize it via Euler-Maruyama method (Kloeden &
Pearson, 1977; Gianfelici, 2008). Through this process with vc = vθ − vϵ from our decomposition,
we verify that at the specific choice β = 1−τ

τ , the vϵ term completely cancels out. This enables us
to achieve our consistency optimization objective using only the known vθ:

z(n+1)
τ = (1− γ

τ
)z(n)τ +

1− τ

τ
γ vθ(z

(n)
τ , zI , τ) +

√
2γ ϵ(n), ϵ(n) ∼ N (0, I). (5)

Where γ denotes the step size of discretization. Through N iterations of this final iterative formula
on zτ , we obtain z∗τ semantically or photorealistically consistent with zI . In this process, we mask
z
(n+1)
τ with the M, to maintain the guidance regions of zτ . Finally, we obtain Vorb or Vsim =

D(F(z∗τ )) through the final denoising process F and the decoding process D. The detailed derivation
and algorithm are provided in the supplementary material.

4 EXPERIMENTS

Implementation Details. In the proposed pipeline, we use Framepack (Zhang & Agrawala, 2025),
an auto-regressive DiT-based I2V flow model. We set τ = 20 (out of 25 total inference steps), N =
10 and γ = 0.2. All experiments were conducted on a single NVIDIA RTX 3090 GPU.
Data Sets. We curate a set of 10 diverse scenes drawn from multiple sources, including Phys-
Gen3D (Chen et al., 2025a), the Physics-IQ benchmark (Motamed et al., 2025), internet-sourced
examples, and GPT-generated scenarios. The dataset spans three categories: fluid, single-object,
and multi-objects. This design covers a wide spectrum of physical interactions, from simple object
dynamics to complex fluid and multi-body interactions. Results for all scenarios are provided in the
supplementary material.

Compared Methods. We evaluate our full pipeline (Stage 1 + Stage 2) against several strong base-
lines. FramePack (Zhang & Agrawala, 2025) serves as a direct baseline to isolate the effect of our
physics-guided framework. Sora (OpenAI, 2024), Gen-3 Alpha (Germanidis & Research, 2024),
and Veo-3 (Google, 2025) are state-of-the-art commercial video generation models, representing the
strongest purely data-driven approaches. We further include PhysGen3D (Chen et al., 2025a), the
most relevant prior work on single image-to-3D physics-based video generation. We also compare
with VLIPP (Yang et al., 2025b), a representative of methods that adapt pretrained video genera-
tion models (e.g., Force Prompting (Gillman et al., 2025)) to physically plausible motions without
explicit simulations. This part of comparisons are to methods that are applicable for the setting of
single-image input, which is the central focus of our work. The approaches of physics-integrated
Gaussian Splatting (Xie et al., 2024; Cai et al., 2024; Lin et al., 2025; Mittal et al., 2025) are not
included, as they require multi-view inputs. For Stage 2 (simulation to video), we compare against
MotionClone (Ling et al., 2025), Go-with-the-Flow (Burgert et al., 2025), and MagicMotion (Li
et al., 2025), which represent motion-prior, flow-based, and mask-based conditioning, respectively.
This highlights the strength of our consistency-guided Flow SDE in preserving input appearance
while following simulated dynamics.

Qualitative Comparison with SOTA Video Models. We provide qualitative results across four
scenarios: the ball-drop scene from Physics-IQ, the book-fall scene from PhysGen3D, our synthetic
sand-castle collapse scene, and apple dropping on water scene from internet.(Fig. 3). Across all
settings, the prior models often produce artifacts such as unnatural rebounds, missing object de-
tails, or unstable backgrounds. Specifically, PhysGen3D relies on object-centric 3D reconstruction,
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Figure 3: Qualitative comparison across four representative scenarios. From left to right: (i) the ball
drop scene from the Physics-IQ benchmark, (ii) the book-fall scene from the PhysGen3D dataset,
(iii) a synthetic sand-castle collapse scene self-made, and (iv) an apple falling scene from internet.

which discards relative poses and spatial relationships as shown in the first scenario, and mesh-based
PBR rendering, often leading to distorted textures and limitations in fluid dynamics as observed in
the fourth scenario. General-purpose video generation models (Sora, Gen-3, Veo) often produce
physically implausible behaviors, such as objects suddenly disappearing, appearing, or moving un-
naturally. Recent physics reasoning approaches using VLM chain-of-thought, such as VLIPP show
improved physical plausibility, but without explicit physics simulation they still exhibit clear limita-
tions. In contrast, our method consistently preserves scene appearance while generating physically
plausible object motions and realistic interactions with the environment.

Table 1: Comparison results of GPT-5 evaluation (PhysReal, PhotoReal, Semantic), VideoPhy Phys-
ical Commonsense Score (VPhy), and Human evaluation (PhysReal, PhotoReal, Semantic) across
different scenario groups.

One Object Liquid

Method GPT VPhy Human GPT VPhy Human
PhysR PhotoR Sem PhysR PhotoR Sem PhysR PhotoR Sem PhysR PhotoR Sem

PhysGen3D 0.206 0.251 0.317 0.200 1.47 1.60 2.05 0.119 0.205 0.118 0.037 1.45 1.66 1.52
Gen3 0.506 0.801 0.428 0.348 2.78 3.25 3.32 0.513 0.845 0.339 0.126 3.08 3.68 2.70
VLIPP 0.426 0.425 0.425 0.372 1.75 2.43 2.35 0.544 0.792 0.574 0.192 2.14 2.92 2.71
Sora 0.306 0.666 0.107 0.257 1.95 2.58 1.80 0.722 0.852 0.599 0.073 1.82 3.05 2.62
VEO 0.786 0.871 0.837 0.223 3.25 3.90 3.60 0.689 0.867 0.656 0.098 3.40 3.78 3.65

Framepack(baseline) 0.484 0.892 0.488 0.440 2.12 2.90 1.62 0.668 0.851 0.640 0.101 2.47 3.50 3.08
Ours 0.726 0.880 0.656 0.510 3.15 3.62 3.73 0.702 0.843 0.764 0.120 3.65 3.90 4.17

Multi Object Overall

Method GPT VPhy Human GPT VPhy Human
PhysR PhotoR Sem PhysR PhotoR Sem PhysR PhotoR Sem PhysR PhotoR Sem

PhysGen3D 0.183 0.535 0.191 0.193 1.43 1.63 1.61 0.171 0.360 0.206 0.149 1.45 1.63 1.71
Gen3 0.554 0.811 0.582 0.124 2.25 3.09 2.75 0.528 0.818 0.469 0.192 2.66 3.32 2.91
VLIPP 0.662 0.780 0.740 0.186 2.05 2.76 2.59 0.561 0.682 0.603 0.244 1.98 2.71 2.55
Sora 0.703 0.767 0.762 0.102 2.16 2.78 2.66 0.595 0.762 0.528 0.140 1.99 2.80 2.39
VEO 0.662 0.874 0.499 0.083 2.85 3.49 3.29 0.705 0.871 0.641 0.129 3.14 3.70 3.49

Framepack(baseline) 0.308 0.806 0.262 0.147 2.01 3.09 2.43 0.461 0.844 0.434 0.221 2.18 3.16 2.38
Ours 0.721 0.840 0.756 0.191 3.46 3.77 3.95 0.717 0.852 0.730 0.266 3.43 3.76 3.95

GPT-based Evaluation. We adopt GPT-based assessments to evaluate Physical Realism, Photore-
alism, and Semantic Consistency. Physical Realism measures whether the generated motion follows
physical laws such as gravity, elasticity, and collisions, while Photorealism assesses the fidelity of
generated frames, including texture, lighting, and rendering quality. Semantic Consistency evaluates
how well generated motions correspond to intended trajectories or simulated dynamics. Following
PhysGen3D (Chen et al., 2025a), we provide GPT with the input image, the motion context, and
sampled video frames, and collect scores across the three axes. Details on GPT-based evaluation
protocol can be found in supplementary material.
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Figure 4: Qualitative comparison on Simula-
tion to Video.

Table 2: GPT-5 evaluation results of Stage 2:
Simulation to Video.

Method PhysReal PhotoReal Semantic

MotionClone 0.396±0.043 0.631±0.060 0.387±0.116

MagicMotion 0.445±0.073 0.575±0.042 0.573±0.052

Go With the Flow 0.632±0.064 0.812±0.043 0.689±0.052

Ours 0.711±0.061 0.862±0.020 0.758±0.057

Table 3: Vbench evaluation results of Stage 2 :
Simulation to Video.

Method AQ BC IQ MS SC TF

MotionClone 0.551 0.865 61.159 0.980 0.769 0.972
MagicMotion 0.531 0.921 60.819 0.990 0.877 0.986
Go With the Flow 0.540 0.940 62.164 0.995 0.909 0.992
Ours 0.580 0.942 63.532 0.996 0.916 0.993

Tab. 1 summarizes the results. Our method achieves the highest overall scores in physical realism
and semantic consistency, noting our core objective of enhancing physical plausibility in generated
videos. Our score on photorealism remains competitive with state-of-the-art methods, showing that
improved physical plausibility does not come at the cost of visual quality.
Our approach performs particularly well in multi-object and liquid scenarios, outperforming base-
lines in settings with complex physical interactions. This aligns with our design choice of incorpo-
rating explicit physics simulation: whereas existing methods often suffer from object hallucination,
such as objects disappearing, multiplying, or moving unnaturally, our approach maintains consistent
object identities and interactions throughout the sequences. The improvements in the multi-object
scenarios demonstrate the advantage of grounding video generation in physical simulation for han-
dling complex interactions that pure generative models struggle with.
Human Evaluation. We additionally conduct human evaluation with 20 participants on Physical
Realism, Photorealism, and Semantic Consistency across all scenarios. Human evaluation protocol
is mainly borrowed from (Chen et al., 2025a), as more details are provided in the supplementary
material. As shown in Tab. 1, our method consistently receives the highest ratings from human
judges, particularly in multi-object and liquid scenarios. Compared to baselines, participants judged
our results as both more physically plausible and semantically faithful, while maintaining strong
photorealism.
Physics Consistency Evaluation. To further assess the physical plausibility of generated videos,
we evaluate using the VideoPhy benchmark (Bansal et al., 2024), which measures adherence to in-
tuitive physical laws. Results in the VPhy columns of Tab. 1 show our method achieves the highest
overall score with strong robustness across physical settings, maintaining stable interactions and
realistic physical behavior without compromising visual quality. While PhysGen3D shows strong
performance in the multi-object settings, it encounters significant challenges in fluid scenarios, lead-
ing to an imbalanced performance across different scene types.
Comparison with SOTA Methods for Stage 2: Simulation to Video. Tab. 2 and Tab. 3 reports
GPT-based evaluation and VBench (Huang et al., 2024) results for Stage 2, where simulation out-
puts are converted into realistic videos via our physics-guided pipeline or other methods. The same
simulation obtained by the proposed method stage 1 is given to all methods. As in the previous
evaluation, Physical Realism (PhysReal), Photorealism (PhotoReal), and Semantic Consistency (Se-
mantic) are assessed by GPT-5, while the additional metrics (AQ, BC, IQ, MS, SC, TF) are drawn
from the VBench benchmark for video quality. Our approach achieves the best performance across
all metrics, demonstrating not only superior physical plausibility but also consistently strong visual
fidelity.
Qualitative Comparison for Simulation-to-Video. We further evaluate our method on a scenario
where a yellow block falls to the right and contacts blue liquid (Fig. 4). For this experiment, all meth-
ods are given the same inputs: the simulation-rendered video, the original input image, and the text
prompt describing the scene. Fig. 4 shows that the different methods exhibit characteristic behaviors
under this setting. MotionClone (Ling et al., 2025) generates unstable object representations, where
the yellow block loses its shape and blends with the liquid. Go with the Flow (Burgert et al., 2025)
often deviates from the simulated dynamics, producing a sliding trajectory that continues beyond
the frame instead of halting at the point of impact. MagicMotion (Li et al., 2025) broadly follows
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the simulated trajectory but occasionally causes the yellow block to vanish beneath the liquid, a lim-
itation likely stemming from mask-based conditioning without explicit object boundary constraints.
In contrast, our method preserves the block’s geometry and texture while accurately reproducing the
simulated dynamics, leading to realistic and coherent fluid–object interactions.

Figure 5: Qualitative results under different physical property conditions. Varying the material
(e.g., jelly, ice cream, water) changes the deformation behavior, altering the mass (heavy, moderate,
light) affects motion dynamics, and modifying the velocity (backward, rightward, leftward) controls
directional trajectories.

Figure 6: Ablation on the number of Consistency-Guided Flow SDE steps. Left: Stage 1 (Single
Image to 3D). Right: Stage 2 (Simulation to Video). For both stages, the result in the second
column (SDE step = 0) corresponds to the result of the standard generation process without SDE
optimization.

Ablation Study. We demonstrate in Fig. 5 that our framework allows flexible control over differ-
ent input physical parameters (material, mass, and velocity), and generates results that faithfully
reflect the specified properties. Since we uses video priors to synthesize faithful videos from sim-
ulation results, this enables handling out-of-domain physics scenarios (e.g., Snorlax with ice cream
or water-like properties) where data-driven generation methods break down. Fig. 6 shows the effec-
tiveness of our Consistency-Guided Flow SDE by varying the number of SDE optimization steps in
the both stages of our pipeline. With zero refinement steps, unseen regions in orbit views (Stage 1)
remain incomplete while raw simulation frames (Stage 2) appear unrealistic with distorted textures.
As the number of refinement steps increases, the orbit views progressively fill in missing areas pro-
ducing geometrically consistent reconstructions, while the simulation frames become increasingly
photorealistic with stable textures faithful to the input image.

5 CONCLUSIONS
We introduced a novel training-free pipeline for generating a physically plausible video from a single
input image. We believe this work represents a significant step forward by demonstrating how off-
the-shelf video generation models can be repurposed without training as novel-view synthesizers and
simulator-guided renderers for single-view 3D reconstruction and photorealistic video generation.
The core of our framework, the proposed Consistency-Guided Flow SDE, while the lack of con-
sistency in this work reveals the model’s inherent consistency bias, can serve as a general-purpose
bias enforcer for other applications requiring different inductive biases, such as text alignment. Fu-
ture work will explore these broader applications and extend to more complex physics dynamics for
real-world scenario modeling.
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A DETAILED DERIVATION FOR CONSISTENCY-GUIDED FLOW SDE ITERATIVE
FORMULA

To derive Eq. 5, we start from our objective in Eq. 6:

p∗ = argmax
p

Ezτ∼p [C(zτ , zI)]−
1

β
DKL(p ∥ q). (6)

By expanding the KL divergence term and rewriting the objective in its minimizing form, we can
rewrite it as:

argmin
p

Ezτ∼p

[
1

β
log

p(zτ )

q(zτ )
− C(zτ , zI)

]
= argmin

p
Ezτ∼p

[
log

p(zτ )

q(zτ )
− βC(zτ , zI)

]
. (7)

Following the exponential tilting result for KL-constrained objectives in (Rafailov et al., 2023)), the
optimal distribution is:

p∗(zτ ) =
q(zτ ) exp

(
βC(zτ , zI)

)∫
q(z′τ ) exp

(
βC(z′τ , zI)

)
dz′τ

. (8)

Taking the score of this optimal distribution:

∇zτ
log p∗(zτ ) = β∇zτ

C(zτ , zI) +∇zτ
log q(zτ ). (9)

This score function directly gives us the drift term for the overdamped Langevin SDE (Risken, 1989;
Song et al., 2021):

dzk =
[
β∇zτ

C(zτ , zI) +∇zτ
log q(zτ )

]
dk +

√
2 dWk. (10)

where Wk is a standard Wiener process.

To implement this, we apply our decomposed velocity models in Eq. 3. We approximate the
∇zτ

C(zτ , zI) using our consistency bias model vc = vθ − vϵ and approximate the score function
using the denoising bias model vϵ based on the flow ODE structure:

∇zτ
C(zτ , zI) ≈ vc = vθ − vϵ, ∇zτ

log q(zτ ) ≈ −
zτ − (1− τ)(zτ + τvϵ)

τ2
. (11)

By substituting these approximations into Eq. 10:

dzk =
[
β (vθ − vϵ)−

zτ − (1− τ)(zτ + τvϵ)

τ2
]
dk +

√
2 dWk. (12)

Applying the Euler-Maruyama discretization (Kloeden & Pearson, 1977; Gianfelici, 2008). with
step size γ gives us the update rule:

z(n+1)
τ = z(n)τ +

[
β (vθ − vϵ) +−

z
(n)
τ − (1− τ)(z

(n)
τ + τvϵ)

τ2
]
γ +

√
2 γ ϵ(n)

= (1− γ

τ
)z(n)τ + βγ vθ − (β − 1− τ

τ
)γvϵ +

√
2γ ϵ(n), ϵ(n) ∼ N (0, I).

(13)

This discretized iterative formula ensures convergence to the optimal distribution p∗(zτ ) that sat-
isfies our objective in Eq. 6, as established by the exponential tilting result and the convergence
properties of Euler-Maruyama method. Notably, when we choose β = 1−τ

τ , the coefficient of vϵ
vanishes: (β − 1−τ

τ )γ = 0 , causing the vϵ terms to completely cancel out. This yields a simplified
final iterative formula in Eq. 5 that depends only on the known velocity model vθ, eliminating the
need for explicit knowledge of the denoising bias model vϵ while maintaining convergence to the
desired optimal distribution.

B ALGORITHM IMPLEMENTATION AND ANALYSIS

We provide the practical implementation of our Consistency-Guided Flow SDE ΦCF. The algorithm
takes {f orb

i }Ki=1 or {f sim
i }Li=1 as the input rendered video {fi} and Morb or Msim as the video mask

M, and outputs Vorb or Vsim as the Final video V. Note that only two lines (7, 12) differ between
the two stages.
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Algorithm 1 Consistency-Guided Flow SDE ΦCF

Require: Input image I, Input rendered video {fi}, Video mask M, Background image Ibg, SDE tar-
get timestep τ , SDE optimization iterations N , One-step flow model generation process F (·, vθ, t),
One-step flow model inversion process F−1(·, vθ, t), Encoding process E(·), Decoding process D(·)
1: (z, zI , z

bg)← E({fi}, I, Ibg) ▷ encode each input to its corresponding latent

2: zinv
0 ← z

3: for t = 0 . . . τ − 1 do
4: zinv

t+1 ← F−1(zinv
t , vθ(z

inv
t , zI , t), t)

5: end for
6: ϵ ∼ N (0, I)

7: znoisy
τ ←

{
(1− τ) · z+ τ · ϵ (stage 1)

(1− τ) · zbg + τ · ϵ (stage 2)
8: zτ ←M · zinv

τ + (1−M) · znoisy
τ

9: for n = 0 . . . N − 1 do
10: ϵ(n) ∼ N (0, I)

11: ẑ
(n+1)
τ ← (1− γ

τ
)z

(n)
τ + 1−τ

τ
γvθ(z

(n)
τ , zI , τ) +

√
2γ ϵ(n) ▷ Eq. 5

12: z
(n+1)
τ ←

{
M · z(n)

τ + (1−M) · ẑ(n+1)
τ (stage 1)

M · ẑ(n+1)
τ + (1−M) · z(n)

τ (stage 2)

13: end for z∗τ ← z
(N)
τ

14: for t = τ . . . 1 do
15: z∗t−1 ← F (z∗t , vθ(z

∗
t , zI , t), t)

16: end for z∗ ← z∗0
17: V← D(z∗) ▷ decode latent to pixel video
18: Output: Final video V

To clarify the algorithm’s unified approach, we provide detailed explanations for both use cases,
highlighting the minimal but crucial differences between the two stages:

For Stage 1. The rendered mesh orbit video {f orb
i }Ki=1 shows accurate localization in the 3D world

coordinate system for the regions visible in the input image. Therefore, given a mask M for this
region, our aim is to preserve and utilize it as geometric guidance to fill the remaining empty regions
so that they align semantically with the input image I . To achieve this, in line 12, we continuously
inject zinv

τ corresponding to the mask M region from zτ at every optimization iteration, while updat-
ing only the unmasked part. This strategy ensures that during optimization, the geometry guidance
from the input rendered video {f orb

i }Ki=1 is accurately followed while enabling the filling of empty
regions to obtain the optimal latent z∗τ .

For Stage 2. The simulation-rendered video {f sim
i }Li=1 provides accurate motion dynamics but ex-

hibits unrealistic visual appearance. Therefore, the objective of Stage 2 is to covert it into photoreal-
istic video that is visually coherent with I. To achieve this, we only need simple modifications at two
lines of the Stage 1 algorithm. First, in line 7, we use zbg instead of z. This prevents the simulated
motion from unintentionally spreading into regions where it is not required. Second, in line 12, we
only update the masked region M (opposite to Stage 1) to optimize the appearance of the inverted
simulation part. As a result, the regions with motion are optimized while their area is controlled by
the mask M, and the unmasked static regions are injected with noise only once at initialization. This
enables the M region to be refined in appearance while following the simulated motion guidance
well, and allows the remaining regions to have natural backgrounds (shadows, lighting, and motion)
thanks to the initial noise ϵ, resulting in a physics-faithful and photorealistic final video Vsim.

C POINT CLOUD AND MESH PROCESSING DETAILS

For completeness, we describe the detailed procedure for obtaining simulation-ready meshes and
point clouds from the reconstructed orbit video.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step 1: Orbit video to point cloud. The completed orbit video is passed to VGGT (Wang et al.,
2025b), using approximately 10 frames as input, to obtain an initial multi-view point cloud P0.

Step 2: Density-based outlier removal. To filter low-density outliers, we compute a density mea-
sure for each point p ∈ P0 as

ρ(p) =
1

dk(p)2
,

where dk(p) is the distance to the k-th nearest neighbor (k = 10). Points with density below a fixed
threshold τ are removed.

Step 3: Ground plane processing. The ground plane π is detected via RANSAC (Fischler &
Bolles, 1981). For each object point cloud, the minimum distance to π is computed; if sufficiently
small, the object is considered to be in contact with the ground. In this case, points are projected
onto π and merged into the cloud, while points located below π are pruned.

Step 4: Poisson mesh reconstruction. The filtered point cloud is converted into a watertight
surface mesh using Poisson surface reconstruction (Kazhdan et al., 2006) with depth parameter
d = 6.

Step 5: Volumetric sampling. Finally, volumetric sampling is performed within each recon-
structed mesh to obtain a simulation-ready particle cloud. We generate between 20k and 50k parti-
cles per object, depending on its size, to balance accuracy and efficiency.

This pipeline yields clean, watertight, and volumetrically sampled object representations suitable
for subsequent MPM simulation.

D MATERIAL POINT METHOD (MPM) FORMULATION

For completeness, we briefly describe the Material Point Method (MPM) adopted in our simulation
pipeline. MPM bridges Lagrangian particles with an Eulerian background grid: particles carry
material properties, while force computations and collisions are handled on the grid.

Particle state. Each particle p is associated with mass mp, position xp, velocity vp, and deforma-
tion gradient Fp. A background grid with nodes i accumulates quantities from nearby particles via
interpolation weights wip.

Particle-to-Grid (P2G). Mass and momentum are transferred from particles to grid nodes:

mi =
∑
p

wipmp, (14)

vi =
1

mi

∑
p

wipmpvp. (15)

Grid update. The stress on each particle is computed from a constitutive potential Ψ(Fp). The
first Piola–Kirchhoff stress is

Pp =
∂Ψ

∂Fp
. (16)

The force at grid node i is
fi = −

∑
p

Vp Pp∇wip, (17)

where Vp is the particle volume. Grid velocities are updated as

vi ← vi +∆t
fi
mi

+∆tg, (18)

with timestep ∆t and gravity g.
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Grid-to-Particle (G2P). The updated grid state is interpolated back to the particles:

vp ←
∑
i

wipvi, (19)

xp ← xp +∆tvp. (20)

The deformation gradient is evolved as

Fp ← (I+∆t∇vp)Fp, ∇vp =
∑
i

vi∇wip. (21)

This hybrid particle–grid update allows simulating diverse materials, including elastic solids, flu-
ids, and granular matter, depending on the choice of constitutive model Ψ. The MPM framework
naturally handles large deformations, material mixing, and collisions, making it suitable for our
simulation-to-video setting.

E EVALUATION PROTOCOL

E.1 HUMAN EVALUATION PROTOCOL

To complement the automatic metrics, we conducted a human evaluation following the protocol
introduced in PhysGen3D. A total of 20 participants were recruited to assess the quality of generated
videos. The evaluation was performed on 10 representative scenes, each rendered by 7 different
methods, resulting in 70 videos in total. For each video, participants were asked to answer three
questions corresponding to three quality dimensions: physical realism, photorealism, and semantic
consistency.

At the beginning of the study, participants were provided with the following instruction:

We want to evaluate the quality of the generated video. You will be asked to
assess it from the three perspectives: physical realism, photorealism, and semantic
consistency.

The three evaluation criteria were described in detail as follows:

• Physical Realism measures how realistically the video follows physical rules. Participants
were asked to consider whether the video represents physical properties such as elasticity
and friction, and whether the movements and interactions of objects behave plausibly and
consistently with real-world expectations.

• Photorealism evaluates the visual fidelity of the video, including whether there are vi-
sual artifacts or discontinuities, and whether lighting, shadow, texture, and material details
closely resemble real-world appearances.

• Semantic Consistency examines how well the generated video aligns with the provided
input text and reference image.

Each video was rated by answering the following three questions: 1) The video is physically realistic.
2) The video is photorealistic. 3) The video is consistent with the input image and input text “{text
prompt}”.

Responses were collected on a 5-point Likert scale (1 = strongly disagree, 5 = strongly agree). The
order of videos was randomized across participants to mitigate ordering bias.

E.2 GPT-BASED EVALUATION PROTOCOL

For completeness, we include the details of the GPT-based evaluation protocol, which we directly
adopt from PhysGen3D (Chen et al., 2025a). In this protocol, GPT is prompted to assess generated
videos along three axes: Physical Realism, Photorealism, and Semantic Consistency. The evaluation
is performed on evenly sampled frames from each video, together with the original input image and
the motion instructions.

Specifically, GPT is instructed with the following template:
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I would like you to evaluate the quality of {num videos} generated videos based
on the following criteria: physical realism, photorealism, and semantic consis-
tency.
The evaluation will be based on {num frames} evenly sampled frames from each
video. Given the original image and the following instructions: ’{instructions}’,
please evaluate the quality of each video on the three criteria mentioned above.
Note that:
Physical Realism measures how realistically the video follows the physical rules
and whether the video represents real physical properties like elasticity and fric-
tion. To discourage completely stable video generation, we instruct respondents
to penalize such cases.
Photorealism assesses the overall visual quality of the video, including the pres-
ence of visual artifacts, discontinuities, and how accurately the video replicates
details of light, shadow, texture, and materials.
Semantic Consistency evaluates how well the content of the generated video aligns
with the intended meaning of the text prompt.
Please provide the following details for each video, scores should be ranging from
0–1, with 1 to be the best: {score lines}
Note that your output should strictly follow the above format, with a ‘;‘ after each
score. Do not give any other explanations.

We emphasize that this protocol and prompt design are not introduced by us, but are directly inher-
ited from PhysGen3D for completeness. Our goal is to ensure consistency with prior work, rather
than proposing a new evaluation methodology.

F MORE RESULTS FROM PHYSVIDEO3D
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Figure 7: Qualitative comparison with state-of-the-art simulation to video models on the book falling
scene.
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Figure 8: Qualitative comparison with state-of-the-art simulation to video models on the Snorlax
deflating scene.

Figure 9: Qualitative comparison with state-of-the-art simulation to video models on the ball colli-
sion scene.
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Figure 10: Qualitative comparison with state-of-the-art simulation to video models on the can-teddy
collision scene.
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Figure 11: Qualitative results on 360-degree orbit video generation. For five of those examples, the
first row is the input mesh orbit video {forbi } and the second row is completed orbit video Vorb. Our
method guides the video model using a rotating mesh, producing visually compelling results with
accurate and coherent 3D structure.
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Figure 12: Qualitative comparison on the block falling scene.
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Figure 13: Qualitative comparison on the synthesized can-doll collision scene.
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Figure 14: Qualitative comparison on the ball collision scene.
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Figure 15: Qualitative comparison. While other models suffer from hallucinating (number of objects
vary per frame), ours deliever exact number of objects, since its grounded from physical simulation.
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Figure 16: Qualitative comparison on the snorlax deflating scene.
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