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ABSTRACT

In the context of classification, domain generalization (DG) aims to predict the
labels of unseen target-domain data only using labeled source-domain data, where
the source and target domains usually share the same label set. However, in the
context of regression, DG is not well studied in the literature, and the main reason
is that the ranges of response variable in both domains are often different, even
disjoint under some extreme conditions. In this paper, we study a new setting: do-
main generalization in regression (DGR), and propose a weighted meta-learning
strategy to get optimal meta-initialization across disjoint domains to help address
the DGR problem. Different from classification, the labels (responding values)
in regression naturally have ordinal relatedness. The core problem in meta learn-
ing for regression is that the hard meta-tasks with less ordinal relatedness are less
sampled from training domains. To pay attentions to the hard meta-tasks, we
adopt the feature discrepancy in meta-space to calculate the discrepancy between
any two domains and treat the discrepancy as the importance of meta-tasks in
the meta-learning framework. The extensive regression experiments on standard
benchmark DomainBed demonstrate the superiority of the proposed method.

1 INTRODUCTION

Being capable of out-of-distribution data is an important measure to see if a machine learning system
is reliable in the real world. There are various related explorations in the field of machine learning,
e.g., domain generalization/adaptation (Zhou et al., 2022; Wang et al., 2022a; Zhao et al., 2020),
few/zero-shot learning (Wang et al., 2020b) and out-of-distribution detection (Yang et al., 2021a).
Among them, domain generalization (DG) receives increasing attentions by the fascinating setting:
learning models on source domains and making predictions on unseen but related target domains.
However, most of them focus on classifications, which limits their practical applications.

For example, we often predict the recovery/survival time of patients in clinic or estimate the
ages/skeleton joints/gaze direction of humans (Jiang et al., 2021; Wang et al., 2022b). These real-
world tasks can be grouped into regression problems. Like classification, the distribution (domain)
shifts in regression also have multiple patterns: (1) Marginal distribution shift of input data, e.g.,
Chen et al. (2021) try to transfer knowledge from the male gaze images to the female gaze; (2)
Marginal distribution shift of labels (responding values), e.g., Yang et al. (2021b) learn a model on
imbalanced regression setting and generalize to balanced scenarios; (3) Joint distribution shift of
inputs and labels, e.g., Teshima et al. (2020) assume that the shifts exist in both the input and label
distributions, but the causal mechanism between the input and the labels are not changed across
domains.

Among these distribution-shift patterns, the label’s marginal shift in regression is very different
compared to classification. In classification, the shift usually denotes different class probability
densities among domains (Liu et al., 2021b). In regression, the label shift can also have similar
form, e.g., imbalanced domain regression. Meanwhile, it can further have a particular form, i.e.,
interval shift. For example, when the responding interval of the source domain is [0.4, 0.5], the
shifted responding interval of the target domain can be [0.5, 0.6]. The shift often arises in practical
regression settings that need moderate extrapolation and interpolation. In some cases, this regression
interval between the target and the source labels may have no overlap. We call this regression setting
as domain generalization in regression (DGR). Fig. 1 denotes the differences among the traditional
domain generalization, the imbalanced domain regression and the DGR.
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Figure 1: The illustration of three transfer settings. (a) In the traditional domain generalization,
a source-trained classifier is directly applied to the target domain. (b) In the imbalanced domain
regression, the responding values Y ∈ [0, 1] have different probability densities among domains. (c)
The DGR problem focuses on predicting unseen responding values in the target domain.

DGR can be viewed as a special case of the traditional setting of domain generalization, while the
former emphasizes label shift. However, existing domain generalization methods can not be directly
applied to the DGR problem. For example, feature alignment is the core idea of many domain
generalization methods (Li et al., 2018b; 2020), but it is not necessary and even harmful in our DGR
setting. Under the assumption that closer feature discrepancy means closer predictions, accurate
feature alignment methods may let the model map all predictions exclusively into source interval
or target interval, which can not reduce total regression risks. Furthermore, due to the existence of
possible contradictory domains, simultaneously optimizing models on multiple source domains may
suffer negative transfer (Wang et al., 2019).

Meta-learning algorithms, e.g., model agnostic meta-learning (MAML, Finn et al. (2017)) have been
applied to traditional domain generalization (Li et al., 2018a; Dou et al., 2019; Du et al., 2021) and
might be a direct solution to alleviate the above problem. In each meta task, these methods usually
sample a support and a query classification task from two different domains and optimize the meta-
model by a bi-level paradigm. Yet in fact, this paradigm is not enough for DGR. Because their task
sampling strategy usually follows an implicit assumption, i.e., the meta-tasks have equal importance
during training (Yao et al., 2021; Gao et al., 2022). We argue that the implicit assumption is not
satisfied anymore in our regression setting.

Unlike classification, each pair of labels have ordinal relations in regression (Liu et al., 2021c). If
we denote the regression margin as the label discrepancy between the support and query domain, the
meta-tasks that have a larger regression margin are less sampled compared to the meta-tasks with a
smaller margin. On the other side, the meta-task with a larger regression margin is usually harder to
be optimized in meta-learning. These key factors bring a sampling bias that harder meta-tasks are
less sampled from training data. As a result, the meta-model tends to put more attention to the easier
meta-tasks, which means the limited exploration and interpolation of the meta-model. To alleviate
this sampling bias, we use a simple but effective strategy, i.e., assigning more weights to harder
meta-tasks. The weights can be simply computed with the feature discrepancy in meta-parameter
space between the query and support examples of meta-task.

Finally, we build a standard generalization benchmark to evaluate the DGR problem. Except for toy
causal experiments, we reformulate two real-world age estimation datasets. For example, the source
domain data are 20 to 40 year-old face images of celebrities, the target domain data are 40 to 50
year-old face images corresponding to the celebrities. These images are sampled in different years
and some works have a similar setting, e.g., the evolving or continuous domain dataset (Wang et al.,
2020a; Liu et al., 2020). To summarize, our method can be named as margin-aware meta regression
(MAMR), and the main contributions are as follows:

• We study a new domain generalization setting in regression scenario, which has practical
significance and has not been well studied before.
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• To implement better exploration and interpolation in DGR, we propose a margin-aware
meta-learning framework to alleviate sampling bias and encourage the model to notice
long-range ordinal relations.

• Although our solution achieves considerable improvements regarding baselines, our em-
pirical analyses demonstrate that generalizing to unseen response values may be still very
challenging.

2 RELATED WORK

2.1 DOMAIN ADAPTATION FOR REGRESSION

Domain adaptation aims to migrate the knowledge from a source domain to a target domain, where
there might be data distribution shift between the source and the target. Typical domain adaptation
methods try to get confident decision boundaries for classification tasks based on clustering assump-
tion (Liang et al., 2020). When dealing with cross-domain regression, this assumption is not sat-
isfied, which makes it challenging for nowadays domain adaptation methods. Some pioneer works
like (Cortes & Mohri, 2011) try to provide regression discrepancy in reproducing kernel Hilbert
space. Most recent works try to address cross-domain regression in specific application scenarios,
such as estimating object boxes in cross-domain/few-shot object detection (Zheng et al., 2020; Gao
et al., 2022), regressing human skeleton key-points in cross-domain gesture estimation (Jiang et al.,
2021) and calculating the gaze direction in cross-domain gaze tracing (Bao et al., 2022). Further-
more, Chen et al. (2021) propose a general cross-domain regression method via subspace alignment,
which reduces domain gap by minimizing representation subspace distance (RSD) with the prin-
cipal angles of representation matrices. Xia et al. (2022) propose an adversarial dual regressor to
achieve direct alignment.

However, nearly all cross-domain regression methods inherently assume there only exists covariate
shift in input examples, i.e., p(xs) ̸= p(xt), where p(·) is the probability density function and xs, xt

denote the source and target examples. This means that they might be incapable of the label shift
across domains. The label shift in cross-domain regression can arise as interval shift of respond-
ing values, e.g., the source interval ys ∈ [0.3, 0.5] while the target interval yt ∈ [0.6, 0.7]. The
responding values in the real world can be gasoline consumption data and vary significantly across
developed and developing countries (Teshima et al., 2020). Chidlovskii et al. (2021) also consider
the interval shift problem and tries to learn a ranking on the target domain, followed by mapping the
ranking to responding values. This method assumes the availability of the responding interval on
the target domain at the adaptation stage, which might be contradictory to the setting of unavailable
labels. In contrast, we assume all target domain data are not available at the training stage, which is
more practical and challenging in real-world scenarios.

2.2 DOMAIN GENERALIZATION

In domain adaptation paradigm, both the labeled source data and the unlabeled target data are usually
available at the training stage. Domain generalization introduces a more challenging setting where
the model can only access the labeled source data at the training stage. We recommend the readers
refer to the two related surveys (Zhou et al., 2022; Wang et al., 2022a) for more details. Nearly all the
domain generalization methods focus on classification tasks, which heavily limits the application of
this setting. When the interval shift happens in regression, a well-trained regressor from the source
domain might collapse on the target domain.

Among existing domain generalization methods, the meta-learning paradigm might be potential for
this interval shift problem. The spearhead work MLDG (Li et al., 2018a) introduces MAML (Finn
et al., 2017) into domain generalization framework. Different from MLDG, we focus on the query
task and do not simultaneously optimize the support and the query task. Dou et al. (2019) leverage
class relationships and local sample clustering to capture the semantic features of different classes.
These two operations are hard to be migrated to regression settings because the clustering assump-
tion is usually not reasonable for regression. Moreover, in many regression tasks like age regression,
the semantic features might be unimportant, e.g., distinguishing each face might be useless for age
regression. Instead, the style features, like the texture of the faces might be important information
for age regression. Another meta-learning method Meta-Norm (Du et al., 2021) stabilizes the batch
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statistics in Batch Normalization Layers with MAML for domain generalization. Meta-Norm might
be orthogonal with other meta-learning strategies and ours.

3 PRELIMINARIES AND NOTATIONS

In this section, we introduce the formal definition of the DGR problem. We denote the input space
and the label space by X and Y , where Y has a continuous range from 0 to 1 and can be further
divided into two disjoint sub-spaces, e.g., Ysource and Ytarget, where Ysource ∩ Ytarget = ∅. Ds =
{(x,y) ∈ {X × Ysource}} and Dt = {(x,y) ∈ {X × Ytarget}} respectively denote the source
and target domain data. The model can only utilize Ds at the training stage, and then predicts Dt

without further adaptation. The above settings are very similar to the classification tasks of domain
generalization. But the label space of different domains is disjoint in our regression setting. A
prediction ŷ by regression model R can be denoted with ŷ = R(x) = G(F (x)). We use F : X → Z
to denote a feature encoder, where Z is feature space. After the encoder, we use a linear regressor
with sigmoid activation to map the range of predictions into [0, 1], i.e., G : Z → Y .

4 MARGIN-AWARE META REGRESSION

Following the typical setting of domain generalization that domain labels are available. We split
Ds into K source domains {D1, D2, · · · , DK} and simulate the generalization setting between Ds

and Dt. Note that the label space of any two source domains are also disjoint. In the following,
we will provide empirical analyses of previous generalization strategies, e.g., domain alignment,
meta-learning, and introduce our regression models. As we know, feature alignment is the core
idea of many typical domain alignment solutions for domain adaptation (Ganin et al., 2016) as well
as domain generalization (Li et al., 2018b). For domain generalization, the alignment is usually
performed among multiple source domains to find domain-invariant semantic features. This align-
ment can be formalized using a general discrepancy measure, i.e., integral probability metric (IPM,
Müller (1997)). Let X1, X2 denote two independent random variables from domain distributions Pi

and Pj . The domain discrepancy can be defined with:

IPM(Pi,Pj) := sup
f∈H

[E[f(X1)]− E[f(X2)]],

where E denotes the expectation, f denotes the transformation function in function space H. Apply-
ing specific condition on H, IPM can be transformed into many popular measures, such as maximum
mean discrepancy (MMD, Liu et al. (2021a)) and wasserstein distance (WD, Shen et al. (2018)).

Incorporating the domain discrepancy between Pi and Pj , the objective of the regressor can be
formulated as:

min
Θ

sup
(x1,y1)∈Di,

(x2,y2)∈Dj

[
LΘ(x1,y1) + LΘ(x2,y2) + ÎPM(x1,x2)

]
,

where Θ is model parameter, LΘ(x,y) = ||RΘ(x)−y)|| is the empirical risk and can be the squared
loss, ÎPM is the estimator from two batch examples x1 and x2. For example, ÎPM can be the

unbiased U-statistic estimator M̂MD
2

u(x1,x2) (Liu et al., 2021a). In general domain generalization
for classification tasks, all terms in the above objective could be minimized. However, our regression
setting is more like open domain generalization, which learns a model from the source domain and
inferences in unseen target domains with novel classes (Shu et al., 2021). To regress unseen target
values, one strategy is to simulate the scenario in the training stage. That means the labels in Di

and Dj have few or no overlaps. Therefore, when the domain discrepancy ÎPM is minimized, there
might be only one term minimized between LΘ(x1,y1) and LΘ(x2,y2). This problem can be
formally introduced with the following definition:

Regression Margin. Let (X1, Y1) and (X2, Y2) be the random variables of two domains Di, Dj ,
the [a, b] and [c, d] be the regression interval of Y1, Y2. When ÎPM is reduced to 0, we have

inf [E[f(X1)− Y1]− E[f(X2)− Y2]] = inf [(E[f(X1)− E[f(X2)) + E[Y2 − Y1]] = c− b.
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The above analysis tells us that a large domain margin (c − b) can lead to a divergent optimization
when simultaneously minimizing the domain discrepancy and the empirical risks. To alleviate the
above problem, one strategy is to bypass explicit the feature alignment. For example, in the meta-
learning paradigm towards domain generalization, one can learn a meta-model by a bi-level opti-
mization. If X1, X2 are random variables from source and target domains, in the inner optimization,
the model learns on a support (source) domain, i.e., learning f(X1). In the outer optimization, the
learned model tries to generalize to a query (target) domain, i.e, learning f(X2|X1). This training
strategy naturally avoids explicit feature alignment. Moreover, the bi-level optimization emphasizes
the importance of query loss, which might alleviate the above regression margin because the inner
function f(X1) and the outer function f(X2|X1) can be viewed as different sampling in parameter
space.

Existing meta-learning domain generalization methods are sub-optimal for the DGR problem. In
the classification, each meta-task consisting of support tasks and query tasks is assumed to have the
same sampling probability. However, the responding intervals of the support and query have ordinal
relations in regression. When the regression margin is larger between the support and query tasks,
the sampling probability is smaller in the regression problem. Intuitively thinking about the extreme
case that when the regression margin is close to 1 = (c− b), the corresponding sampling probability
of meta-tasks is close to 0. We named this phenomenon sampling bias:

Sampling Bias. Given limited training examples, the sampling probability of a larger regression
margin meta-task is always smaller than the sampling probability of a small margin meta-task.

A larger regression margin between the support and query tasks usually means a harder meta-task
for the meta-learning model. Therefore, without any specialized sampling strategy, the model is
prone to be biased on the small margin tasks. To alleviate this problem, we want the large margin
meta-task to have a larger weight in the meta-learning process. One direct strategy is to calculate
the weight using the domain discrepancy, i.e., a larger regression margin means a larger meta-task
weight. The learning objective can be redefined with:

min
Θ

sup
(xq,yq)∈Di,

(xs,ys)∈Dj

LΘ′ (xs,ys) · d(xs,xq)

s.t. Θ
′
= Θ− β∇Θ [LΘ(xs,ys] ,

where Di, Dj respectively denote the query domain and the support domain, d is discrepancy func-

tions like M̂MD
2

u(·, ·) or simple Euclidean metric, and β is the inner loop learning rate on the support
domain {xs,ys}. Compared with MAML, we usually need 1 or 2 optimization steps in the inner
loop for the support domain. Unlike meta-learning for few-shot problem, more steps are not neces-
sary for our setting. We want the learned meta-parameter to perform well without any fine turning at
the test stage. Hence we want the adapted parameters Θ

′
to approach the meta-parameters Θ. The

smaller change between Θ
′

and Θ brings another benefit for domain discrepancy d(·, ·), which can
be calculated using the meta-parameter Θ. This is consistent with that we use Θ as the parameters
of encoder F and regressor G at the test stage.

The graphic training process of one meta-task can be seen in Fig. 2. Different from existing meta-
learning models, our MAMR model considers the domain discrepancy by discrepancy function d(),
but the data node in d(xs,xq) does not have gradients. As discussed, the reason is directly minimiz-
ing this domain discrepancy might harm the generalization ability of our MAMR model. Further-
more, with Euclidean distance d(), we describe the detailed method in Algorithm 1.

5 EXPERIMENTS

In this section, we will empirically explore what MAMR can learn and compare it to related works
from the view of performance and methodology.

5.1 BASELINES

We use multiple domain generalization and the variants of domain adaptation methods as baselines,
including: (1) risk minimization methods (ERM Vapnik. (1999), IRM Arjovsky et al. (2019)); (2)
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Figure 2: The graphic illustration of our model’s training process. Note that the above two meta-
models have identical parameters Θ, and the blue data flow does not have gradient backpropagation.

Algorithm 1 Training Algorithm of MAMR
Input: The source domains data Ds, the inner loop learning rate β, the out-loop learning rate α, the
domain number K to split Ds.
Parameter: Model parameters Θ.
Output: The learned Θ.

1: Split the source data D into sub-domains {D0, D1, · · ·DK}.
2: while not convergence do
3: Sample T = K(K − 1)/2 domain pairs {(Di, Dj)} that i ̸= j.
4: for index = 0 → T do
5: Sample a batch of support data (xs,ys) ∈ Dj and query data (xq,yq) ∈ Di;
6: Compute task discrepancies: d(xs,xq) = ||F (xs)− F (xq)||2;
7: Get task-specific model parameters: Θ

′
= Θ− β∇Θ [LΘ(xs,ys];

8: Compute the weighted regression error: LΘ′ (xs,ys) · d(xs,xq);
9: Update Θ: Θ = Θ− α∇Θ [LΘ′ (xs,ys) · d(xs,xq)];

10: end for
11: end while

feature alignments and robust optimization (MMD Li et al. (2018b), DANN Ganin et al. (2016),
SD Pezeshki et al. (2021), Transfer Zhang et al. (2021)); (3) subspace alignments (RSD Chen et al.
(2021)); (4) self-supervised methods (SelfReg Kim et al. (2021), CAD Ruan et al. (2022) ) (5) meta-
learning (MLDG Li et al. (2018a)) and (6) disentangling method (DDG Zhang et al. (2022)). All
the introductions of baselines can be seen in Appendix A.1. For fairness, we put all the baselines
into a public evaluation benchmark DomainBed (Gulrajani & Lopez-Paz, 2021). We uniformly use
ResNet12 as the backbone encoder F for all methods. ResNet12 is a popular ResNet (He et al.,
2016) backbone in meta-learning. For regressor G, we use a single linear neural network followed
by a sigmoid function.

5.2 TOY EXAMPLE

To figure out what the MAMR model can learn in regression problems, we create a toy dataset in
which the input examples and their responding values obey some causal mechanism. We assume the
1-dimensional random variables X1 and X2 follow a uniform distribution in [0,1], and the respond-
ing values Y are under the control of X1 and X2. The control mechanism can be complex as given in
Appendix A.4. At training stage, regression models can only using X1 ∈ [0, 0.6] and X2 ∈ [0, 0.6].
At test stage, we record the regression values when given X1 ∈ [0.6, 1] and X2 ∈ [0.6, 1].

The toy experiments sample 15000 and 10000 regression tasks at the training and test stage, respec-
tively. We use a 4-layers fully connected neural network for ERM, RSD and our MAMR. Fig. 3
provides the test time explorations results of the three methods. On 10000 test tasks, the ground-
truth responding values and the predicted values respectively form a gray region and a blue region.
When given unseen values of X1 and X2, ERM fails to use the causal mechanism. The strong
baseline method RSD captures a part of the causal mechanism. MAMR gets the best exploration
performance by maximum causal discovery.
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Figure 3: The toy experiments illustrate the ground truth test landscape (gray color) and prediction
regions (blue color). Each method’s performance is reported with Mean Squared Error (MSE).

5.3 CROSS-DOMAIN AGE ESTIMATION DATASETS

CACD1. Cross-Age Celebrity Dataset (CACD) contains 163,446 images from 2,000 celebrities col-
lected from the Internet. The age of celebrities range from 16-62 and can be classified into 5 age
intervals (domains), i.e., [15 − 20), [20 − 30), [30 − 40), [40 − 50), [50 − 60]. The images of each
celebrity are sampled using different devices in different years. Therefore each domain has different
facial characteristics.

AFAD2. The Asian Face Age Dataset (AFAD) originally is an age estimation dataset containing
more than 160K face images and aging labels. We split the dataset into 5 age intervals (domains),
i.e., [15− 20), [20− 25), [25− 30), [30− 35), [35− 40]. Like CACD, each age interval has its own
face characteristics and can be viewed as 5 related domains for regression.

For all datasets, we normalize the labels from 0 to 1 and leave out one domain at the training stage
then make predictions on this domain at the test stage. To ensure a similar capacity among different
age intervals, we make compensation for the small capacity interval by slightly relaxing the interval.

5.4 TRAINING AND EVALUATION

Following the data configuration in the DomainBed3 benchmark, we randomly split each domain
into 90% and 10% subsets. The former is used in model training and the latter for model selection.
We use two popular model selection methods in DG, i.e., test-domain validation and training domain
validation. The former is also named the oracle method that the model is selected based on the 10%
data of the test domain. The latter uses the 10% data of the training domain to select the best model.
To find the proper hyper-parameters for each algorithm under limited computation resources, 5 times
random hyper-parameter searches are conducted. Then we repeat 3 times with different seeds on
each group of hyper-parameters. Appendix A.3 provides detailed settings of the hyper-parameters.
Including toy experiments, all methods are implemented with Pytorch and can be executed on a
NVIDIA RTX 3090 GPU.

5.5 QUANTITATIVE COMPARISONS

Comparison to risk minimization methods. ERM and IRM are typical risk minimization methods.
From Tab. 1 and Tab. 2, the two methods get poor DGR performance on real-world datasets. We also
find that ERM is better than IRM, which might imply that the gradient invariance in IRM is useless
for our problem. Another result is that the naive ERM is surprisingly comparable with advanced
methods, e.g., MMD, DANN and MTL. Previous works (Gulrajani & Lopez-Paz, 2021) also find a
similar phenomenon in classification tasks.

1http://bcsiriuschen.github.io/CARC/
2https://afad-dataset.github.io/
3https://github.com/facebookresearch/DomainBed
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Table 1: Regression results on CACD dataset with test-domain validation (Oracle). Each regression
interval (domain) in all tables denotes the target interval with the others as source intervals. The
minimum Mean Squared Errors with their standard variances are bolded.

Algorithm [15-20) [20-30) [30-40) [40-50) [50-60] Avg

ERM 0.0247±0.01 0.0492±0.01 0.0801±0.02 0.1806±0.02 0.1760±0.07 0.1021
IRM 0.0247±0.01 0.0493±0.01 0.0987±0.02 0.1810±0.02 0.2366±0.03 0.1181
MMD 0.0204±0.01 0.0378±0.02 0.0896±0.02 0.1944±0.01 0.2703±0.03 0.1225
DANN 0.0326±0.00 0.0562±0.01 0.0924±0.02 0.1521±0.04 0.1593±0.03 0.0985
MTL 0.0329±0.00 0.0641±0.00 0.1199±0.00 0.2022±0.00 0.1426±0.05 0.1123
SD 0.0247±0.01 0.0493±0.01 0.0985±0.02 0.1809±0.02 0.2696±0.03 0.1246
CAD 0.0335±0.00 0.0641±0.00 0.2095±0.07 0.2022±0.00 0.2029±0.00 0.1425
Transfer 0.0330±0.00 0.0641±0.00 0.1199±0.00 0.2022±0.00 0.2366±0.03 0.1312
MLDG 0.0249±0.01 0.0089±0.00 0.0413±0.03 0.0092±0.00 0.1888±0.06 0.0546
RSD 0.0361±0.00 0.0099±0.00 0.0043±0.00 0.0132±0.00 0.0529±0.00 0.0233
SelfReg 0.0364±0.00 0.0114±0.00 0.0017±0.00 0.0077±0.00 0.0427±0.01 0.0200
DDG 0.0324±0.01 0.0158±0.00 0.0015±0.00 0.0101±0.00 0.0254±0.01 0.0171

MAMR 0.0099±0.01 0.0028±0.00 0.0019±0.00 0.0078±0.00 0.0200±0.01 0.0085

Table 2: Regression results on AFAD dataset with test-domain validation (Oracle).
Algorithm [15-20) [20-25) [25-30) [30-35) [35-40] Avg

ERM 0.2247±0.07 0.2658±0.02 0.1334±0.05 0.1168±0.00 0.0601±0.00 0.1602
IRM 0.1413±0.00 0.2114±0.00 0.2356±0.03 0.1168±0.00 0.0601±0.00 0.1530
MMD 0.0728±0.03 0.0461±0.03 0.0678±0.05 0.0417±0.03 0.0332±0.01 0.0523
DANN 0.1101±0.02 0.1575±0.04 0.1475±0.03 0.1052±0.01 0.0519±0.01 0.1144
MTL 0.2092±0.06 0.2114±0.00 0.1980±0.00 0.1168±0.00 0.0601±0.00 0.1591
SD 0.0174±0.01 0.0050±0.00 0.0031±0.00 0.0156±0.00 0.0540±0.00 0.0190
CAD 0.1413±0.00 0.2114±0.00 0.1990±0.00 0.1168±0.00 0.0601±0.00 0.1457
Transfer 0.1413±0.00 0.2114±0.00 0.1990±0.00 0.1168±0.00 0.0601±0.00 0.1457
MLDG 0.1558±0.10 0.0095±0.00 0.0023±0.00 0.0091±0.00 0.0498±0.00 0.0453
SelfReg 0.0452±0.00 0.0139±0.00 0.0018±0.00 0.0108±0.00 0.0417±0.00 0.0227
RSD 0.0415±0.00 0.0179±0.00 0.0042±0.00 0.0101±0.00 0.0392±0.00 0.0226
DDG 0.0304±0.01 0.0118±0.00 0.0011±0.00 0.0125±0.00 0.0495±0.01 0.0211

MAMR 0.0041±0.00 0.0013±0.00 0.0012±0.00 0.0189±0.00 0.0640±0.00 0.0179

Comparison to the methods using feature alignments and robust optimization. As discussed in
Sec. 4, directly using feature alignments, e.g., MMD, DANN, may perform poorly due to the regres-
sion margin. Furthermore, DANN and Transfer try to apply adversarial robustness to our problem.
Our results in Tab. 1 and Tab. 2 also demonstrate they might bring opposite impact compared to
ERM.

Comparison to subspace alignments, e.g., RSD. We find that RSD surpasses the feature alignment
methods with a large margin. With principal angle alignment between sub-spaces, the sub-space
alignments effectively slack the traditional feature alignments. This might imply that the domain
adaptation method RSD can also generalize well to out-of-distribution data.

Comparison to self-supervised methods, e.g., SelfReg and CAD. The self-supervised methods,
especially with contrastive learning, can be strong baselines for our problem. The reason might be
that SelfReg uses strong data augmentation with Mixup in their models. We find the follow-up work
CAD does not surpass SelfReg. The reason might be that the part of marginal distribution alignment
in CAD harms the generalization ability like DANN.

Comparison to meta-learning method. MLDG simultaneously optimizes the support risks and
query risks. While in DGR, the support and the query tasks usually change a lot, which makes the
MLDG hard to be optimized. Our method does not simultaneously optimize the above two risks

8
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Table 3: Ablation studies on CACD dataset with test-domain validation (Oracle).
Methods [15-20) [20-30) [30-40) [40-50) [50-60] Avg

MAMR- 0.0159±0.01 0.0175±0.00 0.0021±0.00 0.0623±0.03 0.0397±0.00 0.0275
MAMR-G 0.0354±0.01 0.0440±0.03 0.0248±0.02 0.0431±0.02 0.0595±0.05 0.0414
MAMR-P 0.0099±0.01 0.0028±0.00 0.0019±0.00 0.0078±0.00 0.0200±0.01 0.0085
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Figure 4: The MSE heatmaps of regression tasks [20, 30) and [30, 40) in CACD by Oracle selection.

and is attentive to hard tasks. The experiments in Tab. 1 and Tab. 2 demonstrate that our method
outperforms MLDG with a large margin.

Comparison to disentangling. DDG disentangles the latent representations into semantic features
and variation features. Our experiments find that DDG may successfully capture the causal mecha-
nism between the inputs and their responding values.

5.6 DETAILED ANALYSES

Tab. 3 provides 3 ablation models. MAMR- is our method without the margin-aware weighting
mechanism. MAMR-G computes a mean weight for query tasks using the MMD with Gaussian
kernel. MAMR-P computes the pair-wised Euclidean distances among the support and query tasks
and provides a weight for each query task. The results demonstrate the mean weight in MAMR-G
may be invalid compared to pair-wised weights.

The key hyper-parameters of the MAMR model include the inner loop learning rate β, the outer
loop learning rate α and the iteration steps of the inner loop. To reduce the searching of hyper-
parameters, we set α = 0.1 ∗ β. We conduct a grid search for β and the iteration steps. Fig. 4
provides the MSE heatmaps on the CACD dataset using two generalization tasks. We find that
more inner iteration steps do not have a significant influence on the generalization results. This
phenomenon is consistent with our analysis in the method: different from 5 or 10 inner steps in
meta-learning for few-shot learning, fast adaptation by multi-steps is not necessary for DGR.

6 CONCLUSION

We study a new problem setting named domain generalization in regression. A margin-aware meta-
learning regression method is proposed to achieve long-range exploration and interpolation from
the source domain. We build a regression benchmark to systematically investigate the existing do-
main generalization methods. Our empirical analyses demonstrate that domain generalization for
regression still has a large exploration space. We hope more advanced methods in other fields can
be introduced, such as imbalanced regression and open set domain generalization.
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7 REPRODUCIBILITY STATEMENT

We make the following efforts to improve reproducibility:

• Algorithms. Algorithm 1 provides detailed implementation for our MAMR model.
• Datasets. The used public dataset can be downloaded from here4 5.
• Evaluations. we put our method and baselines into a popular benchmark DomainBed6, to

make fair comparisons.
• Ablation studies. Tab. 3 provides ablation results of MAMR.
• Hyper-parameters settings. Tab. 6 provides the used hyper-parameters in MAMR.
• Hyper-parameters searching. Fig. 4 provides the samples of hyper-parameters searching.
• Codes. The codes can be downloaded from anonymous link 7.

4http://bcsiriuschen.github.io/CARC/
5https://afad-dataset.github.io/
6https://github.com/facebookresearch/DomainBed
7https://anonymous.4open.science/r/MAMR-276E
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A APPENDIX

A.1 INTRODUCTION OF BASELINES

The simple introduction of baselines are described as follows:

ERM (Vapnik., 1999). The Empirical Risk Minimization method is the most simple baseline that
minimizes the regression loss on source domains and reports regression loss on unseen target do-
main.

IRM (Arjovsky et al., 2019). Invariant Risk Minimization estimates invariant correlations across
multiple training domains. For implementation, it can apply the gradient correlations from two
batches as a penalty.

MMD (Li et al., 2018b). The core of MMD is to align the distribution among different domains by
the Maximum Mean Discrepancy measure. Li et al. (2018b) incorporate MMD into an adversarial
auto-encoder to learn generalized feature representations.

MTL (Blanchard et al., 2021). Marginal Transfer Learning views DG as a kind of supervised learn-
ing problem by augmenting the original feature space with the marginal distribution of feature vec-
tors.

MLDG (Li et al., 2018a). Meta-Learning for Domain Generalization (MLDG) is a pioneering work
that applies MAML to domain generalization. MLDG optimizes meta-train and meta-test simul-
taneously in the outer loop. Original MAML only optimizes meta-test objective in the outer loop.
The reason to optimize the meta-train objective is that we want the learned model to be capable of
directly predicting on the target domain. Note that there are other meta-learning methods for DG,
such as MetaNorm (Du et al., 2021) and MASF (Dou et al., 2019). But this baseline did not release
codes, e.g., MetaNorm, or are specialized for classification tasks, e.g., MASF.

DANN (Ganin et al., 2016). Domain-Adversarial Neural Networks is originally proposed to address
domain adaptation problems. Besides the introduced domain adversarial framework that aligns the
domain distribution, DANN also proposes an elegant implementation with a gradient reversal layer.

SD (Pezeshki et al., 2021). Spectral Decoupling controls the learning dynamic of models and tries to
reduce the learning speed for unrelated features for out-of-distribution generalization. In the training
process, the model has two options to reduce the loss toward an example, i.e., to get more confident
in a learned feature or to learn a new feature. SD tends to increase feature diversity by encouraging
learning new features.

RSD (Chen et al., 2021). Representation Subspace Distance (RSD) tries to deal with general cross-
domain regression via subspace alignment, which reduces domain gap by minimizing RSD via the
principal angles of representation matrices.

SelfReg (Kim et al., 2021). SelfReg proposes a domain perturbation layer to make data augmenta-
tion methods like Mixup (Zhang et al., 2018) more useful in self-supervised contrastive regulariza-
tion.

Transfer (Zhang et al., 2021). The method successfully finds more transferable features via repre-
sentation learning using adversarial training.

DDG (Zhang et al., 2022). Disentanglement-constrained Domain Generalization (DDG) tries to dis-
entangle the domain-agnostic semantic features and the domain-specific variation features to achieve
out of distribution prediction. The data generation and augmentation technics are also utilized to dis-
entangle the semantic and variation features.

CAD (Ruan et al., 2022). CAD also uses self-supervised learning like SelfReg but learns discrimi-
native representations and aligns representation’s marginal support among different domains.
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A.2 MORE RESULTS ON REAL-WORD DATASETS

In this section, we provide additional experiments on CACD and AFAD datasets with training do-
main validation. Tab. 4 and Tab. 5 provide the detailed numerical result using MSE loss.

Table 4: Regression results on CACD dataset with training-domain validation.
Algorithm [15-20) [20-30) [30-40) [40-50) [50-60] Avg

ERM 0.0247±0.01 0.0492±0.01 0.0801±0.02 0.1806±0.02 0.1847±0.07 0.1038
IRM 0.0247±0.01 0.0493±0.01 0.0987±0.02 0.1811±0.02 0.2560±0.02 0.1220
MMD 0.0204±0.01 0.0405±0.02 0.0896±0.02 0.1945±0.01 0.2819±0.02 0.1254
DANN 0.0326±0.00 0.0562±0.01 0.0924±0.02 0.1521±0.04 0.2311±0.06 0.1129
MTL 0.0329±0.00 0.0641±0.00 0.1199±0.00 0.2022±0.00 0.2112±0.08 0.1261
SD 0.0247±0.01 0.0493±0.01 0.0985±0.02 0.1809±0.02 0.2767±0.02 0.1260
CAD 0.0330±0.00 0.0642±0.00 0.2095±0.07 0.2022±0.00 0.3036±0.00 0.1625
Transfer 0.0330±0.00 0.0641±0.00 0.1199±0.00 0.2022±0.00 0.3040±0.00 0.1447
MLDG 0.0452±0.00 0.0143±0.00 0.0421±0.03 0.0131±0.00 0.1916±0.06 0.0613
RSD 0.0464±0.00 0.0190±0.00 0.0045±0.00 0.0217±0.00 0.0650±0.01 0.0313
DDG 0.0490±0.00 0.0176±0.00 0.0016±0.00 0.0153±0.00 0.0598±0.00 0.0287
SelfReg 0.0403±0.00 0.0151±0.00 0.0024±0.00 0.0128±0.00 0.0539±0.00 0.0249

MAMR 0.0331±0.01 0.0143±0.00 0.0021±0.00 0.0078±0.00 0.0371±0.01 0.0189

Table 5: Regression results on AFAD dataset with training-domain validation.
Algorithm [15-20) [20-25) [25-30) [30-35) [35-40] Avg

ERM 0.3915±0.00 0.2932±0.00 0.1338±0.05 0.1168±0.00 0.0601±0.00 0.1991
IRM 0.3081±0.07 0.2662±0.02 0.2356±0.03 0.1168±0.00 0.0601±0.00 0.1973
MMD 0.2087±0.08 0.1108±0.07 0.0678±0.05 0.1193±0.09 0.2010±0.11 0.1415
DANN 0.2607±0.08 0.1658±0.04 0.1475±0.03 0.1170±0.02 0.1043±0.05 0.1591
MTL 0.3915±0.00 0.2936±0.00 0.1980±0.00 0.1168±0.00 0.0601±0.00 0.2120
SD 0.0324±0.00 0.0089±0.00 0.0034±0.00 0.0223±0.00 0.0738±0.00 0.0281
CAD 0.3915±0.00 0.2936±0.00 0.1990±0.00 0.1171±0.00 0.0601±0.00 0.2123
Transfer 0.3915±0.00 0.2936±0.00 0.1990±0.00 0.1168±0.00 0.0601±0.00 0.2122
MLDG 0.1614±0.09 0.0129±0.00 0.0036±0.00 0.0142±0.00 0.0553±0.00 0.0495
DDG 0.0556±0.00 0.0166±0.00 0.0012±0.00 0.0164±0.00 0.0610±0.00 0.0302
SelfReg 0.0474±0.00 0.0156±0.00 0.0028±0.00 0.0131±0.00 0.0555±0.00 0.0269
RSD 0.0506±0.00 0.0194±0.00 0.0042±0.00 0.0171±0.00 0.0576±0.00 0.0298

MAMR 0.0281±0.00 0.0068±0.00 0.0012±0.00 0.0190±0.00 0.0641±0.00 0.0238

A.3 HYPER-PARAMETER SETTING

To help the readers reproduce the reported results, we provide more hyper-parameters in Tab. 6. The
outer loop learning rate is used by our MAMR model, and the left hyper-parameters are shared by
all methods.
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Table 6: The hyper-parameter settings of our MAMR model and baselines.
Hyper-Parameters Setting Values

Inner loop learning rate β 0.05
Outer loop learning rate α 0.1 ∗ β
Inner loop iteration steps 1

Batch size of each support or query task 64
Holdout fraction for each domain 0.1

Trial seeds: 3057, 3058, 3059
Optimizer: SGD

Optimizer weight decay: 5e− 4
Data augmentation RandomResizedCrop, RandomHorizontalFlip

Data normalization (mean) mean=[0.485, 0.456, 0.406]
Data normalization (std) std=[0.229, 0.224, 0.225]

A.4 CAUSAL MECHANISM IN TOY EXPERIMENTS

We provide the used causal mechanism in toy experiments. Fig. 5 demonstrate the mechanism to
generate Y given two inputs X1 and X2. In this example, the dominant variable X1 controls 5
generation factors, the auxiliary variable X2 controls 3 generation factors. All the generation factors
form a sum and the sum is normalized to the interval [0, 1] for Y .

Y

Figure 5: The example of the generation mechanism for toy experiments. Note that
∑

denotes the
sum of all the coming elements, and the responding value Y is normalized to [0,1] after

∑
.
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