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Abstract

Different from its counterpart outcome reward
models (ORMs), which evaluate the entire
responses, a process reward model (PRM) scores
a reasoning trajectory step by step, providing
denser and more fine-grained rewards. However,
training a PRM requires labels annotated at
every intermediate step, presenting significant
challenges for both manual and automatic data
collection. This paper aims to address this
challenge. Both theoretically and empirically,
we show that an Implicit PRM can be obtained
at no additional cost, by simply training an
ORM on the cheaper response-level labels. The
only assumption is to parameterize the outcome
reward as the log-likelihood ratios of the policy
and reference models rϕ(y) = β log

πϕ(y)
πref(y)

,
which can be optimized regardless of the specific
choice of loss objectives. In experiments, we train
our Implicit PRMs with various objectives and
evaluate their performance on MATH. Implicit
PRMs outperform strong MCTS-based baselines
á la Math-Shepherd (Wang et al., 2023) using
less than 1/38 of the training data. We further
find that scaling up instructions and responses
benefits our Implicit PRMs, and the latter brings
a larger gain. Particularly, Implicit PRMs with
the cross-entropy (CE) loss is more data-efficient,
and yields meaningful improvements even trained
with only one response per instruction, a setup
that suffers from extreme data scarcity and
imbalance. We hope that our work will encourage
a rethinking of PRM training approaches and con-
tribute to making training PRMs more accessible.
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Figure 1: The x-axis indicates the FLOPs required to collect
the data and train the model, and y axis the accuracies of
best-of-64 performance. The accuracy is averaged over
the best-of-64 accuracies of Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023), Llama-3.1-8B-Instruct, and Llama-3.1-70B-
Instruct (Meta, 2024) on MATH (Hendrycks et al., 2021).
Different dots on the same line indicates models trained with
the same approach but on different scales of data. The top-
left zone is desirable in this figure, as it suggests a model can
achieve higher performance with less development overhead.
Our implicit PRM is much cheaper to train while presenting
the best performance under the same budget.

1. Introduction
Training on high-quality supervised data has driven the ad-
vances in LLMs development (Meta, 2024; Ding et al., 2023;
Luo et al., 2024b; Yue et al., 2024; Yuan et al., 2024; Zhang
et al., 2024b). Building upon this progress, reward mod-
els push the boundaries even further, especially in tasks
requiring complex reasoning (Lightman et al., 2023; Wang
et al., 2023; Snell et al., 2024). Outcome Reward Models
(ORMs), designed to evaluate full responses, have been pri-
marily explored, which can be used in both reinforcement
learning (RL) and inference. However, due to the sparsity
of outcome rewards, ORMs often yield suboptimal perfor-
mance when reranking responses at inference (Lightman
et al., 2023) and struggle with stability and efficiency during
RL training (Cao et al., 2024; Chan et al., 2024). This high-
lights the growing demand for denser and more fine-grained
rewards. Process Reward Models (PRMs), evaluating in-
termediate steps to provide fine-grained guidance, naturally
meet this need. Existing work has shown consistent results
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that PRMs outperform ORMs in best-of-N sampling (Wang
et al., 2023; Snell et al., 2024) and RL (Setlur et al., 2024),
and argues that scoring every intermediate step provides
better transparency and interpretability (Leike, 2024).

Despite their promise, PRMs are much harder to train
than ORMs, since collecting PRM training data requires
annotating every intermediate step. To reduce human efforts,
automatic annotation approaches have been proposed,
where an intermediate step is labeled based on its estimated
probability of leading to a correct outcome. Typically, this
is achieved through either sampling massive look-ahead
trajectories to estimate or directly training a verifier to
predict Q value, both incurring extensive overhead (Wang
et al., 2023; Lu et al., 2024). For example, collecting
step-level data through sampling look-ahead trajectories
as Wang et al. (2023) requires 38.8× more FLOPs than
training an ORM (§4).

We argue, from both theoretical and empirical perspectives,
that building PRMs can be substantially cheaper than pre-
viously realized: a strong PRM can be obtained at no
additional cost from training an ORM on the cheaper
response-level data, with a simple reward parameter-
ization. Specifically, by parameterizin the reward as the
log-likelihood ratio of the policy and the reference models
rϕ(y) = β log

πϕ(y)
πref(y)

, a common practice in DPO (Rafailov
et al., 2023) and many of its variants (Azar et al., 2024;
Ethayarajh et al., 2024; Chen et al., 2024; Rosset et al.,
2024; Wu et al., 2024), a PRM can be automatically learned
during ORM training. The process reward is then the same
log-likelihood ratio, but calculated over a partial response.
We dub our approach an Implicit PRM since it only re-
quries response-level data and ORM training. Moreover,
our insights are agnostic to the specific choice of the train-
ing objective, and are applicable to both DPO and all the
variants that adopt the same form of implicit reward; it fur-
ther extends to other objectives like the Cross-Entropy (CE)
loss. This fresh theoretical insight generalizes the conclu-
sion from Rafailov et al. (2024) that DPO training enables
the model to learn the Q function; practically, our approach
is particularly well-suited for scenarios where pairwise data
is hard to obtain and algorithms like CE loss remain equally
applicable, as shown in §5.1.

In experiments, we train our Implicit PRMs on a dataset
consisting of 33K math instructions and eight solutions for
each, and evaluate them through the best-of-N sampling on
MATH (Hendrycks et al., 2021). We explore variants of
our Implicit PRMs trained with different training objectives,
including DPO, KTO (Ethayarajh et al., 2024), NCA (Chen
et al., 2024), and CE (§4.2). All produce strong PRMs, out-
performing competitive baselines including our reimplemen-
tations of Math-Shepherd (Wang et al., 2023) and AutoPSV
(Lu et al., 2024) and six off-the-shelf open ORMs and PRMs,

with substantially better trade-offs between accuracy and
development overhead, as shown in Figure 1. Particularly,
when integrated into weighted best-of-N, CE stands as the
most effective (§??). This makes CE loss appealing in sce-
narios where pairwise data is hard to collect, since it can
handle unpaired and imbalanced data, and is demonstrated
to be less data-consuming than DPO in order for an Implicit
PRM with decent performance. Further, we find out that our
Implicit PRM benefits from increased training data, and the
scale of responses is more impactful than that of instructions
(§5.1). Surprisingly, training on step-level data brings no
further improvements to our Implicit PRMs (§C.2). Finally,
we observe that, at least for the models and tasks we con-
sider, the reference model can be omitted without hurting
the model’s quality (§5.3.2). This makes our Implicit PRMs
even more appealing, offering improved training efficiency
and performance without added inference overhead.

Bypassing the need for step labels, implicit PRMs substan-
tially lower the data collection and training overhead of
building PRMs while delivering stronger performance than
existing methods. We hope that our work will encourage
a rethinking of PRM training approaches and contribute to
making training PRMs more accessible.

2. ORMs vs. PRMs: Dilemma of Performance
and Expense

Background ORMs assign sparse rewards rϕ(y) to the
entire response, and no feedback is provided until the last
token is generated. In contrast, a PRM assesses the quality
of every intermediate step and can provide reward after com-
pleting each (Lightman et al., 2023). Given an instruction
and an n-step response y with yt being the t-th step and y<t

being the first t− 1 steps, a PRM receives the concatenation
of the instruction and the first t − 1 steps, and assigns a
reward to the t-th: rtϕ(y<t, yt). The Q value qtϕ(y<t, yt)
indicates the expectation of outcome reward rϕ conditioned
on the observed response y<t and current step yt. Lightman
et al. (2023) define the process reward as the correctness
of each step, while Wang et al. (2023) directly consider Q
values as process rewards. We follow Lu et al. (2024) and
define process reward as advantages, namely the difference
between Q values: rtϕ := qtϕ − qt−1

ϕ . The benefits of adopt-
ing advantages as process rewards have been discussed by
concurrent work (Setlur et al., 2024).

PRMs outperform ORMs in both training and inference
Both ORMs and PRMs can provide rewards to assess model
outputs. The dense step-level rewards from PRMs lead to
stable and effective RL training (Cao et al., 2024; Chan
et al., 2024), and perform better on reranking responses,
with better transparency and interpretability. Also, ORMs
are trained on complete responses, but the value model ini-
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tialized from it only receives incomplete responses during
RL training. On the contrary, PRMs are intrinsically trained
to provide dense rewards given partial responses, thus the re-
sulting value models may mitigate out-of-distribution issues
that ORMs encounter.

Training PRMs is substantially more expensive than
ORMs Despite its effectiveness, training PRMs is more
difficult due to challenges in training data collection. To
collect training data for PRMs, MCTS is commonly used
for automatic step annotation (Wang et al., 2023; Luo et al.,
2024a). However, it introduces substantial extra cost. For
MCTS-based step label annotation, a policy model will
sample N trajectories based on the concatenation of an
instruction x and partial response up to step t, each leading
to a final answer (Wang et al., 2023). E.g., assuming 10-step
rollouts and 8 subsequent trajectories for each step as in
Wang et al. (2023), a total of 10× 8 = 80 trajectories need
to be generated to get step labels for each instruction, which
is 80 times more than ORMs. Therefore, the scaling of
PRMs is largely limited. Besides the overhead of training
data collection, this MCTS approach can lead to suboptimal
performance due to the noisy annotation process, as we will
show below and in the experiments.

MCTS estimation is not precise either We denote the set
of correctness of subsequent trajectories as {c1, c2, . . . , cN},
each element being 0 or 1. Thereafter, two alternative label
estimation strategies are available: (1) Hard Estimation,
where step t will be labeled as 1 if any rollout is correct and 0
otherwise: lt = max {c1, c2, . . . , cN}. (2) Soft Estimation,
where step t is labeled as the proportion of correct answers
among all rollouts, namely lt =

∑N
t=1 ct/N . We refer the

ORM used to judge the correctness of rollouts as ϕ, the
PRM trained on data from hard estimation as ϕh, and the
PRM trained on soft estimation data as ϕs. If ϕh and ϕs are
perfectly fitted, namely training losses reduced to 0, we have

qtϕh
(y<t, yt) = max

y|y≤t

rϕ(y),

qtϕs
(y<t, yt) = Eπref(y|y≤t)rϕ(y)

(1)

However, both estimation strategies may be noisy. Specif-
ically, qtϕh

represents the maximum outcome reward rϕ
given y<t, rather than the expectation, thus overestimating
the Q value; For qtϕs

, given the limited capability of the
policy model in practice, it can be challenging to sample
correct solutions for difficult instructions, suffering from
false negative noises and thus underestimating Q.

3. Implicit PRMs For Free Through Reward
Parameterization

In this section, we show that an ORM can directly represent
an expectation of the outcome reward by itself by simple

reward parameterization. In other words, a PRM
can be inherently derived from the same ORM without
any dedicated training, offering better performance than
MCTS-based approaches with substantially lower overhead.

Reward parameterization in existing work Current liter-
ature typically parameterize rewards by either (1) the linear
transformation of hidden states, with the reward model be-
ing a sequence classifier (Ouyang et al., 2022; Touvron et al.,
2023; Zhu et al., 2023; Cui et al., 2024) or (2) generative
logits, with reward models being an auto-regressive LM and
trained to predict the label of partial or complete responses
as “good” or “bad” tokens, and sometimes a third “neutral”
(Zhang et al., 2024c; Mahan et al., 2024; Lightman et al.,
2023; Wang et al., 2023; Luo et al., 2024a).

Unfortunately, under either of the two parameterizations,
PRMs would require expensive step labels to train. To
address this issue, we propose to train an ORM with im-
plicit reward modeling, which will automatically enable
a PRM regardless of the loss functions. Next, we illustrate
this in detail:

Proposition 3.1. (Proof in Appendix A) Consider an ORM
where the reward is parameterized by the log-likelihood
ratio of two causal LMs, i.e. rϕ(y) := β log

πϕ(y)
πref(y)

. Define

qtϕ(y<t, yt) :=
∑t

i=1 β log
πϕ(yi|y<i)
πref(yi|y<i)

. qtϕ is the exponen-
tial average of rϕ at step t.

qtϕ(y<t, yt) = β logEπref(y|y≤t)e
1
β rϕ(y) (2)

Hence, qtϕ represents an exact expectation of outcome re-
ward rϕ at step t, i.e., the Q value.

Proposition 3.1 indicates that when modeling rϕ(y) :=

β log
πϕ(y)
πref(y)

to train an ORM with the standard pipeline,
where β is a hyperparameter, ϕ can implicitly learn a Q
function. Hence, process reward rtϕ can be obtained by:

rtϕ := qtϕ − qt−1
ϕ = β log

πϕ(yt|y<t)

πref(yt|y<t)
(3)

Notably, this conclusion still holds when yt represents the t-
th token rather than step t. This gives us an inspiring hint:
we can indeed obtain PRMs of any granularity simply
by collecting response-level data and training an ORM,
without any burden of annotating step labels, as shown
in Figure 2. The proposition is agnostic to specific choices
of the training objective of ORMs. It can be instantiated with
different objectives as vanilla ORM training, with the only
difference being substituting the rϕ (y) with β log

πϕ(y)
πref(y)

.
Particularly, many existing preference learning algorithms
have already met our assumption (Rafailov et al., 2023; Azar
et al., 2024; Ethayarajh et al., 2024; Chen et al., 2024; Wu
et al., 2024).
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Forward pass on 
ORM data to obtain 
implicit reward

Train an ORM 
with vanilla 
ORM loss 
(e.g.,  CE loss)

…

…

Log-likelihood ratio 
on partial response 
represents Q value:

Derive implicit process 
reward from Q value:

Train as an ORM Inference as an Implicit PRM

     can be either a single token or a stepOutcome label

Figure 2: With specifically designed reward representation, we can train an ORM with a standard pipeline while automatically
enabling an Implicit PRM.

Besides making PRM training more accessible, our implicit
process reward can be more accurate than those derived
from qtϕs

and qtϕh
in Eq. 1 (Wang et al., 2023), as indicated

by the following proposition:

Proposition 3.2. The performance of qtϕ is guaranteed by
the following conditions: qtϕ is bounded by qtϕs

and qtϕh
, and

can reach these bounds with specific values of β. That is,

qtϕs
=Eπref(y|y≤t)rϕ(y) ≤ qtϕ(y<t, yt) ≤ max

y|y≤t

rϕ(y)=qtϕh

(4)
holds. The left-hand equality is attained as β → ∞ and
the right-hand one is attained as β → 0.

Proposition 3.2 demonstrates that qtϕ ranges between the
soft-estimated and hard-estimated Q values annotated by
MCTS-based approaches. The above bounds suggest that
our approach has better accuracy and robustness to noises
than MCTS-based approaches. Specifically, as discussed in
§2, qtϕh

overestimates the Q value while qtϕs
underestimates

Q due to false negative noises. Since qtϕ lies between
qtϕh

and qtϕs
, it could potentially mitigate both issues and

estimate the Q value more accurately. Concurrent work
defines our qtϕ as an entropy regularized process reward and
has empirically shown its superiority over qtϕs

and qtϕh
on

best-of-N sampling (Zhang et al., 2024a).

Connection to Rafailov et al. (2024) An intuition similar
to Proposition 3.1 has been brought up by Rafailov et al.
(2024), which demonstrates that DPO enables models to
learn the Q function implicitly, but our insights subsume
their conclusion since this property is not limited to the DPO
algorithm. For example, given response-level label l, we
can further generalize to cross-entropy (CE) loss to handle

practical scenarios with unpaired and imbalanced data:

LCE =− l · log σ
(
β log

πϕ(y)

πref(y)

)
− (1− l) · log

[
1− σ

(
β log

πϕ(y)

πref(y)

)] (5)

Reference Model One difference between our modeling
of rewards and previous ones is the incorporation of a ref-
erence model πref. We acknowledge that this comes at an
inference cost: to calculate the reward, both the policy and
reference model are served, which doubles the inference
cost than vanilla PRM. However, it is prevalent in existing
preference learning algorithms and works as the KL con-
straint to prevent the policy model πϕ deviating too far from
its starting checkpoint. Moreover, it is less a problem in
practice, as we will show in §5.3.1 that a large proportion of
the inference overhead in best-of-N sampling comes from
the generation model, especially when the generation model
is much larger than the reward model. Further, we also
show in §5.3.2 that when the Implicit PRM is built from a
strong model that has undergone preference learning, such
as Llama-3.1-Instruct, excluding πref leads to little or no
accuracy drop. This makes our approach appealing in prac-
tice since it can achieve better accuracy than existing PRMs
with exactly the same inference overhead, but substantially
lower development overhead.

4. Experiments
4.1. Setup

Evaluation Following standard practice (Lightman et al.,
2023), we evaluate PRMs with best-of-N (BoN) on MATH-
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500 (Hendrycks et al., 2021). To study the generalizability
of the PRMs, we test each PRM using three generation mod-
els with different levels of capabilities: Mistral-Instruct-v0.3
(Jiang et al., 2023), Llama-3.1-8B-Instruct, and Llama-3.1-
70B-Instruct (Meta, 2024). For each completion, we apply
PRMs to score each step and pick the lowest step reward
as the score for overall responses. We also compare the
development overhead of the models in terms of FLOPs, in-
cluding those required in both the automatic data collection
and PRM training.

Training dataset Unless stated otherwise, we adopt the
following training setup throughout all experiments: We
use math instructions from UltraInteract (Yuan et al., 2024)
and sample eight rollouts per instruction using Llama-3.1-
8B-Instruct, and then assess rollout correctness with ground
truths. We train PRMs based on Llama-3.1-8B-Instruct with
β = 0.05, which is empirically determined.

Implicit PRM instantiation As demonstrated in §3, our
approach can be instantiated with any reward modeling ob-
jective with the reward parameterized as rϕ := β log

πϕ(y)
πref(y)

.
We explore various objectives that meet the requirements,
including DPO (Rafailov et al., 2023), KTO (Ethayarajh
et al., 2024), NCA (Chen et al., 2024), and the cross-entropy
(CE) loss. Please refer to Eq. 5 for the implementation of
CE loss. For DPO and NCA, we pair each correct rollout
with an incorrect counterpart and train our RM on these
response-level pairs, while for KTO and CE loss, we di-
rectly train on the unpaired and imbalanced rollouts, which
is more general in practical scenarios. We also implement
two data balanced setup for CE to analyze the impact of pair-
wise data, i.e. balancing the positive and negative responses
simply for the entire dataset, or more strictly for the each
each instruction. We denote the two setups as Dataset-wise
Balanced and Instruction-wise Balanceed.

Baselines Our baselines include our implementation
of existing methods and off-the-shelf open models. We
reimplement Math-Shepherd (Wang et al., 2023) and Au-
toPSV (Lu et al., 2024) for fair comparisons, representative
algorithms in their categories. Math-Shepherd annotates
step labels using MCTS estimations as illustrated in §2.
AutoPSV annotates steps with a two-stage strategy. It firsts
trains an outcome supervision verifier (OSV) that predicts
Q value for each step, then use the OSV to annotate step
labels. A PRM is obtained by continual training on the OSV
with process labels. We also compare to six off-the-shelf
ORMs and PRMs, namely EurusRM-7B (Yuan et al., 2024),
SkyworkRM-Llama3.1-8B (Liu et al., 2024), ArmoRM-
Llama3-8B (Wang et al., 2024), Math-Shepherd-7B (the
offical release of Wang et al., 2023), RLHFlow-8B-Mistral-

Data1, and RLHFlow-8B-DS-Data2. We note that these
off-the-shelf baselines are trained on different instructions
and responses, while our two reimplementations are trained
on the same data as our Implicit PRM.

4.2. Results

Various implicit reward modeling objectives outperform
baselines According to BoN results shown in Table 1, all
four variants of our Implicit PRMs consistently improve the
accuracies of the three different generation models. Among
them, DPO achieves an averaged accuracy of 50.4, per-
forming better in general, closely followed by NCA with an
averaged accuracy of 49.4. CE presents strong performance,
despite that it is trained on unpaired and imbalanced data.
Specifically, with an averaged accuracy of 48.4, it beats
our implemented Math-Shepherd and AutoPSV by 0.6 and
2.7 respectively, and outperforms other open-source reward
models except RLHFlow-8B-Mistral-Data and RLHFlow-
8B-DS-Data, both of which achieves 49.1. This indicates
the potential in empowering real-world applications where
pairwise data is hard to collect. Nevertheless, according
to CE versus CE (Inst.-wise Balanced), it is still beneficial
to have balanced positive and negative responses for
each instruction in the training dataset, which aligns with
conventional understandings on CE as a classification loss.
However, comparing CE (Dataset-wise Balanced) to CE,
simply balancing the entire dataset by randomly filtering
examples of the class with more data can be detrimental.

# Responses Per Instruction
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FL
OP
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1e20

38.8x
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4.2x 0.8x 1.0x

38.8x

4.3x
1.8x 1.0x

2 4 8

Math-Shepherd
AutoPSV
Implicit PRM (DPO)
Implicit PRM (CE)

Figure 3: Overhead of developing different PRMs, in terms
of FLOPs during data collection and training (lower is bet-
ter). The x axis is the number of responses per instruc-
tion determining the scale of training data, and the y axis
the FLOPs. Our implicit PRM always consumes the least
FLOPs, with CE being 38.6× to 38.8× more efficient than
Math-Shepherd across different dataset scales.

Our Implicit PRMs reduce the overhead of data collec-
tion and training by 38.8× As shown in Figure 3, with

1https://huggingface.co/RLHFlow/Llama3.
1-8B-PRM-Mistral-Data

2https://huggingface.co/RLHFlow/Llama3.
1-8B-PRM-DeepSeek-Data
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Table 1: Different reward models’ best-of-N sampling performance on MATH test set with three different generation models.
When completing instructions with a temperature of 0.5, the three generation models’ accuracies are 9.6%, 44.6%, and
63.2% respectively.

Type Reward Model
Mistral-7B-Inst-v0.2

Pass@1: 9.6
Llama-3.1-8B-Inst

Pass@1: 44.6
Llama-3.1-70B-Inst

Pass@1: 63.2 Avg.

@4 @16 @64 @4 @16 @64 @4 @16 @64

Open-Source Reward Models

ORM
EurusRM-7B 17.2 21.0 20.4 49.6 51.6 51.8 69.0 69.6 72.2 46.9
SkyworkRM-Llama3.1-8B 16.0 19.6 23.4 49.0 50.4 48.2 70.4 72.6 72.0 46.8
ArmoRM-Llama3-8B 16.6 21.0 23.2 47.8 48.6 49.4 70.6 70.8 71.0 46.6

PRM
Math-Shepherd-7B 16.0 21.0 20.4 50.0 52.4 52.8 66.4 65.8 65.6 45.6
RLHFlow-8B-Mistral-Data 19.4 25.2 30.2 51.8 52.0 50.6 70.8 71.0 71.2 49.1
RLHFlow-8B-DS-Data 17.2 23.0 25.2 54.4 54.2 55.8 68.6 70.4 73.0 49.1

Our Implementations

Baselines Math-Shepherd 17.6 24.4 26.8 50.0 51.4 52.8 68.6 69.4 68.8 47.8
AutoPSV 16.6 20.6 22.2 52.2 51.4 52.2 68.4 65.4 62.4 45.7

Implicit PRM

DPO 18.6 24.4 28.8 54.0 55.4 57.0 71.8 71.2 72.2 50.4
KTO 15.6 18.4 18.6 49.6 51.8 50.8 72.6 67.0 67.2 45.7
NCA 18.6 23.8 28.0 52.4 53.4 55.2 69.0 73.0 71.6 49.4
CE 18.8 24.0 28.0 52.6 54.4 53.0 70.6 67.0 67.2 48.4
CE (Dataset-wise Balanced) 18.0 23.6 27.0 52.6 54.2 52.6 68.6 66.8 67.0 47.8
CE (Inst.-wise Balanced) 17.6 22.6 26.2 52.6 55.2 54.6 69.4 71.2 72.0 49.0

three different training data scales. Math-Shepherd gen-
erally costs 38.8x more FLOPs than the Implicit PRM
(CE). Compared to Implicit PRM (DPO), the number be-
comes 146.5x, 49.9x, and 21.3x under different number of
responses per instruction respectively.

We plot the scaling trends of the average performance of
each method with corresponding number of tokens con-
sumed in Figure 1, from which we can clearly see that our
Implicit PRMs achieve better performance with much less
data collection and training overhead.

5. Analysis
5.1. Scaling Instructions and Responses Helps

Setup We conduct scaling analysis with DPO and CE
on both instructions and responses of the training dataset.
For instruction scaling, we randomly downsample 25%,
50%, and 75% instructions to train our Implicit PRM.
For response scaling, since DPO can only train on paired
responses, we train models with 2, 4, and 8 rollouts; while
for CE, we also implement training with only one rollout
per instruction, the extreme case of unpaired setup.

Results We present results in Figure 4 and Figure 5
respectively. Takeaways are summarized as follows:
(1) Scaling instructions and responses consistently

improve the performance of our Implicit PRM. The
trend is particularly clear on Mistral-7B-Inst-v0.2 and
Llama-3.1-8B-Inst, but there are also a few outliers on
Llama-3.1-70B-Inst. (2) Compared to instructions,
scaling up responses seems to be more influential on
Implicit PRMs, as reflected by the larger performance
variations between the minimum and maximum data setups.
Taking a closer look at the response scaling, (3) DPO
requires more data to obtain a decent performance
than CE. From Figure 5, DPO is under-trained with two
responses per instruction, which can be partly attributed
to the insufficient amount of instructions: two responses
may not constitute a pair to train our DPO variant, and thus
many instructions can not be used in training. In contrast,
CE generally performs better with insufficient data and can
always improve different generation model, even when it
is trained with one response per instruction with pairs, the
extreme case of the unpaired setup. This presents a huge
advantage in real-world data scarcity scenarios.

5.2. PRM Ability Does Not Translate into Policy
Performance

Implicit PRM is trained in an auto-regressive manner, some-
times directly using preference learning algorithms, which
are primarily used to improve policy models. Therefore, it
reserves the nature as a causal LM and can still serve as
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(b) Implicit PRM (CE).
Figure 4: Scaling instruction numbers. Our implicit PRM’s performance on Mistral-7B-Instruct-v0.2 and Llama-3.1-8B-
Instruct scales well with the number of instructions, despite the trend is more complex on Llama-3.1-70B-Instruct.

a policy model to solve downstream problems directly. In
this section, we test on MATH500 (Hendrycks et al., 2021;
Lightman et al., 2023) to analyze the correlation between
their PRM ability and performance as a policy model.

Table 2: Implicit PRMs’ per-
formance on MATH500 when
used to solve the problems
directly.

Model Accuracy

Llama-3.1-8B-Inst 45.2
+ DPO 25.8
+ KTO 46.6
+ NCA 35.6
+ CE 28.6

According to Table 2,
only trainiing with KTO
leads to an improvement
on MATH500, com-
pared to Llama-3.1-8B-
Instruct. Interestingly,
based on Table 1, KTO
performs the worst as an
Implicit PRM. In con-
trast, DPO and CE, the
two algorithms that per-
form the best in without majority voting and with majority
voting setups, respectively, achieve the lowest accuracies.
This indicates that PRM ability does not improve as the pol-
icy model improves, and there can even be an unexpected
trade-off between the both abilities.

5.3. Inference Overhead of the Reference Model

Our approach needs of an additional reference model in
inference. However, we show that the the reference model
does not double overall inference overhead in practice, es-

Table 3: GPU time costs during best-of-N sampling relative
to the cost of generation model (%). The overall infer-
ence overhead of baselines on three test sets are 66.6%,
70.8%, and 90.9% of that of our implicit PRM, respectively.
Namely, the reference model does not double the inference
cost in practice, and the extra inference overhead becomes
more marginal as the generation model gets larger.

Source of Cost Method
Mistral-7B-

Inst-v0.2
Llama-3.1-

8B-Inst
Llama-3.1-
70B-Inst

Generation Model - 100.0 100.0 100.0

Reward Model Baselines 33.5 29.4 9.1
Implicit PRM 201.6 141.7 22.2

Total Baselines 200.9 171.1 111.1
Implicit PRM 301.6 241.7 122.2

pecially when the generation model is much larger than the
reward model (§5.3.1). Surprisingly, the reference model
can be removed at inference in certain cases (§5.3.2).

5.3.1. THE REFERENCE MODEL DOES NOT DOUBLE
OVERALL INFERENCE OVERHEAD

Setup We calculate the time costs of best-of-N sampling
on MATH500 in practice. The entire process includes (1)
generating multiple candidate solutions to the instruction
using the generation model, and (2) scoring each candidate
using a PRM. We use vLLM (Kwon et al., 2023) to
implement the former and Huggingface Accelerate (Gugger
et al., 2022) for the latter.
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(b) Implicit PRM (CE). Note that one repsonse per instruction is the extreme case of the unpaired setup.

Figure 5: Scaling responses number for each instruction. Our implicit PRM generally benefits from scaling up the number
of responese for each instruction. Particularly, DPO is under-trained with two responses per instruction. This can be partly
attributed to the insufficient amount of instructions: two responses may not constitute a pair to train our DPO variant, and
thus many instructions can not be used in training. In contrast, CE generally performs better with insufficient data and
can always improve different generation model, even when it is trained with one response per instruction with pairs.

Results We present the GPU time costs on an A100 80G
relative to that of the generation model in Table 3. We find
that the inference overhead from generation model takes
a large proportion of the total overhead, especially when
the generation model is much larger than the reward model.
Therefore, the overall inference overhead of baselines on
three test sets are 66.6%, 70.8%, and 90.9% of that of ours,
respectively. It is noteworthy that the extra overhead intro-
duced by the reference model becomes more marginal as
the generation model b larger, and is almost negligible when
Llama-3.1-70B-Instruct serves as the generation model.

5.3.2. THE REFERENCE MODEL CAN BE REMOVED AT
INFERENCE IN CERTAIN CASES

We note that our proposition still holds under a uniformly
distributed reference model, i.e. log πref = constant. In
best-of-N sampling, only relative scores between steps
or responses matter, where the constant log πref can be
canceled out, equivalent to exclude the reference model
in reward parametrization. Therefore, we derive a more

efficient implementation of our proposition by removing
the reference model. We examine its effectiveness and
explore if we can simply our method to reduce the inference
overhead in practice.

Setup To this end, we explore two model training config-
urations: parameterizing the outcome reward either with or
without a reference model. . We then apply both models
to best-of-N sampling and evaluate whether including the
reference model has any impact to the performance. We also
compare to directly using Llama-3.1-8B-Instruct, the refer-
ence model in our Implicit PRM in previous experiments, as
the reward model. It serves as a controlled baseline without
any RM training on our data, but has undergone preference
learning (Meta, 2024).

Results Surprisingly, no performance degradation is ob-
served when the reference model is ablated in both training
and inference, suggesting a more practically efficient variant
of our approach. Besides, Llama-3.1-8B-Instruct achieves
strong performance too. This potentially explains why the
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Table 4: Ablating reference model in both training and inference. Neither consistently hurts our implicit PRM. More
surprisingly, the reference model, Llama-3.1-8B-Instruct, already perfroms well on Best-of-N sampling.

Setup Mistral-7B-Inst-v0.2 Llama-3.1-8B-Inst Llama-3.1-70B-Inst Avg.
Train Inference @4 @16 @64 @4 @16 @64 @4 @16 @64

Llama-3.1-8B-Instruct w/o Ref 14.8 16.2 18.4 49.0 50.4 52.2 69.6 71.0 71.0 45.8

+ DPO w/ Ref w/ Ref 18.6 24.4 28.8 54.0 55.4 57.0 71.8 71.2 72.2 50.4
w/o Ref 17.8 23.4 27.8 54.2 56.6 57.6 71.6 73.6 73.2 50.6

+ DPO w/o Ref w/ Ref 17.8 23.4 28.4 54.0 55.2 57.6 70.6 72.0 73.2 50.2
w/o Ref 17.4 22.6 25.6 54.8 56.4 58.2 70.4 73.2 74.0 50.3

reference model can be removed: The reference model is
already capable of appropriately assigning high rewards to
“good” steps and low ones to “bad” steps. Recall the process
reward is

∑t
i=t−1 β log πϕ(yi|y<i)/πref(yi|y<i). Intu-

itively, a good step might receive high probabilities by both
πϕ and πref, and therefore lowering its reward; on the other
hand, a bad step might receive low probabilities by both,
thereby increasing its reward. This creates confusion to
the PRM. We argue that this behavior is actually beneficial
during RL training: when the reference model πref already
performs well on certain actions, smaller rewards and
consequently smaller policy gradients prevent over-training
the policy model πϕ on these already-optimized actions.
Nevertheless, it is undesired on such inference-time
response selection tasks. This suggests that our Implicit
PRM is particularly appealing in practice, since most
of the time practitioners will build their PRMs from a
strong reference model such as Llama-3.1-8B-Instruct.
In such cases, πref can be dropped in inference without
hurting the performance as the above results suggest, and
our approach can achieve stronger performance than
baselines with substantially cheaper training, without
introducing any additional inference overhead.

6. Related Work
Complex Reasoning of LLMs Complex reasoning has
become a key capability of Large Language Models
(LLMs) yet remains challenging even to state-of-the-art
ones (Jimenez et al., 2024; Tian et al., 2024). Various tech-
niques have been explored to improve LLMs on reasoning
throughout different stages of their lifecycles, such as pre-
training (Azerbayev et al., 2024; Paster et al., 2024; Li et al.,
2023), post-training (Luo et al., 2024b; Yue et al., 2024;
Yuan et al., 2024; Meta, 2024; Ouyang et al., 2022), and
inference (Wei et al., 2022; Fu et al., 2023; Hao et al., 2023;
Lightman et al., 2023). Among them, the process reward
model , has attracted recent attention for its effectiveness in
a variety of settings (Lightman et al., 2023).

Implicit Reward Implicit reward has already been widely
adopted in preference learning. Most existing works focus
on applying these algorithms to align models on top of su-
pervised fine-tuning (Rafailov et al., 2023; Azar et al., 2024;
Ethayarajh et al., 2024; Chen et al., 2024; Rosset et al.,
2024; Wu et al., 2024); recent work also tries to leverage
the implicit rewards of resulting models as outcome rewards
(Lambert et al., 2024; Zhong et al., 2024; Hosseini et al.,
2024). Further, following Rafailov et al. (2024), which
showed that DPO can automatically learn a Q function, Qiu
et al. (2024) devise a self-guided decoding algorithm limited
for DPO models leveraging such property. However, despite
these applications of adopting DPO models as off-the-shelf
reward models or Q functions, none of existing work specif-
ically targets improving such ability or investigating how to
derive decent PRMs upon those off-the-shelf models.

7. Conclusion
We start with a theoretical proposition demonstrating that
parameterizing the outcome reward as the log-likelihood
ratios of the policy and reference models log πϕ(y)

πref(y)
, a PRM

can be intrinsically learned at the same time without any
extra training requirements. We discuss its universality to
instantiate different training objectives. In experiments, we
demonstrate that various implicit reward modeling objec-
tives outperform baselines on MATH, with substantially bet-
ter trade-offs between accuracy and development overhead,
particularly the CE loss. The performance of implicit PRMs
can be further improved with majority voting. Further, scal-
ing up instructions and responses benefit our implicit PRM,
with the latter having a larger effect, but instructions should
be relevant to downstream tasks while the diversity of re-
sponses does not bring gains. Surprisingly, training on extra
Math-Shepherd step labels brings no further improvements
to our implicit PRM trained on only outcome data.
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Impact Statement
This work aims to make process reward models (PRMs)
generally more accessible by reducing training cost, thus
promoting the advancement of inference time scaling and
reinforcement learning. There may not be specific ethical
consequences that are worthy of being particularly discussed
here.
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A. Proof of Proposition
Proposition A.1. Consider an ORM where the reward is parameterized by the log-likelihood ratio of two causal LMs, i.e.
rϕ(y) := β log

πϕ(y)
πref(y)

. Define qtϕ(y<t, yt) :=
∑t

i=1 β log
πϕ(yi|y<i)
πref(yi|y<i)

. qtϕ is the exponential average of rϕ at step t.

qtϕ(y<t, yt) = β logEπref(y|y≤t)e
1
β rϕ(y) (6)

Proof. The Proposition can be proven using mathematical induction.

Suppose response y has T tokens.

(1) For ∀t < T , if qt+1
ϕ (y<t+1, yt+1) = β logEπref(y|y≤t+1)e

1
β rϕ(y) holds, then qtϕ(y<t, yt) = β logEπref(y|y≤t)e

1
β rϕ(y)

would also hold.

(2) At t = T , qTϕ (y<T , yT ) = rϕ(y) = β logEπref(y|y≤T )e
1
β rϕ(y).

proof of (1):

β logEπref(y|y≤t)e
1
β rϕ(y) = β logEπref(yt+1|y≤t)Eπref(y|y≤t+1)e

1
β rϕ(y)

= β logEπref(yt+1|y≤t)e
1
β qt+1

ϕ (y<t+1,yt+1)

= β logEπref(yt+1|y≤t)

t+1∏
i=1

πϕ(yi|y<i)

πref(yi|y<i)

= β log

t∏
i=1

πϕ(yi|y<i)

πref(yi|y<i)
Eπref(yt+1|y≤t)

πϕ(yt+1|y≤t)

πref(yt+1|y≤t)

= β log

t∏
i=1

πϕ(yi|y<i)

πref(yi|y<i)

∑
yt+1

πref(yt+1|y≤t)
πϕ(yt+1|y≤t)

πref(yt+1|y≤t)

= β log

t∏
i=1

πϕ(yi|y<i)

πref(yi|y<i)

∑
yt+1

πϕ(yt+1|y≤t)

= β log

t∏
i=1

πϕ(yi|y<i)

πref(yi|y<i)

proof of (2):

The conclusion is straightforward. Since π is autoregressive, we have

rϕ(y) := β log
πϕ(y)

πref(y)
= β log

T∏
i=1

πϕ(yi|y<i)

πref(yi|y<i)
=

T∑
i=1

β log
πϕ(yi|y<i)

πref(yi|y<i)
.

Since y≤T = y, the expectation Eπref(y|y≤T ) can be removed:

β logEπref(y|y≤T )e
1
β rϕ(y) = β log e

1
β rϕ(y) = rϕ(y).

B. Frequently Asked Questions
B.1. Why does the implicit reward not include a baseline Z(X)?

Our reward representation does not need a baseline, which differs from the implicit reward defined in Rafailov et al. (2023;
2024). The implicit reward in Rafailov et al. (2023; 2024) is derived from the entropy-regularized RL framework, and thus
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a Z(X) must be included to ensure the optimality of the trained policy model. However, this is not the case in our paper.
Instead, we aim for a reward representation that enables a tractable Q value. We do not target an optimal policy in the
entropy-regularized RL framework; Rather, our reward representation is defined and constructed from scratch, namely, any
representation is acceptable as long as it gives a tractable way to estimate the Q value and makes Eq. (2) hold. Therefore,
we do not need to follow the restrictions as Rafailov et al. (2023; 2024), and our reward representation does not necessarily
relate to theirs.

Moreover, if a baseline term were added, one can prove that the following equation would not hold anymore, with the proof
done by simply substituting the new reward representation (with a Z(X)) to the right-hand of the equation:

t∑
i=1

β log
πϕ(yi | y< i)

πref(yi | y< i)
= β logEπref(y|y≤t)

[
e

1
β rϕ(y)

]

B.2. What are the advantages of CE loss compared to DPO?

As shown in Figure 5 and Figure 6, Implicit PRM with CE loss is more data efficient, while showing better performance
when integrated with majority vote, presenting as an appealing alternative in practice as in many scenarios pair-wise data is
hard to collect. Also, CE loss only requires one example for forwarding and backwarding which reduces memory overhead
in RL training. Therefore, the generalization to unpaired losses remains valuable compared to pair-wise DPO in more
data-constrained settings.

C. Further Experiments

KTO NCA DPO CE

46

48

50

52

Ac
cu

ra
cy

 (%
)

45.7

49.4
50.4

48.4

50.4

51.8 51.5 51.9

Majority Vote w/o Majority w/ Majority

Figure 6: Results with majority voting. We present the averaged best-of-N accuracy across three testsets.

C.1. Incorporating Majority Voting

Our Implicit PRMs can be integrated with majority voting to improve the performance even further. Previously, we apply
our Implicit PRMs to score each response and pick the response with highest individual score as the final answer. However,
when incorporating with majority voting, the scores of responses that lead to the same answer will be aggregated and the
answer with the highest aggregated score will be selected as the final answer. We present the results averaged over different
numbers of candidate solutions per problems across all three generated models in Figure 6.

We observe that our Implicit PRM can successfully adjust voting distributions, and achieves better results than using the
Implicit PRM or majority voting separately. Particularly, KTO and CE variants gain the most from the integration, both of
which fail to surpass majority voting alone but outperforms it through weighted best-of-N. It is also noteworthy that CE loss
become the most effective when augmented with majority voting, once again demonstrating its potential.

C.2. Are There Any Other Factors can Improve Implicit PRM Performance?

We consider potential factors that may influence the performance of Implicit PRMs, as listed below:
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Table 5: Factors that may affect PRM performance. To our surprise, none of them consistently improve our implicit PRM.

Setup Mistral-7B-Inst-v0.2 Llama-3.1-8B-Inst Llama-3.1-70B-Inst Avg.
@4 @16 @64 @4 @16 @64 @4 @16 @64

Implicit PRM 18.6 24.4 28.8 54.0 55.4 57.0 71.8 71.2 72.2 49.3

+ UltraFeedback 19.4 24.4 29.0 53.8 55.0 55.8 71.6 70.6 72.2 49.2
+ UltraInteract (Code) 19.2 24.6 28.0 54.6 54.0 56.8 71.4 70.8 70.0 49.2

+ Dedup. 18.2 22.8 26.8 52.0 53.2 51.6 69.8 69.4 70.4 47.6
+ Base Resp. 17.8 23.2 27.6 54.0 55.0 54.8 71.4 72.4 73.2 48.7
+ Step Label 18.8 25.4 28.8 53.8 54.8 54.6 70.8 71.2 73.0 49.2

Task-irrelevant Instructions We previously only consider math instructions. We now examine if increasing instructions
diversity, even if the instructions are irrelevant to downstream tasks, can benefit Implicit PRMs. To this end, we incorporate
general instructions from UltraFeedback (Cui et al., 2024) and coding instructions from UltraInteract (Yuan et al., 2024) into
our training dataset. We directly use responses from the original datasets, but for UltraFeedback we only randomly select
one pair for each instruction, instead of using all the pairs.

Response Diversity We first conduct a deduplication on our preference dataset based on 8-gram overlap, aiming to verify
if repeated responses hurt model performance. We then randomly replace four rollouts per instruction in the original training
dataset with another four rollouts generated by Llama-3.1-8B-Base model.

Training on Step Labels Our Implicit PRMs do not require step labels for training. However, we are interested in
exploring whether augmenting them with step labels can further improve their performance. Based on the definition of
process labels, we adjust the implicit reward of a step by increasing it for positive labels and decreasing it for negative
ones. We use the labels obtained from our implemented Math-Shepherd, which has been demonstrated to be a strong
implementation with step labels of high-quality (§4). We adapt KTO to a step-level version for optimization. Therefore,
considering a n-step response with step labels {l1, l2, . . . , ln}, we conduct a second stage training on our current Implicit
PRM to explicitly optimize the implicit reward: Lϕ = − 1

n

∑n
t=1 log

(
σ
(
lt ·

∣∣∣rtϕ∣∣∣)).

Results We present results on Implicit PRM (DPO) in Table 5. In general, none of these factors brings consistent gains.
(1) Both adding UltraFeedback and UltraInteract (code) instructions hurt the performance, with the former suffers more
severely. This implies that training instructions deviating from the downstream task could undermine the performance
of Implicit PRMs. (2) Regarding response diversity, we observe that the performance of deduplicating responses hurts
the performance and is close to Implicit PRMs trained on similar amount of data. This indicates that repeated responses
function similarly as others and are still beneficial before model performance saturates. Replacing part of original rollouts
with those generated by the base model also fails to improve performance. (3) Conducting step-level KTO with extra
process labels does not bring gains, reinforcing our claim that we can already train a strong PRM without process label.
However, one should be cautious about concluding that stepwise labels are generally not helpful due to two factors in
our experiments: Firstly, despite our efforts that lead to improved step annotation quality compared to previous work, the
MCTS-based approach inevitably introduces noises in the data annotation process, as we discussed in §2; Secondly, our
choice of algorithm may not be optimal. It is possible that more advanced PRM data annotation methods and training
algorithms can finally integrate information from (noisy) stepwise labels into Implicit PRM.
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