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Abstract001

No natural language is known to have contrafac-002
tive attitude verbs, yet factives are common003
across natural languages. Several experiments004
by Strohmaier and Wimmer (2022; 2023; 2025)005
try to explain this asymmetry via a ’learnabil-006
ity differential’, using transformers as model007
learners. But they do not explore empirically-008
founded data distributions. We fill this gap,009
further improving the overall quality of train-010
ing data distributions using linear programming.011
Our results confirm Strohmaier and Wimmer’s012
2025 conclusion that there is no learnability dif-013
ferential in production, while establishing the014
impact of differences in data distributions.015

1 Introduction016

To date, no natural language is known to have a ‘con-017

trafactive’ (a morphologically atomic attitude verb018

that entails belief in the content of its embedded019

clause, but presupposes that clause’s falsity), yet020

the contrafactive’s ‘factive’ mirror image (a mor-021

phologically atomic attitude verb like know that022

entails belief in the content of its embedded clause023

and presupposes that clause’s truth) is commonly, if024

not universally, attested (cf. Holton, 2017; Roberts025

and Özyıldız, 2025). As Strohmaier and Wimmer026

(2023) note, this raises the question of why these027

two verb types differ so much in their frequency.028

Recent work on linguistic universals uses com-029

putational experiments to suggest that attested ex-030

pressions are easier to learn than some unattested031

ones. E.g., Kallini et al. (2024) found that GPT-2032

models learn English more easily than languages033

humans cannot learn. Steinert-Threlkeld and Szy-034

manik (2019) explain the conservativity, mono-035

tonicity, and quantity universals for determiners036

by showing that LSTMs learn conservative, etc. de-037

terminers more easily than ones that are not.038

Given these suggestive correlations between neu-039

ral model and human performance, and given that a040

learnability difference between contrafactives and041

factives cannot be usefully tested with human sub- 042

jects1, Strohmaier and Wimmer (2022; 2023; 2025) 043

also use computational experiments to (partially) 044

explain the frequency difference between contrafac- 045

tives and factives. They initially tested how easily 046

transformers learn to comprehend attitude ascrip- 047

tions fed into them. (Their transformer models ef- 048

fectively acted as classifiers for truth-values.) But 049

this left open how easily transformers learn to pro- 050

duce attitude ascriptions. In reply, Strohmaier and 051

Wimmer (2025) trained transformers to produce at- 052

titude ascriptions. Curiously, whilst they previously 053

found a learnability difference between contrafac- 054

tives and factives in comprehension, they did not 055

find one in production. This leaves open whether 056

contrafactives are overall harder to learn than fac- 057

tives, as they must be if a learnability difference is 058

to explain the frequency difference between con- 059

trafactives and factives. 060

However, the data distribution they used for their 061

experiment has two limitations, in light of which 062

we might question their results. First, 50% of their 063

training data required their transformer models to 064

produce attitude ascriptions that are not true, effec- 065

tively biasing the models towards producing lies.2 066

But it is not the case that 50% of the attitude as- 067

criptions human language users produce are lies. 068

According to Serota et al. (2022), human language 069

users only lie in 7% of total communication, and we 070

see no reason to say that they lie far more frequently 071

than that when they use attitude ascriptions. 072

Second, since contrafactives are unattested, how 073

often would language learners need to produce them 074

1Since those subjects speak natural languages that have
factives, but lack contrafactives, results from artificial lan-
guage learning experiments would be biased by those subjects’
previous knowledge of factives.

2For simplicity, we assume that utterances the model takes
to be presupposition failures are lies. Philosophical work on
lies, e.g. Stokke (2024), tends to classify such utterances as
misleading instead. But Serota et al. (2010, 6), e.g., opera-
tionalise lies so as to include attempts to mislead.
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if they were to learn them as part of a natural lan-075

guage? Our best evidence is that, as Sander (2025)076

argues, we would need to use contrafactives less077

frequently than factives, because we ascribe true be-078

liefs to others by default. But the data distribution079

Strohmaier and Wimmer (2025) explore effectively080

assumes that factives and contrafactives would need081

to be used equally frequently.082

Our experiment overcomes these two limitations083

by exploring data distributions that reflect our best084

evidence as to how frequently human language085

learners lie and how often they would need to086

use contrafactives if they were attested. Impor-087

tantly, our results confirm Strohmaier and Wimmer088

(2025)’s conclusion. Our improved implementation089

of their paradigm also shows no relevant learnabil-090

ity difference.091

Our main contributions are:092

1. We explore a range of empirically-informed093

data distributions.094

2. We provide a deeper data analysis of our re-095

sults, including significance testing training096

trajectories.097

3. We publicly release our dataset and code.3098

2 Related Work099

Holton (2017) introduced the frequency differ-100

ence between contrafactives and factives. Cross-101

linguistic evidence relevant to the difference can102

be found in Rosenberg (1975); Hannon (2015);103

Kierstead (2015); Krifka (2016); Hsiao (2017);104

Anvari et al. (2019); Sander (2020); Hoeksema105

(2021); Bochnak and Hanink (2022); Bossi (2022);106

Strohmaier and Wimmer (2023); McGregor (2024);107

Sander (2025).108

A learnability difference to explain linguistic uni-109

versals is explored with comprehension-oriented110

experiments on human subjects in Maldonado et al.111

(2022) and on neural networks in Steinert-Threlkeld112

(2020); Steinert-Threlkeld and Szymanik (2019,113

2020), and Strohmaier and Wimmer (2022; 2023).114

We can find production-oriented experiments on hu-115

man subjects in Maldonado and Culbertson (2019)116

and on neural networks in Strohmaier and Wimmer117

(2025); Johnson et al. (2021) report experiments118

with both kinds of subject.119

Work that encourages us to take transformers120

to approximate human language learning closely121

enough to draw conclusions about humans from re-122

sults about transformers includes Ross and Pavlick123
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(2019); Merkx and Frank (2021); Schrimpf et al. 124

(2021); Caucheteux and King (2022); Paape (2023); 125

Ziembicki et al. (2023); Kallini et al. (2024). 126

3 Data 127

Like Strohmaier and Wimmer (2025), we use a 128

sequence-to-sequence task. Fig. 1 gives Strohmaier 129

and Wimmer’s function from an attitude content 130

and one of 21 possible combinations of main value, 131

sub value, and mind-world relation to an output as- 132

cription that consists of an attitude verb and an em- 133

bedded clause (for details see Appendices A and B). 134

main value × sub value × mind-world relation × atti-
tude content → attitude verb × embedded clause

Figure 1: Form of function from input to output.

We overcome the two limitations mentioned in 135

Section 1 by generating 9 data sets that vary in 136

how often we require the model to produce specific 137

attitude verbs and attitude ascriptions of specific 138

main values. Table 1 lists all 9 distributions. 139

balanced t-medium t-heavy

equal 1:1:1 × 1:1:1 1:1:1 × 2:1:1 1:1:1 × 93:3.5:3.5
c-light 58:21:21 × 1:1:1 58:21:21 × 2:1:1 58:21:21 × 93:3.5:3.5
c-heavy 42:42:16 × 1:1:1 42:42:16 × 2:1:1 42:42:16 × 93:3.5:3.5

Table 1: Relative proportions of attitude verbs (factives
: contrafactives : non-factives) and main values (true :
false : p-failure) for our target distributions.

T-heavy distributions require 93% true attitude 140

ascriptions, in line with Serota et al. (2022), with the 141

rest evenly split between false and presupposition 142

failure; t-medium distributions match Strohmaier 143

and Wimmer (2025)’s distribution; finally, balanced 144

distributions require a third each of attitude ascrip- 145

tions to be true, false, and presupposition failures. 146

C-heavy distributions require as many contrafac- 147

tives to be produced as factives; equal distributions 148

require the same number of each; and c-light distri- 149

butions require many more factives than contrafac- 150

tives, in line with (Sander, 2025).4 The most plau- 151

sible distribution, by our current evidence, is thus 152

c-light/t-heavy. 153

Strohmaier and Wimmer (2025) sample their 154

data sets by considering two dimensions: Distri- 155

butions of required attitude verbs and distributions 156

of required main values. This approach has two 157

4The number of contrafactives in c-light distributions is
inspired by the proportion of non-factives to factives in Bartsch
and Wellman (1995)’s study of over 200,000 spontaneous ut-
terances by English-speaking children up to age 6.
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downsides. First, it does not ensure sufficient data158

points for each of the 21 possible combinations of159

main value, sub value, and mind-world relation.160

Second, it double-samples combinations that allow161

the model to produce factives or contrafactives.162

We address both downsides by using linear pro-163

gramming to determine the number of instances164

for the 21 possible combinations.5 We restrict our165

datasets in two ways: First, they must reflect the166

relative proportions of one of the distributions in167

Table 1. Second, the total number of data points168

must be 160,000.6 The optimization goal is to max-169

imize the minimum number of data points observed170

across each of the combinations minus the max-171

imum number observed. That is, we keep these172

combinations in as narrow a band as possible.173

4 Experimental Design174

For the experiment, we split the dataset into a train,175

dev, and test split. Each of the latter two makes up176

10% of the overall dataset.177

Like Strohmaier and Wimmer (2025), we base178

our experiments on the standard transformer model179

included in the pyTorch library (Paszke et al., 2017).180

As in Vaswani et al. (2017), we use an encoder-181

decoder architecture (for details see Appendix C).182

Like Strohmaier and Wimmer (2025), we do not183

consider word order or syntactic effects and so fix184

the vocabulary the model can produce at each token185

position by using separate heads. Consequently, the186

model always produces a token for each position.187

4.1 Training188

Strohmaier and Wimmer (2025) explored 41 hy-189

perparameter settings using a randomised search.190

We undertook a more extensive search, exploring191

60 settings for each of our 9 distributions, using192

Optuna with TPE sampling algorithm (Akiba et al.,193

2019; Bergstra et al., 2011; Watanabe, 2023)194

We trained the final model on the highest per-195

forming setting selected by Optuna on the dev split.196

We then evaluated the final model on the test split.197

4.2 Evaluation198

Our evaluation metric was the correctness of the199

output ascription given the input sequence. If an200

input allows a factive or contrafactive, either is cor-201

rect. To assess the robustness of our evaluation202

results, we use an MC dropout-based method (Gal203

and Ghahramani, 2016) and run the model 250-204

times on the test set with active dropout.205

5We use the PuLP library (Mitchell et al., 2011).
6For simplicity, we use floats, which we round. This leads

to a negligible number of deviations.

5 Results 206

To compare the ease of learning of our attitude 207

verbs, we compare performance every 20 training 208

steps. We ignore training steps where performance 209

is equal, which primarily occur when the model has 210

achieved 100% performance for both verbs. Table 2 211

gives the results of these comparisons and whether 212

the difference in performance is significant. Ap- 213

pendix G describes the significance tests in more 214

detail and gives finer-grained results. 215

verb semantic f>c sig nf>c f>nf
equal balanced 41.7% 83.3% 9.7%
equal t-medium 48.3% 96.4% 3.7%
equal t-heavy 40.9% X 79.2% 17.9%
c-light balanced 95.2% X 60.0% 95.2%
c-light t-medium 100.0% X 27.8% 72.2%
c-light t-heavy 26.7% 40.0% 46.7%
c-heavy balanced 27.3% 15.0% 81.0%
c-heavy t-medium 40.0% 4.5% 100.0%
c-heavy t-heavy 53.7% 15.4% 77.5%

Table 2: Comparative performance advantage over per-
centage of time steps (factive=f, contrafactive=c, non-
factive=nf). Comparison occurs every 20th training step.

For 6 of 9 distributions, our model learns con- 216

trafactives faster than factives. Of the remaining 217

3 models that learn factives faster, 2 are trained 218

on c-light distributions, which include fewer con- 219

trafactives than factives. Notably, the only c-light 220

distribution where contrafactives are learned faster 221

than factives, though not significantly so, is the most 222

plausible distribution: c-light/t-heavy. 223
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Figure 2: Performance of c-light/t-heavy.

Looking at completely trained models, they learn 224

factives and contrafactives across all target distri- 225

butions. Performance deviates only slightly from 226

100% correct. Even using dropout, the lowest per- 227

formance found is a correctness of 99.87% for con- 228
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trafactives in the equal/balanced distribution. Ap-229

pendix I says more about remaining errors.230
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Figure 3: Performance for attitude verbs (factive=f, con-
trafactive=c, non-factive=nf) across distributions.

Since some inputs permit the production of a fac-231

tive or contrafactive, the model can prefer one verb232

(i.e. given those inputs, produce it more frequently233

than the other) and still produce 100% correct out-234

put (Strohmaier and Wimmer, 2025). For 6 distri-235

butions the model came to consistently prefer one236

verb across the 250 runs with dropout: in 3 cases,237

it prefers factives; in 3 cases, contrafactives. We238

observe no systematic pattern in how preferences239

change over time. For details see Appendix H.240

6 Discussion of Results241

Although some c-light models learn contrafactives242

more slowly than factives, there are two reasons243

why these results do not support the general con-244

clusion that contrafactives are harder to learn. First,245

the c-light distributions involved are not the most246

plausible, since they are not t-heavy. Second, c-247

light distributions contain far fewer contrafactives248

than factives (less than half); it is then no surprise249

that c-light distributions generally make learning250

contrafactives slower than factives.251

Also, for the few distributions where con-252

trafactives are learned more slowly, performance253

rapidly catches up: the penalty for contrafactives254

occurs mostly in the first 300–400 training steps255

(see Appendix G) and is then quickly overcome.256

E.g., for c-light/balanced, correctness for contrafac-257

tives rose from 47.5% to 99.3% in eighty train-258

ing steps, reaching almost the same percentage as259

for factives (99.6%). A learning dynamic that al-260

lows for such rapid catch-up is unlikely to explain261

the frequency difference between factives and con-262

trafactives. Many existing lexical items are rapidly 263

learned later, leaving open why contrafactives with 264

the same dynamic do not exist.7 265

Trained on c-light/t-heavy, the most plausible 266

distribution, our model does not prefer factives 267

over contrafactives. Across all 3 c-light distribu- 268

tions, which contain far fewer contrafactives than 269

factives, we find 2 distributions where contrafac- 270

tives are as likely or even more likely to be produced 271

than factives if both are allowed. 272

Looking at fully trained models, those trained on 273

t-heavy distributions, which require 93% true as- 274

criptions, perform worse. Given our evidential sup- 275

port for this distribution, this suggests that previous 276

research understates the challenge of learning 277

our attitude verbs. In fact, the model trained on 278

equal/t-medium, which corresponds most closely to 279

the distribution of Strohmaier and Wimmer (2025), 280

performs better than any other (see Appendix E).8 281

7 Conclusion 282

In line with Strohmaier and Wimmer (2025), our 283

results do not support the hypothesis that contrafac- 284

tives are harder to learn than factives. However, 285

like Strohmaier and Wimmer (2025)’s results, our 286

results need to be interpreted with care. They are 287

consistent with contrafactives being harder to learn 288

to comprehend, as Strohmaier and Wimmer (2022; 289

2023) argued. So, they do not obviously entail that 290

contrafactives are not harder to learn overall. Still, 291

our results do raise a key question: are contrafac- 292

tives hard enough to learn overall for this to explain, 293

even partly, why contrafactives are so much less 294

frequent than factives? 295

Future research might try to find features of hu- 296

man language learning relevant to learning con- 297

trafactives other than those we got from Sander 298

(2025); Serota et al. (2022). By implementing such 299

features in neural models, we might well recover 300

a learnability-based explanation of why contrafac- 301

tives are so much rarer than factives.9 302

7For accidental learning by reading a text, it has been shown
that two exposures can be sufficient, see Hulme et al. (2019).

8The distributions with equally many factives, contrafac-
tives, and non-factives had long training times, i.e. over 2500
training steps, during the hyperparameter search. But, tracking
performance over time shows that almost all additional steps
are unnecessary, except for the equal/t-heavy distribution (see
Appendix G).

9Strohmaier and Wimmer (2025, 406) note that pragmatic-
syntactic bootstrapping (see Hacquard and Lidz 2022) might
be one such feature.
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A Input-Output Function485

MW Main Value Sub Value Attitude Verb Embedded Clause

CTT C True True Factive Matching
CTF C True False IMPOSSIBLE —
CTU C True Unknown IMPOSSIBLE —
CFT C False True Factive Non-Matching
CFF C False False Contrafactive Non-Matching
CFU C False Unknown Non-Factive Non-Matching
CPT C P-Failure True Contrafactive Matching
CPF C P-Failure False Factive Non-Matching

CPU C P-Failure Unknown Factive or
Contrafactive Non-Matching

ITT I True True IMPOSSIBLE —
ITF I True False Contrafactive Matching
ITU I True Unknown IMPOSSIBLE —
IFT I False True Factive Non-Matching
IFF I False False Contrafactive Non-Matching
IFU I False Unknown Non-Factive Non-Matching
IPT I P-Failure True Contrafactive Non-Matching
IPF I P-Failure False Factive Matching

IPU I P-Failure Unknown Factive or
Contrafactive Non-Matching

UTT U True True IMPOSSIBLE —
UTF U True False IMPOSSIBLE —
UTU U True Unknown Non-Factive Matching
UFT U False True Factive Non-Matching
UFF U False False Contrafactive Non-Matching
UFU U False Unknown Non-Factive Non-Matching
UPT U P-Failure True Contrafactive Non-Matching
UPF U P-Failure False Factive Non-Matching

UPU U P-Failure Unknown Factive or
Contrafactive Matching

Table 3: Possible combinations of semantic-pragmatic
conditions and output tokens.

Table 3 specifies possible combinations of semantic-486

pragmatic conditions and output tokens. 6 rows in487

the table give impossible combinations, leaving 21488

that are possible.489

Main value is the required value of the output490

attitude ascription. Sub value the required value491

of the embedded clause used in the output attitude492

ascription. The mind-world relation, MW, has three493

possible values: mind and world are compatible (C),494

incompatible (I), or the world state is unknown (U).495

The only input not listed in table 3 is the attitude496

content, which tells the model what the subject of497

the ascription believes.498

Output tokens partly consist of one of three atti-499

tude verbs: factive, contrafactive, and non-factive.500

(A non-factive is a verb like believe that entails501

belief in the content of its embedded clause, but502

presupposes neither the truth nor the falsity of that503

clause.) Rows with main value P-failure and sub504

value Unknown are notable because they allow for505

factives and contrafactives in the output.506

The embedded clause column gives a relation507

between the embedded clause required in the output508

attitude ascription and the attitude content given to509

the model. The embedded clause can either match 510

the attitude content or fail to match it. E.g., “eat rory 511

tomato basil soup lunch tomorrow” matches “Rory 512

will-eat tomato-basil soup for lunch tomorrow”. To 513

get a matching clause, the model must output a 514

specific embedded clause. To get a non-matching 515

clause, the model can output any embedded clause 516

other than the matching one. 517

B Vocabulary 518

The vocabulary for the input attitude content is 519

slightly larger than in Strohmaier and Wimmer 520

(2025). This allows us to generate sufficient data. 521

Fig. 4 gives the function from attitude content to 522

embedded clause. The only added vocabulary in 523

the embedded clause are prepositions such as ‘for’ 524

and tense markers such as ‘will.’ 525

Category Lexical Items

Verb eat, cook, order, buy, season
Subject rory, lorelai, lane, paris, timon, ahab
Ingredient tomato, pumpkin, mushroom, carrot,

potato
Spice basil, oregano, pepper, chili, coconut
Dish soup, pie, rice, stew, curry
Meal lunch, dinner, breakfast, brunch
Day day-before-yesterday, yesterday, now, to-

day, tomorrow, day-after-tomorrow

Table 4: Attitude content vocabulary. Content has one
token of each category.

verb × agent × ingredient × spice × dish × meal ×
day →× agent × verb (with tense) × main ingredient
+ spice × preposition × dish × meal × day

Figure 4: Form of function from attitude content to
embedded clause.

C Architectural Details 526

We implemented the models using pyTorch and 527

parallelised using the lightning-Fabric library. For 528

training and evaluation, we used two A100 GPUs. 529

Like Strohmaier and Wimmer (2025), we use the 530

Binary Cross Entropy (BCE) loss function. Since 531

this is not a typical language modelling task, we 532

have special cases, e.g. with more then one allowed 533

embedded clause, where we set the target value for 534

all allowed embedded clauses to 0.5. Also, if two 535

attitude verbs are allowed, we set the target value 536

for both to 1. 537

D Hyperparameter Search Details 538

The target of the hyperparameter search was to max- 539

imize the overall correctness of output created on 540
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the dev set. All 9× 60 settings were fully explored541

(no pruning). The 60 settings were explored by542

4 processes, which communicated via a remote543

mySQL database.544

Name Lower Upper Step Size Log-Space

Embedding dim. 48 480 24
Hidden dim. 48 480 24
# Encoder layers 5 25 5
# Decoder layer 5 25 5
Dropout prob. 0.1 0.3 0.1
Learning rate 1e-07 1e-03 – X
Epochs 5 50 1
Batch size 8 3200 8

Table 5: Hyperparameter settings used for search by
Optuna.

E Final Performance545

verb semantic att min mean std

equal

balanced
f 100% 100% 0
c 99.8749% 99.9088% 0.00013
nf 99.9955% 99.9999% 6.3e-06

t-medium
f 100% 100% 0
c 100% 100% 0
nf 100% 100% 0

t-heavy
f 99.9583% 99.9825% 7.1e-05
c 99.9674% 99.9894% 5e-05
nf 99.9907% 99.9992% 1.8e-05

c-light

balanced
f 99.9948% 99.9995% 1.1e-05
c 99.964% 99.9918% 7.6e-05
nf 99.9856% 99.9995% 2e-05

t-medium
f 99.9947% 99.9997% 8.9e-06
c 99.9853% 99.9994% 2.1e-05
nf 99.9927% 99.9999% 8e-06

t-heavy
f 99.9521% 99.9743% 7.7e-05
c 99.9926% 99.9992% 2.3e-05
nf 99.9926% 99.9995% 1.8e-05

c-heavy

balanced
f 99.9969% 100% 2.8e-06
c 99.9968% 99.9999% 4.9e-06
nf 100% 100% 0

t-medium
f 99.9938% 99.9998% 8.3e-06
c 99.9938% 99.9998% 9.3e-06
nf 99.9919% 99.9999% 7.3e-06

t-heavy
f 99.9963% 99.9997% 9.5e-06
c 99.9963% 99.9997% 1.1e-05
nf 99.9904% 100% 6.1e-06

Table 6: Correct output by required attitude verb (f=fac-
tive, c=contrafactive, nf=non-factive) across target dis-
tributions. Minimum, mean, and standard deviation are
calculated using the 250 runs with active dropout.
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F Detailed Results546
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Performance on the 21 possible conditions given in Appendix A.
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G Learning Trajectory548

Significance Test We use the two-sided549

permutation-test implementation of SciPy550

(Virtanen et al., 2020) with 9999 resamples and551

permutation type “samples”. The test statistic was552

the difference between the sum of comparisons553

in which the model performed better on factives554

than on contrafactives and the sum of comparisons555

where the reverse held.556

Further Results A closer look at Table 2 suggests557

that non-factives differ across distributions. E.g.,558

non-factives are learned fastest with distributions559

with as many non-factives as contrafactives and fac-560

tives. But with distributions with fewer non-factives561

than factives (c-heavy, c-light), non-factives tend to562

be learned more slowly than contrafactives.563
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Changes in performance over the training for 3 attitude verbs and 9 data distributions.
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step f c nf comb

0 9.546% 32.237% 0.027% 11.279%
200 98.280% 83.964% 99.362% 93.685%
420 99.996% 100.000% 100.000% 99.998%
640 100.000% 100.000% 100.000% 100.000%
840 100.000% 100.000% 100.000% 100.000%

1040 100.000% 100.000% 100.000% 100.000%
1260 100.000% 99.991% 100.000% 99.997%
1480 100.000% 100.000% 100.000% 100.000%
1680 100.000% 100.000% 100.000% 100.000%
1880 100.000% 100.000% 100.000% 100.000%
2100 100.000% 100.000% 100.000% 100.000%
2320 99.982% 100.000% 100.000% 99.994%
2520 100.000% 100.000% 100.000% 100.000%
2720 100.000% 100.000% 100.000% 100.000%
2920 100.000% 100.000% 100.000% 100.000%

(a) Trajectory for distribution equal/balanced

step f c nf comb

0 0.118% 0.005% 51.458% 17.745%
300 96.863% 96.503% 99.995% 97.763%
600 100.000% 100.000% 100.000% 100.000%
900 100.000% 100.000% 100.000% 100.000%

1220 100.000% 100.000% 100.000% 100.000%
1520 100.000% 100.000% 100.000% 100.000%
1820 100.000% 100.000% 100.000% 100.000%
2120 100.000% 100.000% 100.000% 100.000%
2420 100.000% 100.000% 100.000% 100.000%
2720 100.000% 100.000% 100.000% 100.000%
3020 100.000% 100.000% 100.000% 100.000%
3340 100.000% 100.000% 100.000% 100.000%
3640 100.000% 100.000% 100.000% 100.000%
3940 100.000% 100.000% 100.000% 100.000%
4220 100.000% 100.000% 100.000% 100.000%

(b) Trajectory for distribution equal/t-medium

step f c nf comb

0 6.470% 1.939% 0.000% 2.183%
2220 96.841% 97.175% 99.671% 97.962%
4420 96.786% 99.860% 99.750% 98.812%
6640 98.921% 99.888% 100.000% 99.636%
8860 99.931% 99.986% 100.000% 99.972%

11080 99.986% 100.000% 100.000% 99.995%
13280 99.995% 99.995% 100.000% 99.998%
15500 99.977% 99.986% 100.000% 99.992%
17720 99.977% 99.977% 100.000% 99.992%
19920 100.000% 100.000% 100.000% 100.000%
22140 99.977% 99.921% 99.995% 99.972%
24360 100.000% 100.000% 100.000% 100.000%
26580 100.000% 100.000% 100.000% 100.000%
28780 99.935% 99.935% 99.884% 99.939%
30980 100.000% 100.000% 100.000% 100.000%

(c) Trajectory for distribution equal/t-heavy

step f c nf comb

0 61.151% 10.916% 0.000% 36.807%
40 61.151% 10.916% 0.000% 36.807%
60 61.151% 10.916% 0.000% 36.807%

100 61.151% 21.688% 0.000% 39.146%
140 61.146% 21.688% 47.956% 49.534%
180 61.146% 21.681% 48.338% 49.618%
200 61.138% 21.695% 48.338% 49.620%
240 61.538% 38.426% 48.763% 53.573%
280 64.731% 43.045% 52.809% 57.279%
300 67.472% 47.514% 56.854% 60.692%
340 86.343% 78.463% 81.806% 83.643%
380 99.569% 99.280% 99.264% 99.448%
420 99.997% 100.000% 100.000% 99.998%
440 100.000% 100.000% 100.000% 100.000%
460 100.000% 100.000% 100.000% 100.000%

(d) Trajectory for distribution c-light/balanced

step f c nf comb

0 42.654% 5.093% 0.000% 25.158%
20 42.657% 5.093% 0.000% 25.160%
60 40.413% 5.945% 0.783% 24.185%
80 44.969% 14.543% 6.297% 29.850%

100 49.181% 18.629% 13.273% 34.640%
120 53.754% 28.557% 19.080% 40.651%
160 75.072% 56.298% 45.298% 64.562%
180 97.706% 88.000% 74.814% 90.744%
200 99.915% 92.460% 77.980% 93.664%
240 99.481% 91.894% 89.871% 95.934%
260 99.950% 92.585% 100.000% 98.420%
280 99.992% 95.760% 100.000% 99.098%
300 99.992% 99.978% 100.000% 99.995%
340 99.992% 99.978% 100.000% 99.995%

(e) Trajectory for distribution c-light/t-medium

step f c nf comb

0 4.480% 4.310% 0.089% 2.920%
20 2.050% 7.598% 0.251% 2.256%
60 9.673% 13.353% 7.377% 9.419%
80 18.697% 25.617% 17.778% 19.503%

100 43.512% 43.650% 41.817% 42.950%
140 99.023% 96.623% 99.076% 98.625%
160 99.465% 97.223% 100.000% 99.100%
200 99.502% 99.993% 100.000% 99.706%
220 99.782% 100.000% 100.000% 99.872%
240 99.691% 100.000% 100.000% 99.819%
280 99.920% 100.000% 100.000% 99.953%
300 100.000% 100.000% 100.000% 100.000%
320 100.000% 100.000% 100.000% 100.000%
360 100.000% 100.000% 100.000% 100.000%

(f) Trajectory for distribution c-light/t-heavy

step f c nf comb

0 55.907% 39.030% 0.000% 33.341%
100 51.340% 63.507% 23.683% 47.625%
200 68.717% 69.152% 48.880% 63.139%
300 95.509% 95.849% 92.343% 94.797%
420 100.000% 100.000% 100.000% 100.000%
520 100.000% 100.000% 100.000% 100.000%
620 100.000% 100.000% 100.000% 100.000%
720 100.000% 100.000% 100.000% 100.000%
820 100.000% 100.000% 100.000% 100.000%
920 100.000% 100.000% 100.000% 100.000%

1020 100.000% 100.000% 100.000% 100.000%
1140 100.000% 100.000% 100.000% 100.000%
1240 100.000% 100.000% 100.000% 100.000%
1340 100.000% 100.000% 100.000% 100.000%
1420 100.000% 100.000% 100.000% 100.000%

(g) Trajectory for distribution c-heavy/balanced

step f c nf comb

0 32.243% 6.649% 0.000% 16.257%
40 30.873% 31.429% 0.016% 28.068%
60 28.732% 32.060% 0.147% 27.316%

100 41.997% 45.298% 15.857% 40.489%
140 86.567% 87.152% 71.716% 84.168%
180 97.307% 97.474% 86.237% 94.972%
200 97.797% 97.843% 87.003% 95.516%
240 97.902% 96.719% 87.027% 95.344%
280 99.923% 99.944% 87.027% 97.469%
300 99.944% 99.978% 87.027% 97.478%
340 99.916% 99.858% 87.027% 97.441%
380 100.000% 100.000% 87.027% 97.513%
420 100.000% 99.997% 100.000% 99.998%
440 100.000% 100.000% 100.000% 100.000%
460 100.000% 100.000% 100.000% 100.000%

(h) Trajectory for distribution c-heavy/t-medium

step f c nf comb

0 1.607% 5.404% 0.048% 2.438%
60 27.054% 32.388% 25.079% 28.802%

120 90.888% 94.114% 92.854% 93.088%
200 96.647% 97.351% 97.101% 97.162%
260 97.690% 95.760% 94.115% 96.433%
320 97.869% 99.111% 94.115% 97.878%
380 98.148% 96.499% 94.115% 96.941%
440 98.316% 98.588% 94.115% 97.811%
520 99.114% 96.122% 94.115% 97.095%
580 99.187% 96.653% 94.115% 97.305%
640 99.253% 97.092% 94.173% 97.541%
700 99.865% 98.639% 95.955% 98.705%
780 100.000% 100.000% 100.000% 100.000%
840 99.993% 100.000% 100.000% 99.997%
880 99.993% 100.000% 100.000% 99.997%

(i) Trajectory for distribution c-heavy/t-heavy

Table 7: Learning Trajectory for 9 distributions (factive=f, contrafactive=c, non-factive=nf, comb=combined). “step”
refers to the number of training steps taken, which is equivalent to the number of batches seen.
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Figure 5: Attitude verb preference of final trained models
across target distributions.

verb semantic att min mean max std

equal

balanced
f 48.5% 50.4% 52.2% 0.7
c 47.8% 49.6% 51.5% 0.7
nf 0.0% 0.0% 0.0% 0.0

t-medium
f 71.8% 74.0% 76.2% 0.8
c 23.8% 26.0% 28.2% 0.8
nf 0.0% 0.0% 0.0% 0.0

t-heavy
f 42.9% 47.6% 51.7% 1.8
c 48.3% 52.4% 57.1% 1.8
nf 0.0% 0.0% 0.0% 0.0

c-light

balanced
f 74.0% 76.1% 78.4% 0.9
c 21.6% 23.9% 26.0% 0.9
nf 0.0% 0.0% 0.0% 0.0

t-medium
f 34.0% 37.7% 41.3% 1.3
c 58.7% 62.3% 66.0% 1.3
nf 0.0% 0.0% 0.0% 0.0

t-heavy
f 42.5% 47.6% 53.3% 1.9
c 46.7% 52.4% 57.5% 1.9
nf 0.0% 0.0% 0.0% 0.0

c-heavy

balanced
f 5.3% 5.8% 6.4% 0.2
c 93.6% 94.2% 94.7% 0.2
nf 0.0% 0.0% 0.0% 0.0

t-medium
f 44.7% 45.7% 46.9% 0.4
c 53.1% 54.3% 55.3% 0.4
nf 0.0% 0.0% 0.0% 0.0

t-heavy
f 58.3% 61.5% 64.9% 1.3
c 35.1% 38.5% 41.7% 1.3
nf 0.0% 0.0% 0.0% 0.0

Table 8: Proportion of attitude verb chosen where factive
and contrafactive are allowed (f=factive, c=contrafactive,
nf=non-factive). Numbers concern final trained mod-
els. Minimum, mean, max, and standard deviation are
calculated using the 250 runs with dropout. Standard
deviation given in percentage points.
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Figure 6: Changes over time in attitude verb preference across target distributions.
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I Error Types567

We can distinguish three parts of an output that can568

be responsible for an error: first, the tokens of the569

embedded clause; second, the token for the attitude570

verb; or, third, the special tokens. Because the vo-571

cabulary is fixed for each token position special572

token errors are architecturally impossible. That573

we find no such errors merely reflects the absence574

of coding errors. Notably, the worst performance575

on input that allows contrafactives, found in distri-576

bution equal/balanced, is primarily due to errors in577

the production of embedded clause tokens.578
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Figure 7: Error types by attitude verb given distributions that are equal.
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16



overall phrase attitude special
error type

7.0

7.5

8.0

8.5

9.0

9.5

10.0

co
rre

ct
ne

ss

1e 5+9.999e 1
target attitude = factive

overall phrase attitude special
error type

target attitude = contrafactive

overall phrase attitude special
error type

target attitude = non-factive

(a) Error types for allowed attitude verbs given the distribution c-heavy/balanced.

overall phrase attitude special
error type

2

3

4

5

6

7

8

9

10

co
rre

ct
ne

ss

1e 5+9.999e 1
target attitude = factive

overall phrase attitude special
error type

target attitude = contrafactive

overall phrase attitude special
error type

target attitude = non-factive

(b) Error types for allowed attitude verbs given the distribution c-heavy/t-medium.

overall phrase attitude special
error type

0.00010

0.00008

0.00006

0.00004

0.00002

0.00000

co
rre

ct
ne

ss

+1 target attitude = factive

overall phrase attitude special
error type

target attitude = contrafactive

overall phrase attitude special
error type

target attitude = non-factive

(c) Error types for allowed attitude verbs given the distribution c-heavy/t-heavy.
Figure 9: Error types by attitude verb given distributions that are c-heavy.
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J Matching vs. Non-Matching579

Strohmaier and Wimmer (2025) reported strong580

differences in performance between conditions that581

require matching embedded clauses and conditions582

that require non-matching embedded clauses (see583

Table 3 to see into which group each of the 21 con-584

ditions falls). We provide here the learning graphs585

split up by what kind of embedded clause is re-586

quired for all 9 distributions. Our results replicate587

those of Strohmaier and Wimmer (2025) across588

distributions.589
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(a) Matching vs. non-matching performance for allowed attitude verbs given the distribution equal/balanced.
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(b) Matching vs. non-matching performance for allowed attitude verbs given the distribution equal/t-medium.
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(c) Matching vs. non-matching performance for allowed attitude verbs given the distribution equal/t-heavy.
Figure 10: Matching vs. non-matching performance by attitude verb given distributions that are equal.
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(a) Matching vs. non-matching performance for allowed attitude verbs given the distribution c-light/balanced.
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(b) Matching vs. non-matching performance for allowed attitude verbs given the distribution c-light/t-medium.
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(c) Matching vs. non-matching performance for allowed attitude verbs given the distribution c-light/t-heavy.
Figure 11: Matching vs. non-matching performance by attitude verb given distributions that are c-light.

20



200 0 200 400 600 800
1000

1200
1400

1600

batch_step

0.0

0.2

0.4

0.6

0.8

1.0
co

rre
ct

ne
ss

matching = False

200 0 200 400 600 800
1000

1200
1400

1600

batch_step

matching = True

factive contrafactive non-factive

(a) Matching vs. non-matching performance for allowed attitude verbs given the distribution c-heavy/balanced.
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(b) Matching vs. non-matching performance for allowed attitude verbs given the distribution c-heavy/t-medium.
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(c) Matching vs. non-matching performance for allowed attitude verbs given the distribution c-heavy/t-heavy.
Figure 12: Matching vs. non-matching performance by attitude verb given distributions that are c-heavy.
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