
Under review as a conference paper at ICLR 2023

EXPHORMER: SCALING GRAPH TRANSFORMERS
WITH EXPANDER GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph transformers have emerged as a promising architecture for a variety of
graph learning and representation tasks. Despite their successes, though, it re-
mains challenging to scale graph transformers to large graphs while maintaining
accuracy competitive with message-passing networks. In this paper, we introduce
Exphormer, a framework for building powerful and scalable graph transformers.
EXPHORMER consists of a sparse attention mechanism based on expander graphs,
whose mathematical characteristics, such as spectral expansion, pseduorandom-
ness, and sparsity, yield graph transformers with complexity only linear in the
size of the graph, while allowing us to prove desirable theoretical properties of the
resulting transformer models. We show that incorporating EXPHORMER into the
recently-proposed GraphGPS framework produces models with competitive em-
pirical results on a wide variety of graph datasets, including state-of-the-art results
on three datasets. We also show that EXPHORMER can scale to datasets on larger
graphs than shown in previous graph transformer architectures.

1 INTRODUCTION

Graph learning has become an important and popular area of study that has yielded impressive
results on a wide variety of graphs and tasks, including molecular graphs, social network graphs,
knowledge graphs, and more. While much research around graph learning has focused on graph
neural networks (GNNs), which are based on local message-passing, a more recent approach to
graph learning that has garnered much interest involves the use of graph transformers (GTs). Graph
transformers largely operate by encoding graph structure in the form of a soft inductive bias. These
can be viewed as a graph adaptation of the Transformer architecture (Vaswani et al., 2017) that are
successful in modeling sequential data in applications such as natural language processing.

Graph transformers allow nodes to attend to all other nodes in a graph, allowing for direct model-
ing of long-range interactions, in contrast to GNNs. This allows them to avoid several limitations
associated with local message passing GNNs, such as oversmoothing (Oono & Suzuki, 2020), over-
squashing (Alon & Yahav, 2021; Topping et al., 2022), and limited expressivity (Morris et al., 2019;
Xu et al., 2018). The promise of graph transformers has led to a large number of different graph
transformer models that have been proposed in recent years (Dwivedi & Bresson, 2020; Kreuzer
et al., 2021; Ying et al., 2021; Mialon et al., 2021). A major issue with graph transformers is the
need to identify the location and structure of nodes within the graph, which has also led to a number
of proposals for positional and structural encodings for graph transformers (Lim et al., 2022).

One major challenge for graph transformers is their poor scalability, as the standard global attention
mechanism incurs time and memory complexity of O(|V |2), quadratic in the number of nodes in the
graph. While this cost is often acceptable for datasets with small graphs (e.g., molecular graphs),
it can be prohibitively expensive for datasets containing larger graphs, where graph transformer
models often do not fit in memory even for high-memory GPUs, and hence would require much
more complex and slower schemes to apply. Moreover, despite the expressivity advantages of graph
transformer networks (Kreuzer et al., 2021), graph transformer-based architectures have often lagged
message-passing counterparts in accuracy in many practical settings.

A breakthrough came about with the recent advent of GraphGPS (Rampásek et al., 2022), a modu-
lar framework for constructing graph transformers by mixing and matching various positional and
structural encodings with local message passing and a global attention mechanism. To overcome

1

Under review as a conference paper at ICLR 2023

the quadratic complexity of the “dense” full transformer, they also incorporate “sparse” attention
mechanisms, like Performer (Choromanski et al., 2021) or Big Bird (Zaheer et al., 2020). These
sparse trasnformer mechanisms are an attempt at improving the scalability. This combination of
Transformers and GNNs achieves state-of-the-art performance on a wide variety of datasets.

Despite great successes, the aforementioned works leave open some important questions. For
instance, unlike pure attention-based approaches (e.g., SAN, Graphormer), GraphGPS combines
transformers with message passing, which brings into question how much of the realized accuracy
gains are due to transformers themeselves. Indeed, Rampásek et al.’s ablation studies showed that
the impact of the transformer component of the model is limited: on a number of datasets, higher
accuracies can be achieved in the GraphGPS framework by not using attention at all (rather than,
say, BigBird). The question remains, then, of whether transformers in their own right can obtain
results on par with message-passing based approaches while scaling to large graphs.

Another major question concerns graph transformers’ scalability. While BigBird and Performer are
linear attention mechanisms, they still incur computational overhead that dominates the per-epoch
computation time for moderately-sized graphs. The GraphGPS work tackles datasets with graphs of
up to 5,000 nodes, a regime in which the full-attention transformer is in fact computationally faster
than many sparse linear-attention mechanisms. Perhaps more suitable sparse attention mechanisms
could enable their framework to operate on even larger graphs.

Relatedly, existing sparse attention mechanisms have largely been designed for sequences, which
are natural for language tasks but behave quite differently from graphs. From the ablation studies,
BigBird and Performer are not as effective on graphs, unlike in the sequence world. Thus, it is natural
to ask whether one can design sparse attention mechanisms more tailored to learning interactions on
general graphs.

Our contributions. We design a sparse attention mechanism, EXPHORMER, that has computa-
tional cost linear in the number of nodes and edges. We introduce expander graphs as a powerful
primitive in designing scalable graph transformer architectures. Expander graphs have several desir-
able properties — small diameter, spectral approximation of a complete graph, good mixing prop-
erties — which make them a suitable ingredient in a sparse attention mechanism. As a result, we
are able to show that EXPHORMER, which combines expander graphs with global nodes and local
neighborhoods, spectrally approximates the full attention mechanism with only a small number of
layers, and has universal approximation properties.

Furthermore, we show the efficacy of EXPHORMER within the GraphGPS framework. That is, com-
bining EXPHORMER with GNNs, helps achieve good performance on a number of datasets, includ-
ing state-of-the-art results on CIFAR10, MNIST, and PATTERN. On many datasets, EXPHORMER
is often even more accurate than full attention models, indicating that our attention scheme perhaps
provides good inductive bias for places the model “should look,” while being more efficient and less
memory-intensive. Furthermore, EXPHORMER can scale to larger graphs than previously shown —
we demonstrate that a pure EXPHORMER model can achieve strong results on ogbn-arxiv, a chal-
lenging transductive problem on a citation graph with over 160K nodes and a million edges, a setting
in which full transformers are prohibitively expensive due to memory constraints.

2 RELATED WORK

Graph Neural Networks (GNNs). Early works in the area of graph learning and GNNs include
the development of a number of architectures such as GCN (Defferrard et al., 2016; Kipf & Welling,
2017), GraphSage (Hamilton et al., 2017), GIN (Xu et al., 2018), GAT (Veličković et al., 2018),
GatedGCN (Bresson & Laurent, 2017), and more. GNNs are based on a message-passing archi-
tecture that generally confines their expressivity to the limits of the 1-Weisfeiler-Lehman (1-WL)
isomorphism test (Xu et al., 2018).

A number of recent papers have sought to augment GNNs to improve their expressivity. For instance,
one approach has been to use additional features that allow nodes to be distinguished – such as
using a one-hot encoding of the node (Murphy et al., 2019) or a random scalar feature Sato et al.
(2021) – or to encode positional or structural information of the graph – e.g., skip-gram based
network embeddings (Qiu et al., 2018), substructure counts (Bouritsas et al., 2020), or Laplacian

2

Under review as a conference paper at ICLR 2023

eigenvectors (Dwivedi et al., 2021). Another direction has been to modify the message passing rule
to allow the network to take further advantage of the graph structure, including the directional graph
networks (DGN) of Beaini et al. (2021) that use Laplacian eigenvectors to define directional flows
that are used for anisotropic message aggregation, or – to modify the underlying graph over which
message passing occurs, higher-order GNNs (Morris et al., 2019) or the use of substructures such as
junction trees (Fey et al., 2020) and simplicial complexes (Bodnar et al., 2021).

Graph transformer architectures. Attention mechanisms have been extremely successful in se-
quence modeling since the seminal work of Vaswani et al. (2017). The GAT architecture (Veličković
et al., 2018) proposed using an attention mechanism to determine how a node aggregates informa-
tion from its neighbors. It does not use a positional encoding for nodes, limiting its ability to exploit
global structural information. GraphBert (Zhang et al., 2020) uses the graph structure to determine
an encoding of the nodes, but not for the underlying attention mechanism.

Graph transformer models typically operate on a fully-connected graph in which every pair of nodes
is connected, regardless of the connectivity structure of the original graph. Spectral Attention
Networks (SAN) (Kreuzer et al., 2021) make use of two attention mechanisms, one on the fully-
connected graph and one on the original edges of the input graph, while using Laplacian positional
encodings for the nodes. Graphormer (Ying et al., 2021) uses a single dense attention mechanism but
adds structural features in the form of centrality and spatial encodings. Meanwhile, GraphiT (Mialon
et al., 2021) incorporates relative positional encodings based on diffusion kernels.

GraphGPS (Rampásek et al., 2022) proposed a general framework for combining message-passing
networks with attention mechanisms, while allowing for the mixing and matching of positional and
structural embeddings. Specifically, the framework also allows for sparse transformer models like
BigBird (Zaheer et al., 2020) and Performer (Choromanski et al., 2021).

Sparse Transformers. Standard (dense) transformers have quadratic complexity in the number of
tokens, which limits their scalability to extremely long sequences. By contrast, sparse transformer
models improve computational and memory efficiency by restricting the attention pattern, i.e., the
pairs of nodes that can interact with each other. In addition to BigBird and Performer, there have
been a number of other proposals for sparse transformers; Tay et al. (2020) provide a survey.

3 THE EXPHORMER ATTENTION MECHANISM

This section describes EXPHORMER, our sparse generalized attention mechanism that can be used
in individual layers of a graph transformer architecture. We begin by describing graph attention
mechanisms in general.

3.1 ATTENTION MECHANISM ON GRAPHS

An attention mechanism on n tokens can be modeled by a directed graph H on [n] = {1, 2, . . . , n},
where a directed edge from i to j indicates a direct interaction between tokens i and j, i.e., an
inner product that will be computed by the attention mechanism. More precisely, a transformer
block can be viewed as a function on the d-dimensional embeddings for each of n tokens, mapping
from Rd×n to Rd×n. Let X = (x1,x2, . . . ,xn) ∈ Rd×n. A generalized (dot-product) attention
mechanism ATTNH : Rd×n → Rd×n with attention pattern given by H is defined by

ATTNH(X):,i = xi +

h∑
j=1

Wj
OW

j
V XNH(i) · σ

((
Wj

KXNH(i)

)T (
Wj

Qxi

))
,

where h is the number of heads and m is the head size, while Wj
K ,Wj

Q,W
j
V ∈ Rm×d and Wj

O ∈
Rd×m. (The subscript K is for “keys,” Q for “queries,” V for “values,” and O for “output.”) Here
XNH(i) denotes the submatrix of X obtained by picking out only those columns corresponding to
elements of NH(i), the neighbors of i in H . We can see that the total number of inner product
computations for all i ∈ [n] is given by the number of edges of H . A (generalized) transformer
block consists of ATTNH followed by a feedforward layer:

FF(X) = ATTNH(X) +W2 · ReLU(W1 · ATTNH

(
X) + b11

T
n

)
+ b21

T
n ,

3

Under review as a conference paper at ICLR 2023

(a) (b) (c) (d)

Figure 1: The components of EXPHORMER: (a) shows local neighborhood attention, i.e., edges of
the input graph. (b) shows an expander graph with degree 3. (c) shows global attention with a single
virtual node. (d) All of the aforementioned components are combined into a single interaction graph
that determines the attention pattern of EXPHORMER.

where W1 ∈ Rr×d, W2 ∈ Rd×r, b1 ∈ Rr, and b2 ∈ Rd.

In the standard setting, the n tokens are part of a sequence (e.g., language applications). However, we
are concerned with the graph transformer setting in which the tokens are nodes of some underlying
graph G = (V,E) with V = [n]. The attention computation is nearly identical, except that one can
also optionally augment it with edge features, as is done in SAN (Kreuzer et al., 2021):

ATTNH(X):,i = xi +

h∑
j=1

Wj
OW

j
V XNH(i) · σ

((
Wj

EENH(i) ⊙Wj
KXNH(i)

)T (
Wj

Qxi

))
,

where Wj
E ∈ Rm×dE , ENH(i) is the dE×|NH(i)| matrix whose columns are dE-dimensional edge

features for the edges connected to node i, and ⊙ denotes element-wise multiplications.

The most typical cases of graph transformers use full (dense) attention, where every token attends
to every other node: H is the fully-connected directed graph. As this results in computational
complexity O(n2) for the transformer block, which is prohibitively expensive for large graphs, we
wish to replace full attention with a sparse attention mechanism, where H has o(n2) edges – ideally,
O(n).

A number of sparse attention mechanisms have been proposed to address the aforementioned issue
(see Tay et al., 2020), but the vast majority are designed specifically for functions on sequences.
EXPHORMER, on the other hand, is a graph-centric sparse attention mechanism that makes use of
the underlying structure of the input graph G. As we will see, EXPHORMER is perhaps most similar
in design to the BIGBIRD architecture (Zaheer et al., 2020) designed for functions on sequences, but
takes advantage of the underlying graph structure.

We can either use EXPHORMER layers in a pure graph transformer model, or in combination with a
message passing network using the GraphGPS framework.

3.2 THE EXPHORMER ARCHITECTURE

We now describe the details of the construction of EXPHORMER, an expander-based sparse attention
mechanism for graph transformers with O(|V |+ |E|) computation, where G = (V,E) is the under-
lying input graph. The EXPHORMER architecture constructs an interaction graph H that consists of
three main components, as shown in Figure 1. The construction always has bidirectional edges, and
so H can be viewed as an undirected graph. The mechanism uses three types of edges:

1. Expander graph attention: The main building block of our architecture is the use of
edges from a random expander graph, described in more detail shortly. These graphs have
several useful theoretical properties related to spectral approximation and random walk
mixing (see Section 4), which allow propagating information between pairs of nodes that
are distant in the input graph G without connecting all pairs of nodes. In particular, we
use a regular expander graph of constant degree, which allows the number of edges to be
just O(|V |). The process we use to construct a random expander graph is described in
Appendix C.

2. Local neighborhood attention: Another desirable property to capture is locality. Graphs
carry much more topological structure than sequences, and the neighborhoods of individual

4

Under review as a conference paper at ICLR 2023

nodes carry a lot of information about connectivity. Thus, we model local interactions by
allowing each node v to attend to every other node that is an immediate neighbor of v
in G: that is, H includes the input graph edges E as well as their reverses, introducing
O(|E|) interaction edges. One generalization would be to allow direct attention within
k-hop neighborhoods, but this might introduce a superlinear number of interactions on
general graphs.

3. Global attention: The final component is global attention, whereby a small number of
virtual nodes are added to the interaction graph, and each such node is connected to all the
non-virtual nodes. These nodes enable a global “storage sink” and help prove universality
properties of EXPHORMER. We will generally add a constant number of virtual nodes, in
which case the total number of edges due to global attention will be O(|V |).

The model uses learnable embeddings for expander and global connection edge features, and virtual
nodes features. Dataset edge features are used for the local neighborhood edge features.

Remark 3.1 EXPHORMER has some conceptual similarities with BigBird, as mentioned previously.
For instance, we also make use of virtual global attention nodes, corresponding to BIGBIRD-ETC.

However, our approach departs from that of BigBird in some important ways. While BigBird uses
w-width “window attention” to capture locality of reference, we use local neighborhood attention to
capture locality and graph topology. In particular, the interaction graph due to window attention in
BigBird can be viewed as a Cayley graph on Zn, which is sequence-centric, while EXPHORMER is
graph-centric and, therefore, uses the structure of the input graph itself to capture locality. BigBird,
as implemented for graphs by Rampásek et al. (2022), instead simply orders the graph nodes in an
arbitrary sequence and uses windows within that sequence.

Both BigBird and EXPHORMER also make use of a random attention model. While BigBird uses an
Erdős-Rényi graph on |V | nodes, our approach is to use a d-regular expander for fixed constant d.
The astute reader may recall that a Erdős-Rényi graph G(n, p) has spectral expansion properties
for large enough p. However, it is known that p = logn

n is the connectivity threshold, i.e., for
p < (1− ϵ) logn

n , G(n, p) is almost surely a disconnected graph. Therefore, in order to obtain even
a connected graph in the Erdős-Rényi model – let alone one with expansion properties – one would
need p = Ω

(
logn
n

)
, giving superlinear complexity for the number of edges. BigBird uses p =

Θ(1/n), keeping a linear number of edges but losing expansion properties. Our expander graphs,
by contrast, allow both a linear number of edges and guaranteed spectral expansion properties.

We will see in the practical experiments of Section 5 that EXPHORMER-based models often substan-
tially outperform BigBird-based equivalents, with fewer parameters.

Remark 3.2 Previous graph-oriented transformers have, naturally, used the graph structure in
their attention mechanisms. The SAN architecture (Kreuzer et al., 2021) uses two attention mecha-
nisms, one based on the input edges E and one based on all the other edges not present in the input
graph. By using a single attention mechanism, EXPHORMERs introduce fewer additional parame-
ters, allowing for more compact models that also significantly outperform SAN in our experiments.

4 THEORETICAL PROPERTIES OF EXPHORMER

EXPHORMER is based on expander graphs, which have a number of properties that make them
suitable as a key building block of our approach. In this section, we describe relevant properties of
expander graphs along with their implications for EXPHORMERs.

4.1 BASICS OF EXPANDER GRAPHS AND LAPLACIANS

For simplicity, let us consider d−regular graphs (where every node has d neighbors). Suppose G is
a d-regular undirected graph on n vertices. Let AG be the n× n adjacency matrix of G. It is known
that AG has n real eigenvalues d = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −d. The graph G is said to be an
ϵ-expander if max{|λ2|, |λn|} ≤ (1− ϵ)d (Alon, 1986).

5

Under review as a conference paper at ICLR 2023

Intuitively speaking, expander graphs are sparse approximations of complete graphs. It is known
that expanders have several useful properties (viz., edge expansion and mixing properties), which
make the graph ”well-connected”. A higher ϵ corresponds to better expansion properties.

For example, in an expander graph, the diameter, O(logd n), is as low as possible for a given number
of edges without a bottleneck cut (Alon, 1986), which is defined as:∣∣E ∩ S × S

∣∣ ≥ (1− ϵ)
d|S||S|

n
. (1)

4.2 EXPANDER GRAPHS AS APPROXIMATORS OF COMPLETE GRAPHS

We now outline some important properties of an expander-based attention mechanism. Roughly
speaking, our goal is to replace a densely connected graph, i.e., a complete graph, with Θ(n2) edges
by a graph with o(n2), preferably O(n), edges that preserves certain properties of the complete
graph. We show that suitable expander graphs, in fact, achieve this.

4.2.1 SPECTRAL PROPERTIES

A useful tool to study expanders is the Laplacian matrix of a graph. Letting DG denote the n × n
diagonal matrix whose i-th diagonal entry is the degree of the i-th node, we define LG = DG −AG

to be the Laplacian of G. It is known that LG captures several important spectral properties of the
graph. The first useful property of complete graphs that expander graphs (approximately) preserve
is the spectral decomposition of the Laplacian — per this well known theorem in spectral graph
theory.

Theorem 4.1 A d-regular ϵ-expander G on n vertices spectrally approximates the complete graph
Kn on n vertices, i.e., 1

(1− ϵ)
1

n
LK ⪯ 1

d
LG ⪯ (1 + ϵ)

1

n
LK .

Spectral approximation is known to preserve the cut structure in graphs. As a result, replacing a
dense attention mechanism with a sparse attention mechanism along the edges of an expander graph
retains spectral properties (viz., cuts, vertex expansion, etc.) .

4.2.2 MIXING PROPERTIES

Another property of expanders is that random walks mix well. Let G = (V,E) be a d-regular ϵ-
expander. Consider a random walk v0, v1, v2, . . . on G, where v0 is chosen according to an initial
distribution π(0), and then each subsequent vt+1 is one of the d neighbors of vt chosen uniformly at
random. Then each vt is distributed according to the probability distribution π(t) : V → R+, given
recursively by π(t+1) = D−1

G AGπ
(t). It turns out that after a logarithmic number of steps, a random

walk from a starting probability distribution on the vertices is close to uniformly distributed along
all nodes of the graph.

Lemma 4.2 (Alon, 1986) Let G = (V,E) be a d-regular ϵ-expander graph on n = |V | nodes. For
any initial distribution π(0) : V → R+ and any δ > 0, π(t) : V → R+ satisfies

∥π(t) − 1/n∥1 ≤ δ,

as long as t = Ω
(
1
ϵ log(n/δ)

)
, i.e., the resulting distribution over the nodes of G of a random walk

with t walks starting from the distribution π(0) is δ-close in L1-norm to the uniform distribution.

In an attention mechanism of a transformer, one can consider the graph of pairwise interactions (i.e.,
i is connected to j if i and j attend to each other). If the attention mechanism is dense, then each
node is connected to every other node and it is trivial to see that every pair of nodes interacts with
each other in a single transformer layer. In a sparse attention mechanism, on the other hand, some
pairs of nodes are not directly connected, meaning that a single transformer layer will not model
interactions between all pairs of nodes. However, if we stack transformer layers on top of each

1Notation: given matrices A and B, we say that A ⪯ B if B −A is a positive semi-definite matrix.

6

Under review as a conference paper at ICLR 2023

other, the stack will be able to model longer range interactions. In particular, a consequence of the
above lemma is that if our sparse attention mechanism is modeled after an ϵ-expander graph, then
stacking at least t = 1

ϵ log(n/δ) layers will model “most” pairwise interactions between nodes.

A related property concerns the diameter of expander graphs. One can, in fact, show that the diam-
eter of a regular expander graph is logarithmic in the number of nodes, asymptotically.

Theorem 4.3 (Alon, 1986) Suppose G = (V,E) is a d-regular ϵ-expander graph on n vertices.
Then, for every vertex v and k ≥ 0, the k-hop neighborhood B(v, r) = {w ∈ V : d(v, w) ≤ k} has

|B(v, r)| ≥ min{(1 + c)k, n}

for some constant c > 0 depending on d, ϵ. In particular, we have that diam(G) = Od,ϵ(log n).

As a consequence, we obtain the following result, which shows that using logarithmically many
successive transformer layers allows each node to propagate information to every node.

Corollary 4.4 If a sparse attention mechanism on n nodes is modeled as a d-regular ϵ-expander
graph, then stacking Od,ϵ(log n) transformer layers models all pairwise node interactions.

4.3 EXPHORMER-BASED TRANSFORMERS ARE UNIVERSAL APPROXIMATORS

While the expander graph component of EXPHORMER guarantees that O(log n) graph transformer
layers are enough to allow each node to interact with every other node, it may still be desirable
to enable node interactions with a smaller number of layers (e.g., O(log n) can still be infeasible
when the number of nodes, n, is extremely large). The global attention component allows this by
essentially serving as a “short circuit” by which every node can interact with every other node using
just two graph transformer layers.

The global attention component also helps us to obtain a universal approximation property of EX-
PHORMER. In particular, continuous functions f : [0, 1]d×|V | → Rd×|V | can be approximated to
desired accuracy by an EXPHORMER network as long as there is at least one virtual node. We defer
the details to the appendix (see Appendix D).

5 EXPERIMENTS

In this section, we evaluate the empirical performance of graph transformer models based on
EXPHORMER on a wide variety of graph datasets with graph prediction and node prediction
tasks Dwivedi et al. (2020); Hu et al. (2020); Freitas et al. (2021). We perform ablation studies
on eight benchmark datasets, including image-based graph datasets (CIFAR10, MNIST), a molecu-
lar dataset (ogbg-molpcba), synthetic datasets (PATTERN, CLUSTER), and datasets based on code
graphs (ogbg-code2, MalnetTiny). We also demonstrate the use of EXPHORMER on a large citation

Model CIFAR10 MalNet-Tiny MNIST CLUSTER PATTERN
Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑

GCN Kipf & Welling (2017) 55.710±0.381 81.0 90.705±0.218 68.498 ± 0.976 71.892 ± 0.334
GIN Xu et al. (2018) 55.255±1.527 88.98±0.557 96.485±0.252 64.716 ± 1.553 85.387 ± 0.136
GAT Veličković et al. (2018) 64.223±0.455 92.1 ±0.242 95.535±0.205 70.587 ± 0.447 78.271 ± 0.186
GatedGCN Bresson & Laurent (2017);

Dwivedi et al. (2020)
67.312±0.311 92.23±0.65 97.340±0.143 73.840 ± 0.326 85.568 ± 0.088

PNA Corso et al. (2020) 70.35±0.63 – 97.94±0.12 – –
DGN Beaini et al. (2021) 72.838±0.417 – – – 86.680±0.034

CRaWl Toenshoff et al. (2021) 69.013±0.259 – 97.944±0.050 – –
GIN-AK+ Zhao et al. (2022) 72.19±0.13 – – – 86.850±0.057

SAN Kreuzer et al. (2021) – – – 76.691±0.65 86.581±0.037
K-Subgraph SAT Chen et al. (2022) – – – 77.856±0.104 86.848±0.037
EGT-SPE(+DO) Hussain et al. (2021) 67.004±0.624 – 97.722±0.222 77.909±0.245 86.730±0.036
GraphGPS Rampásek et al. (2022) 72.298±0.356 93.50±0.41 98.051±0.126 77.95±0.305 90.324±0.132
EXPHORMER 72.884±0.166 92.24±0.291 98.238 ± 0.039 77.295 ± 0.060 88.079±0.104
MPNN+EXPHORMER 74.754±0.194 93.16±0.137 98.414 ± 0.038 78.024±0.041 90.522±0.030

Table 1: Comparison of EXPHORMER with baselines on various datasets. Best results are colored in
first, second, third.

7

Under review as a conference paper at ICLR 2023

Model #Layers Hidden #Positional Expander #Parameters Time Accuracy
layers encoding degree Epch/Total

GPS-MPNN: GatedGCN 3 52 LapPE - 79,654 43s/1.18h 69.95± 0.499
GPS: Transformer 3 52 LapPE - 70,762 40s/1.11h 68.86± 1.138
GPS: Transformer + MPNN 5 40 ESLapPE - 111,735 104s/2.89h 73.53± 0.238
GPS: Transformer + MPNN 3 52 LapPE - 112,726 62s/1.72h 72.31± 0.344
GPS: Performer + MPNN 5 40 ESLapPE - 283,935 132s/3.65h 70.18± 0.095
GPS: Performer + MPNN 3 52 LapPE - 239,554 77s/2.14h 70.67± 0.338
GPS: BigBird + MPNN 5 40 ESLapPE - 128,335 243s/6.75h 70.51± 0.256
GPS: BigBird + MPNN 3 52 LapPE - 129,418 145s/4h 70.48± 0.106

EXPHORMER 5 44 ESLapPE 5 84,134 64s/1.78h 72.33± 0.155
EXPHORMER 7 44 ESLapPE 5 119,022 80s/2.23h 72.88± 0.166
EXPHORMER + MPNN 5 40 ESLapPE 5 111,095 115s/3.21h 74.75± 0.194
EXPHORMER + MPNN 5 44 ESLapPE 5 133,819 114s/3.19h 75.03 ± 0.186

Table 2: Results with varying attention and MPNNs on CIFAR10. EXPHORMER with MPNN pro-
vides the highest accuracy. Also, pure transformer models based on EXPHORMER (without the use
of MPNNs) are comparable.

network, ogbn-arxiv. A full description of the datasets is found in A. Experiments for ogbn-arxiv
have been performed on NVIDIA A100 GPUs, while all other experiments were on NVIDIA V100s.

5.1 COMPARISON OF EXPHORMER-BASED MODELS TO BASELINES

We apply EXPHORMER to the modular GraphGPS framework (Rampásek et al., 2022), which
constructs graph transformer models by composing attention mechanisms with message-passing
schemes, together with a choice of positional and structural encodings. We also show the results for
pure attention EXPHORMER-only models that do not use a message passing network. Table 1 shows
results on five datasets from the Benchmarking GNNs collection (Dwivedi et al., 2020), along with
MalNet-Tiny (Freitas et al., 2021). Using an EXPHORMER-based graph transformer with message-
passing in the GraphGPS framework yields competitive results, including state-of-the-art (SOTA)
on three of the datasets. Notably, our EXPHORMER models outperform not only the MPNN base-
lines but also recent full (dense) attention graph transformer models (i.e., SAN and full transformer
models in the GraphGPS paper). Tables 2 and 3 show the EXPHORMER architecture have are sig-
nificantly fewer training parameters but provide much better accuracy, suggesting that the structured
sparsity in EXPHORMER can offer regularization advantages as well as time and memory scalability.

Table 5 (see Appendix B.1) gives similar comparisons for two datasets from the OGB collection Hu
et al. (2020): ogbg-molpcba and ogbg-code2. Our models are competitive with existing baselines.
Our mildly worse performance on ogb-molpcba is perhaps not surprising, given that this is a molec-
ular dataset consisting of small graphs (an average of 26 nodes). On small graphs, the attention
pattern in EXPHORMER is unlikely to be very different from that of the dense attention mechanism;
thus the scope for us to improve is limited. Indeed, the greatest improvements from EXPHORMER
are on datasets where the average number of nodes is larger, e.g., around 100 or more nodes.

5.2 COMPARISON OF ATTENTION MECHANISMS

We now discuss a series of experiments to isolate the performance of pure attention EXPHORMER
model compared to other attention mechanisms, which will help isolate the attention mechanism
used in the model. For each dataset, we take our EXPHORMER-based models and compare them to
models obtained by replacing the EXPHORMER attention mechanism with other dense (full trans-
former) and sparse (BigBird, Performer) attention mechanisms. As different mechanisms can re-
quire drastically different numbers of parameters, we train two models per mechanism: one in which
all hyperparameters are kept the same but vary the attention mechanisms; and another in which the
hyperparameters are adjusted in order to keep the total number of parameters of the model roughly
the same.

Results for the CIFAR10 dataset are in Table 2, the other datasets are in the Appendix. EX-
PHORMER-based GPS models (with both EXPHORMER attention and MPNNs) outperform com-
parable models where the attention mechanism is replaced (by full attention or a sparse attention
model such as BigBird and Performer). Similar comparisons on other datasets are in Appendix B.3;
again, EXPHORMER outperforms other sparse attention mechanisms while either surpassing or per-
forming comparably to full (dense) attention.

8

Under review as a conference paper at ICLR 2023

5.3 PURE TRANSFORMER ARCHITECTURES

The results presented thus far naturally lead to questions: (1.) how much of the performance gain of
EXPHORMER-based GPS models is attributable to the attention component as opposed to the MPNN
component, and (2.) whether “pure” sparse transformer models can achieve good performance by
itself. Indeed, Rampásek et al. (2022) present ablation studies showing that removing the MPNN
component from the proposed GraphGPS models results in significantly worse performance. Simi-
larly, Kreuzer et al. (2021) offer two variants of their SAN architecture, the “full” variant that uses
dense attention, as well as a “sparse” variant that allows nodes to attend only to direct neighbors in
the input graph—their ablation results show that their “sparse” variant performs significantly worse
than the “full” variant, often underperforming pure MPNNs.

In order to address these questions, we also train pure EXPHORMER-based sparse transformer mod-
els that use only attention without any message passing. The results for CIFAR10 in Table 2 show
that the pure EXPHORMER models (labeled “Exphormer”), in fact, outperform pure transformer
GPS models as well as most GPS models that use MPNNs. The main exception is the dense atten-
tion “Transformer+MPNN” model; however our pure EXPHORMER model performs competitively.
Similar comparisons on other datasets are shown in Appendix B.3.

5.4 SCALABILITY TO LARGE-SCALE GRAPHS

One of the difficulties with graph transformer architectures has been their poor scalability to larger
graphs with thousands of nodes. Dense attention mechanisms, like SAN and Graphormer, with
quadratic memory complexity and time complexity restrict their applicability to datasets on graphs
with a small number of nodes.

GraphGPS Rampásek et al. (2022) used sparse attention mechanisms but their architecture handles
graphs of up to about 5,000 nodes, in MalNet-Tiny (Freitas et al., 2021). Again, EXPHORMER-based
models provide improved accuracy, as shown in Tables 1 and 10.

Our work allows us to extend graph transformer architectures to far larger graphs, with hundreds of
thousands of nodes. We show that EXPHORMER architecture can scale, with competetive accuracy,
to ogbn-arxiv (Hu et al., 2020), a transductive dataset consisting of a single large graph of the citation
network of over 160K arXiv papers, containing over a million edges. Specifically, we achieve a
test accuracy of 0.7196 using the EXPHORMER architectures. At the time of writing, a relevant
leaderboard ows 0.7637 as the highest reported test accuracy, based on adaptive graph diffusion
networks (Zhao et al., 2021). Table 3 shows the relative performance of EXPHORMER compared to
other Transformers. A dense full transformer does not even fit in memory on an NVidia A100 GPU
(even with only 2 layers and 32 hidden dimensions). The best accuracy for other sparse models
was found with networks of 3 hidden layers and 96 hidden dimensions. Notice that BigBird and
Performer have significantly longer epoch times and worse performance compared to EXPHORMER
with degree 3 expander edges.

Model Accuracy Epoch times #Parameters
BigBird 55.19 ± 0.16 16.745 296,968
Performer 55.24 ± 0.05 8.1905 276,808
EXPHORMER 71.51 ± 0.04 2.097 267,976
EXPHORMER+GCN 71.96 ± 0.12 0.9652 268,264

Table 3: Comparison of attention mechanisms on the ogbn-arxiv dataset.

6 CONCLUSION

EXPHORMER is a new sparse graph transformer architecture built on expander graphs. We have
shown that the relevant mathematical properties of expander graphs make EXPHORMER a suitable
choice for graph learning, with time and memory complexity linear in the size of the graph. Using
EXPHORMER in the GraphGPS framework allows us to obtain state-of-the-art empirical results on
a number of datasets while also allowing graph transformers to scale to datasets on large graphs, a
realm which has proved elusive for graph transformers in the past.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

Noga Alon. Explicit expanders of every degree and size. Comb., 41(4):447–463, 2021. doi: 10.
1007/s00493-020-4429-x. URL https://doi.org/10.1007/s00493-020-4429-x.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
i80OPhOCVH2.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Liò. Directional graph networks. In International Conference on Machine Learning (ICML), pp.
748–758. PMLR, 2021.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural Infor-
mation Processing Systems, 34, 2021.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improv-
ing graph neural network expressivity via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252, 2020.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph rep-
resentation learning. arXiv:2202.03036, 2022.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with per-
formers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=Ua6zuk0WRH.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems
(NeurIPS), 33, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29:3844–3852, 2016.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
CoRR, abs/2012.09699, 2020. URL https://arxiv.org/abs/2012.09699.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. CoRR, abs/2003.00982, 2020. URL https://arxiv.
org/abs/2003.00982.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical inter-message passing for learning
on molecular graphs. arXiv preprint arXiv:2006.12179, 2020.

Scott Freitas, Yuxiao Dong, Joshua Neil, and Duen Horng Chau. A large-scale database
for graph representation learning. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Pro-
ceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/5fd0b37cd7dbbb00f97ba6ce92bf5add-Abstract-round1.html.

10

https://doi.org/10.1007/s00493-020-4429-x
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://arxiv.org/abs/2012.09699
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2003.00982
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/5fd0b37cd7dbbb00f97ba6ce92bf5add-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/5fd0b37cd7dbbb00f97ba6ce92bf5add-Abstract-round1.html

Under review as a conference paper at ICLR 2023

Joel Friedman. A proof of Alon’s second eigenvalue conjecture. In Lawrence L. Larmore
and Michel X. Goemans (eds.), Proceedings of the 35th Annual ACM Symposium on The-
ory of Computing, June 9-11, 2003, San Diego, CA, USA, pp. 720–724. ACM, 2003. doi:
10.1145/780542.780646. URL https://doi.org/10.1145/780542.780646.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Edge-augmented
graph transformers: Global self-attention is enough for graphs. arXiv preprint arXiv:2108.03348,
2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Devin Kreuzer, Dominique Beaini, William L Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. arXiv preprint arXiv:2106.03893, 2021.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess E. Smidt, Suvrit Sra, Haggai Maron, and Stefanie
Jegelka. Sign and basis invariant networks for spectral graph representation learning. CoRR,
abs/2202.13013, 2022. URL https://arxiv.org/abs/2202.13013.

Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Comb., 8(3):261–277,
1988. doi: 10.1007/BF02126799. URL https://doi.org/10.1007/BF02126799.

Gregory A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their
applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii,
24(1):51–60, 1988. ISSN 0555-2923.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. CoRR, abs/2106.05667, 2021. URL https://arxiv.org/abs/
2106.05667.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609,
2019.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In International Conference on Machine Learning, pp. 4663–4673.
PMLR, 2019.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=S1ldO2EFPr.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the eleventh
ACM international conference on web search and data mining, pp. 459–467, 2018.

Ladislav Rampásek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. CoRR,
abs/2205.12454, 2022. doi: 10.48550/arXiv.2205.12454. URL https://doi.org/10.
48550/arXiv.2205.12454.

11

https://doi.org/10.1145/780542.780646
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://arxiv.org/abs/2202.13013
https://doi.org/10.1007/BF02126799
https://arxiv.org/abs/2106.05667
https://arxiv.org/abs/2106.05667
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr
https://doi.org/10.48550/arXiv.2205.12454
https://doi.org/10.48550/arXiv.2205.12454

Under review as a conference paper at ICLR 2023

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM),
pp. 333–341. SIAM, 2021.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
CoRR, abs/2009.06732, 2020. URL https://arxiv.org/abs/2009.06732.

Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph learning with 1d convolu-
tions on random walks. arXiv:2102.08786, 2021.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In The
Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=
7UmjRGzp-A.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Mingqi Yang, Renjian Wang, Yanming Shen, Heng Qi, and Baocai Yin. Breaking the expression
bottleneck of graph neural networks. IEEE Transactions on Knowledge and Data Engineering,
2022.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform bad for graph representation? ArXiv,
abs/2106.05234, 2021.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020a. URL https://openreview.net/forum?id=ByxRM0Ntvr.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, and
Sanjiv Kumar. O(n) connections are expressive enough: Universal approximability of sparse
transformers. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
can, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020b. URL https://proceedings.neurips.cc/paper/2020/
hash/9ed27554c893b5bad850a422c3538c15-Abstract.html.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. CoRR, abs/2001.05140, 2020.

12

https://arxiv.org/abs/2009.06732
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=ByxRM0Ntvr
https://proceedings.neurips.cc/paper/2020/hash/9ed27554c893b5bad850a422c3538c15-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9ed27554c893b5bad850a422c3538c15-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html

Under review as a conference paper at ICLR 2023

Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, and Jie Tang. Adaptive diffusion in graph
neural networks. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 23321–23333, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/c42af2fa7356818e0389593714f59b52-Abstract.html.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
GNN with local structure awareness. In International Conference on Learning Representations,
2022.

13

https://proceedings.neurips.cc/paper/2021/hash/c42af2fa7356818e0389593714f59b52-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c42af2fa7356818e0389593714f59b52-Abstract.html

Under review as a conference paper at ICLR 2023

A DATASET DESCRIPTIONS

Below, we provide descriptions of the datasets on which we conduct experiments.

CIFAR10 and MNIST CIFAR10 and MNIST are the graph equivalents of the eponymous image
classification datasets. A graph is created by constructing the 8-nearest neighbor graph of the SLIC
superpixels of the image. These are both. 10-class classification problems.

CLUSTER and PATTERN PATTERN and CLUSTER are node classification problems. Both
are synthetic datasets that are sampled from the Stochastic Block Model (SBM), which is a popular
way to model communities. In PATTERN, the prediction task is to identify if a node belongs to
one of the 100 possible predetermined subgraph patterns. In CLUSTER, the goal is to identify the
cluster to which a node belongs to, when the nodes are selected from 6 different clusters with the
same distribution.

MalNet-Tiny Malnet-Tiny is a smaller dataset generated from a larger dataset for identifying mal-
ware based on function call graphs. The dataset contains the call graphs from the Android APKs.
The tiny dataset contains 5000 graphs. The graphs can have up to 5000 nodes. The task is to predict
the graph as being benign or from one of four types of malware.

ogbg-code2 The ogbg-code2 dataset has the abstract sytax trees (ASTs) of python methods curated
from github. The prediction problem is “code sumarization”. To determine the name of a function
given the body of the method.

ogbg-molpcba ogbg-molpcba is a molecular datasets. It has graphs representing molecules, where
the nodes and edges represent the atoms and their chemical bonds, respectively. The node features
include atomic number, chirality etc. The goal is to predict binary labels. The dataset is heavily
skewed as only only 1.4% of data has positive labels.

ogbn-arxiv The ogbn-arxiv dataset consists of one large directed graph of 169343 nodes and
1,166,243 edges representing a citation network between all computer science papers on arXiv that
were indexed by the Microsoft academic graph. Nodes in the graph represent papers, while a di-
rected edge indicates that a paper cites another. Each node has an 128-dimensional feature vector
derived from embeddings of words in the title and abstract of the underlying paper. The prediction
task is a 40-class node classification problem — to identify the primary category of each arXiv pa-
per, as listed by the authors. Moreover, the nodes of the citation graph are split into 90K training
nodes, 30K validation notes, and 48K test nodes.

Table 4 shows a summary of the statistics of the aforementioned datasets.

Table 4: Dataset statistics
Dataset Graphs Avg. nodes Avg. edges Prediction Level No. Classes Metric
MNIST 70,000 70.6 564.5 graph 10 Accuracy
CIFAR10 60,000 117.6 941.1 graph 10 Accuracy
PATTERN 14,000 118.9 3,039.3 inductive node 2 Accuracy
CLUSTER 12,000 117.2 2,150.9 inductive node 6 Accuracy
ogbg-molpcba 437,929 26.0 28.1 graph 128 Avg. Precision
ogbg-code2 452,741 125.2 124.2 graph 5 token sequence F1 score
MalNet-Tiny 5,000 1,410.3 2,859.9 graph 5 Accuracy
ogbn-arxiv 1 169,343 1,166,243 node 40 Accuracy

B MORE EXPERIMENTAL RESULTS

B.1 BENCHMARKS ON OGB DATASETS

In Table 5 we show the results for OGB datasets (see the discussion in Section 5.1).

14

Under review as a conference paper at ICLR 2023

Model ogbg-molpcba ogbg-code2
Avg. Precision ↑ F1 score ↑

GCN+virtual node 0.2424 ± 0.0034 0.1595 ± 0.0018
GIN+virtual node 0.2703 ± 0.0023 0.1581 ± 0.0026
GatedGCN-LSPE 0.267 ± 0.002 –
PNA 0.2838 ± 0.0035 0.1570 ± 0.0032
DeeperGCN 0.2781 ± 0.0038 –
DAGNN – 0.1751 ± 0.0049
DGN 0.2885 ± 0.0030 –
GIN-AK+ 0.2930 ± 0.0044 –
CRaWl 0.2986 ± 0.0025 –
ExpC Yang et al. (2022) 0.2342 ± 0.0029 –

SAN 0.2765 ± 0.0042 –
GraphTrans (GCN-Virtual) 0.2761 ± 0.0029 0.1830 ± 0.0024
K-Subtree SAT – 0.1937 ± 0.0028
GraphGPS 0.2907 ± 0.0028 0.1894 ± 0.0024
MPNN+Exphormer 0.2823 ± 0.0004 0.18507 ± 0.047

Table 5: Comparison of EXPHORMER with baselines on various datasets from the Open Graph
Benchmark (OGB) (Hu et al., 2020)

B.2 HYPERPARAMETERS

Our hyperparameter choices, including the optimizer, positional encodings, and structural encod-
ings, were guided by the instructions in GraphGPS (Rampásek et al., 2022). There were some cases,
however, when more layers with smaller dimensions gave better results in EXPHORMER. This may
be due to the fact that each node gets fewer inputs for each layer, but EXPHORME requires more
layers in order to propagate well. Additionally, we observed that Equivstable Laplacian Positional
Encoding (ESLapPE) performed better than normal Laplacian Positional Encoding (LapPE). In our
experiments, it consistently replaced LapPE. For the GPS models with Exphormer, we consistently
use GatedGCN except for the ogbn-arxiv dataset, which we use GCN.

Through our model, some extra hyperparameters are introduced — the degree of the graph expander
and the number of virtual nodes. For these hyperparameters, we used linear search and found that
expander degree 3-5 was the most effective. Depending on the graph size, we used 1-5 virtual nodes.

To make fair comparisons, we used a similar parameter-budget to GraphGPS. For PATTERN and
CLUSTER, we used a parameter-budget of 500K, and for CIFAR and MNIST, we used a parameter-
budget of around 100K. See details in Table 6 and Table 8.

Hyperparameter CIFAR10 MNIST MalNet-Tiny PATTERN CLUSTER
Num Layers 5 5 5 3 16
Hidden Dim 40 40 64 84 48
Num Heads 4 4 4 4 8
Dropout 0.1 0.1 0.15 0.0 0.0
PE ESLapPE ESLapPE None ESLapPE ESLapPE

Batch Size 16 16 16 32 16
Learning Rate 0.001 0.001 0.0005 0.001 0.00001
Num Epochs 150 150 150 100 100

Expander Degree 5 5 5 5 5
Num Virtual Nodes 1 1 1 4 5
Num parameters 111,095 111,015 285,071 297,280 502,102

Table 6: Hyperparameters used for GPS model using EXPHORMER for datasets: CIFAR10, MNIST,
MalNet-Tiny, PATTERN, CLUSTER.

B.3 FULL COMPARISON OF ATTENTION MECHANISMS

In Section 5.2, we presented two approaches for the comparison of models trained using different
attention mechanisms — fixing the hyperparameters and fixing a budget on the total number of
trainable parameters. The results showed the advantage of EXPHORMER over other attention mech-

15

Under review as a conference paper at ICLR 2023

Hyperparameter ogbg-molpcba ogbg-code2
Num Layers 5 4
Hidden Dim 40 256
Num Heads 4 4
Dropout 0.2 0.2
PE RWSE ASTNode

Batch Size 512 32
Learning Rate 0.0005 0.0001
Num Epochs 100 30

Expander Degree 5 5
Num Virtual Nodes 5 0
Num parameters 9,742,960 12,453,298

Table 7: Hyperparameters used for GPS model using EXPHORMER for datasets: ogbg-molpcba,
ogbg-code2.

Hyperparameter CIFAR10 MNIST MalNet-Tiny PATTERN CLUSTER
Num Layers 7 7 5 4 16
Hidden Dim 44 44 64 84 48
Num Heads 4 4 4 4 8
Dropout 0.1 0.1 0.15 0.0 0.1
PE ESLapPE ESLapPE None ESLapPE ESLapPE
Batch Size 16 16 16 32 16
Learning Rate 0.001 0.001 0.0005 0.001 0.001
Num Epochs 150 150 150 100 150
Expander Degree 5 5 5 5 5
Num Virtual Nodes 1 1 1 5 2
Num parameters 119,022 127,698 285,071 273,757 344,214

Table 8: Hyperparameters used for EXPHORMER model (without MPNN) for datasets: CIFAR10,
MNIST, MalNet-Tiny, PATTERN, CLUSTER.

anisms for CIFAR10 (Table 2) and PATTERN (Table 11). Here, we present similar results for the
remaining datasets — MNIST in Table 9; MALNET-Tiny in Table 10; PATTERN in Table 11; and
CLUSTER in Table 12.

Model #Layers Hidden #Positional Expander #Parameters Time Accuracy
layers encoding degree Epoch/Total

GPS: Transformer + MPNN 5 40 ESLapPE - 111,655 131s/5.45h 98.336± 0.0189
GPS: Transformer + MPNN 3 52 LapPE - 115,394 76s/2.13h 98.051± 0.126
GPS: Performer + MPNN 5 40 ESLapPE - 283,855 156s/6.52h 98.34± 0.0349
GPS: BigBird + MPNN 5 40 ESLapPE - 128,255 267s/11.11h 98.176± 0.0146

EXPHORMER 5 44 ESLapPE 5 92,146 75s/3.14h 98.08± 0.051
EXPHORMER 7 44 ESLapPE 5 127,698 93s/3.87h 98.238± 0.0387
EXPHORMER + MPNN 5 40 ESLapPE 5 111,015 132s/5.49h 98.414± 0.035
EXPHORMER + MPNN 5 44 ESLapPE 5 133,731 137s/5.72h 98.424± 0.018

Table 9: Ablation studies results for MNIST

B.4 EFFECT OF DIFFERENT COMPONENTS OF THE MODEL

[In the final version, this section will include similar analyses of more datasets.]

Here we analyze the effect of each of the components of the model. Our Exphormer model has three
main components: local neighborhood, expander edges, and virtual nodes. In Table 13, we can see
that removing each component leads to poorer results. The effect of local neighborhood edges is
much more important in Exphormer models that do not include an MPNN, suggesting that local

16

Under review as a conference paper at ICLR 2023

Model #Layers Hidden #Positional Expander #Parameters Time Accuracy
layers encoding degree Epoch/Total

GPS-MPNN: GatedGCN 5 64 - - 199,237 6s/0.25h 92.23± 0.65
GPS: Performer 5 64 - - 421,957 41s/1.73h 73.90± 0.58
GPS: Transformer + MPNN* 5 64 - - 282,437 94s/3.94h 93.50± 0.41
GPS: Performer + MPNN 5 64 - - 527,237 46s/1.90h 92.64± 0.78
GPS: BigBird + MPNN 5 64 - - 324,357 130s/5.43h 92.34± 0.34

EXPHORMER 5 80 - 5 283,173 25.2s/1.05h 92.18± 0.292
EXPHORMER 8 64 - 5 296,325 35.2s/1.47h 92.24± 0.291
EXPHORMER + MPNN 5 64 - 5 285,701 27.5s/1.15h 93.16± 0.137

Table 10: Ablation studies results for MalNet-Tiny. The model marked with * did not fit in memory
with batch size 16, and was trained with batch size 8.

Model #Layers Hidden #Positional #Parameters Time Accuracy
dimension encoding Epoch/Total

GPS: Transformer + MPNN 3 84 ESLapPE 297,196 90.313± 0.109
GPS: Transformer + MPNN 6 64 LapPE-10 337,201 90.324± 0.132
GPS: Performer + MPNN 3 84 ESLapPE 469,816 88.571± 0.144
GPS: Performer + MPNN 3 56 ESLapPE 267,740 88.154± 0.189
GPS: BigBird + MPNN 3 84 ESLapPE 340,288 90.260± 0.167
GPS: BigBird + MPNN 3 76 ESLapPE 279,304 90.446± 0.047

EXPHORMER + MPNN 3 84 ESLapPE 297,280 90.522± 0.030

Table 11: Ablation studies results for PATTERN

and structural encodings are not fully sufficient to capture the structure of the graph and cannot be
replace the actual edges.

Table 14 shows the effect of the degree of the expander graph. Selecting the right expander degree
is important; results can vary a lot for different expander degrees.

Table 15 shows a similar study on number of virtual nodes.

C DETAILS OF EXPANDER GRAPH CONSTRUCTION

A major component of EXPHORMER is the use of the edges of an expander graph. Thus far, we
have not specified which expander graph to use. In this section, we provide details of the specific
expander graphs we use as well and quantify their spectral expansion properties.

C.1 RAMANUJAN GRAPHS

A natural question is how strong the spectral expansion properties of a d-regular graph can be, i.e.,
for how large an ϵ > 0 does a d-regular ϵ-expander exist. The following theorem gives a bound on
how large the spectral gap can be.

Theorem C.1 (Alon-Boppana) Let d > 0. The eigenvalues of the adjacency matrix of a d-regular
graph on n nodes satisfy

max{|λ2|, |λn|} ≥ 2
√
d− 1− on(1).

In other words, a d-regular ϵ-expander graph can exist only for ϵ ≤ 1− 2
√
d−1
d + on(1).

Model #Layers Hidden #Positional #Parameters Time Accuracy
layers encoding Epoch/Total

GPS: Transformer + MPNN 16 48 LapPE-10 502,054 77.95± 0.305
GPS: Performer + MPNN 16 48 ESLapPE 1,927,510 78.539± 0.069
GPS: Performer + MPNN 4 48 ESLapPE 486,346 75.91± 0.01
GPS: BigBird + MPNN 16 48 ESLapPE 580,438 77.247± 0.052
GPS: BigBird + MPNN 16 40 ESLapPE 406,262 77.212± 0.089

EXPHORMER + MPNN 16 48 ESLapPE 502,102 78.024± 0.041

Table 12: Ablation studies results for CLUSTER

17

Under review as a conference paper at ICLR 2023

Dataset Model No Local Neighborhood No Expander Edges No Global Connections All Components

Cifar10
Exphormer 64.91± 0.199 71.36± 0.205 71.54± 0.112 72.33± 0.155

Exphormer+MPNN 74.15± 0.143 74.53± 0.189 74.57± 0.183 74.75± 0.194

Table 13: Results for the full model versus removing each of the components. Each component
helps the final model.

Dataset Model
Expander Graph Degree

3 4 5 7 10

Cifar10
Exphormer 71.36± 0.215 71.32± 0.243 72.33± 0.155 71.91± 0.272 71.96± 0.264

Exphormer+MPNN 74.57± 0.143 74.10± 0.122 74.75± 0.194 74.54± 0.296 74.70± 0.226

Table 14: Effect of the selection of the expander degree on the results. We can see that correct
selecton of the expander degree does affect the quality of the final model.

As it turns out, there exist ϵ-expander graphs with ϵ achieving this bound. In fact, a d-regular ϵ-
expander graph satisfying ϵ ≥ 1 − 2

√
d−1
d is known as a Ramanujan graph. Ramanujan graphs are

essentially the best possible spectral expanders, and several constructions have been considered over
the years (Lubotzky et al., 1988; Margulis, 1988).

C.2 RANDOM REGULAR GRAPHS

While there exist deterministic constructions of Ramanujan graphs, they are often algebraic/number
theoretic in nature and therefore exist only for specific choices of d (e.g., the constructions of
Lubotzky et al. (1988) as well as independently of Margulis (1988), for which one requires d ≡ 2
(mod 4) and d − 1 to be a prime). Recently, the work of Alon (2021) showed a construction of
strongly explicit near-Ramanujan graphs of every degree, but it should be noted that the construc-
tion needs the number of nodes to be sufficiently large. It is, therefore, often convenient to use a
probabilistic construction of an expander.

A natural choice for an expander graph is a random d-regular graph on n vertices, formed by taking
d/2 independent uniform permutations on {1, 2, . . . , n}. Friedman (2003) proved a conjecture of
Alon, establishing that random regular graphs are weakly-Ramanujan.

Theorem C.2 (Friedman 2003) Fix ϵ > 0 and an even integer d > 0. Then, suppose G is a
random graph generated by taking d independent uniformly random permutations π1, π2, . . . , πd on
V = {1, 2, . . . , n}, then choosing the edges as

E =
{
(i, πj(i)), (i, π

−1
j (i)) : 1 ≤ j ≤ d, 1 ≤ i ≤ n

}
.

Then, with probability 1−O(n−Ω(
√
d)), G is a 2d-regular graph and λ(G) ≤

√
2d−1+ϵ

d .

In our experiments, we use a random regular graph to instantiate the expander graph component of
EXPHORMER. We describe the details below.

Generating a Random Regular Expander Let G = (V,E) be the original graph, where
V = {1, 2, . . . , n}. Inspired by the expansion properties of the random graph process analyzed
in Friedman (2003) (see Theorem C.2), we generate a random regular graph G′ = (V,E′) on the
same node set V as follows.

• Let s = (1, 1, . . . , 1, 2, 2, . . . , 2, . . . , n, n, . . . , n), where each value appears d times.
• Pick a random permutation π on {1, 2, . . . , nd}, chosen uniformly at random from (nd)!

possible permutations.
• Let E′ be the multiset {(si, sπ(i)) : 1 ≤ i ≤ nd}.

• Remove any self loops from E′; for large n, this will happen with probability o(1).

• If λ(G) ≤
√
2d−1+ϵ

d , then stop; otherwise generate a new random permutation π and try
again.

18

Under review as a conference paper at ICLR 2023

Dataset Model
#Virtual Nodes

1 2 4 8

Cifar10
Exphormer 72.33± 0.155 70.92± 0.176 71.25± 0.219 71.15± 0.19

Exphormer+MPNN 74.75± 0.194 74.49± 0.177 74.38± 0.145 74.55± 0.22

Table 15: Comparing the effect of the number of the virtual nodes on the final result. Adding more
virtual nodes sometimes is beneficial, but also sometimes can make the model overfit and makes it
less generalizable.

It is easy to see that this procedure is equivalent to sampling d permutations, so Theorem C.2 shows
that the resulting graph will be a 2d-regular expander with high probability.

D UNIVERSALITY OF EXPHORMER

In this section, we detail the universal approximation properties of EXPHORMER-based graph trans-
formers.

One of the limitations of standard message passing networks is that their expressivity is generally
confined by the limitations of the WL hierarchy. In other words, they cannot distinguish pairs of
non-isomorphic graphs that cannot be distinguished by a suitable WL test.

On the other hand, transformer architectures have the ability to distinguish any graphs.

The work of Yun et al. (2020a) showed that for sequences, transformers are universal approximators,
i.e., they can approximate any permutation equivariant function mapping one sequence to another
arbitrarily closely when provided with enough parameters. A function f : Rd×n → Rd×n is said
to be permutation equivariant if f(XP) = f(X)P, i.e., if permuting the columns of an input
X ∈ Rd×n results in the columns of f(X) being permuted the same way.

Theorem D.1 (Yun et al. (2020a)) Let 1 ≤ p < ∞ and ϵ > 0. For any function f : Rd×n → Rd×n

that is permutation equivariant, there exists a transformer network g such that ℓp(f, g) < ϵ.

The same work shows an extension to all (not necessarily permutation equivariant) sequence-to-
sequence functions that are defined on a compact domain, say, [0, 1]d×n provided that one uses a
positional encoding. More specifically, for any transformer g : Rd×n → Rd×n, one can define a
transformer with positional encoding gp : Rd×n → Rd×n such that gp(X) = g(X + E). The
following results shows that trainable positional encodings allow a transformer to approximate any
sequence-to-sequence continuous function on the compact domain.

Theorem D.2 (Yun et al. (2020a)) Let 1 ≤ p < ∞ and ϵ > 0. For any continuous function
f : [0, 1]d×n → Rd×n that is permutation equivariant, there exists a transformer with positional
encoding gP such that ℓp(f, g) < ϵ.

Note that the above theorems hold for full (dense) transformers. However, under certain conditions
about the sparsity pattern, one can obtain similar universality for sparse attention mechanisms (Yun
et al., 2020b).

One important consideration is that the aforementioned results hold for functions on sequences.
Since we are concerned with functions on graphs, it is interesting to ask what the implications are
for graph transformers.

We follow the approach of Kreuzer et al. (2021): Given a graph G, we can view a node transformer
as a function from Rn×n → Rn×n which uses the padded adjacency matrix of G as a positional
encoding. Similarly, an edge transformer takes as input a sequence ((i, j), σi,j) with i, j ∈ [n] and
i ≤ j such that σi,j = 1 if i and j are connected in G or σi,j = 0 otherwise. Any ordering of these
vectors corresponds to the same graph. Moreover, we can capture the relevant functions going from
RN(N−1)/2×2 → RN(N−1)/2×2 with permutation equivariance. Ideally, they can be approximated
as closely as desired by suitable transformers on the edge input.

Now, simply observe (see Kreuzer et al. (2021)) that one can choose a function (in either the node
transformer or edge transformer case) that is (a.) invariant under node permutations and (b.) maps

19

Under review as a conference paper at ICLR 2023

non-isomorphic graphs to distinct values. We would like to apply one of the above thoerems to such
a function.

However, we cannot quite apply Theorem D.1 or Theorem D.2, as it is specifically for full transform-
ers in which all nodes are pairwise connected in the attention interaction graph. The final ingredient
we require is a theorem from Zaheer et al. (2020), which gives a universality theorem for sparse
transformers on sequences.

Theorem D.3 (Zaheer et al. (2020)) Let 1 < p < ∞ and ϵ > 0. For any graph H on [n] that
contains the star graph, we have that if f ∈ [0, 1]n×d → Rn×d is a continuous function, then there
exists a sparse transformer network g (with trainable positional encodings) such that ℓp(f, g) < ϵ.

Now, combining D.3 with the previous observations and noting that EXPHORMER with at least one
virtual node contains the star graph, we see that EXPHORMER can approximate solutions to the
graph isomorphism problem (note, however, that this does not imply a polynomial time solution to
the problem, as in Kreuzer et al. (2021)).

20

	Introduction
	Related Work
	The Exphormer Attention Mechanism
	Attention mechanism on graphs
	The Exphormer Architecture

	Theoretical Properties of Exphormer
	Basics of Expander Graphs and Laplacians
	Expander Graphs as Approximators of Complete Graphs
	Spectral Properties
	Mixing Properties

	Exphormer-Based Transformers Are Universal Approximators

	Experiments
	Comparison of Exphormer-Based Models to Baselines
	Comparison of attention mechanisms
	Pure transformer architectures
	Scalability to Large-Scale Graphs

	Conclusion
	Dataset Descriptions
	More Experimental Results
	Benchmarks on OGB datasets
	Hyperparameters
	Full Comparison of Attention Mechanisms
	Effect of Different Components of the Model

	Details of Expander Graph Construction
	Ramanujan Graphs
	Random Regular Graphs

	Universality of Exphormer

