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ABSTRACT

Establishing correspondences between images remains a challenging task, espe-
cially under large appearance changes due to different viewpoints and intra-class
variations. In this work, we introduce a strong image matching learner, dubbed
Visual Transformatcher, which builds on the success of the Transformers in vi-
sion domains. Unlike previous self-attention schemes over image matches, it per-
forms match-to-match attention for precise match localization and dynamically
updates matching scores in a global context. To handle a large number of candi-
date matches in a dense correlation map, we develop a light-weight architecture
with an effective positional encoding technique for matching. In experiments,
our method achieves the new state of the art on the SPair-71k dataset, while per-
forming on par with existing state-of-the-art models on the PF-PASCAL and PF-
WILLOW datasets, showing the effectiveness of the proposed approach. We also
provide the results of extensive ablation studies to justify the design choices of our
model. The code and trained weights will be released upon acceptance.

1 INTRODUCTION

Establishing correspondences between images is a fundamental task in computer vision, and is used
for a wide range of problems including 3D reconstruction, visual localization and object recogni-
tion (Forsyth & Ponce, 2011). With the recent advances of deep neural networks, many learning-
based keypoint extractors and feature descriptors were introduced (DeTone et al., 2018; Tian et al.,
2019), showing significantly improved performances over their traditional counterparts. While fur-
ther research addressed joint feature detectors and descriptors for sparse feature matching (Revaud
et al., 2019; Dusmanu et al., 2019), dense feature matching methods have shown impressive per-
formances despite higher computation complexities (Rocco et al., 2018). However, establishing
reliable correspondences between images remains a challenging problem, especially under strong
appearance differences, e.g., viewpoint and illumination changes. In particular, the presence of
intra-class variations, i.e., scenes depicting different instances of the same category, remains a criti-
cal challenge for visual correspondence (Min et al., 2020; Liu et al., 2020; Min & Cho, 2021).

The CNN-based methods (Rocco et al., 2018; 2020; Min & Cho, 2021) evidence that refining and
utilizing the 4D correlation map from feature matches between image pairs is essential to estab-
lish robust and accurate image correspondences. However, these methods suffer from the inherent
limitations of convolutional layers, i.e., receptive fields limited to the kernel size, and can only en-
force semi-local geometric constraints on the correlation map or carry out geometric voting in a
local manner. While convolutional neural networks have been the de-facto standard for not only
visual correspondence but also for various other vision-related tasks, transformers have recently
shown competitive results in vision domain, with reduced reliance on convolution layers. For exam-
ple, Dosovitskiy et al. (2021) attain excellent results compared to convolutional baselines with fewer
training computational resources; Vaswani et al. (2021) improve it in terms of both memory and time
with local self-attention. These pioneering work show that transformers are attractive alternatives to
convolutional layers in vision models, attributing to relaxed reliance on inductive biases, ability to
easily scale to attend to global contexts, and dynamic attention.

Inspired by these accomplishments, we propose a novel image matching pipeline, dubbed Visual
TransforMatcher, to tackle the challenging task of visual correspondence under intra-class vari-
ations using transformer networks. Specifically, we introduce match-to-match attention, a novel
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mechanism to process correlation maps computed from features of images to match. Match-to-
match attention considers the global match-wise interactions in the 4D space of correlation maps,
refining and filtering matches in a more robust way which encompasses semi-local constraints as
well. For practicality given the high number of tokens in the correlation map, we employ Fastform-
ers (Wu et al., 2021) with additive attention for linear complexity, where we model the match-wise
4D positions using rotary positional embedding (Su et al., 2021). After refining the noisy correla-
tion map with a series of match-to-match attention layers, we construct a dense flow map to transfer
keypoints for establishing category-level correspondences between images.

Our contributions can be summarized as follows:

• We propose the Visual TransforMatcher, a novel image matching pipeline built on trans-
formers for global-aware correlation map refinement and dynamic attentive weights,

• To the best of our knowledge, we are the first to directly process such a high-dimensional
(4D) input using a self-attention mechanism within feasible computational constraints,

• We extend rotary positional embedding used in language sequences to model the 4D match-
wise positional embedding, and

• We demonstrate state-of-the-art or comparable performances on standard benchmarks of
category-level matching - PF-PASCAL, PF-WILLOW and SPair-71k.

2 RELATED WORK

Transformers for vision. The success of self-attention and transformers in NLP (Vaswani et al.,
2017) has propagated to the area of computer vision, effectively replacing the entire deep convo-
lutional pathways only with self-attention layers; Dosovitskiy et al. (2021) directly apply a Trans-
former architecture on non-overlapping medium-sized image patches for image classification, ex-
hibiting impressive results when pretrained on a large-scale dataset. Touvron et al. (2021) introduce
several training strategies that allow ViT to also be effective using the smaller ImageNet-1K dataset
without large-scale pretraining. Vaswani et al. (2021) propose a new family of self-attention named
HaloNets to improve the speed, memory usage and accuracy. While there are many other variants of
vision transformers, e.g., Liu et al. (2021); Wang et al. (2021), it has been shown that transformer-
based vision models benefit from global context, relaxed inductive biases and dynamic attention
weighting. We show that such characteristics are well applicable to the task of semantic matching
domain as well, demonstrating importance of global receptive fields on match-to-match analyses.

Efficient Transformers. Due to the quadratic complexity of conventional transformers (Vaswani
et al., 2017), they are infeasible to model extremely long-range interactions. This motivates the use
of efficient transformers with lower computational complexity for feasible computation overhead
when handling long sequences. Kitaev et al. (2020) reduces the complexity down to log-linear
using locality-sensitive hashing and reversible residual layers. Wang et al. (2020) approximates
the self-attention mechanism using low-rank matrices for linear complexity. Instead of relying on
sparsity or low-rankedness, Choromanski et al. (2020) propose positive orthagonal random features
approach (FAVOR+) to achieve linear complexity as well. Recently, Wu et al. (2021) proposed the
Fastformer architecture which uses additive attention techniques only with element-wise products.
In this paper, we choose to employ Fastformer to model match-to-match attention for not only its
scalable complexity, but also for its simplicity and efficacy in modeling long-range interactions.

Positional Embeddings in Transformers. Positional embeddings aim to embed the position of each
token as part of its features. Absolute positional embedding aims to be position-specific, where the
embedding values can be predefined or learned (Sukhbaatar et al., 2015; Vaswani et al., 2017). Rela-
tive positional embedding aims to exploit relative positions (Shaw et al., 2018), so that the modelled
interactions between tokens are relation-aware. However, conventional relative positional embed-
ding requires an explicit computation of the attention matrix, which is absent in linear-complexity
transformers. Su et al. (2021) propose rotary positional embeddings which inject spiral-like position
information via multiplication for language sequences. In this work, we extend rotary positional
embedding for effective 4D match-wise position embedding to encode relative position priors in our
match-to-match attention mechanism.
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Figure 1: Overview of Visual Transformatcher. The feature maps extracted from an image pair are
used to compute a multi-channel correlation map to be processed by our match-to-match attention
module for refinement. We construct a dense flow field from the resulting correlation map, which
can be used to transfer keypoints for training with keypoint pair annotation.

Category-level Matching. Category-level matching aims to find corresponding elements between
images of different instances in the same category. Traditional approaches to category-level match-
ing (Cho et al., 2015; Taniai et al., 2016) use hand-crafted descriptors to obtain matches between
images. Recent approaches Min et al. (2020); Li et al. (2020); Jeon et al. (2020) build on the success
of deep learning to extract learned features from convolutional neural networks, usually pretrained
on the ImageNet classification task (Krizhevsky et al., 2012). An emerging trend is to exploit high-
dimensional convolution on the correlation map, enforcing semi-local constraints on the correlation
tensor to refine matches (Rocco et al., 2018; Lee et al., 2021a;b). However, these work commonly
consume a high computational cost with a large number of parameters in the kernels, and only
consider translation in space as an inherent property of convolutional kernels. Furthermore, Min
& Cho (2021) extend the idea of probabilistic Hough matching (Cho et al., 2015) and propose an
interpretable and light-weight high-dimensional kernel for visual correspondence to learn a reliable
voting strategy instead of capturing diverse patterns. While these work have proven the efficacy of
utilizing correlation maps to discover reliable matches between images, we propose that exploiting
the global context of matches would show improved robustness and accuracy, especially under ex-
treme appearance variation between the images to match. We therefore impose high-dimensional
efficient attention on the 4D correlation map, exploiting the transformer architecture to easily scale
to use the global context with dynamic attention weights for improved generalization.

A concurrent work, CATs (Cho et al., 2021), also employ the transformer network to model global
consensus. However, they differ from our work in the following aspects: (1) We directly perform
match-to-match attention on the 4D correlation map, but CATs perform two separate self-attention
operations on reshaped correlation maps, (2) CATs additionally concatenates a linearly projected
feature map with the correlation map, therefore using much more information, (3) Our method ben-
efits from alleviated computational overhead per transformer layer, as we do not employ projected
feature maps. This provides better potential for stacking more transformer layers in comparison.

3 PRELIMINARIES: TRANSFORMER AND FASTFORMER

Transformers are built on multi-head self-attention (MHSA) to model the contexts within a se-
quence by capturing the interactions between all pairs of inputs (Vaswani et al., 2017). MHSA
consists of multiple self-attention layers, each of which takes the input tokens X ∈ RT×Din to form
a global self-attention using linear projections of W(h)

Q ,W
(h)
K ∈ RDin×Dh and W

(h)
V ∈ RDin×Dv to

capture long-range dependencies between the tokens of the input sequence:

Self-Attention(h)(X) = softmax(τXW
(h)
Q (XW

(h)
K )>)XW

(h)
V (1)

= softmax(τQ(h)K(h)>)V(h), (2)
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Figure 2: Match-to-match attention module. The multi-channel correlation map is projected to
query, key and value matrices, which are multiplied with rotary positional embeddings. The match-
to-match attention module exploits additive addition mechanisms to aggregate query/key matrices
to global vectors, which is used for element-wise product to induce global context awareness. The
final output is projected to a single-width channel to be reshaped to a refined 4D correlation map.

where (h) is the head index and τ is a scaling parameter. The MHSA with Nh heads aggregates the
head outputs by an affine transformation layer with parameters WO ∈ RNhDv×Dout and bO ∈ RDout :

MHSA(X) = concat
h∈[Nh]

[
Self-Attention(h)(X)

]
WO + bO, (3)

It can be seen from this formula that the computational complexity of the transformer architecture
is quadratic with respect to the sequence length T . This is a fundamental bottleneck of transformers
when handling long sequences (T > Dh), which also pertains to our case of processing high-
dimensional tensors, i.e., pair-wise correlations between two 2-dimensional feature maps.

Fastformer aims to alleviate this bottleneck through the use of additive attention; instead of com-
puting a quadratic attention map which encodes all possible interactions QK> ∈ RT×T , the fast-
former (Wu et al., 2021) forms a compact key representation P ∈ RT×Dh via additive attention
which computes interactions between a global query representation and every key vector:

P
(h)
i,: = K

(h)
i,: �

T∑
j=1

Q
(h)
j,: softmax(τwqQ(h)>)j , (4)

where wq ∈ RDh learns to transform the query vectors into a global vector. A similar additive
attention mechanism summarizes the context-aware key representations P with a linear projection
wk ∈ RDh to model its interaction with value vectors as follows:

Self-Attention(h)
fast (X)i,: = V

(h)
i,: �

T∑
j=1

P
(h)
j,: softmax(τwkP

(h)>)j , (5)

with the assumption of Dh = Dv . The output is transformed by an MLP followed by residual
connection with Q. The empirical results (Wu et al., 2021) show that such additive attention can ef-
fectively model long-range interactions in the language domain while reducing the time and memory
complexity down to linear: O(T 2Dh) −→ O(TDh).

4 VISUAL TRANSFORMATCHER

We provide an overview of our end-to-end matching pipeline. First, given a pair of images to
match as an input, a feature extractor provides a set of intermediate feature pairs which are used
to construct a multi-channel correlation map. This multi-channel dimension, compared to a single-
channel dimension, ensures higher suitability to be projected to query, key and value matrices. Due
to multifarious match-wise interactions within the global correlation map, we employ the linear-
complexity Fastformers (Wu et al., 2021) to perform match-to-match attention, and extend the rotary
positional embedding (Su et al., 2021) for match-wise 4D positional embedding. We refine the
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multi-channel correlation map with several match-to-match attention layers, considering the global
context within the correlation map for robust refinement. The refined correlation map is used to
construct a dense flow field, which can be used for keypoint transfer to supervise our pipeline with
ground-truth keypoint pair annotations. Fig. 1 illustrates the overview architecture of our method.
The main components of our pipeline are detailed in subsequent subsections.

4.1 MULTI-CHANNEL CORRELATION COMPUTATION

We use the ImageNet-pretrained ResNet-101 architecture as a backbone feature extractor. We use
all bottleneck layers of layers 3 and 4 to extract the features given an input pair of images I, Î ∈
RH×W×3, and denote the set of intermediate feature pairs as {(Fl, F̂l)}Ll=1. This is because in the
case of transformers, it is architecturally natural for the input feature to have a sufficient dimension
prior to being projected to key, query and value matrices with multiple heads.

The feature maps of the image pair to be matched, Fl, F̂l ∈ RHl×Wl×Dl , are used to construct a
correlation map Cl ∈ RHl×Wl×Hl×Wl if they are extracted from the same bottleneck layer, which
represents the confidence score for all candidate correspondences between the two feature maps.
Given a set of feature map pairs from different bottleneck layers {(Fl, F̂l)}Ll=1, we compute the 4D
correlation tensors for each pair as follows:

Cl
x,x̂ = ReLU

( Flx,: · F̂
l

x̂,:

‖Flx,:‖‖F̂lx̂,:‖

)
, (6)

where x,x̂ ∈ R2 refer to 2-dimensional spatial positions of the feature maps corresponding to the
image pair (I, Î). The L correlation tensors are then stacked together along the channel dimension
after bilinear interpolation to the size of H × W × H × W , e.g., 1

16 the size of the input image
resolutions, resulting in the final correlation tensor C ∈ RL×H×W×H×W .

This is unlike correlation maps used in prior work (Rocco et al., 2018), which only have a single
channel, i.e., one similarity score value for each pair of positions between the source and target
feature maps. This is essential because having a single channel prior to the linear projection to
query, key and value matrices would be ill-suited for a transformer-based architecture. Furthermore,
leveraging different correlation tensors across the bottleneck layers allows us to exploit the richer
semantics in different levels of feature maps, unlike previous methods which disregards the layer-
wise similarities and semantics.

4.2 MATCH-TO-MATCH ATTENTION

We first flatten the 4D correlation map to behave as the sequence for the transformer module, i.e.,
R
L×H×W×H×W → R

L×HWHW , considering similarity scores at each spatial position as a token
embedding. The quadratic complexity of conventional self-attention in transformers poses an infea-
sible computation overhead in our setting, as a flattened 4D tensor results in a significantly long 1D
tensor. We therefore use the recently proposed FastFormer (Wu et al., 2021), which proposes an
additive self-attention mechanism with a linear computational complexity.

We first linearly embed the channel dimension of our flattened correlation map, i.e., X = C>Win,
where C refers to the correlation map obtained from the previous stage, Win ∈ RL×Din is the
linear transformation matrix, and X ∈ RHWHW×Din is the input to the Fastformer model. Instead
of adding absolute positional encoding to X prior to the Multi-head self attention module, e.g.,
X+Epos, we opt to integrate rotary positional embeddings (Su et al., 2021). The query, key and value
are used for the additive self-attention mechanism, followed by an MLP and residual connection as
in vanilla transformers. We use the pre-LN approach, where the layer normalization is placed inside
the residual block for both the self-attention and MLP steps. Furthermore, we employ multi-head
attention to ensure that our transformer module can attend to parts of the flattened correlation map
differently. While the MHSA formulation is equal to Eq. (3), we formally formulate our fastformer-
based self-attention module as follows:

Self-Attention(h)
fast (C)i,: = σ(XW

(h)
V ;Epos)i,: �

HWHW∑
j=1

P
(h)
j,: softmax(τwkP

(h)>)j , (7)
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where P refers to the global context-aware key matrix obtained using Eq. (4) with K =
σ(XWK;Epos) and Q = σ(XWQ;Epos), and σ(·;Epos) is a function that applies rotary positional
embeddings to the projected input tokens. In a nutshell, our global consensus module takes as input
a noisy correlation map to refine it using local and global context information to output a refined
correlation map for robust image matching. A linear projection layer takes the concatenated out-
puts of the self-attention following Eq. (3). This process is repeated N times, providing a tensor
in RL×HWHW . The output from the transformer module is linearly projected to a single channel
dimension, and is reshaped back to 4D: RL×HWHW → R

H×W×H×W , noise-filtered similarity
scores for a reliable keypoint transfer. For precise transfer, we perform a 4-dimensional upsampling
function on the 4D correlation map, and denote the tensor as Cout ∈ RH̄×W̄×H̄×W̄ where H̄ = 2H
and W̄ = 2W which corresponds to 1

8 the size of the original image. We illustrate the outline of our
transformer-based global consensus module in Figure 2.

4.3 FLOW FIELD FORMATION

The output correlation tensor Cout can be transformed into a dense flow field by applying kernel
soft-argmax (Lee et al., 2019). We first normalize the raw correlation scores using softmax function:

Cnorm =
exp(Gp

klC
out
ijkl)∑

(k′,l′)∈H̄×W̄ exp(Gp
k′l′C

out
ijk′l′)

, (8)

where Gp ∈ RH̄×W̄ is a 2-dimensional Gaussian kernel centered on p = arg maxk,lC
out
i,j,k,l, which

is applied to smooth the potentially irregular correlation tensor values. The above equation returns
a probability map Cnorm, which we use to transfer all the coordinates on the dense regular grid
P ∈ RH̄×W̄×2 of source image I to obtain their corresponding coordinates P̂′ ∈ RH̄×W̄×2 on
target image Î: P̂′i,j =

∑
(k,l)∈H̄×W̄ Cnorm

i,j,k,lPk,l. We then can construct a dense flow field at

sub-pixel level using the set of estimated matches (P, P̂′).

4.4 TRAINING OBJECTIVE

We assume that we are given the set of ground-truth coordinate pairsM = {(km, k̂m)}Mm=1 for each
training image pair, where M is the number of annotated keypoint matches. We carry out keypoint
transfer from the source keypoint to the target keypoint using the constructed dense flow field. A
straightforward method of assigning a match k̂′ to some keypoint k = (xk, yk) would be to pick a
single, discrete sample of a transferred coordinate i.e., k̂′ = P̂′ykxk

. However, this is likely to cause
mislocalized keypoints as discrete sampling under sub-pixel level hinders fine-grained localization
of keypoints. Therefore, for a given keypoint k = (xk, yk), we define a soft sampler W(k) ∈ RH̄×W̄
as follows:

W
(k)
ij =

max(0, τ −
√

(xk − j)2 + (yk − i)2)∑
i′j′ max(0, τ −

√
(xk − j′)2 + (yk − i′)2)

, (9)

where τ is a distance threshold, and
∑
ijW

(k)
ij = 1. It can be seen that the soft sampler effectively

samples each transferred keypoint P̂′ij by assigning weights inversely proportional to the distance

to k. Using this soft sampler, we assign a match to the keypoint k as k̂′ =
∑

(i,j)∈H̄×W̄ P̂′ij:W
(k)
ij ,

being able to achieve up to sub-pixelwise accurate keypoint matches. By applying this key-
point transfer method on the source keypoints, we obtain the predicted keypoint pairs on image
Î : {(km, k̂

′
m)}Mm=1 by assigning a match k̂′m to each keypoint km in the source image. We formu-

late our training objective to minimize the average Euclidean distance between the predicted target
keypoints and the ground-truth target keypoints as follows:

L =
1

M

M∑
m=1

‖k̂m − k̂′m‖22. (10)
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Table 1: Performance on standard benchmarks of semantic matching. Higher PCK is better. All
results except for ours are from (Min & Cho, 2021). Numbers in bold indicate the best performance,
followed by the underlined numbers.

Method
SPair-71k PF-PASCAL PF-WILLOW

PCK @ αbbox PCK @ αimg PCK @ αbbox
0.1 (F) 0.1 (T) 0.05 0.1 0.05 0.1

NC-Net (Rocco et al., 2018) 20.1 26.4 54.3 78.9 - -
DCC-Net (Huang et al., 2019) - 26.7 55.6 82.3 - -
DHPF (Min et al., 2020) 27.7 28.5 56.1 82.1 50.2 80.2
PMD (Li et al., 2021) 26.5 - - 81.2 - -

UCN (Choy et al., 2016) - 17.7 - 75.1 - -
HPF (Min et al., 2019a) 28.2 - 60.1 84.8 - -
SCOT (Liu et al., 2020) 35.6 - 63.1 85.4 - -
SCNet (Han et al., 2017) - - 36.2 72.2 38.6 70.4
DHPF (Min et al., 2020) 37.3 27.4 75.7 90.7 49.5 77.6
DHPF† (Min et al., 2020) 39.4 - - - - -
NC-Net* (Rocco et al., 2018) - - - 81.9 - -
DCC-Net* (Huang et al., 2019) - - - 83.7 - -
ANC-Net (Li et al., 2020) - 28.7 - 86.1 - -
PMD (Li et al., 2021) 37.4 - - 90.7 - -

CHMNet (Min & Cho, 2021) 46.3 30.1 80.1 91.6 52.7 79.4
PMNC (Lee et al., 2021a) 50.4 - 82.4 90.6 - -
CATs (Cho et al., 2021) 43.5 - - - - -
CATs† (Cho et al., 2021) 49.9 27.1 75.4 92.6 50.3 79.2

TransforMatcher (ours) 50.2 30.5 78.9 90.4 50.6 76.3
TransforMatcher† (ours) 53.1 28.8 79.6 92.4 49.3 75.7

5 EXPERIMENTS

We evaluate our method on the task of category-level matching which aims to match semantically
similar parts given an image pair of the same object category of different instances.

Datasets. We report our results on standard benchmark datasets of semantic correspondence: PF-
PASCAL (Ham et al., 2018), PF-WILLOW (Ham et al., 2016) and Spair-71k (Min et al., 2019b).
The PF-PASCAL and PF-WILLOW datasets are taken from four categories of the PASCAL VOC
dataset, having small viewpoint and scale variations. The PF-PASCAL dataset contains 1,351 image
pairs, which are augmented to produce 2,940 / 308 / 299 pairs for training, validation and testing,
respectively. The PF-WILLOW dataset contains 900 image pairs, which are used for testing. The
SPair-71k dataset contains 70,958 image pairs with diverse variations in viewpoint and scale, and
is split to 53,340 / 5,384 / 12,234 image pairs for training, validation and testing, respectively. Not
only is the SPair-71k dataset significantly larger in number, it also has more accurate and richer an-
notations regarding different levels of difficulty in occlusion, truncation, viewpoint and illumination.

Implementation details. Following recent methods (Min & Cho, 2021; Cho et al., 2021), we em-
ploy the ResNet-101 model pre-trained on the ImageNet dataset (Krizhevsky et al., 2012) as the
feature extraction network. Note that the conv4 x and conv5 x layers in ResNet-101 have 23 and
3 bottleneck layers respectively, from which we extract feature maps to compute 26 layer-wise cor-
relations maps for each image pair. We set the spatial size of the input image to 240× 240, resulting
in H = W = 15 for feature maps used for correlation computation, and H̄ = W̄ = 30. We use 6
transformer layers when training on the SPair-71k dataset, and 4 transformer layers when training on
the PF-PASCAL dataset as the small dataset size of PF-PASCAL tends to overfit with high number
of layers. Each of our match-to-match attention layers have 8 heads for multi-head self attention
(Nh = 4), with head dimension of 4 (Dh = Dv = 4). After the correlation tensor is passed through
the series of transformer layers for global context-aware refinement, it is finally passed through a
fully-connected layer to output a correlation tensor with a single channel for dense flow formation,
i.e., RL×HWHW → R

H̄×W̄×H̄×W̄ . The overall pipeline of our method is implemented using Py-

7



Under review as a conference paper at ICLR 2022

Torch (Paszke et al., 2019), and is optimized using the Adam optimizer with a constant learning rate
of 1e-3. We finetune the feature extractor network at a lower learning rate of 1e-5.

Evaluation metric. We adopt the percentage of correct keypoints (PCK) for evaluation, which is the
standard evaluation metric for category-level matching. Given a pair of ground-truth and predicted
target keypoints K = {(k̂m, k̂′m)}Mm=1), PCK is measured by:

PCK(K) =
1

M

M∑
m=1

1[‖k̂m − k̂′m‖ ≤ ατ ·max(wτ , hτ )], (11)

where wτ and hτ are the width and height of either the entire image or the object bounding box, i.e.,
τ ∈ {img, bbox}, and ατ is a tolerance factor.

5.1 RESULTS AND ANALYSIS.

TargetSource Result

Figure 3: Qualitative results on SPair-71k.
Source images are TPS transformed to target im-
ages using predicted correspondences.

For the SPair-71k dataset, we evaluate two ver-
sions for our model: a finetuned model (F)
which is trained on SPair-71k, and a transferred
model (T) which is trained on PF-PASCAL. On
the PF-PASCAL and PF-WILLOW datasets,
we follow the common evaluation protocol to
train our network on the training split of PF-
PASCAL and evaluate on the test splits of
PF-PASCAL and PF-WILLOW. We use the
same training, validation, and test splits of PF-
PASCAL used in Min & Cho (2021). The quan-
titative results are illustrated in Table 1.

We show that our proposed model finetuned
on the SPair-71k dataset sets a new state of
the art. A notable observation is that our
model finetuned on the SPair-71k dataset with-
out data augmentation outperforms CATs (Cho
et al., 2021) trained with augmentation, prov-
ing the efficacy of our 4D match-to-match at-
tention. Using data augmentations leads to
improved PCK on both SPair-71k and PF-
PASCAL datasets, but transformer-based mod-
els benefit more from augmentations as seen from the lower PCK increase in DHPF. It is interesting
that our model trained without data augmentations transfer better to SPair-71k and PF-WILLOW
datasets than our model trained with data augmentations, albeit its lower PCK performance on PF-
PASCAL. This potentially hints that while data augmentations do help our transformer model to
learn better, it overfits more to the training data domain, thus being less transferable to other data
domains. Our model also exhibits state-of-the-art performance when transferred to the Spair-71k
dataset, while being comparable on the PF-PASCAL and PF-WILLOW datasets. Figure 3 visual-
izes example qualitative results on SPair-71K using our model.

5.2 ABLATION STUDY AND ANALYSIS

Correlation between Spair-71k and its small subset. Since the results on the PF-PASCAL dataset
are nearly saturated, we use the SPair-71k dataset or its small subset for the experiments to justify
our design choices. The small subset of SPair-71k contains 10,652 / 1,070 / 2,438 image pairs for
training, validation, and test splits respectively. The results in Table 2 show that the trend of results
using the small subset of SPair-71k is similarly consistent when using the large subset of SPair-71k.

Effect of data augmentation. Cho et al. (2021) found that using data augmentation for category-
level matching model is beneficial, especially for data-hungry transformer-based architectures. We
study the effect of applying data augmentation to our model as well. The results in Table 2 show that
using data augmentation indeed gives consistent improvements to the performance of our model.
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Table 2: Ablation results on augmentation and positional embedding. $ denotes small subset
of SPair-71k. The results show that using data augmentation and rotary positional embedding gives
the best results. Also, the trend of results from the small subset of SPair-71k is consistent in the
standard SPair-71k dataset.

Augmentation Pos. embedding
SPair-71k$ SPair-71k PF-PASCAL

PCK @ αbbox PCK @ αbbox PCK @ αimg
0.05 0.1 0.05 0.1 0.05 0.1

7 Absolute (Ott et al., 2019) - 74.5 89.4 29.9 48.7
3 Absolute (Ott et al., 2019) 22.7 45.5 79.4 91.9 26.6 48.9
7 Rotary (Su et al., 2021) - 78.9 90.4 30.5 50.2
3 Rotary (Su et al., 2021) 30.1 51.8 79.6 92.4 32.3 53.1

Table 3: Ablation results on transformer architecture. $ denotes small subset of SPair-71k.
Vanilla transformers could not be evaluated within memory capabilities due to quadratic complexity.
Fastformer shows the best results. Note that absolute positional embedding was used.

Transformer Architecture
SPair-71k$

PCK @ αbbox
0.05 0.1

Vanilla Transformer (Vaswani et al., 2017) Out-Of-Memory
Linformer (Wang et al., 2020) 0.5 1.6
Performer (Choromanski et al., 2020) 21.8 43.5
Fastformer (Wu et al., 2021) 22.7 45.5

Analysis on positional embedding. We investigate the effect of positional embedding used in
our pipeline. As conventional relative positional embedding requires an explicit computation of
the attention matrix, is not applicable to our transformer architecture with the additive attention.
On the other hand, rotary positional embeddings can be seamlessly applied to our model as an
alternative method to model relative positional embedding. The results in Table 2 show that using
rotary positional embedding results in significant gains over absolute positional embedding.

Analysis on efficient transformer architecture. There exists other transformer architectures apart
from Fastformers with various design choices to perform self-attention with (log)-linear complex-
ity (Wang et al., 2020; Choromanski et al., 2020). We try replacing our Fastformer architecture with
other efficient transformer designs, and also the vanilla transformer design to compare the perfor-
mances. We use absolute positional embedding for its simple applicability. The results in Table 3
show that the Fastformer architecture shows the best results. We conjecture this is because other ar-
chitectures rely on approximations or randomness to reduce the complexity of the original attention
formulation, which could lead to inaccurate interactions between the position-sensitive similarity
scores of the correlation maps. Experiments with Vanilla Transformers was infeasible due to its
large memory demands of the pair-wise attention matrices.

6 CONCLUSION

In this paper, we have proposed the Visual TransforMatcher, an end-to-end transformer-based
pipeline that performs category-level matching between images. Our principal contribution is our ef-
ficient match-to-match attention mechanism, which is, to the best of our knowledge, the first attempt
to directly process a 4-dimensional input, e.g., correlation map, using a transformer-based network
with global receptive fields. This has been a challenging pursuit due to the quadratic complex-
ity in modeling global-range interactions. Furthermore, we propose to extend the rotary positional
embedding to blend with the 4D correlation map to provide high-dimensional position priors. The
proposed model sets a new state of the art on the standard benchmarks of semantic matching, and we
have performed various ablation tests to evidence our design choices of our approach. We anticipate
this work will motivate the use of transformers with high-dimensional inputs in other domains.
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