
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Don’t bite off more than you can chew: Investigating Excessive
Permission Requests in Trigger-Action Integrations

Anonymous Author(s)

ABSTRACT

Various web-based trigger-action platforms (TAPs) enable users to

integrate diverse Internet of Things (IoT) systems and online ser-

vices into trigger-action integrations (TAIs), designed to facilitate

the functionality-rich automation tasks called applets. A typical TAI

involves at least three cooperative entities, i.e., the TAP, and the par-

ticipating trigger and action service providers. This multi-party na-

ture, nonetheless, can render the integration susceptible to security

and privacy challenges. Issues such as risky action mis-triggering

and sensitive data leakage have been continuously reported from

existing applets by recent studies.

In this work, we investigate the cross-entity permission manage-

ment in TAIs, addressing the root causes of the applet-level security

and privacy issues that have been the focus of the literature in this

area. We advocate the permission-functionality consistency, aiming

to reclaim fairness when the user is requested for permissions. We

develop PFCon, which extracts the required permissions based on

all functionalities offered by an entity, and checks the consistency

between the required and requested permissions on users’ assets.

PFCon is featured in leveraging advanced GPT-based language

models to address the challenge in the TAI context that the textual

artifacts are short and written in an unformatted manner. We con-

duct a large-scale study on all TAIs built around IFTTT, the most

popular TAP. Our study unveils that nearly one third of the services

in these integrations request excessive permissions. Our findings

raise an alert to all service providers involved in TAIs, and encour-

age them to enforce the permission-functionality consistency.

1 INTRODUCTION

Web-based Trigger-Action Platforms (TAPs) like IFTTT [2] and

Zapier [5] have enabled the integration of IoT systems with a great

variety of online services, ranging from cloud applications and

development tools to social media. These platforms facilitate what

we term as Trigger-Action Integrations (TAIs), enabling cross-party

data and control flows to execute if-then style automation tasks,

or applets. For instance, applets such as “IF a new email arrives,
THEN sync the attachment to MyDrive cloud” can be effortlessly

implemented by lay users, obviating the need for programming

skills. As of 2023, the popularity of such platforms is evident, where

IFTTT alone boasts 20 million registered users and supports 75

million applets [8].

However, this convenience comes at a cost: the multi-party na-

ture of TAIs has inadvertently turned them into a hotbed for secu-

rity and privacy vulnerabilities. Attackers can exploit unexpected

chaining of co-installed applets or manipulate triggers to invoke

privileged or unintended actions [38, 42, 43]. Moreover, some TAIs

unnecessarily include sensitive data attributes in triggers [13, 18],

thereby violating privacy norms. Recent studies [20, 32, 37] have

also highlighted that many popular TAIs are non-compliant with

existing data protection regulations like the EU’s General Data

Protection Regulation (GDPR) [1], raising concerns about the per-

manent storage of user data by TAPs or participating services.

Many efforts have been made by the research community to

address these issues, through checking the applet chaining [17,

44], analyzing TAIs [23, 28, 39] and restricting the information

collection and information flow [16, 18, 29]. They mainly focus

on mitigating security and privacy issues arising upon the applet

creation and execution. This unfortunately offers only a partial view

of the security and privacy protection in TAIs, as the fundamental

cause of these issues is the lack of a comprehensive cross-entity
data flow and access control among the services inside the TAI.

The TAP connects participating services mostly through the

OAuth protocol [4]. Upon the connection time, the user is prompted

to grant permissions requested by the TAP on their data and ob-

jects managed by the participating services. They have to either

accept all listed permissions or decline the integration of the ser-

vices. Even though the new OAuth 2.0 protocol [3] replaces such

an all-or-nothing paradigm with a fine-grained permission autho-

rization
1
, it remains challenging for lay users to make appropriate

selections due to the lack of knowledge on applets’ execution work-

flows. Consequently, most users tend to simply grant all requested

permissions, despite their concerns on the insufficiency of security

and privacy protection provided by the TAP. The core issue in this

permission management is that it is largely in favor of the TAP and

service providers rather than the users, as all behaviors of TAIs can
be claimed to be under the coverage of user authorization.
Our work. In this work, we target the problem of whether the
services in a TAI request and/or expose unnecessary permissions be-
yond the need of their functionalities, particularly, constructing their
triggers and/or executing their actions. We advocate the permission-
functionality consistency, to address the root causes of the applet-

level control and data flow [18, 36] that existing studies mostly

focus on. The permission-functionality consistency is twofold, on

the object level and the operation level respectively. First, when a par-
ticipating service requests to operate on the user’s object managed

by another service provider, the access scope should be limited to

what is necessary in relation to the purposes of the automation task.

For example, the action of “sync the attachment to MyDrive cloud”
needs the access to the attachment only, and that to the email body

is unnecessary. Second, when the TAP requests a service provider

to undertake an operation, it should comply with the principle

of least privilege [34]. For example, the action above requires the

write permission to the user’s cloud folder, but the read or delete
permission is unnecessary.

We propose PFCon, a framework which checks TAI for viola-

tions of permission-functionality consistency (or simply permission
excess). PFCon derives the permissions needed on objects and op-

erations for a participating service to fulfill its functionality, called

1
While developers have the option to include tickable choices in their OAuth prompts,

we notice that only four services have actually implemented this particular design.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

required permissions, and then retrieves the set of permissions that

the TAP requests from the user, called requested permissions. The
particular challenges in this process are three-folds. First, when

creating the TAI, the requested permissions are not listed until the

OAuth authentication is completed for IFTTT (as the relying party)
to be registered to the participating services, and most participating

services customize the OAuth process (Challenge #1). To handle

this, we build an authentication and authorization engine to auto-

matically drive the integration of the TAI. Second, the functionality

and authorization artifacts are written in natural language, with

varying format and quality among services (Challenge #2). We

resort to the latest large language models (LLMs) to interpret them,

and conduct in-context learning with chain of thoughts to guide

them with domain knowledge. Third, the terms used to describe

permissions differ among services, causing misalignment for the

consistency checking (Challenge #3). To address this, PFCon con-

structs lattice systems to describe the hierarchy among objects and

operations, and use them as a context for LLMs to align the terms.

To understand the status quo of the permission excess issues

in existing real-world TAIs, we conduct a large-scale study using

PFCon on all TAIs integrated around IFTTT, with over 700 popular

services such as Monzo, Amazon Alexa, Instagram and Facebook.

We comprehensively analyze 427 of them that can be executed

without special requirements such as IoT devices.We have identified

surprisingly prevalent permission excess issues, as 179 services are

over-requested by IFTTT with at least one unnecessary permission.

In particular, 62 services are over-requested for sensitive operation

permissions such as modifying or even deleting users’ files and

freezing users’ credit cards, while 131 are over-requested for object

permissions to accessing privacy-sensitive content like videos.

Contributions. The main contributions of this work are summa-

rized as follows.

• Understanding the permission excess issues in TAIs.

We advocate the principle of permission-functionality con-

sistency in TAIs and characterize the permission excess

issues, when multi-party services are connected through

OAuth.

• A systematic assessment approach. We propose PFCon,

which implements a series of techniques to automatically

identify permission excess issues from TAIs.

• Revealing the status quo and findings of permission

excess in real-world TAIs. Our large-scale study reveals

that the permission management in current TAIs is prob-

lematic. We also investigate the causes for the permission

excess issue. Our findings should raise an alert to the users,

and encourage the service providers in TAIs to redesign

their interfaces in TAI construction.

2 PROBLEM FORMULATION

2.1 Background and a Running Example

The TAP and service providers are typically integrated following an

OAuth procedure, which includes three phases (shown in Figure 1).

We use the action service (i.e., MyDrive) in the example applet “IF
a new email arrives, THEN sync the attachment to MyDrive cloud”
for illustration.

User IFTTT Services

Channel
SignUp Phase

Register Client ID,
Secret etc

User
Authorization

Request to Connect
Channel

Request Authorization Code

Request User's Authorization

Exchange Authorization Code
& Access Code

Call Api

Connected

Login & Authorize

1

2

3

4

5

6

7

Figure 1: A general workflow to integrate services into TAP

Phase 1: channel sign-up. IFTTT builds a channel for each ser-

vice it supports (detailed soon in this section). The channel can be

regarded as an agreement
2
on the interfaces that IFTTT can use

and the service provider should implement (step 1○ in Figure 1).

Then, IFTTT is registered as a trusted client and is assigned a client

id.

Phase 2: user authorization. When IFTTT is requested by the

user to integrate a service, e.g., theMyDrive service, it asksMyDrive

to authorize it with the permissions to invoke the APIs defined in

the channel on behalf of the user. MyDrive then requests the user to

log into their account, and displays a permission prompt (Document

2 in Figure 2) that specifies the permissions requested (step 4○
and 5○). The user can select “Yes” to confirm the authorization or

“No” to cancel it.

Phase 3: applet execution. Once the user grants the permissions,

IFTTT is given an OAuth access token (step 6○). It can use the access

token as a credential to access the user’s account, manipulate objects

or perform actions when the applet is executed (step 7○). Note that

the access code bound with the set of permissions specified in Phase

2 and MyDrive checks its validity each time.

Service functionality artifacts. During the channel sign-up pro-

cess, IFTTT provides the participating service providers with com-

prehensive documents about the interfaces and functionality of the

TAI, such as the service name, description, and supported APIs. The

Document 1 in Figure 2 shows part of such information in our

running example. These documents contain sentences in natural

language and formatted or semi-formatted phrases (e.g., an API

name of “new file in folder”). They describe mainly three types of

APIs supported in IFTTT, i.e., trigger APIs, query APIs and action

APIs. The former two are for triggers (in pushmodel and pull model

respectively), and the latter is for actions. Table 1 lists some ex-

ample APIs. We call all these documents and descriptions service
functionality artifacts, and PFCon targets to infer from them the

permissions that are needed to fulfil the defined functionalities.

Service andApplet. IFTTT utilizes APIs (Document 1 in Figure 2)

from different services to create executable applets. For example,

in the applet “IF a new email arrives, THEN sync the attachment
to MyDrive cloud”, it includes a trigger API, “new_email_arrive”

2
This means the interfaces are mutually defined. Due to this, we treat the entire

integration of IFTTT and participating services, i.e., the TAI, as the subject of liability.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Don’t bite off more than you can chew: Investigating Excessive Permission Requests in Trigger-Action Integrations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

MyDrive integrations

MyDrive is the place to store your files so you can access
them from virtually any device. Use MyDrive and you'll
never be without the documents, notes, photos, and videos
that matter to you.

Trigger:
New file in folder
mydrive.new_file_in_folder
This trigger fires every time a new file is created in the
folder you specify.

Query:
History of files uploaded in folder
mydrive.history_of_files_in_folder
This query returns a list of files created in the folder you
specify.

Action:
Add file from URL
mydrive.upload_file_from_url
This action will download a file at a given URL and add it
to MyDrive at the path you specify.

IFTTT needs your permission to:

View your profile info and contact list
IFTTT will be able to see your profile info, including
your name, gender, display picture, contacts, and
friends.

Access your info anytime
IFTTT will be able to see and update your account,
including your pot balance.

Access your email addresses
IFTTT will be able to see the email addresses in your
profile.

Access your photos and videos
IFTTT will be able to see your photos and videos on
MyDrive, along with their tags and comments.

Access and edit your MyDrive photos and
documents
IFTTT will be able to access, change, and add or delete
your photos and documents on MyDrive.

Figure 2: An example of the IFTTT artifacts

Table 1: Trigger, Query and Action APIs in MyDrive

Category API endpoint slug Parameter Return value

Trigger

new_file_in_folder folder_path name, modified_by

new_photo_in_folder folder_path name, modified_time

Query

history_of_photo folder_path name, modified_time

history_of_files folder_path name, modified_by

Action

append_to_text_file filename, content nil

create_text_file filename, content nil

from the Email Service and an action API, “upload_a_file” from the

MyDrive Service. One service can provide multiple APIs to IFTTT,

allowing for the creation of numerous applets by connecting to

other services. As a result, IFTTT offers 59,009 applets [18] based

on 700 services.

2.2 Threat Model and Scope

Scope. PFCon targets the permission excess problem of whether
the TAI over-requests functionality-unnecessary permissions. The
core idea of PFCon is to extract the required permissions and

requested permissions from available artifacts, and then check

the inconsistency between them. When a participating service is

asked to provide more permissions than what is needed to fulfil

its functionalities, in terms of executing all its APIs related to trig-

gers/queries/actions, PFCon reports it as a permission excess issue.

Since the interfaces between the participating services and IFTTT

are mutually established, PFCon treats them together, i.e., the TAI,

as the liability subject. We explore the permission excess issue from

both the object level and the operation level.

• Object level. The TAI should comply with limited data

restriction. In our running example, the action of “sync the
attachment to cloud” needs the access to attachment only,

rather than the email body.

• Operation level. When the TAI undertakes an operation

on an object, it should execute the least privilege. In our

running example, the action requires the write permission

to the cloud folder, but not the read or delete permission.

It is worth noting that PFCon focuses on service-level permis-

sion management, in contrast to previous studies [9, 14, 18, 19, 23,

Pair
Extraction

OAuth
Artifacts

Functionality
Artifacts

Lattice
Construction

Detection

Lattice System

Permission
Excess

Sentence Required Permission Excessive Permission

GPT

Figure 3: Overall workflow of PFCon

32, 36, 42, 44] that analyze privacy and security concerns arising

with the creation and execution of individual applets.

2.3 Permission Excess Definitions

Definition 1 [Permission]. Each permission is defined as a pair

𝑃 = (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛,𝑂𝑏 𝑗𝑒𝑐𝑡), denoted by (OP, OB), which means the

entity with 𝑃 possesses the right to perform the 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 on the

𝑂𝑏 𝑗𝑒𝑐𝑡 .

Definition 2 [Permission excess]. We use S to indicate the set

of the requested permissions and R the set of required permissions

for the correct functionality of the service, where S is derived from

the OAuth authorization requests (e.g., Document 2 in Figure 2),

and R is derived from service functionality artifacts (e.g., Table 1

and Document 1 in Figure 2 demonstrating part of the artifacts).

A permission excess occurs when any permission requested is not

required.

3 OUR APPROACH

3.1 Overview of PFCon

PFCon consists of three main components, i.e., artifact collection,
permission recognition and permission excess detection, as shown in

Figure 3. Below we brief each of them.

Artifact collection. This component aims to collect data for infer-

ring (OP, OB) pairs in S and R. The data needed by PFCon includes

the OAuth authorization page (for S) and the functionality arti-

facts (for R). The challenge to automate the authentication process

to obtain the authorization page (i.e., Challenge #1). This compo-

nent is detailed in Section 3.2.

Permission recognition. This component aims to recognize the

(OP, OB) pairs from the collected artifacts and derive the permissions

inS andR. It has to interpret the artifacts that are written in natural

language, with varying format and quality (i.e., Challenge #2). This
component is detailed in Section 3.3.

Permission excess detection. This component checks the per-

mission inconsistency between S and R. The challenge lies in the

diversity and context-sensitivity of the terminologies in (OP, OB)
pairs (i.e., Challenge #3). For example, subsumptive relationships

are present among service-level objects and operations. It is crucial

to address self-defined structures like “money pot ≺ user account”

in online banking appropriately by considering the context. This

component is detailed in Section 3.4.

3.2 Artifact Collection

PFCon collects two types of artifacts, i.e., functionality artifacts (for

deriving R) and authorization pages (for deriving S), as illustrated
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

in Figure 2. First, PFCon crawls the developer site of IFTTT for func-

tionality artifacts. The developer site is an interface first identified

by a state-of-the-art TAI analyzer named Taifu [32] using reverse

engineering. It provides web APIs
3
, which include rich information

about the functionality, usage and user statistics (e.g., installation).

As it takes service names as inputs, PFCon fetches a full list of

participating services supported by IFTTT and passes their names

to the web APIs to get all artifacts related to each service.

Obtaining the authorization page turns out to be challenging,

given that service providers tend to implement the authentication

process in diverse ways with various UI items. To obtain the au-

thorization pages that only appear during authorization, PFCon

has to automate the connection between different services and

IFTTT, which includes authentication (via user credentials) and

authorization (via prompted windows) of OAuth. We create a set

of test accounts for PFCon to complete this process. It uses an

HTML parser to process each web page and search for all tags that

potentially involve user inputs or user interactions, for example,

<input>, <button> and <a>. From them, it then identifies the type

of each tag, including the username/password fields, and naviga-

tion/login/authorization buttons, based on the attributes of the tag,

e.g., id, class, and name. The username/password fields are identi-

fied from input and div tags, and login/authorization actions are

identified from a and button tags. To comprehensively capture the

permission-related information, PFCon extracts all visible texts

throughout the connection process. It also filters out two types of

services, i.e., non-English services (merely 4.8% of the entire corpus)

and services that do not require OAuth authorizations.

3.3 Permission Extraction

With the crawled artifacts, PFCon can proceed to construct the

(OP, OB) pairs in S and R. The challenge arising is that the artifacts

are written in natural language, with varying format, terms and

quality used among service providers. To address this, we resort

to the large language models (LLMs) for interpreting the artifacts,

considering that LLMs are capable of assimilating correct syntax

and semantics due to their intricate model architecture and exten-

sive training data. We adopt the state-of-the-art GTP-4 model [15],

and design a set of prompt patterns for it, as listed in Table 2. To

further guide it with domain knowledge, we conduct an in-context
learning [31] with the Chain of Thoughts (CoT) mode [41] applied.

We disintegrate the permission extraction task into two small

tasks to for the precision of the LLM, including sentence separation
and (OP, OB) extraction. The former breaks down complex sentences

into a series of simpler sentences that contain (OP, OB) pairs. The
prompt pattern and the example is shown in the sentence separation
row in Table 2. Given a complex sentence in the crawled artifacts,

e.g., “access, change, and add or delete your photos and documents”,
PFCon requests the LLM to “assist me in breaking down the following
complex sentence into a series of simpler sentences”. CoT prompts

are provided to guide the LLM through the reasoning process. For

example, “This sentence involves four operations—access, change, add,
and delete—on two objects: photos and documents. Therefore, the
total number of resulting sentences should be 4 * 2 = 8”. Employing

a similar approach, PFCon further extracts the representation of

3
https://ifttt.com/api/v3/graph

permission
requested

permission
required photo

file
name path modified

time comment

photo

Object
Lattice

Operation
Lattice

change add delete

access

seesee

edit

Figure 4: Permission lattice system of the running example

(OP, OB) pairs from the obtained simple sentences utilizing the LLM,

as shown in the (OP, OB) extraction in Table 2.

3.4 Permission Excess Detection

Based on the extracted (OP, OB) pairs inS andR, PFCon detects per-

mission excess issues. Rather than simply comparing the operations

and objects, it constructs the permission hierarchy (Section 3.4.1)

to enable fine-grained and service context-aware checking, and the

detects permission excess based on it (Section 3.4.2).

3.4.1 Constructing Permission Lattice Systems. Similar to other sys-

tems like mobile OSes [21], most participating services also have

a complex permission system. This often leads to a hierarchical

structure among the permissions. For example, “see your photos
(including contents, comments, etc.)” contains higher privilege than
“see comments of your photos”. To preserve such hierarchical struc-

tures for the permission excess checking, we propose the lattice

system representation similar to prior studies [24, 37] to facilitate

the permission excess checking. PFCon builds two permission lat-

tice systems for each service, i.e., object lattice and operation lattice.
Before diving into details, we show the constructed lattice systems

of our running example in Figure 4. As shown in the figure, IFTTT

requests the permission (upper right) to access the “photo” and

its “comments”, whereas the permission required (upper left) only

includes metadata (i.e., name, folder path, modified time) of the

“photo” object. PFCon considers “comments” as an object permis-

sion excess. Similarly, according to the operation lattice system in

Figure 4, IFTTT requests the permission (lower right) to perform

“change”, “add”, and “delete” operations over a photo object under

“edit”. However, the required permission (lower left) only includes

the access to “see” the photo. PFCon considers this as an operation

permission excess.

PFCon mainly relies on sentence-level lexicosyntatic patterns

and applet data structures to determine the subsumptive relation-

ship between two terms. Below we discuss them.

Lattice of R (objects/operations). We use the relations in the

data structures that IFTTT uses to construct the TAI (examples

shown in Table 1) to construct the lattices for both objects and

operations. When an object/operation is identified from a field,

other objects/operations identified from its subfields are considered

as subsumed, denoted by ≺ (or ⪯ if the two may also refer to the

same). Take the API “new_photo_in_folder” in Table 1 as an example.

It contains parameters (e.g., “folder path”) and return values (e.g.,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Don’t bite off more than you can chew: Investigating Excessive Permission Requests in Trigger-Action Integrations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: Prompt patterns and tutorials used for four tasks of PFCon

Id Task Prompt pattern Input

Permission extraction: sentence separation

1

Tutorial Break down a complex sentence

<Complex_Sentence>
into a series of

<Simpler_Sentences>
, each comprising

only one operation and one object. The

simple sentence contains no conjunctions.

<Chain_of_Thought>

IFTTT will be able to access, change, and add or delete your photos and documents on MyDrive.

access your photos; change your photos; access your documents; change your documents; add to your photos; delete your

photos; add to your documents; delete your documents.

This sentence contains four operations: access, change, add, and delete on two objects: photos and documents. So the total

number of result sentences should be 4 * 2 = 8, as follows:

Actual task
Assist me in breaking down the following

<Artifacts_Sentence>
into a series of simple sentences, each comprising only one operation and one object. The simple sentence should

contain no conjunctions.

Permission extraction: (OP, OB) extraction

2

Tutorial The sentence <Sentence> contains an

Operation-Object pair
<Operation, Object>

.

Access your photos.

Operation: Access

Object: your photos.

Actual task Get the Operation-Object pair from the following sentence
<Artifacts_Sentence>

.

Object-level detection

3

Tutorial <Context> . Is the permission <Permission> re-

quired by
<Service_API>

based on the object

hierarchy
<Service_Lattice_System>

?

<Chain_of_Thought>

So, the answer is Yes.

Under the context of ‘MyDrive’, the general description of the service function is ‘MyDrive’ is the place to store your files so

you can access them from virtually any device. Use MyDrive and you’ll never be without the documents, notes, photos, and

videos that matter to you.’

Does MyDrive API that can access the object ‘pot balance’ require the permission to access the object ‘account’

Lattice System: pot balance ≺ account

Within the lattice system, the relationship hierarchy is as follows: pot balance ≺ account. As a result, there is a subsumptive

relationship between ‘pot balance’ and ‘account’. We conclude that access to the pot balance requires permission to access the

account.

Actual task Context> . Is the permission <Permission> required by
<Service_API>

based on the object hierachy
<Service_Lattice_System>

?

Operational-level checking

4

Tutorial <Context> . Is the permission <Permission> re-

quired by
<Service_API>

based on the opera-

tion hierarchy
<Service_Lattice_System>

?

<Chain_of_Thought>

So, the answer is No.

Under the context of ‘MyDrive’. the general description of the service function is ‘MyDrive is the place to store your files so you

can access them from virtually any device. Use MyDrive and you’ll never be without the documents, notes, photos, and videos

that matter to you.’

Is permission to ‘update your account’ required by MyDrive API that can perform the action ‘see your pot balance’

Lattice System: object pot balance ≺ account, the operation on object account: see ≺ unknown, update ≺ unknown

In the context of the lattice system, it is established that the object pot balance is subordinate to account, denoted as ≺ (pot
balance ≺ account). Consequently, when one seeks authorization to ‘see your pot balance,’ it necessitates permission to ‘see

your account.’ For operations ‘see’ and ‘update’ belong to distinct parallel hierarchies, with no inherent subsumptive connection

between them. Consequently, the permission ‘update your account’ is not mandated for an API capable of executing the ‘see

your account’ action. As a result, it can be deduced that the permission ‘update your account’ is similarly not obligatory for an

API authorized to perform the ‘see your pot balance’ action.

Actual task <Context> . Is the permission <Permission> required by
<Service_API>

based on the operation hierarchy
<Service_Lattice_System>

?

“name” and “modified time”). We construct the object lattice (upper

left of Figure 4) and specify “folder path”, “name” and “modified
time” as the objects that belong to the object “photo”. For operation
lattice system under the object of “photo”, since “photo” appears in a

trigger as “new_photo_in_folder” and a query as “history_of_photo”,
and no action (shown in Table 1), we can construct the operation

lattice that only consists of “see” (lower left of Figure 4).
Lattice of S (objects). We use lexicosyntatic patterns that are

proposed by PolicyLint [10] to capture the subsumptive relationship

in a sentence. These patterns define the relationship before and after

keywords like “such as”, “e.g.|i.e.”, “for example” and “include”. For
example, from the sentence “IFTTT would see your photos, along with
their comments”, “comments” is found to be one attribute of “photos”.
Therefore, we can derive that comments ⪯ photos (see upper right
of Figure 4). We expand the patterns of PolicyLint with additional

keywords to enhance its accuracy, as shown in Appendix A.1.

Lattice of S (operations). We use the hierarchical structures (i.e.,

layered titles and subtitles) from the OAuth authorization pages

to construct this lattice. Intuitively, we utilize operations from the

lower layers of the hierarchical structure as explanations for those

from the upper layers. For example, “change”, “add” and “delete”
are further explanations of the operation “access and edit” in the

layer above. Figure 4 (lower right) shows the extracted permissions

from the OAuth prompt shown in Document 2 in Figure 2). Such

layer relationship can be reflected by HTML tags (e.g., <ℎ>). We

recursively perform such explanation steps until all the layers of

permissions have been covered in the prompted OAuth page. We

assign the symbol ⊥ (as shown in Figure 4) to represent the un-

known relationship between permissions (e.g., “edit” and “access”)
and to mark the end of the lattice construction.

3.4.2 Detecting Excessive Permissions. Based on the lattices, PFCon
can check the consistency between the (OP, OB) pairs, for object and
operation fields separately. The main challenge lies in determining

whether two objects or operations refer to the same entity, as the

service providers may use different terminologies. To overcome

this, we enlist the LLM to assess the semantic similarity of these

terms, as illustrated in Table 2.

Object-level checking. PFCon checks the object fields of the

(OP, OB) pairs in S and R. Intuitively, it checks whether the object
in one ofS.(OP, OB) pairs is contained in the object of anyR.(OP, OB),
i.e., ∃(OP, OB) ∈ R such thatS.OB ⪯ R.OB. PFCon augments the LLM

with context to enhance semantic understanding of the terms. We

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: Permission excess overview

Permission excess 1 2 3 4 5 6 7 8 9 10 11 12 13 14 17

Services 56 35 25 28 5 5 1 4 4 3 3 5 1 2 2

use the general service description provided for IFTTT, accessi-

ble in the functionality artifacts, as the context. Additionally, we

integrate the hierarchical relations from the lattice system knowl-

edge to construct the “reasoning” for the CoT, enabling the LLM

to grasp subsumptive relationships and assess similarity based on

this knowledge. PFCon traverses the object lattice from S. For each
object, it queries the LLM with the prompt listed in the object-level
checking row in Table 2. When the LLM finds a semantically iden-

tical object (indicated by GPT-4 responding ‘Yes’), the object is

marked as “required”.

Operation-level checking. When S.OB ⪯ R.OB, PFCon proceeds

to check the operation fields. It checks whether S.OP has a lower
or equal privilege level compared to the OP that has the highest

level in R (denoted by R.OPℎ), i.e., S.OP ⪯ R.OPℎ . To handle the se-

mantic similarity between (OP, OB) during this step, PFCon applies

a methodology similar to the object-level checking and employs

the prompt queries outlined in the operation-level checking row in

Table 2.

4 EVALUATION

Aligning with previous study [9, 18, 19, 23, 32, 42], we implement

PFCon and evaluate its performance in IFTTT, the most popular

TAP. In our evaluation, we aim to answer the following research

questions (RQs).

RQ1. What are the characteristics and prevalence of the permission

excess issues in the real-world TAP?

RQ2. How effective and accurate is PFCon in detecting permission

excess issues?

RQ3. What are the root causes (RCs) of permission excess issues?

4.1 Dataset

We crawl the IFTTT website to collect the evaluation dataset, as

described in Section 3.2. Out of the over 700 services supported on

IFTTT, we eventually obtain 427 for analysis, excluding no-English

services, services that require no OAuth authorization (e.g., public

news websites). We find that the services have significantly diverse

numbers of permission sentences. Among them, 48.6% have only

one or two permission sentences, 21.4% have three to four, 22.3%

have five to ten, and only 7.7% have more than ten.

Ethical considerations.We anonymize all the services included

in our dataset, and refer to them as anonymous 4-digits in the

subsequent analyses unless stated otherwise. Note that we have re-

sponsibly disclosed the identified issues to the dedicated developers

before presenting our findings.

4.2 RQ1: Permission Excess Landscape

4.2.1 Permission Excess Prevalence. We present an overview of

the permission excess issues detected by PFCon in Table 3. Out

of the 427 services, we find an astonishing 179 (41.9%) of them

have permission excess issues. Among the services with violations,

most (144) have one to four excessive permissions, while 13 services

have over ten excessive permissions.

5 10
permission excess number

0

20

40

se
rv

ice
 n

um
be

r Object level excess
Operation level excess

Figure 5: Permission excess of service

Table 4: Features of permission excess: Top-5 opera-

tion/object detected as excessive.

Operation name manage modify remove create write

Exceeded time 93 84 52 29 15

Object name profile setting event notice country

Exceeded time 15 8 8 7 7

Table 5: User installation distribution for services with per-

mission excess

User installation 0-100 100-500 500-1k 1k-5k 5k+

Service number 76 29 17 13 44

Permission excess prevalence by types. As shown in Figure 5,

131 services have at least one object-level excessive permission,

while 122 services have at least one operation-level excessive per-

mission.

Permission excess distribution. From Table 5, we find that per-

mission excess issues are more prevalent among services with fewer

installations, as their developers might enforce less stringent checks

for permission functionality consistency. We further investigate

the root causes of such excessive permissions in RQ3 (Section 4.4).

4.2.2 Characteristics of Permission Excess. We further analyze per-

mission features contributing to excess permissions, offering in-

sights for developers to mitigate similar issues. Our study identifies

both object and operation-level features, with the top five detailed

in Table 4.

Features of object-level excess. Our findings indicate that the

most commonly violated permissions pertain to profile information.

Such excess permissions could potentially result in unauthorized

access to sensitive user data, including contact information. In

general, for individual users, highly personal objects are prone to be

abused, such as videos, documents, tasks, messages, calendars, and

contacts. Their unauthorized access and manipulation could incur

significant privacy damage. For industry users, highly valuable

objects are the primary targets, such as configuration, enterprise,

message, voice command, subscription and product. Some objects,

such as configuration and voice commands, may impact the physical

devices and environments due to the involved smart home devices,

hence also posing a safety risk.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Don’t bite off more than you can chew: Investigating Excessive Permission Requests in Trigger-Action Integrations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

blogger
industry IoT

smart carema
social media reminder

safety alarm
online editor

add
automate

change
control
create

disable
discover

distribute
enable

execute
identify
interact

list
make

manage
modify

organize
participate

play
put

read
remove/delete

replace
retrieve
revoke

send
share
stop

submit
upload

write

0 5 0 4 0 0 3
0 2 0 0 0 0 0
2 5 1 0 0 1 1
0 3 1 0 0 0 0
0 5 4 3 3 0 14
0 2 0 0 0 0 0
0 0 0 3 0 0 0
0 3 1 3 0 0 5
0 1 0 0 0 8 0
0 0 0 0 0 0 2
0 8 0 0 0 0 0
0 4 0 0 0 0 0
0 2 0 0 0 1 0
0 4 0 0 0 1 1
8 73 0 8 0 0 1
6 14 4 10 9 1 34
0 0 0 0 4 0 5
0 3 0 0 0 0 0
0 2 0 0 0 0 0
0 3 0 0 0 0 0
0 2 1 0 0 0 0
3 5 2 7 7 0 26
0 0 0 2 0 0 0
0 7 0 0 0 0 2
0 3 0 0 0 0 0
1 0 0 1 0 2 0
0 0 0 3 0 0 6
0 1 0 0 0 0 5
3 0 0 0 0 0 0
0 0 0 1 0 0 4
0 2 0 3 5 0 3 0

10

20

30

40

50

60

70

Figure 6: Permission excess distribution among categories

Features of operation-level excess. Generally, the most sen-

sitive and dangerous operations include the modify/change and

remove/delete operations since the user may lose data completely

upon unauthorized execution. Our detection results also show that

these operations are the most prevalent among the exceeded per-

missions. Specifically, the modify operation has 84 excessive oc-

currences, and remove/delete has 52 occurrences. However, these
operations are only available in certain service categories like on-

line editors (e.g., Google Sheets/Docs, and OneDrive) as shown in

Figure 6. For example, the most prevalent excessive operation man-
age (93 excessive occurrences) is majorly present in the category of

industry IoT (e.g., smart agriculture and company camera system).

PFCon further identifies that the most permission excess reported

are under these two categories, i.e., online editors and industry IoT.

4.3 RQ2: Performance Evaluation

In this RQ, we first present the overall detection accuracy, and

then further investigate the step-wise accuracy of PFCon with the

discussion on plausible causes for detection failure.

4.3.1 Overall Accuracy. We first construct a benchmark dataset,

and evaluate PFCon using it.

Benchmark dataset assembly. Since there is no existing bench-

mark dataset to evaluate the accuracy of PFCon, we resort to man-

ual effort to construct a suitable one. We first divide the dataset into

four groups based on the number of permission sentences extracted

from a service: group 1 with one to two permissions; group 2 with

three to four; group 3 with five to nine; group 4 with ten or more.

Then, we randomly and proportionally select 15% (i.e., 64 out of 427)

of the services from our dataset to form the benchmark dataset that

can evenly reflect the permission distribution across our dataset,

including 30 from group 1, 15 from group 2, 15 from group 3, and 4

from group 4.

Ground truth construction. To construct the ground truth, we

recruit three volunteers (one PhD and two master students) that

major in computer science. To avoid personal bias of excessive

permission perceptions [12, 22, 25], we create explicit labeling in-

structions that explain the task and provide some corner cases. We

give the volunteers a detailed and objective tutorial with several

Table 6: PFCon accuracy

(a) Benchmark performance

Label Detector FP TP FN TN TPR TNR

POS 17 20

3 17 0 44 100% 93.6%

NEG 47 44

POS (S − R ≠ ∅): permission excess, NEG (S − R = ∅): Non permission excess (see Definition 3).

(b) PFCon stage accuracy

Accuracy P1 P2 P3 P4

Plain 40% N/A 65% 85%

Context 75% N/A 75% 90%

Context + CoT 95% N/A 95% 100%

Overall 94% 100% 96% 94%

P1: Prompt for task 1, P2: Prompt for task 2, P3: Prompt for task 3, P4: Prompt for task 4

case studies. To prevent any possible bias caused in this process,

they are not asked to generate S or R representations. Instead, they

look through each sentence in the OAuth page (e.g. Document 2

of Figure 2), check whether it is needed by referring to descriptions

(e.g., Document 1 of Figure 2), and annotate unnecessary (OP, OB)
pairs, e.g., (delete, files). The inter-annotator agreement quality

measurement using Krippendorff’s Alpha [30] achieves 0.823 and

an alpha of 0.80 or higher indicates a good correlation between

annotators [7]. To handle the disagreement, a security expert with

8 years (since 2015) experience is invited to discuss and verdict on

the final label.

Results. Table 6 summarizes the performance of PFCon on the

benchmark dataset. It achieves the True Positive Rate (TPR) of

100% and True Negative Rate (TNR) of 93.6% with only three false

positives (FP). The detailed results for each service is available in

Appendix A.2. We will further dicuss the possible cause in Sec-

tion 4.3.3. PFCon also exhibits a great capability to capture the

permission excess issues, with a recall of nearly 1. Even with a few

false positives, PFCon remains highly effective as privacy analysts

can easily confirm the results and rule them out. In particular, we

find 17 (26%) out of the 64 benchmark services have permission

excess issues. Three services have ten or more permission excess.

4.3.2 Stage-wise Accuracy. Considering the main methodology

of our work consists of NLP tasks, we ensure the reliability of

PFCon by checking the accuracy of each analysis stage, as listed in

Table 6(b).

We compare three prompt patterns - plain, context information,

and context information enhanced by CoT - using a small dataset.

For task 2, we employ plain prompts without context and CoT,

as GPT-4 can easily extract (OP, OB) pairs from simple sentences.

With 20 queries per task, we manually evaluate the results. The

context information + CoT prompt consistently performs the best.

In task 3, GPT-4 effectively handle self-defined structures with

Lattice System and CoT. For example, when working with service

3828, it understood and used service-specific structures, like “pot

balance ≺ account”, successfully captured by the lattice system.

Following validation on a small dataset, we proceed to evaluate

on all services in our dataset, assessing stage-wise accuracy (last

row of Table 6b). For each task, we employed a random selection and

meticulous screening of 100 queries. PFCon consistently achieved

high accuracy across all stages as shown in Table 6b.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

4.3.3 Case Analysis. We investigate the false positive and permission-

level miss detection (see Appendix A.3 for the detailed case studies).

Permission-level missed detection. The reason for missing the

excessive permissions in the service 2999, 6516 and 9650 arises

from the difficulty in capturing the folder structure defined by

the services. The service 9650 has a self-defined folder structure:

workspace ⊇ board ⊇ lists ⊇ card. Unfortunately, neither the S nor

the R information provides any insights into this hierarchy. Conse-

quently, our lattice system is unable to capture and construct this

structure accordingly. The only action (i.e., “Create a card”) requires
updating an existing board, and the permission to create boards
is thus excessive. PFCon misses detecting this permission since

GPT-4 considers board and card are semantically similar. Service

2999 and 6516 have a similar issue.

4.4 RQ3: Root Causes for Permission Excess

After revealing that around one third of the services request exces-

sive permissions, we further investigate their root causes to obtain

an in-depth view on such issues. We randomly select and manually

check 50 (out of 179) services with excessive permissions. By the

root cause types, we group them into the following three categories.

Besides 19 services with unidentifiable causes, we group the rest

31 into the following four categories.

RC1: Permission bundle (9 services). When similar permissions

are grouped into bundles, there is an increased risk of permission

excess. More specifically, IFTTT has to apply for the whole group

of permissions even if only part of them are required. This RC

is the major cause for permission excess in popular services like

4682 (5.3k installation), 6750 (23.8k), and 0032 (114.k). After con-

sulting IFTTT and service developers, they have confirmed this as

a plausible cause for potential permission excess. Based on their

types, permission bundle can be further divided into two categories:

bundle in operation and bundle in object. For example, opera-

tions such as “access”, “change”, “add” and “delete” are commonly

bundled, and objects such as “photos” and “videos” are typically

bundled. We provide concrete case studies in Appendix A.3 for

detailed reference.

RC2: Defect Permission System Implementation (9 services).

When developers lack a thorough understanding of a service’s func-

tionality and the nuances of privacy protection, there is a height-

ened risk of implementing excessive or even irrelevant permission

requests. For example, a financial service 3828 (21.9k installation)

implements a dangerous permission “Freeze and unfreeze your

card” (highly sensitive operation) through IFTTT which is neither

required nor necessary for its functionality.

RC3: Ambiguous Permissions (8 services). When permission

requests are ambiguously formulated, they can create disparities in

downstream user understanding and perception. This lack of clarity

may lead to more permissions requested than actually necessary for

the service functionality, compared to the user interpretation of the

request. For example, service 6460 (working together with IoT de-

vices), has permission requests like “control your other smart home

devices” which is ambiguous and vague compared with specific

permissions (“turn on/off your devices”).

RC4: Template Usage (5 services). Different services belonging to

the same company may share the same template or similar permis-

sion management patterns without considering the usage-specific

scenarios. This could consequently introduce inaccurate and ex-

cessive permissions requested. For example, all services (including

cleaning robots, coffee machines, dishwashers, dryers, etc.) under

the same electronic company H (full name anonymized) share one

OAuth template, without considering the customized and detailed

service usage scenarios. This issue also exists among famous service

providers like 6750 (23.8k installation).

5 RELATEDWORK

PFCon is related to the privacy and security of IoT integration. In

this section, we summarize existing studies related to them. We

present a brief comparison between PFCon and other previous

work on TAP in Appendix A.4.

Privacy/Security in the trigger-action service. Bastys et al. [13]

identify the security issues inherent in the TAP and provide miti-

gations. Fernandes et al. [23] provide a protection mechanism to

safeguard the applet execution. Yunang et al. [18, 19] design the data

minimization to reduce the data attributes transferred to the IFTTT.

In terms of the privacy and security analysis, PFCon confirms the

privacy/security existence [14, 35] in TAP and complements these

studies with the study of permission-level excess.

Automatic testing of IoT integration. HomeScan [14, 33] pro-

poses a model-checking tool for smart homes and verifies safety and

security properties. AutoTap [42] and AutomatedLTL [44] provides

a checking method based on the LTL formula to detect security vio-

lation in applets and provide suggestion for users. TAIFU [32] tests

trigger-action service like IFTTT and finds many violations against

GDPR. PFCon’s approach of auto-connecting services is inspired

by them. In summary, most existing work focuses on applet-level

testing, while PFCon targets the service-level permission analysis.

NLPbased security scrutinizing. PolicyLint [10] utilizes sentence-

level NLP to analyze data collection and sharing in privacy policies,

identifying nine types of semantic contradictions. However, it can-

not compare stated privacy claimswith actual behavior. PoliCheck [11]

applies PolicyLint and AppCensus [6] to detect the inconsistency

for android app but requires available source code. GUILeak [40]

uses annotated dataset and share similar ideas with PoliCheck. All

of the current research work [26, 27] cannot handle platforms like

TAI whose permission is not unified. In general, PFCon targets

permission excess detection with various permission eco-systems

and limited text corpus. PFCon can achieve good performance even

without source code and user behavior or logging analysis.

6 CONCLUSION

In this work, we develop PFCon to examine permission-functionality

consistency among implementations of TAI’s services. PFCon is

capable of first extracting the required permissions according to

the functional capabilities provided by a TAI service. It then sub-

sequently performs a consistency check to ensure that only the

necessary permissions are requested during the service runtime.

Through our systematic evaluation, we have identified nearly a

third of the IFTTT services have been requesting excessive permis-

sions, marking the alarming importance of responsibly enforcing

the principle of least privilege in practice.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Don’t bite off more than you can chew: Investigating Excessive Permission Requests in Trigger-Action Integrations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] 2022. General Data Protection Regulation . https://gdpr-info.eu/. Online;

Accessed: 2022-08-01.

[2] 2022. IFTTT homepage. https://ifttt.com/. Online; Accessed: 2022-08-01.

[3] 2022. OAuth 2.0 Rich Authorization Requests . https://datatracker.ietf.org/doc/

html/draft-ietf-oauth-rar-12. Online; Accessed: 2022-08-01.

[4] 2022. OAuth protocol. https://oauth.net/. Online; Accessed: 2022-08-01.

[5] 2022. Zapier homepage. https://zapier.com/. Online; Accessed: 2022-08-01.

[6] 2023. AppSensus Homepage. https://www.appcensus.io/search. Online; Ac-

cessed: 2023-01-15.

[7] 2023. De Swert K. Calculating inter-coder reliability in media content analysis

using Krippendorff’s Alpha. http://www.polcomm.org/wp-content/uploads/

ICR01022012.pdf. Online; Accessed: 2023-04-27.

[8] 2023. IFTTT Statistics and Facts. https://expandedramblings.com/index.php/ifttt-

statistics-and-facts/. Online; Accessed: 2023-02-10.

[9] MohammadMAhmadpanah, Daniel Hedin, and Andrei Sabelfeld. 2023. LazyTAP:

On-Demand Data Minimization for Trigger-Action Applications. In 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 3079–3097.

[10] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin Whitaker,

William Enck, Bradley Reaves, Kapil Singh, and Tao Xie. 2019. PolicyLint: Inves-

tigating Internal Privacy Policy Contradictions on Google Play. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,

585–602. https://www.usenix.org/conference/usenixsecurity19/presentation/

andow

[11] Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William Enck,

Bradley Reaves, Kapil Singh, and Serge Egelman. 2020. Actions speak louder

than words:{Entity-Sensitive} privacy policy and data flow analysis with

{PoliCheck}. In 29th USENIX Security Symposium (USENIX Security 20). 985–
1002.

[12] David G Balash, Xiaoyuan Wu, Miles Grant, Irwin Reyes, and Adam J Aviv.

2022. Security and Privacy Perceptions of {Third-Party} Application Access

for Google Accounts. In 31st USENIX Security Symposium (USENIX Security 22).
3397–3414.

[13] Iulia Bastys, Musard Balliu, and Andrei Sabelfeld. 2018. If this then what?

Controlling flows in IoT apps. In Proceedings of the 2018 ACM SIGSAC conference
on computer and communications security. 1102–1119.

[14] Lei Bu, Qiuping Zhang, Suwan Li, Jinglin Dai, Guangdong Bai, Kai Chen, and

Xuandong Li. 2023. Security Checking of Trigger-Action-Programming Smart

Home Integrations. In Proceedings of the 32nd ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. 639–651.

[15] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric

Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al.

2023. Sparks of artificial general intelligence: Early experiments with gpt-4.

arXiv preprint arXiv:2303.12712 (2023).
[16] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,

Patrick McDaniel, and A Selcuk Uluagac. 2018. Sensitive information tracking

in commodity {IoT}. In 27th USENIX Security Symposium (USENIX Security 18).
1687–1704.

[17] Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated

{IoT} Safety and Security Analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). 147–158.

[18] Yunang Chen, Mohannad Alhanahnah, Andrei Sabelfeld, Rahul Chatterjee, and

Earlence Fernandes. 2022. Practical Data Access Minimization in Trigger-Action

Platforms. In 31st USENIX Security Symposium (USENIX Security 22). USENIX
Association, Boston, MA, 2929–2945. https://www.usenix.org/conference/

usenixsecurity22/presentation/chen-yunang-practical

[19] Yunang Chen, Amrita Roy Chowdhury, Ruizhe Wang, Andrei Sabelfeld, Rahul

Chatterjee, and Earlence Fernandes. 2021. Data privacy in trigger-action systems.

In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 501–518.
[20] Camille Cobb, Milijana Surbatovich, Anna Kawakami, Mahmood Sharif, Lujo

Bauer, Anupam Das, and Limin Jia. 2020. How Risky Are Real Users’ IFTTT

Applets?. In Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020).
USENIX Association, 505–529. https://www.usenix.org/conference/soups2020/

presentation/cobb

[21] Zheran Fang, Weili Han, and Yingjiu Li. 2014. Permission based Android security:

Issues and countermeasures. computers & security 43 (2014), 205–218.

[22] Adrienne Porter Felt, Serge Egelman, and David Wagner. 2012. I’ve got 99

problems, but vibration ain’t one: a survey of smartphone users’ concerns. In

Proceedings of the second ACM workshop on Security and privacy in smartphones
and mobile devices. 33–44.

[23] Earlence Fernandes, Amir Rahmati, Jaeyeon Jung, and Atul Prakash. 2018. De-

centralized action integrity for trigger-action IoT platforms. In Proceedings 2018
Network and Distributed System Security Symposium.

[24] Vijay KGarg. 2015. Introduction to lattice theory with computer science applications.
John Wiley & Sons.

[25] Hamza Harkous, Sai Teja Peddinti, Rishabh Khandelwal, Animesh Srivastava,

and Nina Taft. 2022. Hark: A Deep Learning System for Navigating Privacy

Feedback at Scale. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
2469–2486.

[26] Mitra Bokaei Hosseini, Travis D Breaux, Rocky Slavin, Jianwei Niu, and Xiaoyin

Wang. 2021. Analyzing privacy policies through syntax-driven semantic analysis

of information types. Information and Software Technology 138 (2021), 106608.

[27] Mitra Bokaei Hosseini, John Heaps, Rocky Slavin, Jianwei Niu, and Travis Breaux.

2021. Ambiguity and Generality in Natural Language Privacy Policies. In 2021
IEEE 29th International Requirements Engineering Conference (RE). IEEE, 70–81.

[28] Kai-Hsiang Hsu, Yu-Hsi Chiang, and Hsu-Chun Hsiao. 2019. Safechain: Securing

trigger-action programming from attack chains. IEEE Transactions on Information
Forensics and Security 14, 10 (2019), 2607–2622.

[29] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,

Zhuoqing Morley Mao, Atul Prakash, and SJ Unviersity. 2017. ContexloT: To-

wards providing contextual integrity to appified IoT platforms.. In NDSS, Vol. 2.
San Diego, 2–2.

[30] Klaus Krippendorff. 2018. Content analysis: An introduction to its methodology.
Sage publications.

[31] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and

Weizhu Chen. 2022. What Makes Good In-Context Examples for GPT-3?. In

Proceedings of Deep Learning Inside Out: The 3rd Workshop on Knowledge Ex-
traction and Integration for Deep Learning Architectures, DeeLIO@ACL 2022,
Dublin, Ireland and Online, May 27, 2022, Eneko Agirre, Marianna Apidianaki,

and Ivan Vulic (Eds.). Association for Computational Linguistics, 100–114.

https://doi.org/10.18653/v1/2022.deelio-1.10

[32] Kulani Mahadewa, Yanjun Zhang, Guangdong Bai, Lei Bu, Zhiqiang Zuo, Dileepa

Fernando, Zhenkai Liang, and Jin Song Dong. 2021. Identifying privacy weak-

nesses from multi-party trigger-action integration platforms. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
2–15.

[33] Kulani Tharaka Mahadewa, Kailong Wang, Guangdong Bai, Ling Shi, Jin Song

Dong, and Zhenkai Liang. 2018. HOMESCAN: Scrutinizing Implementations

of Smart Home Integrations. In 2018 23rd International Conference on Engineer-
ing of Complex Computer Systems (ICECCS). 21–30. https://doi.org/10.1109/

ICECCS2018.2018.00011

[34] Jerome H Saltzer and Michael D Schroeder. 1975. The protection of information

in computer systems. Proc. IEEE 63, 9 (1975), 1278–1308.

[35] R.S. Sandhu. 1993. Lattice-based access control models. Computer 26, 11 (1993),
9–19. https://doi.org/10.1109/2.241422

[36] Faysal Hossain Shezan, Kaiming Cheng, Zhen Zhang, Yinzhi Cao, and Yuan Tian.

2020. TKPERM: cross-platform permission knowledge transfer to detect over-

privileged third-party applications. In Network and Distributed Systems Security
(NDSS) Symposium.

[37] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin

Jia. 2017. Some recipes can do more than spoil your appetite: Analyzing the

security and privacy risks of IFTTT recipes. In Proceedings of the 26th International
Conference on World Wide Web. 1501–1510.

[38] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A Gunter. 2019.

Charting the attack surface of trigger-action IoT platforms. In Proceedings of the
2019 ACM SIGSAC conference on computer and communications security. 1439–
1453.

[39] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. 2018. Fear and logging

in the internet of things. In Network and Distributed Systems Symposium.

[40] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D Breaux,

and Jianwei Niu. 2018. Guileak: Tracing privacy policy claims on user input data

for android applications. In Proceedings of the 40th International Conference on
Software Engineering. 37–47.

[41] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc

Le, and Denny Zhou. 2022. Chain of Thought Prompting Elicits Reasoning

in Large Language Models. CoRR abs/2201.11903 (2022). arXiv:2201.11903

https://arxiv.org/abs/2201.11903

[42] Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu, and Blase

Ur. 2019. AutoTap: synthesizing and repairing trigger-action programs using LTL

properties. In 2019 IEEE/ACM 41st international conference on software engineering
(ICSE). IEEE, 281–291.

[43] Lefan Zhang, Weijia He, Olivia Morkved, Valerie Zhao, Michael L Littman, Shan

Lu, and Blase Ur. 2020. Trace2tap: Synthesizing trigger-action programs from

traces of behavior. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 4, 3 (2020), 1–26.

[44] Shiyu Zhang, Juan Zhai, Lei Bu, Mingsong Chen, LinzhangWang, and Xuandong

Li. 2020. Automated generation of ltl specifications for smart home iot using

natural language. In 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 622–625.

9

https://gdpr-info.eu/
https://ifttt.com/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-rar-12
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-rar-12
https://oauth.net/
https://zapier.com/
https://www.appcensus.io/search
http://www.polcomm.org/wp-content/uploads/ICR01022012.pdf
http://www.polcomm.org/wp-content/uploads/ICR01022012.pdf
https://expandedramblings.com/index.php/ifttt-statistics-and-facts/
https://expandedramblings.com/index.php/ifttt-statistics-and-facts/
https://www.usenix.org/conference/usenixsecurity19/presentation/andow
https://www.usenix.org/conference/usenixsecurity19/presentation/andow
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yunang-practical
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yunang-practical
https://www.usenix.org/conference/soups2020/presentation/cobb
https://www.usenix.org/conference/soups2020/presentation/cobb
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.1109/ICECCS2018.2018.00011
https://doi.org/10.1109/ICECCS2018.2018.00011
https://doi.org/10.1109/2.241422
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 7: Expanded keywords for PolicyLint

Type Keyword

with along with, together with, accompany, in addition to

contain composed of, containing

Table 8: Details of Benchmark

Service Name B
†

G D Service Name B G D

7858 0 0 0 9393 0 0 0

8060 0 0 0 1793 0 0 0

3814 0 0 0 3911 0 0 0

4591 0 0 0 5902 0 0 0

6853 0 0 0 2977 0 0 0

7078 0 0 0 2453 0 0 0

6748 0 0 0 9665 0 0 0

6451 0 0 0 7470 0 0 0

5152 0 0 0 1645 0 0 0

9366 0 0 0 2945 0 0 0

1328 0 0 0 1535 0 0 0

4202 0 0 0 1020 0 0 0

1120 0 0 0 6151 0 0 4

0004 0 0 0 0069 0 0 1

7008 0 0 0 0553 0 0 4

2869 0 0 0 3612 4 4 4

8108 0 0 0 8027 1 1 1

9970 0 0 0 0047 1 1 3

9700 0 0 0 0042 2 2 2

6860 0 0 0 6188 1 1 4

5590 0 0 0 0021 6 6 8

2534 0 0 0 0031 3 3 3

9378 0 0 0 0308 5 5 5

9984 0 0 0 1406 1 1 3

3970 0 0 0 9352 8 8 8

6751 0 0 0 4682 13 13 13

0383 0 0 0 8624 1 1 1

9459 0 0 0 2999 6 6 9

5243 0 0 0 3811 2 2 6

9009 0 0 0 9650 9 11 13

9124 0 0 0 6155 10 10 12

7718 0 0 0 6516 2 3 5

†
G: GroundTruth, D: Detector, B: G∩D

A APPENDIX

A.1 Expanded keywords

We list the expanded keywords as a complementary for PolicyLint

in Table 7.

A.2 Details of benchmark

We present a detailed view of our benchmark in Table 8.

A.3 Case Study

Case study 1. Service 4682 bundles different operations “access”,
“change”, “add” and “delete” (your documents) into one group, IFTTT

developers acknowledge that “delete” is not required but they have

to apply based on the permission bundle setting of 4682. Service

6432, 6750 and 7804 also bundle “create”, “modify” and “delete” (your

documents) into one group. Similarly, different objects: “photos”

and “videos” are bundled and have to be applied together regardless

of actual requirement.

Table 9: A comparison among PFCon and other studies

Service-level Applet-level

Operation Object Data-flow Chaining

TAIFU [32] ✓
MinTap [18] ✓
LazyTap [9] ✓
ETAP [19] ✓
MEDIC [14] ✓

DTAP [23]

TKPERM [36]
✓

AutoTap [42]

AutomatedLTL [44]
✓ ✓

PFCon ✓ ✓

Case study 2. Template example:

The template content:

1. Identify your home appliances.

2. Access to your dryer (service name).

3. Monitor appliance.

4. Control appliance.

5. Get and modify settings.

6. Forward events.

In this situation, the service cookit and cooktop don’t fit in the

template and are detected with permission excess issues. Template

usage also happens to another company GE that provides smart

home services like water heater, washer, oven, refrigerator, dryer,

air conditioner and dishwasher.

Company G has integrated multiple services: G calendar, G as-

sistant, G contacts, G docs, G drive, G sheets, G tasks and G wifi

into IFTTT. G docs, drive and sheets share very similar pattern and

all contain requested permission “Share and stop sharing your G

Drive files (G Docs documents/spreadsheets) with others”, but this

permission is not required by IFTTT. Even worse, all services (i.e.

cleaning robot , coffee machine, dishwasher, dryer etc) under the

company H share one OAuth template which only changes the

service name.

Case study 3. Service 6460 only exposes trigger apis (read per-

mission required) for IFTTT, but “control your other smart home

devices” (read and action permission) is requested. This happens

frequently for IoT devices due to the poor organized permission sys-

tem, developers is unable to provide more fine-grained permission

compared with Software like Android or Cloud Storage. Service

3828 (one famous online banking) provides “Freeze and unfreeze

your card” (highly sensitive operation) for IFTTT but actually such

dangerous permission are not required. From this case study, we

observe that even financial company would bring in such security

issue. Considering its severe effects being manipulated, this must

raise an alert and be handled properly by both IFTTT and service

providers.

A.4 Comparison with other work

The comparison with reference to other work is listed in Table 9.

10

	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Background and a Running Example
	2.2 Threat Model and Scope
	2.3 Permission Excess Definitions

	3 Our Approach
	3.1 Overview of PFCon
	3.2 Artifact Collection
	3.3 Permission Extraction
	3.4 Permission Excess Detection

	4 Evaluation
	4.1 Dataset
	4.2 RQ1: Permission Excess Landscape
	4.3 RQ2: Performance Evaluation
	4.4 RQ3: Root Causes for Permission Excess

	5 Related Work
	6 Conclusion
	References
	A Appendix
	A.1 Expanded keywords
	A.2 Details of benchmark
	A.3 Case Study
	A.4 Comparison with other work

