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Abstract

Counterfactual examples explain a prediction001
by highlighting modifications of instance that002
change the outcome of a classifier. This paper003
proposes TIGTEC, an efficient and modular004
method for generating sparse, plausible and005
diverse counterfactual explanations for textual006
data. TIGTEC is a text editing heuristic007
that targets and modifies words with high008
contribution using local feature importance. A009
new attention-based local feature importance010
is proposed. Counterfactual candidates are011
generated and assessed with a cost function012
integrating semantic distance, while the013
solution space is efficiently explored in a beam014
search fashion. The conducted experiments015
show the relevance of TIGTEC in terms of016
success rate, sparsity, diversity and plausibility.017
This method can be used in both model-018
specific or model-agnostic way, which makes it019
very convenient for generating counterfactual020
explanations.021

1 Introduction022

The high level of performance in the field of023

natural language processing (NLP) achieved024

by Transformer models (Vaswani et al., 2017)025

comes along with complex architectures. The026

domain of eXplainable Artificial Intelligence027

(XAI) aims at understanding and interpreting028

the predictions made by such complex029

systems (Molnar et al., 2021). One of the030

main categories of XAI approaches is local feature031

importance (Barredo Arrieta et al., 2020) that032

quantifies the impact of each feature on a specific033

outcome. Another family of XAI methods consists034

in explaining with counterfactual examples035

(see (Guidotti, 2022) for a recent survey), defined036

as instances close to the instance of interest but037

associated with another prediction.038

This paper proposes a new method to generate039

counterfactual explanations in the case of textual040

data. This work presents a new method called041

Figure 1: Example of sparse, plausible and diverse
counterfactual examples generated by TIGTEC for
a film genre classifier that discriminates between
horror and comedy synopses. Here, the counterfactual
generation goes from comedy to horror.

Token Importance Guided TExt Counterfactuals 042

(TIGTEC). For example, given a film genre 043

classifier and an instance of interest predicted to 044

be a comedy synopsis, TIGTEC outputs several 045

slightly modified instances predicted to be horror 046

synopses (see Figure 1). 047

The main contributions of TIGTEC are as 048

follows: (i) textual counterfactual examples are 049

generated by masking and replacing important 050

words using local feature importance information, 051

(ii) a new model-specific local feature importance 052

method based on attention mechanisms (Bahdanau 053

et al., 2014) from Transformers is proposed, (iii) 054

initial instance content is preserved with a cost 055

function integrating textual semantic distance, 056

(iv) the solution space is explored with a new 057

tree search policy based on beam search that 058

leads to diversity in the generated explanations. 059

In this manner, TIGTEC bridges the gap 060

between local feature importance, mask language 061

models, sentence embedding and counterfactual 062

explanations. TIGTEC can be applied to any 063

classifier in the NLP framework in a model-specific 064

or model-agnostic fashion, depending on the local 065

feature importance method employed. 066

This paper is organized as follows: we first 067

introduce some basic principles of XAI and the 068

1



related work in Section 2. The architecture of069

TIGTEC is defined in Section 3. Section 4070

describes the performed experimental study and071

compare TIGTEC to a competitor. Finally072

Section 5 concludes this paper by discussing the073

results and future work.074

2 Background and related work075

We recall here some basic principles of XAI076

methods and existing counterfactual generation077

methods in NLP.078

2.1 XAI background079

Local feature importance. Let f : X → Y080

be a NLP classifier mapping an input space X to081

an output space Y . Let x0 = [t1, ..., t|x0|] ∈ X082

be a sequence of interest with f(x0) = y0. A083

local feature importance (or token importance in084

NLP) operator g : X → R|x0| explains the085

prediction through a vector [z1, ..., z|x0|] where zi086

is the contribution of the i−th token.087

Two common local feature importance methods088

are LIME (Ribeiro et al., 2016), whose interest089

is limited in NLP because of its very high090

computation time, and SHAP (Lundberg and Lee,091

2017).092

Counterfactual explanation Counterfactual093

explanations aim to emphasize what should094

be different in an input instance to change the095

outcome of a classifier. Their interest in XAI096

has been established from a social science097

perspective (Miller, 2019). The counterfactual098

example generation can be formalized as a099

constrained optimization problem. For a given100

classifier f and an instance of interest x0, a101

counterfactual example xcf must be close to x0 and102

is defined as:103

xcf = argmin
z∈X

d(x0, z) s.t. f(z) ̸= f(x0) (1)104

with d : X × X → R a given distance operator105

measuring proximity. A counterfactual explanation106

is then the difference between the intial data point107

and the generated counterfactual example, xcf−x0.108

Many additional desirable properties109

for counterfactual explanations have been110

proposed (Guidotti, 2022; Mazzine and Martens,111

2021) to ensure their informative nature that112

we summarize in three categories. Sparsity113

measures the number of elements changed114

between the instance of interest and the generated115

counterfactual example. It is defined as the l0 116

norm of xcf − x. Plausibility encompasses a set 117

of characteristics to ensure that the counterfactual 118

explanation is not out-of-distribution (Laugel 119

et al., 2019), while being feasible (Poyiadzi et al., 120

2020) and actionable. Since several instances of 121

explanation can be more informative than a single 122

one (Russell, 2019; Mothilal et al., 2020), diversity 123

measures to what extent the counterfactual 124

examples differ from each other. 125

2.2 Related work 126

This section presents two existing categories of 127

methods for generating textual counterfactual 128

examples. 129

Text editing heuristics. A first family of 130

methods aims at addressing the problem introduced 131

in Eq. 1 by slightly modifying the input text to be 132

explained with heuristics. 133

Model specific methods depend structurally on 134

the models they seek to explain. CLOSS (Fern 135

and Pope, 2021) focuses on the embedding space 136

of the classifier to explain. After generating 137

counterfactual candidates through optimization 138

in the latent space, the most valuable ones are 139

selected according to an estimation of Shapley 140

values. MiCE (Ross et al., 2021) iteratively 141

masks parts of the initial text and performs span 142

infilling using a T5 (Raffel et al., 2019) fine-tuned 143

on the corpus of interest. This method targets 144

tokens with high predictive power using model- 145

specific gradient attribution metrics. While the 146

label flipping success rate of CLOSS and MiCe are 147

high and the counterfactual texts are plausible, the 148

notion of semantic distance and diversity are not 149

addressed. We show in Section 3 how the TIGTEC 150

approach that we propose tackles these constraints. 151

Generating counterfactual examples shares 152

similarities with generating adversarial attacks, 153

aiming to incorrectly flip the prediction by 154

minimally editing the initial text. Numerous 155

heuristics have been proposed differing in 156

constraints, text transformation methods and search 157

algorithms (Morris et al., 2020). Contrary to 158

counterfactual explanations, adversarial attacks 159

seek to fool intentionally a model without 160

explanatory purpose. Therefore, plausibility and 161

sparsity are not addressed. 162

Text generation with large language models. A 163

second category of methods aims at generating 164
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counterfactual examples in NLP with large pre-165

trained generative language models. A first166

approach (Madaan et al., 2022) applies a Plug167

and Play language model (Dathathri et al., 2020)168

methodology to generate text under the control of169

the classifier to explain. It consists in learning170

latent space perturbations from encoder-decoder171

models such as BART (Lewis et al., 2020) in order172

to flip the outcome. Polyjuice (Wu et al., 2021)173

proposes to fine-tune a GPT-2 (Radford et al., 2019)174

model on a set of predefined tasks. It results in a175

generative language model capable of performing176

negation, quantification, insertion of tokens or177

sentiment flipping based on prompt engineering.178

Polyjuice needs to be trained in a supervised way179

on ground truth counterfactual examples in order180

to be able to generate the expected text. The use181

of Polyjuice to generate counterfactual examples is182

therefore not generalizable because counterfactual183

training data does not exist for all classification184

problems.185

3 Proposed approach, TIGTEC186

This section describes the global architecture of187

TIGTEC by detailing its four components. The188

main idea is to iteratively change tokens of the189

initial text by decreasing order of importance190

instance to find a compromise between proximity191

to the initial instance and label flipping. This192

way, TIGTEC belongs to the text editing heuristics193

category of counterfactual example generators in194

NLP.195

3.1 TIGTEC overview196

TIGTEC is a 4-step iterative method illustrated in197

Figure 2. Algorithm 1 describes the generation198

and evaluation steps, Algorithm 2 summarizes the199

whole process. TIGTEC takes as input a classifier200

f and a text of interest x0 = [t1, ..., t|x0|].201

Targeting. To modify the initial text to explain,202

tokens with highest impact on prediction are203

targeted given their local importance. TIGTEC204

implements two methods of local token importance205

and a random importance generator as a baseline.206

Generating. High importance tokens are207

masked and replaced, with a fine-tuned or208

pretrained mask model. Various counterfactual209

candidates are then generated.210

Evaluating. The generated candidates are211

evaluated by a cost function that balances the212

probability score of the target class and the213

semantic distance to the initial instance. Candidates 214

minimizing the cost function are considered valid 215

if they meet acceptability criteria. 216

Tree search policy. The lowest cost candidates 217

are kept in memory and a new iteration begins 218

from the most promising one. The solution space is 219

explored in a beam search fashion until a stopping 220

condition is reached. 221

As outlined in Figure 2, the counterfactual search 222

heuristic is a tree search algorithm, in which each 223

node corresponds to a counterfactual candidate, 224

and each edge is a token replacement. Therefore, 225

the root of the tree corresponds to the instance to 226

explain, and the deeper a node is in the tree, the 227

more it is modified. 228

3.2 Targeting 229

The first step consists in identifying the most 230

promising tokens to be replaced in the initial 231

instance to modify the outcome of the classifier 232

f . We use token importance metrics to focus 233

on impacting tokens and efficiently guide the 234

search for counterfactual examples. In particular, 235

we integrate the possibility of computing both 236

model-agnostic (SHAP) and model-specific token 237

importance metrics. We propose a new model- 238

specific token-importance method based on the 239

attention coefficients when the classifier f is a 240

Transformer. Token importance is computed by 241

focusing on the attention of the last encoder layer 242

related to the classification token representing the 243

context of the entire sequence. The efficiency 244

gain of this token importance method is shown in 245

Section 4. If the information provided by SHAP is 246

rich, its computation time is high, whereas attention 247

coefficients are available at no cost under a model- 248

specific paradigm. 249

TIGTEC is also defined by its strategy which 250

can take two values. The static strategy consists 251

in fixing the token importance coefficients for the 252

whole search, whereas the evolutive strategy 253

recomputes token importance at each iteration. 254

Since SHAP has a high computational cost, it is 255

not recommended to combine it with an evolutive 256

strategy. 257

In order to consider several counterfactual 258

candidates at each iteration, several tokens can be 259

targeted in parallel. The beam_width parameter 260

allows to control the number of tokens of highest 261

importance to target at each step to perform a beam 262

search during the space exploration. 263
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Figure 2: Illustration of the tree search policy with beam_width = 2, mask_div = 2, strategy = evolutive, margin
= 0.2. At each step, the beam_width highest important tokens are masked and replaced. The substitution token is
selected considering the cost function depending on the semantic similarity method s and the balancing parameter
α. Among the topk candidates, only mask_div are considered in the tree search. A candidate is accepted if the
prediction of the classifier changes and moves margin away from the prediction threshold. Here, "I love this movie"
is accepted. Since only one counterfactual candidate was found out of two, the next iteration starts from the nodes
with the lowest cost value, here "I watch this movie".

3.3 Generating264

The second step of TIGTEC generates265

counterfactual candidates and corresponds to the266

first part of the mask language inference (MLI)267

formally described in Algorithm 1, from line 1 to 5.268

Once high importance tokens have been targeted269

in the previous step, they are masked replaced270

with a BERT-type mask language model denoted271

M. Mask language models enable to replace272

tokens considering the context while keeping273

grammatical correctness and semantic relevance.274

This step ensures the plausibility of the generated275

text. Such models take a masked sequence276

[t1, ..., [MASK], ..., tn] as an input and output a277

probability score distribution of all the tokens278

contained in the BERT-type vocabulary. The mask279

model can be either pretrained or fine-tuned on280

the text corpus on which the classifier f has been281

trained.282

Since replacing a token with another with low283

plausibility can lead to out-of-distribution texts,284

inaccurate prediction and grammatical errors, the285

number of substitutions proposed byM is limited286

to topk. The higher topk, the more we consider287

tokens with low contextual plausibility.288

3.4 Evaluating 289

Once the topk candidates are generated, we build a 290

cost function to evaluate them. This evaluation 291

step corresponds to Algorithm 1 line 6. The 292

cost function has to integrate the need to flip the 293

outcome of the classifier f and the distance to the 294

original instance as formalized in Eq. 1. In order to 295

ensure semantic relevance, we define a distance 296

based on text embedding and cosine similarity 297

measures. Finally, conditions for the acceptability 298

of counterfactual candidates are introduced to 299

ensure the reliability of the explanations. 300

Distance. The widely used Levenshtein distance 301

and BLEU score (Papineni et al., 2002) do not 302

integrate the notion of semantics. An alternative 303

is to compare sentence embeddings in order to 304

measure the similarity of representations in a latent 305

space. Sentence embeddings have been introduced 306

to numerically represent textual data as real-value 307

vectors, including Sentence Transformers (Reimers 308

and Gurevych, 2019). Such networks have been 309

trained on large corpus of text covering various 310

topics. This encoder is compatible with a model- 311

agnostic approach, as it does not require any 312
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Algorithm 1 Mask Language Inference (MLI)

Require: x = [t1, ..., tn] an input sequence
Require: f : X → Y = {1,2,...,k} a classifier
Require: i the input token to be masked
Require: M a BERT-like mask language model
Require: s, α, topk, mask_div
Ensure: x̂ = [x̂(1), ..., x̂(mask_div)]

1: ti ← [MASK]
2: xmask ← [t1, ..., [MASK], ..., tn]
3: [t̂1, ..., t̂topk] =M(xmask) the topk most likely

tokens
4: for j in {1,...,topk} do
5: x̂j = x[ti ← t̂j ]
6: Compute cost(x̂j) see Eq. 4
7: end for
8: Retrieve in x̂ the mask_div sequences with

lowest cost
9: return x̂

information about the classifier f .313

Another text embedding approach can be used314

when the classifier f is a BERT-like model315

and when the prediction is made through the316

classification token. It consists in using the317

embedding of the classification token directly from318

f . This embedding is however strongly related319

to the task of the classifier f . Therefore, if the320

model has been trained for sentiment analysis, two321

texts with the same associated sentiment will be322

considered similar, regardless of the topics covered.323

We derive the textual distance from the324

normalized scalar product of the two embeddings:325

d : X × X → [0, 1]with:326

ds(x, x
′) =

1

2
(1− s(x, x′)) (2)327

328

s(x, x′) =
⟨ex, e′x⟩
||ex||.||e′x||

(3)329

where ex is the embedding representation of input330

sequence x.331

Cost. The cost function aims to integrate332

the objective of the counterfactual optimization333

problem introduced in Eq. 1. We propose to334

intergrate the probability score of the target class335

to define the cost as:336

cost(xcf, x0) = −
(
p(ytarget|xcf)− αds(x

cf, x0)
)

(4)337

where ytarget is the target class and p(ytarget|xcf)338

represents the probability score of belonging to339

the class ytarget given xcf, outputted by classifier 340

f. The probability score is the information that 341

guides the heuristic towards the target class. The α 342

coefficient enables for a balanced approach to the 343

need to reach the target class while remaining close 344

to the initial point. The generated topk candidates 345

are evaluated with the cost function defined above. 346

Acceptability criteria. A counterfactual 347

candidate xcf is accepted if two conditions are met: 348

f(xcf) = ytarget (5) 349

350

p(ytarget|xcf) ≥ 1

k
+ margin (6) 351

where k is the number of classes of the output 352

space, and margin ∈ [0, k−1
k ] a regularization 353

hyperparameter in order to ensure the certainty 354

of the prediction of the model f. We assume 355

then that all the counterfactual examples must 356

reach the same target class. The closer margin 357

is to its upper bound, the more polarized the 358

classifier prediction must be in order to satisfy 359

the acceptability criterion, and the the stronger the 360

constraint. 361

3.5 Tree search policy 362

TIGTEC generates a set of diverse counterfactual 363

examples. We address the diversity constraint 364

by considering the mask_div candidates with the 365

lowest cost function among the generated topk 366

from Algorithm 1 and keep them in memory in 367

a priority queue (see line 15 in Algorithm 2). 368

Therefore, we evaluate more possibilities and aim 369

to foster diversity in the counterfactual examples 370

found by TIGTEC. Once these candidates are 371

stored in memory, the iterative exploration step 372

(Algorithm 2 from line 6 to 11) starts again, until a 373

stopping condition is reached. 374

The candidate with the lowest cost is then 375

selected from the priority queue (see line 6 in 376

Algorithm 2) in order to apply again the targeting, 377

generation and evaluation sequence. We call 378

predecessor this previous candidate. Since we 379

evaluate several possibilities in parallel through 380

beam search, Algorithm 1 is this time applied 381

to the beam_width tokens with the highest token 382

importance within the predecessor. From this 383

perspective, the exploration approach enables 384

to start from a candidate that seemed less 385

advantageous at a specific stage, but leads to better 386

results by going deeper into the tree. A tree search 387

example is illustrated in Figure 2. 388
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Dataset Method Success rate
↑%S

Proximity
↑s

Sparsity
↓%T

Plausiblity
↓ ∆ PPL

Diversity
↑div

IMDB
CLOSS 97.3 95.4 2.3 1.47 -

TIGTEC-specific 98.2 95.8 4.4 1.34 0.019
TIGTEC-agnostic 91.6 95.0 4.6 1.33 0.085

Movie genre TIGTEC-specific 88.4 89.8 9.0 1.38 0.120

Table 1: TIGTEC evaluation on 2 datasets and comparison with CLOSS on IMDB.

4 Experimental analysis389

This section presents the conducted experimental390

study and introduces five metrics to quantitatively391

assess the counterfactual examples generated392

by two different versions of TIGTEC and one393

comparable state-of-the-art competitor.394

4.1 Evaluation criteria395

Considering the various objectives to be achieved,396

we propose a 5-metric evaluation. Given an397

instance associated with p counterfactual examples,398

the evaluation metrics are aggregated on average399

over the generated examples, except for diversity.400

The same operation is performed on all the401

instances to be explained, and the average metrics402

are finally computed.403

Success rate. Since TIGTEC does not guarantee404

to find counterfactual examples in all cases, the405

success rate (%S) is calculated.406

Sparsity. As defined in Section 2, sparsity (%T)407

is measured as the l0 norm of xcf − x0, normalized408

by the length of the sequence.409

Proximity. We evaluate ex-post the semantic410

proximity between x0 and xcf with cosine411

similarity (s) between Sentence Transformer412

embedding. This choice is justified by the wish413

to remain in a general framework that does not414

depend on the classifier f and the task for which it415

has been trained.416

Plausibility. One approach to evaluate text417

plausibility is the perplexity score (Jelinek et al.,418

1977). This score can be computed based on the419

exponential average loss of a foundation model like420

GPT-2. We calculate the ratio (∆PPL) between the421

perplexity of the initial text and its counterfactual422

examples to compare the quality of the generated423

text with the original one.424

Diversity. Based on the distance measure d, we425

define diversity (div) as in (Mothilal et al., 2020)426

where divd = det(K) with Ki,j =
1

λ+d(xcf
i ,x

cf
j )

and 427

λ ∈ R a regularization weight set to 1. 428

4.2 TIGTEC agnostic or specific 429

Two different version of TIGTEC are assessed. 430

The first one is model-specific with access to the 431

corpus of interest. Attention coefficients guide 432

the counterfactual example search and a fine-tuned 433

mask language model is used to mask and replace 434

important tokens. We call this version TIGTEC- 435

specific. The second version is model-agnostic 436

without access to the corpus of interest. SHAP is 437

used to compute token importance and the mask 438

language model is only pre-trained. We call this 439

second version TIGTEC-agnostic. Since SHAP 440

computational cost is high compared to attention, 441

we use the static strategy for the agnostic version 442

of TIGTEC, whereas the evolutive strategy is 443

used for the specific one. 444

4.3 Datasets and competitors 445

We test these two versions of TIGTEC 446

quantitatively on two DistilBERT (Sanh et al., 447

2020) binary classifiers. The first one performs 448

sentiment analysis on the IMDB dataset (Maas 449

et al., 2011) containing movie reviews. The second 450

one is trained on movie genre classification on 451

a dataset of horror and comedy synopses from 452

Kaggle1. More information about the datasets and 453

the performance of the classifiers are provided in 454

Appendix A.1. 455

The two versions of TIGTEC are compared to 456

CLOSS to assess their relevance. The objective 457

of each version of TIGTEC is to generate 3 458

counterfactual examples associated with an initial 459

instance, whereas CLOSS only tries to generate 460

one. Each method is evaluated on the same 461

1000 texts from IMDB. The hyperparameters 462

of TIGTEC are fixed at their optimal level as 463

described in the next section. TIGTEC-specific 464

1https://www.kaggle.com/competitions/movie-genre-
classification/overview
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Hyperparameter mean success rate
±σ

mean proximity
±σ

Token
importance

attention 98.2* ± 5.2 94.9** ± 1.5
random 92.5 ± 13.5 92.4 ± 3.4

Exploration
strategy

evolutive 96.6 ± 7.3 94.8** ± 1.4
static 93.8 ± 13 92.6 ± 3.5

Table 2: Ablation study of attention-based token importance and evolutive exploration strategy. With σ the
standard deviation and p as the p-value of the one-tailed t-test, *p < 5%, **p < 1%.

is also tested on the movie synopsis dataset from465

Kaggle on 474 texts. Since this is a more complex466

task, we relax the hyperparameters by lowering the467

margin to 0.05 and alpha to 0.15.468

4.4 Hyperparameter setting469

We optimize success rate, similarity, perplexity,470

diversity and computation time with the 9471

hyperparameters presented in Section 3. The472

optimization is done on IMDB with the Optuna473

library which generally obtains good results in few474

iterations (Akiba et al., 2019). Further details about475

the optmization search space are in Appendix A.2.476

We perform the optimization over 50 iterations,477

with the objective to generate 3 counterfactual478

examples on 20 different initial texts. The479

analysis of the contribution of attention-based480

token importance and evolutive strategy are481

presented in the next section. For the other482

hyperparameters, beam_width = 4, mask_div =483

4, topk = 50, margin = 0.15 and α = 0.3484

and Sentence Transformer embedding seem to be485

reasonable. Additional analyses are presented in486

Figure 3 and 4.487

4.5 Results488

Global results. The results of the conducted489

experiment are presented in Table 1. Overall,490

TIGTEC-specific gives very good results on491

IMDB, succeeding in more than 98% of the492

time in generating counterfactual examples. The493

counterfactual examples are sparse, plausible and494

highly similar to their original instance. TIGTEC-495

agnostic succeeds significantly less than the496

specific version, but still has a success rate higher497

than 91%. Proximity, sparsity and plausibility are498

at the same level as the specific version, while499

the counterfactual examples are significantly more500

diverse. Since the movie genre classification501

task is more difficult (see classifiers accuracy502

in Table 3), the results are slightly less good.503

TIGTEC still manages in most cases to generate504

plausible counterfactual examples close to the 505

initial instance, with more diversity compared to 506

the sentiment analysis task. 507

Comparative results. The TIGTEC-specific 508

method succeeds more often than CLOSS, while 509

remaining on average closer to the initial instance 510

and being more plausible. However, CLOSS 511

generates sparser counterfactual examples than 512

each version of TIGTEC. TIGTEC-agnostic 513

generates more diverse and plausible counterfactual 514

examples, with the same level of proximity. 515

Since the objective of CLOSS is to generate 516

one counterfactual explanation per instance to 517

explain, it does not address the diversity constraint. 518

Generating 3 counterfactual examples per instance 519

rather than one being more challenging, it 520

mechanically decreases the average results of the 521

two versions of TIGTEC on the performance 522

metrics other than diversity. This additional 523

constraint makes the results of TIGTEC overall 524

even better. Examples of counterfactual examples 525

generated by TIGTEC-specific on the sentiment 526

analysis and film genre classification tasks are 527

listed in Appendix A.4. 528

Ablation study. We evaluate the impact of 529

two main contributions of TIGTEC from the 530

hyperparameter optimization. We compare the 531

attention-based token importance to a random 532

baseline and the evolutive exploration strategy 533

to the static one through the success rate and the 534

average similarity with the initial instance. The 535

comparison is made with a one-tailed t-test to 536

determine whether the mean of a first sample 537

is lower than the mean of a second one. The 538

results of the analysis are presented in Table 2. 539

Attention-based token importance success rate 540

and mean proximity are higher than with the 541

random token importance. This difference is 542

statistically significant with a level of associated 543

risk at respectively 5% and 1% for success rate 544
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and proximity. The evolutive strategy induces545

statistically significant higher proximity at a risk546

level of 1%.547

5 Discussion548

We have shown that TIGTEC can generate549

sparse, plausible, content-preserving and diverse550

counterfactual examples in an agnostic or specific551

fashion. Most of the other NLP counterfactual552

generators strongly depend on the classifier to553

explain or the text corpus on which it has been554

trained. As matter of fact, CLOSS generates555

counterfactual candidates by optimizing in the556

latent space from the classifier. MiCE uses557

gradient-based information from the classifier to558

target important tokens, while modifying the initial559

instance with a language model fine-tuned on the560

corpus of interest. Polyjuice needs to learn to561

generate counterfactual examples in a supervised562

way, which requires ground-truth counterfactual563

data. The adaptability of TIGTEC to any type564

of NLP classifier and the fact that it works in an565

agnostic way make it particularly flexible.566

The use of TIGTEC is not limited to BERT-567

like classifiers. Our proposed framework could be568

adapted to any type of classifier as long as a token569

importance method is given as input. For other570

NLP classifiers such as recurrent neural networks,571

SHAP or gradient-based methods could be used to572

target token to be masked. TIGTEC could also be573

applied to explain machine learning models such as574

boosted trees by using LIME as token importance575

method.576

6 Conclusion and future work577

This paper presents TIGTEC, a reliable method578

for generating sparse, plausible and diverse579

counterfactual explanations. The architecture of580

TIGTEC is modular and can be adapted to any581

type of NLP model and to classification tasks of582

various difficulties. TIGTEC can cover both model-583

agnostic and model-specific cases, depending on584

the token importance method used to guide the585

search for counterfactual examples.586

A way of improvement of TIGTEC could be587

to cover more types of classifiers as mentioned in588

the previous section. Other gradient-based token589

importance methods could also be integrated to590

TIGTEC. Furthermore, diversity is only implicitly591

addressed through the exploration strategy. We592

believe that diversity could be improved by593

transcribing it into the cost function during the 594

evaluation step or sharpening the exploration 595

strategy. 596

Finally, automatic evaluation of the 597

counterfactual examples quality has its limits. 598

The metrics introduced above provide good 599

indications of the performance of TIGTEC, but 600

they do not ensure human understanding. From 601

this perspective, human-grounded experiments 602

would be more appropriate to assess the relevance 603

of the generated text and its explanatory quality. 604

Ethics Statement 605

Since the training data for mask language models, 606

Sentence Transformers and classifiers can be 607

biased, there is a risk of generating harmful 608

counterfactual examples. One using TIGTEC to 609

explain the predictions of one’s classifier must be 610

aware of this biases in order to stand back and 611

analyze the produced results. On the other hand, 612

by generating unexpected counterfactual examples, 613

we believe that TIGTEC can be useful in detecting 614

bias in the classifications it seeks to explain. We 615

plan to share our code to make it accessible to 616

everyone. We will do this once the anonymity 617

period is finished. Finally, like any method based 618

on deep learning, this method consumes energy, 619

potentially emitting greenhouse gases. It must be 620

used with caution. 621
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A Appendix778

A.1 Dataset and classifiers779

Data sets of interest. TIGTEC is tested on two780

different data sets. The first one is used for781

sentiment analysis and is called IMDB. The overall782

data set is used to train the classifier and TIGTEC783

is tested on the same sub-sample than the CLOSS784

competitor. This sub-sample is constituted of 1000785

random data points of length less than or equal786

to 100 words. The second dataset comes from787

a Kaggle competition to classify movie genres.788

We propose here to test TIGTEC on a binary789

classification task between horror and comedy790

movies. In particular, we test TIGTEC on texts791

in the Kaggle dataset on which the classifier did792

not fail. This is equivalent to testing TIGTEC on793

474 film synopses. The average number of tokens794

per sequence per dataset is presented in the Table 3.795

Descriptive statistics IMDB Movie genre
Avg. tokens 57.4 69.71

DistilBERT acc. % 90.1 88.3

Table 3: Data sets descriptive statistics and classifiers
performance

Explained classifiers. Each DistilBERT in796

initialized as a DistilBERT base uncased from797

Hugging Face on PyTorch. The text preparation798

and tokenization step is performed via Hugging799

Face’s DistilBERT tokenizer. The forward path 800

is defined as getting the embedding of the 801

classification token to perform the classification 802

task. A dense layer is added to perform the 803

classification and fine-tune the models. Each 804

classifier has therefore 66 million parameters and is 805

trained with 3 epochs, with a batch size of 12. The 806

loss for the training is a CrossEntropyLoss, and 807

the optimization is done using Adam with initial 808

learning rate of 5e− 5 and a default epsilon value 809

to 1e− 8. The performances of the classifiers are 810

presented in Table 3. 811

A.2 Hyperparameter optimization search 812

space 813

The hyperparameter optimization was performed 814

on the solution space presented below: 815

• g ∈ {random, attention}, the input token 816

importance method. Since SHAP is much 817

more time consuming than attention, we 818

exclude it from the optimization. However, 819

it can still be used in our framework. 820

• M ∈ {Mft,Mpt} where Mft is a mask 821

language model fine-tuned on the corpus in 822

which the classifier f has been trained. Mpt 823

is a pretrained mask language model without 824

fine tuning phase. 825

• α ∈ [0, 1] the parameter balancing target 826

probability and distance with the initial point 827

in the cost function 828

• topk ∈ {10, 11, ..., 100} the number of 829

candidates considered during mask inference 830

• beam_width ∈ {2, 3, ..., 6} the number of 831

paths explored in parallel at each iteration 832

• mask_div ∈ {1, 2, 3, ..., 4} the number of 833

candidates kept in memory during a tree 834

search iteration 835

• strategy ∈ {static, evolutive} where static 836

is the strategy consisting in computing token 837

importance only at the beginning of the 838

counterfactual search. The evolutive strategy 839

consists in computing token importance at 840

each iteration. 841

• margin ∈ {0.05, 0.3} the probability score 842

spread defining the acceptability threshold of 843

a counterfactual candidate 844

• s ∈ {sentence_transformer,CLS_embedding} 845
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A.3 Hyperparameter optimization result846

We present here the evolution of the quality847

metrics over all the iterations of the hyperparameter848

optimization. The results are presented in two849

parts on categorical and numerical variables in850

Figure 3 and 4. A point in a graph represents an851

iteration during the hyperparameter optimization.852

The metrics are therefore calculated on average853

over the 20 texts of the iteration.854

A.4 Counterfactual examples855

Here we show some counterfactual examples856

related to the tasks of sentiment analysis and857

film genre classification. Figure 5 and 6 shows858

counterfactual examples for the sentiment analysis.859

Figure 7 and 8 show counterfactual examples for860

film genre classification. The higher the color861

intensity in red, the higher the token importance862

coefficient. The tokens appearing in blue in the863

counterfactual examples are those that have been864

modified.865

Algorithm 2 TIGTEC: Token Importance Guided
Counterfactual Text Generation
Require: f : X → Y a k-classes classifier
Require: x0 = [t1, ..., tn] an input sequence of n

tokens to be explained
Require: ytarget : target counterfactual class
Require: p : number of counterfactual examples

to generate
Require: g, s, M, α, topk, beam_width,

mask_div, strategy, margin, early_stop
Ensure: xcf = [xcf

1 , ..., x
cf
p ]

1: waiting_list = [(x0, cost(x0))] the priority
queue of counterfactual candidates sorted by
increasing cost (see Eq. 4)

2: i← 0 the number of evaluated texts
3: xcf ← []
4: Compute token importance [z1, ..., zn] =

g(x0)
5: while len(xcf) < p and i < early_stop do
6: parent_node ← waiting_list.pop() the

candidate with the lowest cost (see Eq. 4)
7: [t(1), ..., t(n)] ← sort(parent_node) by

decreasing importance order with respect
to strategy and g

8: for t in [t(1), ..., t(beam_width)] do
9: i← i+ 1

10: [x1, ..., xmask_div] = MLI(parent_node ,
f , t, M, topk, mask_div, s α) (see
Algorithm 1)

11: for x in [x1, ..., xmask_div] do
12: if p(ytarget|x) ≥ 1

k + margin then
13: xcf.append(x)
14: else
15: waiting_list.push((x, cost(x)))

keep in the waiting list rejected
candidates with their cost

16: end if
17: end for
18: end for
19: end while
20: return xcf
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Figure 3: Categorical hyperparameter (in column) optimization according to quality metrics (in rows).

Figure 4: Numeric hyperparameter (in column) optimization according to quality metrics (in rows).
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Figure 5: Sentiment analysis TIGTEC counterfactual generation, from positive to negative.

Figure 6: Sentiment analysis TIGTEC counterfactual generation, from negative to positive.
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Figure 7: Movie genre TIGTEC counterfactual generation, from horror to comedy.

Figure 8: Movie genre TIGTEC counterfactual generation, from comedy to horror.
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