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Abstract

No natural language is known to have contrafac-
tive attitude verbs, yet factives are common
across natural languages. Several experiments
by Strohmaier and Wimmer (2022; 2023; 2025)
try to explain this asymmetry via a ’learnabil-
ity differential’, using transformers as model
learners. But they do not explore empirically-
founded data distributions. We fill this gap,
further improving the overall quality of train-
ing data distributions using linear programming.
Our results confirm Strohmaier and Wimmer’s
2025 conclusion that there is no learnability dif-
ferential in production, while establishing the
impact of differences in data distributions.

1 Introduction

To date, no natural language is known to have a ‘con-
trafactive’ (a morphologically atomic attitude verb
that entails belief in the content of its embedded
clause, but presupposes that clause’s falsity), yet
the contrafactive’s ‘factive’ mirror image (a mor-
phologically atomic attitude verb like know that
entails belief in the content of its embedded clause
and presupposes that clause’s truth) is commonly, if
not universally, attested (cf. Holton, 2017; Roberts
and Ozyildiz, 2025). As Strohmaier and Wimmer
(2023) note, this raises the question of why these
two verb types differ so much in their frequency.
Recent work on linguistic universals uses com-
putational experiments to suggest that attested ex-
pressions are easier to learn than some unattested
ones. E.g., Kallini et al. (2024) found that GPT-2
models learn English more easily than languages
humans cannot learn. Steinert-Threlkeld and Szy-
manik (2019) explain the conservativity, mono-
tonicity, and quantity universals for determiners
by showing that LSTMs learn conservative, etc. de-
terminers more easily than ones that are not.
Given these suggestive correlations between neu-
ral model and human performance, and given that a
learnability difference between contrafactives and

factives cannot be usefully tested with human sub-
jects!, Strohmaier and Wimmer (2022; 2023; 2025)
also use computational experiments to (partially)
explain the frequency difference between contrafac-
tives and factives. They initially tested how easily
transformers learn to comprehend attitude ascrip-
tions fed into them. (Their transformer models ef-
fectively acted as classifiers for truth-values.) But
this left open how easily transformers learn to pro-
duce attitude ascriptions. In reply, Strohmaier and
Wimmer (2025) trained transformers to produce at-
titude ascriptions. Curiously, whilst they previously
found a learnability difference between contrafac-
tives and factives in comprehension, they did not
find one in production. This leaves open whether
contrafactives are overall harder to learn than fac-
tives, as they must be if a learnability difference is
to explain the frequency difference between con-
trafactives and factives.

However, the data distribution they used for their
experiment has two limitations, in light of which
we might question their results. First, 50% of their
training data required their transformer models to
produce attitude ascriptions that are not true, effec-
tively biasing the models towards producing lies.?
But it is not the case that 50% of the attitude as-
criptions human language users produce are lies.
According to Serota et al. (2022), human language
users only lie in 7% of total communication, and we
see no reason to say that they lie far more frequently
than that when they use attitude ascriptions.

Second, since contrafactives are unattested, how
often would language learners need to produce them

'Since those subjects speak natural languages that have
factives, but lack contrafactives, results from artificial lan-
guage learning experiments would be biased by those subjects’
previous knowledge of factives.

%For simplicity, we assume that utterances the model takes
to be presupposition failures are lies. Philosophical work on
lies, e.g. Stokke (2024), tends to classify such utterances as
misleading instead. But Serota et al. (2010, 6), e.g., opera-
tionalise lies so as to include attempts to mislead.



if they were to learn them as part of a natural lan-
guage? Our best evidence is that, as Sander (2025)
argues, we would need to use contrafactives less
frequently than factives, because we ascribe true be-
liefs to others by default. But the data distribution
Strohmaier and Wimmer (2025) explore effectively
assumes that factives and contrafactives would need
to be used equally frequently.

Our experiment overcomes these two limitations
by exploring data distributions that reflect our best
evidence as to how frequently human language
learners lie and how often they would need to
use contrafactives if they were attested. Impor-
tantly, our results confirm Strohmaier and Wimmer
(2025)’s conclusion. Our improved implementation
of their paradigm also shows no relevant learnabil-
ity difference.

Our main contributions are:

1. We explore a range of empirically-informed

data distributions.

2. We provide a deeper data analysis of our re-
sults, including significance testing training
trajectories.

3. We publicly release our dataset and code.’

2 Related Work

Holton (2017) introduced the frequency differ-
ence between contrafactives and factives. Cross-
linguistic evidence relevant to the difference can
be found in Rosenberg (1975); Hannon (2015);
Kierstead (2015); Krifka (2016); Hsiao (2017);
Anvari et al. (2019); Sander (2020); Hoeksema
(2021); Bochnak and Hanink (2022); Bossi (2022);
Strohmaier and Wimmer (2023); McGregor (2024);
Sander (2025).

A learnability difference to explain linguistic uni-
versals is explored with comprehension-oriented
experiments on human subjects in Maldonado et al.
(2022) and on neural networks in Steinert-Threlkeld
(2020); Steinert-Threlkeld and Szymanik (2019,
2020), and Strohmaier and Wimmer (2022; 2023).
We can find production-oriented experiments on hu-
man subjects in Maldonado and Culbertson (2019)
and on neural networks in Strohmaier and Wimmer
(2025); Johnson et al. (2021) report experiments
with both kinds of subject.

Work that encourages us to take transformers
to approximate human language learning closely
enough to draw conclusions about humans from re-
sults about transformers includes Ross and Pavlick
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(2019); Merkx and Frank (2021); Schrimpf et al.
(2021); Caucheteux and King (2022); Paape (2023);
Ziembicki et al. (2023); Kallini et al. (2024).

3 Data

Like Strohmaier and Wimmer (2025), we use a
sequence-to-sequence task. Fig. 1 gives Strohmaier
and Wimmer’s function from an attitude content
and one of 21 possible combinations of main value,
sub value, and mind-world relation to an output as-
cription that consists of an attitude verb and an em-
bedded clause (for details see Appendices A and B).

main value X sub value x mind-world relation x atti-
tude content — attitude verb x embedded clause

Figure 1: Form of function from input to output.

We overcome the two limitations mentioned in
Section 1 by generating 9 data sets that vary in
how often we require the model to produce specific
attitude verbs and attitude ascriptions of specific
main values. Table 1 lists all 9 distributions.

balanced t-medium t-heavy

1:1:1 x 2:1:1 1:1:1 x 93:3.5:3.5
58:21:21 x 2:1:1 58:21:21 x 93:3.5:3.5
42:42:16 x 2:1:1 42:42:16 x 93:3.5:3.5

equal 1:1:1 x 1:1:1
c-light 58:21:21 x 1:1:
c-heavy 42:42:16 x 1:1:

Table 1: Relative proportions of attitude verbs (factives
: contrafactives : non-factives) and main values (true :
false : p-failure) for our target distributions.

T-heavy distributions require 93% true attitude
ascriptions, in line with Serota et al. (2022), with the
rest evenly split between false and presupposition
failure; t-medium distributions match Strohmaier
and Wimmer (2025)’s distribution; finally, balanced
distributions require a third each of attitude ascrip-
tions to be true, false, and presupposition failures.
C-heavy distributions require as many contrafac-
tives to be produced as factives; equal distributions
require the same number of each; and c-light distri-
butions require many more factives than contrafac-
tives, in line with (Sander, 2025).* The most plau-
sible distribution, by our current evidence, is thus
c-light/t-heavy.

Strohmaier and Wimmer (2025) sample their
data sets by considering two dimensions: Distri-
butions of required attitude verbs and distributions
of required main values. This approach has two

*The number of contrafactives in c-light distributions is
inspired by the proportion of non-factives to factives in Bartsch
and Wellman (1995)’s study of over 200,000 spontaneous ut-
terances by English-speaking children up to age 6.



downsides. First, it does not ensure sufficient data
points for each of the 21 possible combinations of
main value, sub value, and mind-world relation.
Second, it double-samples combinations that allow
the model to produce factives or contrafactives.
We address both downsides by using linear pro-
gramming to determine the number of instances
for the 21 possible combinations.’ We restrict our
datasets in two ways: First, they must reflect the
relative proportions of one of the distributions in
Table 1. Second, the total number of data points
must be 160,000.° The optimization goal is to max-
imize the minimum number of data points observed
across each of the combinations minus the max-
imum number observed. That is, we keep these
combinations in as narrow a band as possible.

4 Experimental Design

For the experiment, we split the dataset into a train,
dev, and test split. Each of the latter two makes up
10% of the overall dataset.

Like Strohmaier and Wimmer (2025), we base
our experiments on the standard transformer model
included in the pyTorch library (Paszke et al., 2017).
As in Vaswani et al. (2017), we use an encoder-
decoder architecture (for details see Appendix C).

Like Strohmaier and Wimmer (2025), we do not
consider word order or syntactic effects and so fix
the vocabulary the model can produce at each token
position by using separate heads. Consequently, the
model always produces a token for each position.

4.1 Training
Strohmaier and Wimmer (2025) explored 41 hy-
perparameter settings using a randomised search.
We undertook a more extensive search, exploring
60 settings for each of our 9 distributions, using
Optuna with TPE sampling algorithm (Akiba et al.,
2019; Bergstra et al., 2011; Watanabe, 2023)

We trained the final model on the highest per-
forming setting selected by Optuna on the dev split.
We then evaluated the final model on the test split.

4.2 Evaluation

Our evaluation metric was the correctness of the
output ascription given the input sequence. If an
input allows a factive or contrafactive, either is cor-
rect. To assess the robustness of our evaluation
results, we use an MC dropout-based method (Gal
and Ghahramani, 2016) and run the model 250-
times on the test set with active dropout.

>We use the PuLP library (Mitchell et al., 2011).

SFor simplicity, we use floats, which we round. This leads
to a negligible number of deviations.

5 Results

To compare the ease of learning of our attitude
verbs, we compare performance every 20 training
steps. We ignore training steps where performance
is equal, which primarily occur when the model has
achieved 100% performance for both verbs. Table 2
gives the results of these comparisons and whether
the difference in performance is significant. Ap-
pendix G describes the significance tests in more
detail and gives finer-grained results.

verb semantic f>c sig  nf>c f>nf
equal balanced  41.7% 83.3% 9.7%
equal t-medium  48.3% 96.4% 3.7%
equal t-heavy 409% v 792% 17.9%
c-light balanced 952% v 60.0% 95.2%
c-light t-medium 100.0% v 27.8% 72.2%
c-light t-heavy 26.7% 40.0%  46.7%
c-heavy balanced  27.3% 15.0%  81.0%
c-heavy t-medium 40.0% 4.5% 100.0%
c-heavy t-heavy 53.7% 15.4%  77.5%

Table 2: Comparative performance advantage over per-
centage of time steps (factive=f, contrafactive=c, non-
factive=nf). Comparison occurs every 20th training step.

For 6 of 9 distributions, our model learns con-
trafactives faster than factives. Of the remaining
3 models that learn factives faster, 2 are trained
on c-light distributions, which include fewer con-
trafactives than factives. Notably, the only c-light
distribution where contrafactives are learned faster
than factives, though not significantly so, is the most
plausible distribution: c-light/t-heavy.
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Figure 2: Performance of c-light/t-heavy.

Looking at completely trained models, they learn
factives and contrafactives across all target distri-
butions. Performance deviates only slightly from
100% correct. Even using dropout, the lowest per-
formance found is a correctness of 99.87% for con-



trafactives in the equal/balanced distribution. Ap-
pendix I says more about remaining errors.
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Figure 3: Performance for attitude verbs (factive=f, con-
trafactive=c, non-factive=nf) across distributions.

Since some inputs permit the production of a fac-
tive or contrafactive, the model can prefer one verb
(i.e. given those inputs, produce it more frequently
than the other) and still produce 100% correct out-
put (Strohmaier and Wimmer, 2025). For 6 distri-
butions the model came to consistently prefer one
verb across the 250 runs with dropout: in 3 cases,
it prefers factives; in 3 cases, contrafactives. We
observe no systematic pattern in how preferences
change over time. For details see Appendix H.

6 Discussion of Results

Although some c-light models learn contrafactives
more slowly than factives, there are two reasons
why these results do not support the general con-
clusion that contrafactives are harder to learn. First,
the c-light distributions involved are not the most
plausible, since they are not t-heavy. Second, c-
light distributions contain far fewer contrafactives
than factives (less than half); it is then no surprise
that c-light distributions generally make learning
contrafactives slower than factives.

Also, for the few distributions where con-
trafactives are learned more slowly, performance
rapidly catches up: the penalty for contrafactives
occurs mostly in the first 300—400 training steps
(see Appendix G) and is then quickly overcome.
E.g., for c-light/balanced, correctness for contrafac-
tives rose from 47.5% to 99.3% in eighty train-
ing steps, reaching almost the same percentage as
for factives (99.6%). A learning dynamic that al-
lows for such rapid catch-up is unlikely to explain
the frequency difference between factives and con-

trafactives. Many existing lexical items are rapidly
learned later, leaving open why contrafactives with
the same dynamic do not exist.’

Trained on c-light/t-heavy, the most plausible
distribution, our model does not prefer factives
over contrafactives. Across all 3 c-light distribu-
tions, which contain far fewer contrafactives than
factives, we find 2 distributions where contrafac-
tives are as likely or even more likely to be produced
than factives if both are allowed.

Looking at fully trained models, those trained on
t-heavy distributions, which require 93% true as-
criptions, perform worse. Given our evidential sup-
port for this distribution, this suggests that previous
research understates the challenge of learning
our attitude verbs. In fact, the model trained on
equal/t-medium, which corresponds most closely to
the distribution of Strohmaier and Wimmer (2025),
performs better than any other (see Appendix E).®

7 Conclusion

In line with Strohmaier and Wimmer (2025), our
results do not support the hypothesis that contrafac-
tives are harder to learn than factives. However,
like Strohmaier and Wimmer (2025)’s results, our
results need to be interpreted with care. They are
consistent with contrafactives being harder to learn
to comprehend, as Strohmaier and Wimmer (2022;
2023) argued. So, they do not obviously entail that
contrafactives are not harder to learn overall. Still,
our results do raise a key question: are contrafac-
tives hard enough to learn overall for this to explain,
even partly, why contrafactives are so much less
frequent than factives?

Future research might try to find features of hu-
man language learning relevant to learning con-
trafactives other than those we got from Sander
(2025); Serota et al. (2022). By implementing such
features in neural models, we might well recover
a learnability-based explanation of why contrafac-
tives are so much rarer than factives.’

"For accidental learning by reading a text, it has been shown
that two exposures can be sufficient, see Hulme et al. (2019).

8The distributions with equally many factives, contrafac-
tives, and non-factives had long training times, i.e. over 2500
training steps, during the hyperparameter search. But, tracking
performance over time shows that almost all additional steps
are unnecessary, except for the equal/t-heavy distribution (see
Appendix G).

9Strohmaier and Wimmer (2025, 406) note that pragmatic-
syntactic bootstrapping (see Hacquard and Lidz 2022) might
be one such feature.
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A Input-Output Function

\ MW  Main Value Sub Value Attitude Verb Embedded Clause

CIT | C True True Factive Matching
CTF | C True False IMPOSSIBLE —

CTU | C True Unknown IMPOSSIBLE —

CFT | C False True Factive Non-Matching
CFF | C False False Contrafactive ~ Non-Matching
CFU | C False Unknown Non-Factive Non-Matching
CPT | C P-Failure True Contrafactive ~ Matching
CPF | C P-Failure False Factive Non-Matching
CPU | C P-Failure Unknown I(J:actlve or Non-Matching

ontrafactive

ITT |I True True IMPOSSIBLE —

ITF |1 True False Contrafactive ~ Matching
ITU |I True Unknown IMPOSSIBLE —

IFT |1 False True Factive Non-Matching
IFF |1 False False Contrafactive ~ Non-Matching
IFU |1 False Unknown Non-Factive Non-Matching
IPT |1 P-Failure True Contrafactive ~ Non-Matching
IPF |1 P-Failure False Factive Matching

IPU |1 P-Failure Unknown Factive or . Non-Matching

Contrafactive

UTT | U True True IMPOSSIBLE —

UTF | U True False IMPOSSIBLE —

UTU | U True Unknown Non-Factive Matching
UFT | U False True Factive Non-Matching
UFF | U False False Contrafactive ~ Non-Matching
UFU | U False Unknown Non-Factive Non-Matching
UPT | U P-Failure True Contrafactive ~ Non-Matching
UPF | U P-Failure False Factive Non-Matching
UPU | U P-Failure Unknown gz)cnt;:;f:cftive Matching

Table 3: Possible combinations of semantic-pragmatic
conditions and output tokens.

Table 3 specifies possible combinations of semantic-
pragmatic conditions and output tokens. 6 rows in
the table give impossible combinations, leaving 21
that are possible.

Main value is the required value of the output
attitude ascription. Sub value the required value
of the embedded clause used in the output attitude
ascription. The mind-world relation, MW, has three
possible values: mind and world are compatible (C),
incompatible (I), or the world state is unknown (U).
The only input not listed in table 3 is the attitude
content, which tells the model what the subject of
the ascription believes.

Output tokens partly consist of one of three atti-
tude verbs: factive, contrafactive, and non-factive.
(A non-factive is a verb like believe that entails
belief in the content of its embedded clause, but
presupposes neither the truth nor the falsity of that
clause.) Rows with main value P-failure and sub
value Unknown are notable because they allow for
factives and contrafactives in the output.

The embedded clause column gives a relation
between the embedded clause required in the output
attitude ascription and the attitude content given to

the model. The embedded clause can either match
the attitude content or fail to match it. E.g., “eat rory
tomato basil soup lunch tomorrow” matches “Rory
will-eat tomato-basil soup for lunch tomorrow”. To
get a matching clause, the model must output a
specific embedded clause. To get a non-matching
clause, the model can output any embedded clause
other than the matching one.

B Vocabulary

The vocabulary for the input attitude content is
slightly larger than in Strohmaier and Wimmer
(2025). This allows us to generate sufficient data.
Fig. 4 gives the function from attitude content to
embedded clause. The only added vocabulary in
the embedded clause are prepositions such as ‘for’
and tense markers such as ‘will.’

Category Lexical Items

Verb eat, cook, order, buy, season

Subject rory, lorelai, lane, paris, timon, ahab

Ingredient tomato, pumpkin, mushroom, carrot,
potato

Spice basil, oregano, pepper, chili, coconut
Dish soup, pie, rice, stew, curry
Meal lunch, dinner, breakfast, brunch

Day day-before-yesterday, yesterday, now, to-
day, tomorrow, day-after-tomorrow

Table 4: Attitude content vocabulary. Content has one
token of each category.

verb x agent X ingredient X spice x dish x meal x
day — x agent x verb (with tense) X main ingredient
+ spice X preposition X dish x meal X day

Figure 4: Form of function from attitude content to
embedded clause.

C Architectural Details

We implemented the models using pyTorch and
parallelised using the lightning-Fabric library. For
training and evaluation, we used two A100 GPUs.

Like Strohmaier and Wimmer (2025), we use the
Binary Cross Entropy (BCE) loss function. Since
this is not a typical language modelling task, we
have special cases, e.g. with more then one allowed
embedded clause, where we set the target value for
all allowed embedded clauses to 0.5. Also, if two
attitude verbs are allowed, we set the target value
for both to 1.

D Hyperparameter Search Details

The target of the hyperparameter search was to max-
imize the overall correctness of output created on



the dev set. All 9 x 60 settings were fully explored
(no pruning). The 60 settings were explored by
4 processes, which communicated via a remote
mySQL database.

Name Lower Upper Step Size Log-Space
Embedding dim. 48 480 24

Hidden dim. 48 480 24

# Encoder layers 5 25 5

# Decoder layer 5 25 5

Dropout prob. 0.1 0.3 0.1

Learning rate le-07 1e-03 - v
Epochs 5 50 1

Batch size 8 3200 8

Table 5: Hyperparameter settings used for search by
Optuna.

E Final Performance

verb semantic  att min mean std

f 100% 100% 0
balanced ¢ 99.8749% 99.9088% 0.00013
nf 99.9955% 99.9999% 6.3e-06

equal f 100% 100% 0
t-medium ¢ 100% 100% 0
nf 100% 100% 0

f  99.9583% 99.9825% 7.1e-05
t-heavy ¢ 99.9674% 99.9894%  5e-05
nf 99.9907% 99.9992% 1.8e-05

f  99.9948% 99.9995% 1.1e-05
balanced ¢ 99.964% 99.9918% 7.6e-05
nf 99.9856% 99.9995%  2e-05

c-light f  99.9947% 99.9997% 8.9e-06
t-medium ¢ 99.9853% 99.9994% 2.1e-05
nf 99.9927% 99.9999%  8e-06

f 99.9521% 99.9743% 7.7e-05
t-heavy ¢ 99.9926% 99.9992% 2.3e-05
nf 99.9926% 99.9995% 1.8e-05

f  99.9969% 100% 2.8e-06
balanced ¢ 99.9968% 99.9999% 4.9¢-06
nf 100% 100% 0

c-heavy f 99.9938% 99.9998% 8.3e-06
t-medium ¢ 99.9938% 99.9998% 9.3e-06
nf 99.9919% 99.9999% 7.3e-06

f 99.9963% 99.9997% 9.5e-06
t-heavy ¢ 99.9963% 99.9997% 1.1e-05
nf  99.9904% 100% 6.1e-06

Table 6: Correct output by required attitude verb (f=fac-
tive, c=contrafactive, nf=non-factive) across target dis-
tributions. Minimum, mean, and standard deviation are
calculated using the 250 runs with active dropout.
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G Learning Trajectory

Significance Test We use the two-sided
permutation-test implementation of SciPy
(Virtanen et al., 2020) with 9999 resamples and
permutation type “samples”. The test statistic was
the difference between the sum of comparisons
in which the model performed better on factives
than on contrafactives and the sum of comparisons
where the reverse held.

Further Results A closer look at Table 2 suggests
that non-factives differ across distributions. E.g.,
non-factives are learned fastest with distributions
with as many non-factives as contrafactives and fac-
tives. But with distributions with fewer non-factives
than factives (c-heavy, c-light), non-factives tend to
be learned more slowly than contrafactives.

—— factive contrafactive —— non-factive
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step f c nf comb  step f c nf comb  step f c nf comb

0 9.546% 32.237%  0.027% 11.279% 0  0.118%  0.005% 51.458% 17.745% 0  6470%  1.939%  0.000%  2.183%
200 98.280% 83.964% 99.362% 93.685% 300 96.863% 96.503% 99.995% 97.763% 2220 96.841% 97.175% 99.671% 97.962%
420 99.996% 100.000% 100.000% 99.998% 600 100.000% 100.000% 100.000% 100.000% 4420 96.786% 99.860% 99.750% 98.812%
640 100.000% 100.000% 100.000% 100.000% 900 100.000% 100.000% 100.000% 100.000% 6640 98.921% 99.888% 100.000% 99.636%
840 100.000% 100.000% 100.000% 100.000% 1220 100.000% 100.000% 100.000% 100.000% 8860 99.931% 99.986% 100.000% 99.972%
1040 100.000% 100.000% 100.000% 100.000% 1520 100.000% 100.000% 100.000% 100.000% 11080 99.986% 100.000% 100.000%  99.995%
1260 100.000% 99.991% 100.000% 99.997% 1820 100.000% 100.000% 100.000% 100.000% 13280 99.995% 99.995% 100.000%  99.998%
1480 100.000% 100.000% 100.000% 100.000% 2120 100.000% 100.000% 100.000% 100.000% 15500 99.977% 99.986% 100.000%  99.992%
1680 100.000% 100.000% 100.000% 100.000% 2420 100.000% 100.000% 100.000% 100.000% 17720 99.977% 99.977% 100.000%  99.992%
1880 100.000% 100.000% 100.000% 100.000% 2720 100.000% 100.000% 100.000% 100.000% 19920 100.000% 100.000% 100.000% 100.000%
2100 100.000% 100.000% 100.000% 100.000% 3020 100.000% 100.000% 100.000% 100.000% 22140 99.977% 99.921% 99.995% 99.972%
2320  99.982% 100.000% 100.000% 99.994% 3340 100.000% 100.000% 100.000% 100.000% 24360 100.000% 100.000% 100.000% 100.000%
2520 100.000% 100.000% 100.000% 100.000% 3640 100.000% 100.000% 100.000% 100.000% 26580 100.000% 100.000% 100.000% 100.000%
2720 100.000% 100.000% 100.000% 100.000% 3940 100.000% 100.000% 100.000% 100.000% 28780 99.935% 99.935% 99.884% 99.939%
2920 100.000% 100.000% 100.000% 100.000% 4220 100.000% 100.000% 100.000% 100.000% 30980 100.000% 100.000% 100.000% 100.000%

(a) Trajectory for distribution equal/balanced (b) Trajectory for distribution equal/t-medium (c) Trajectory for distribution equal/t-heavy
step f c nf comb
step f c nf comb step f c nf comb
0 61.151% 10.916%  0.000% 36.807%
40 61.151% 10.916%  0.000% 36.807% 0 42.654% 5.093%  0.000% 25.158% 0 4480% 4310%  0.089%  2.920%

60 61.151% 10.916%  0.000% 36.807% 20 42.657% 5.093%  0.000% 25.160% 20 2.050%  7.598%  0.251% = 2.256%
100 61.151% 21.688%  0.000% 39.146% 60 40.413% 5.945%  0.783% 24.185% 60  9.673% 13.353%  7.377%  9.419%
140 61.146% 21.688% 47.956% 49.534% 80 44.969% 14.543%  6.297% 29.850% 80 18.697% 25.617% 17.778% 19.503%
180 61.146% 21.681% 48.338% 49.618% 100 49.181% 18.629% 13.273% 34.640% 100 43.512% 43.650% 41.817% 42.950%
200 61.138% 21.695% 48.338% 49.620% 120 53.754% 28.557% 19.080% 40.651% 140 99.023% 96.623% 99.076%  98.625%
240 61.538% 38.426% 48.763% 53.573% 160 75.072% 56.298% 45.298% 64.562% 160 99.465% 97.223% 100.000%  99.100%
280 64.731% 43.045% 52.809% 57.279% 180 97.706% 88.000% 74.814% 90.744% 200 99.502% 99.993% 100.000%  99.706%
300 67.472% 47.514% 56.854% 60.692% 200 99.915% 92.460%  77.980% 93.664% 220 99.782% 100.000% 100.000%  99.872%
340 86.343% 78.463% 81.806% 83.643% 240 99.481% 91.894% 89.871% 95.934% 240 99.691% 100.000% 100.000% 99.819%
380 99.569% 99.280% 99.264%  99.448% 260 99.950% 92.585% 100.000% 98.420% 280  99.920% 100.000% 100.000%  99.953%
420 99.997% 100.000% 100.000% 99.998% 280 99.992% 95.760% 100.000% 99.098% 300 100.000% 100.000% 100.000% 100.000%
440 100.000% 100.000% 100.000% 100.000% 300 99.992% 99.978% 100.000% 99.995% 320 100.000% 100.000% 100.000% 100.000%
460 100.000% 100.000% 100.000% 100.000% 340 99.992% 99.978% 100.000% 99.995% 360 100.000% 100.000% 100.000% 100.000%

N

d) Trajectory for distribution c-light/balanced (e) Trajectory for distribution c-light/t-medium (f) Trajectory for distribution c-light/t-heavy

step f c nf comb step f c nf comb  step f c nf comb

0 55.907% 39.030%  0.000% 33.341% 0 32243%  6.649%  0.000% 16.257% 0  1.607%  5.404%  0.048%  2.438%
100 51.340% 63.507% 23.683% 47.625% 40 30.873% 31.429%  0.016% 28.068% 60 27.054% 32.388% 25.079% 28.802%
200 68.717% 69.152% 48.880% 63.139% 60 28.732% 32.060%  0.147% 27.316% 120 90.888% 94.114% 92.854% 93.088%
300 95.509% 95.849% 92.343% 94.797% 100 41.997% 45.298% 15.857% 40.489% 200 96.647% 97.351% 97.101% 97.162%
420 100.000% 100.000% 100.000% 100.000% 140 86.567% 87.152% 71.716% 84.168% 260 97.690% 95.760% 94.115% 96.433%
520 100.000% 100.000% 100.000% 100.000% 180 97.307% 97.474% 86.237% 94.972% 320 97.869% 99.111% 94.115% 97.878%
620 100.000% 100.000% 100.000% 100.000% 200 97.797% 97.843% 87.003% 95.516% 380 98.148% 96.499% 94.115% 96.941%
720 100.000% 100.000% 100.000% 100.000% 240 97.902% 96.719% 87.027% 95.344% 440 98.316% 98.588% 94.115% 97.811%
820 100.000% 100.000% 100.000% 100.000% 280 99.923% 99.944% 87.027% 97.469% 520 99.114% 96.122% 94.115% 97.095%
920 100.000% 100.000% 100.000% 100.000% 300 99.944% 99.978% 87.027% 97.478% 580 99.187% 96.653% 94.115% 97.305%
1020 100.000% 100.000% 100.000% 100.000% 340 99.916% 99.858% 87.027% 97.441% 640 99.253% 97.092% 94.173% 97.541%
1140 100.000% 100.000% 100.000% 100.000% 380 100.000% 100.000% 87.027% 97.513% 700 99.865% 98.639% 95.955% 98.705%
1240 100.000% 100.000% 100.000% 100.000% 420 100.000% 99.997% 100.000% 99.998% 780 100.000% 100.000% 100.000% 100.000%
1340 100.000% 100.000% 100.000% 100.000% 440 100.000% 100.000% 100.000% 100.000% 840 99.993% 100.000% 100.000% 99.997%
1420 100.000% 100.000% 100.000% 100.000% 460 100.000% 100.000% 100.000% 100.000% 880 99.993% 100.000% 100.000% 99.997%

(g) Trajectory for distribution c-heavy/balanced (h) Trajectory for distribution c-heavy/t-medium (i) Trajectory for distribution c-heavy/t-heavy
Table 7: Learning Trajectory for 9 distributions (factive=f, contrafactive=c, non-factive=nf, comb=combined). “step”
refers to the number of training steps taken, which is equivalent to the number of batches seen.
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H Preference where Factives and
Contrafactives Both Permitted
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Figure 5: Attitude verb preference of final trained models
across target distributions.

verb semantic  att min mean max std

f 48.5% 50.4% 52.2% 0.7
balanced ¢ 47.8% 49.6% 51.5% 0.7
nf 0.0% 0.0% 0.0% 0.0

equal
f 71.8% 74.0% 76.2% 0.8
t-medium ¢ 23.8% 26.0% 28.2% 0.8
nf 0.0% 0.0% 0.0% 0.0
f 429% 47.6% 51.7% 1.8
t-heavy ¢ 483% 52.4% 57.1% 1.8
nf 0.0% 0.0% 0.0% 0.0
f 74.0% 76.1% 78.4% 0.9
balanced ¢ 21.6% 23.9% 26.0% 0.9
nf 0.0% 0.0% 0.0% 0.0
c-light
f 34.0% 37.7% 41.3% 1.3
t-medium ¢ 58.7% 62.3% 66.0% 1.3
nf 0.0% 0.0% 0.0% 0.0
f 42.5% 47.6% 53.3% 1.9
t-heavy ¢ 46.7% 52.4% 57.5% 1.9
nf 0.0% 0.0% 0.0% 0.0
f  53% 58% 64% 0.2
balanced ¢ 93.6% 94.2% 94.7% 0.2
nf 0.0% 0.0% 0.0% 0.0
c-heavy

f 44.7% 45.7% 46.9% 0.4
t-medium ¢ 53.1% 54.3% 55.3% 0.4
nf 0.0% 0.0% 0.0% 0.0

f 583% 61.5% 64.9% 1.3
35.1% 38.5% 41.7% 1.3
nf 0.0% 0.0% 0.0% 0.0

t-heavy

[¢]

Table 8: Proportion of attitude verb chosen where factive
and contrafactive are allowed (f=factive, c=contrafactive,
nf=non-factive). Numbers concern final trained mod-
els. Minimum, mean, max, and standard deviation are
calculated using the 250 runs with dropout. Standard
deviation given in percentage points.
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Figure 6: Changes over time in attitude verb preference across target distributions.
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I Error Types

We can distinguish three parts of an output that can
be responsible for an error: first, the tokens of the
embedded clause; second, the token for the attitude
verb; or, third, the special tokens. Because the vo-
cabulary is fixed for each token position special
token errors are architecturally impossible. That
we find no such errors merely reflects the absence
of coding errors. Notably, the worst performance
on input that allows contrafactives, found in distri-
bution equal/balanced, is primarily due to errors in
the production of embedded clause tokens.
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Figure 7: Error types by attitude verb given distributions that are equal.
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Figure 9: Error types by attitude verb given distributions that are c-heavy.
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J Matching vs. Non-Matching

Strohmaier and Wimmer (2025) reported strong
differences in performance between conditions that
require matching embedded clauses and conditions
that require non-matching embedded clauses (see
Table 3 to see into which group each of the 21 con-
ditions falls). We provide here the learning graphs
split up by what kind of embedded clause is re-
quired for all 9 distributions. Our results replicate
those of Strohmaier and Wimmer (2025) across
distributions.
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(c) Matching vs. non-matching performance for allowed attitude verbs given the distribution equal/t-heavy.
Figure 10: Matching vs. non-matching performance by attitude verb given distributions that are equal.
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(c) Matching vs. non-matching performance for allowed attitude verbs given the distribution c-light/t-heavy.
Figure 11: Matching vs. non-matching performance by attitude verb given distributions that are c-light.
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(b) Matching vs. non-matching performance for allowed attitude verbs given the distribution c-heavy/t-medium.
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(c) Matching vs. non-matching performance for allowed attitude verbs given the distribution c-heavy/t-heavy.
Figure 12: Matching vs. non-matching performance by attitude verb given distributions that are c-heavy.
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