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Abstract

Virtually all federated learning (FL) methods, including FedAvg, operate in the
following manner: i) an orchestrating server sends the current model parameters
to a cohort of clients selected via certain rule, ii) these clients then independently
perform a local training procedure (e.g., via SGD or Adam) using their own training
data, and iii) the resulting models are shipped to the server for aggregation. This
process is repeated until a model of suitable quality is found. A notable feature
of these methods is that each cohort is involved in a single communication round
with the server only. In this work we challenge this algorithmic design primitive
and investigate whether it is possible to “squeeze more juice” out of each cohort
than what is possible in a single communication round. Surprisingly, we find that
this is indeed the case, and our approach leads to up to 74% reduction in the total
communication cost needed to train a FL model in the cross-device setting. Our
method is based on a novel variant of the stochastic proximal point method (SPPM-
AS) which supports a large collection of client sampling procedures some of which
lead to further gains when compared to classical client selection approaches.

1 Introduction

Federated Learning (FL) is increasingly recognized for its ability to enable collaborative training of a
global model across heterogeneous clients, while preserving privacy (McMahan et al., 2016, 2017;
Kairouz et al., 2019; Li et al., 2020a; Karimireddy et al., 2020b; Mishchenko et al., 2022b; Malinovsky
et al., 2024; Yi et al., 2024). This approach is particularly noteworthy in cross-device FL, involving
the coordination of millions of mobile devices by a central server for training purposes (Kairouz et al.,
2019). This setting is characterized by intermittent connectivity and limited resources. Consequently,
only a subset of client devices participates in each communication round. Typically, the server
samples a batch of clients (referred to as a cohort in FL), and each selected client trains the model
received from the server using its local data. Then, the server aggregates the results sent from the
selected cohort. Another notable limitation of this approach is the constraint that prevents workers
from storing states (operating in a stateless regime), thereby eliminating the possibility of employing
variance reduction techniques. We will consider a reformulation of the cross-device objective that
assumes a finite number of workers being selected with uniform probabilities. Given that, in practice,
only a finite number of devices is considered, i.e. the following finite-sum objective is considered:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x). (1)

This reformulation aligns more closely with empirical observations and enhances understanding for
illustrative purposes. The extension to the expectation form of the following theory can be found in
Appendix F.4.
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Figure 1: The total communication cost (defined as TK) with the number of local communication
rounds K needed to reach the target accuracy ϵ for the chosen cohort in each global iteration. The
dashed red line depicts the communication cost of the FedAvg algorithm. Markers indicate the TK
value for different learning rates γ of our algorithm SPPM-AS.

Current representative approaches in the cross-device setting include FedAvg and FedProx. In our
work, we introduce a method by generalizing stochastic proximal point method with arbitray sampling
and term as SPPM-AS. This new method is inspired by the stochastic proximal point method (SPPM),
a technique notable for its ability to converge under arbitrarily large learning rates and its flexibility
in incorporating various solvers to perform proximal steps. This adaptability makes SPPM highly
suitable for cross-device FL (Li et al., 2020a; Yuan & Li, 2022, 2023; Khaled & Jin, 2023; Lin et al.,
2024). Additionally, we introduce support for an arbitrary cohort sampling strategy, accompanied by
a theoretical analysis. We present novel strategies that include support for client clustering, which
demonstrate both theoretical and practical improvements.

Another interesting parameter that allows for control is the number of local communications. Two
distinct types of communication, global and local, are considered. A global iteration is defined
as a single round of communication between the server and all participating clients. On the other
hand, local communication rounds are synchronizations that take place within a chosen cohort.
Additionally, we introduce the concept of total communication cost, which includes both local and
global communication iterations, to measure the overall efficiency of the communication process.
The total communication cost naturally depends on several factors. These include the local algorithm
used to calculate the prox, the global stepsize, and the sampling technique.

Previous results on cross-device settings consider only one local communication round for the selected
cohort (Li et al., 2020b; Reddi et al., 2020; Li et al., 2020a; Wang et al., 2021a,b; Xu et al., 2021;
Malinovsky et al., 2023; Jhunjhunwala et al., 2023; Sun et al., 2023, 2024). Our experimental findings
reveal that increasing the number of local communication rounds within a chosen cohort per global
iteration can indeed lower the total communication cost needed to reach a desired global accuracy
level, which we denote as ε. Figure 1 illustrates the relationship between total communication costs
and the number of local communication rounds. Assume that the cost of communication per round is
1 unit. K represents the number of local communication rounds per global iteration for the selected
cohort, while T signifies the minimum number of global iterations needed to achieve the accuracy
threshold ϵ. Then, the total cost incurred by our method can be expressed as TK. For comparison,
the dashed line in the figure shows the total cost for the FedAvg algorithm, which always sets K to 1,
directly equating the number of global iterations to total costs. Our results across various datasets
identify the optimal K for each learning rate to achieve ϵ-accuracy. Figure 1 shows that adding more
local communication rounds within each global iteration can lead to a significant reduction in the
overall communication cost. For example, when the learning rate is set to 1000, the optimal cost is
reached with 10 local communication rounds, making K = 10 a more efficient choice compared
to a smaller number. On the other hand, at a lower learning rate of 100, the optimal cost of 12 is
reached with K = 3. This pattern indicates that as we increase the number of local communication
rounds, the total cost can be reduced, and the optimal number of local communication rounds tends
to increase with higher learning rates.

Our key contributions are summarized as follows:

•We present and analyze SPPM-AS, a novel approach within the stochastic proximal point method
framework tailored for cross-device federated learning, which supports arbitrary sampling strategies.
Additionally, we provide an analysis of standard sampling techniques and introduce new techniques
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based on clustering approaches. These novel techniques are theoretically analyzed, offering a
thorough comparison between different methods.

• Our numerical experiments, conducted on both convex logistic regression models and non-convex
neural networks, demonstrate that the introduced framework enables fine-tuning of parameters to
surpass existing state-of-the-art cross-device algorithms. Most notably, we found that increasing the
number of local communication rounds within the selected cohort is an effective strategy for reducing
the overall communication costs necessary to achieve a specified target accuracy threshold.

•We offer practical guidance on the proper selection of parameters for federated learning applications.
Specifically, we examine the potential choices of solvers for proximal operations, considering both
convex and non-convex optimization regimes. Our experiments compare first-order and second-order
solvers to identify the most effective ones.

2 Method

In this section, we explore efficient stochastic proximal point methods with arbitrary sampling for
cross-device FL to optimize the objective (1). Throughout the paper, we denote [n] := {1, . . . , n}.
Our approach builds on the following assumptions.
Assumption 1. Function fi : Rd → R is differentiable for all samples i ∈ [n].

This implies that the function f is differentiable. The order of differentiation and summation can be
interchanged due to the additive property of the gradient operator.

∇f(x) Eqn. (1)
= ∇

[
1

n

n∑
i=1

fi(x)

]
=

1

n

n∑
i=1

∇fi(x).

Assumption 2. Function fi : Rd → R is µ-strongly convex for all samples i ∈ [n], where µ > 0.
That is, fi(y) + ⟨∇fi(y), x− y⟩+ µ

2 ∥x− y∥2 ≤ fi(x), for all x, y ∈ Rd.

This implies that f is µ-strongly convex and hence has a unique minimizer, which we denote by x⋆.
We know that∇f(x⋆) = 0. Notably, we do not assume f to be L-smooth.

2.1 Sampling Distribution

Let S be a probability distribution over the 2n subsets of [n]. Given a random set S ∼ S, we define
pi := Prob(i ∈ S), i ∈ [n].

We restrict our attention to proper and nonvacuous random sets.
Assumption 3. S is proper (i.e., pi > 0 for all i ∈ [n]) and nonvacuous (i.e., Prob(S = ∅) = 0).

Let C be the selected cohort. Given ∅ ≠ C ⊆ [n] and i ∈ [n], we define

vi(C) :=

{
1
pi

i ∈ C

0 i /∈ C
⇒ fC(x) :=

1

n

n∑
i=1

vi(C)fi(x)=
∑
i∈C

1

npi
fi(x). (2)

Note that vi(S) is a random variable and fS is a random function. By construction, ES∼S [vi(S)] = 1
for all i ∈ [n], and hence

ES∼S [fS(x)] = ES∼S

[
1

n

n∑
i=1

vi(S)fi(x)

]
=

1

n

n∑
i=1

ES∼S [vi(S)] fi(x) =
1

n

n∑
i=1

fi(x) = f(x).

Therefore, the optimization problem in Equation (1) is equivalent to the stochastic optimization
problem

min
x∈Rd

{f(x) := ES∼S [fS(x)]} . (3)

Further, if for each C ⊂ [n] we let pC := Prob(S = C), then f can be written in the equivalent form

f(x) = ES∼S [fS(x)] =
∑

C⊆[n]

pCfC(x) =
∑

C⊆[n],pC>0

pCfC(x). (4)
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2.2 Core Algorithm

Applying SPPM (Khaled & Jin, 2023) to
Equation (3), we arrive at stochastic prox-
imal point method with arbitrary sampling
(SPPM-AS, Algorithm 1):

xt+1 = proxγfSt
(xt) ,

where St ∼ S.

Algorithm 1 Stochastic Proximal Point Method with
Arbitrary Sampling (SPPM-AS)

1: Input: starting point x0 ∈ Rd, distribution S over
the subsets of [n], learning rate γ > 0

2: for t = 0, 1, 2, . . . do
3: Sample St ∼ S
4: xt+1 = proxγfSt

(xt)

5: end for

Theorem 1 (Convergence of SPPM-AS). Let Assumption 1 (differentiability) and Assumption 2
(strong convexity) hold. Let S be a sampling satisfying Assumption 3, and define

µAS := min
C⊆[n],pC>0

∑
i∈C

µi

npi
, σ2

⋆,AS :=
∑

C⊆[n],pC>0

pC ∥∇fC (x⋆)∥2 . (5)

Let x0 ∈ Rd be an arbitrary starting point. Then for any t ≥ 0 and any γ > 0, the iterates of
SPPM-AS (Algorithm 1) satisfy

E
[
∥xt − x⋆∥2

]
≤
(

1

1 + γµAS

)2t

∥x0 − x⋆∥2 +
γσ2

⋆,AS

γµ2
AS + 2µAS

.

Theorem interpretation. In the theorem presented above, there are two main terms: (1/(1+γµAS))
2t

and γσ2
⋆,AS/(γµ2

AS+2µAS), which define the convergence speed and neighborhood, respectively. Addi-
tionally, there are three hyperparameters to control the behavior: γ (the global learning rate), AS (the
sampling type), and T (the number of global iterations). In the following paragraphs, we will explore
special cases to provide a clear intuition of how the SPPM-AS theory works.

Interpolation regime. Consider the interpolation regime, characterized by σ2
⋆,AS = 0 . Since we

can use arbitrarily large γ > 0, we obtain an arbitrarily fast convergence rate. Indeed, (1/(1+γµAS))
2t

can be made arbitrarily small for any fixed t ≥ 1, even t = 1, by choosing γ large enough. However,
this is not surprising, since now f and all functions fξ share a single minimizer, x⋆, and hence it is
possible to find it by sampling a small batch of functions even a single function fξ , and minimizing it,
which is what the prox does, as long as γ is large enough.

A single step travels far. Observe that for γ = 1/µAS, we have γσ2
⋆,AS/(γµ2

AS+2µAS) = σ2
⋆,AS/3µ2

AS. In
fact, the convergence neighborhood γσ2

⋆,AS/(γµ2
AS+2µAS) is bounded above by three times this quantity

irrespective of the choice of the stepsize. Indeed,
γσ2

⋆,AS

γµ2
AS+2µAS

≤ min
{

σ2
⋆,AS

µ2
AS

,
γσ2

⋆,AS

µAS

}
≤ σ2

⋆,AS

µ2
AS

. That
means that no matter how far the starting point x0 is from the optimal solution x⋆, if we choose the
stepsize γ to be large enough, then we can get a decent-quality solution after a single iteration of
SPPM-AS already! Indeed, if we choose γ large enough so that (1/1+γµAS)

2 ∥x0 − x⋆∥2 ≤ δ, where
δ > 0 is chosen arbitrarily, then for t = 1 we get E

[
∥x1 − x⋆∥2

]
≤ δ + σ2

⋆,AS/µ2
AS.

Iteration complexity. We have seen above that an accuracy arbitrarily close to (but not reaching)
σ2
⋆,AS/µ2

AS can be achieved via a single step of the method, provided that the stepsize γ is large enough.
Assume now that we aim for ϵ accuracy, where ϵ ≤ σ2

⋆,AS/µ2
AS. We can show that with the stepsize

γ = εµAS/σ2
⋆,AS, we get E

[
∥xt − x⋆∥2

]
≤ ε provided that t ≥

(
σ2
⋆,AS

2εµ2
AS

+ 1
2

)
log
(

2∥x0−x⋆∥2

ε

)
. We

provide the proof in Appendix F.5. To ensure thoroughness, we present in Appendix F.9 the lemma of
the inexact formulation for SPPM-AS, which offers greater practicality for empirical experimentation.
Further insights are provided in the subsequent experimental section.

General Framework. With freedom to choose arbitrary algorithms for solving the proximal
operator one can see that SPPM-AS is generalization for such renowned methods as FedProx (Li
et al., 2020a) and FedAvg (McMahan et al., 2016). A more particular overview of FedProx-SPPM-AS
is presented in further Appendix B.4.
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2.3 Arbitrary Sampling Examples

Details on simple Full Sampling (FS) and Nonuniform Sampling (NS) are provided in Appendix B.2.
In this section, we focus more intently on the sampling strategies that are of particular interest to us.

Nice Sampling (NICE). Choose τ ∈ [n] and let S be a random subset of [n] of size τ chosen
uniformly at random. Then pi = τ/n for all i ∈ [n]. Moreover, let

(
n
τ

)
represents the number of

combinations of n taken τ at a time, pC = 1

(nτ)
whenever |C| = τ and pC = 0 otherwise. So,

µAS = µNICE(τ) := min
C⊆[n],pC>0

∑
i∈C

µi

npi
= min

C⊆[n],|C|=τ

1

τ

∑
i∈C

µi,

σ2
⋆,AS = σ2

⋆,NICE(τ) :=
∑

C⊆[n],pC>0

pC ∥∇fC (x⋆)∥2
Eqn. (2)

=
∑

C⊆[n],|C|=τ

1(
n
τ

) ∥∥∥∥∥1τ ∑
i∈C

∇fi (x⋆)

∥∥∥∥∥
2

.

It can be shown that µNICE(τ) is a nondecreasing function of τ (Appendix F.6). So, as the minibatch
size τ increases, the strong convexity constant µNICE(τ) can only improve. Since µNICE(1) =
mini µi and µNICE(n) =

1
n

∑n
i=1 µi, the value of µNICE(τ) interpolates these two extreme cases as

τ varies between 1 and n. Conversely, σ2
⋆,NICE(τ) =

n/τ−1
n−1 σ2

⋆,NICE(1) is a nonincreasing function,
reaching a value of σ2

⋆,NICE(n) = 0, as explained in Appendix F.6.

Block Sampling (BS). Let C1, . . . , Cb be a partition of [n] into b nonempty blocks. For each
i ∈ [n], let B(i) indicate which block i belongs to. In other words, i ∈ Cj if B(i) = j. Let S = Cj

with probability qj > 0, where
∑

j qj = 1. Then pi = qB(i), and hence Equation (5) takes on the
form

µAS = µBS := min
j∈[b]

1

nqj

∑
i∈Cj

µi, σ2
⋆,AS = σ2

⋆,BS :=
∑
j∈[b]

qj

∥∥∥∥∥∥
∑
i∈Cj

1

npi
∇fi (x⋆)

∥∥∥∥∥∥
2

.

Considering two extreme cases: If b = 1, then SPPM-BS = SPPM-FS = PPM. So, indeed, we recover
the same rate as SPPM-FS. If b = n, then SPPM-BS = SPPM-NS. So, indeed, we recover the same
rate as SPPM-NS. We provide the detailed analysis in Appendix B.3.

Stratified Sampling (SS). Let C1, . . . , Cb be a partition of [n] into b nonempty blocks, as before.
For each i ∈ [n], let B(i) indicate which block does i belong to. In other words, i ∈ Cj iff B(i) = j.
Now, for each j ∈ [b] pick ξj ∈ Cj uniformly at random, and define S = ∪j∈[b] {ξj}. Clearly,
pi =

1

|CB(i)| . Let’s denote ib := (i1, · · · , ib),Cb := C1 × · · · × Cb. Then, Equation (5) take on the

form

µAS = µSS := min
ib∈Cb

b∑
j=1

µij |Cj |
n

, σ2
⋆,AS = σ2

⋆,SS :=
∑

ib∈Cb

(
b∏

j=1

1

|Cj |

)∥∥∥∥∥
b∑

j=1

|Cj |
n

∇fij (x⋆)

∥∥∥∥∥
2

.

Lemma 1 (Variance Reduction Due to Stratified Sampling). Consider the stratified sampling. For
each j ∈ [b], define

σ2
j := max

i∈Cj

∥∥∥∥∥∥∇fi (x⋆)−
1

|Cj |
∑
l∈Cj

∇fl (x⋆)

∥∥∥∥∥∥
2

.

In words, σ2
j is the maximal squared distance of a gradient (at the optimum) from the mean of the

gradients (at optimum) within cluster Cj . Then

σ2
⋆,SS ≤

b

n2

b∑
j=1

|Cj |2 σ2
j ≤ bmax

{
σ2
1 , . . . , σ

2
b

}
.
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Considering two extreme cases: If b = 1, then SPPM-SS = SPPM-US. So, indeed, we recover the
same rate as SPPM-US. If b = n, then SPPM-SS = SPPM-FS. So, indeed, we recover the same rate
as SPPM-FS. We provide the detailed analysis in Appendix B.3.

In Lemma 1, we demonstrate that stratified sampling outperforms block sampling due to reduced
variance. Note that in the scenario of complete inter-cluster homogeneity, where σ2

j = 0 for all j,
both bounds imply that 0 = σ2

⋆,SS ≤ σ2
⋆,BS.

Stratified Sampling Outperforms Block Sampling and Nice Sampling in Convergence Neigh-
borhood. We theoretically compare stratified sampling with block sampling and nice sampling,
advocating for stratified sampling as the superior method for future clustering experiments due to its
optimal variance properties. We begin with the assumption of b clusters of uniform size b (Assump-
tion 10), which simplifies the analysis by enabling comparisons of various sampling methods, all with
the same sampling size, b: b-nice sampling, stratified sampling with b clusters, and block sampling
where all clusters are of uniform size b. Furthermore, we introduce the concept of optimal clustering
for stratified sampling (noted as Cb,SS, Definition 11) in response to a counterexample where block
sampling and nice sampling achieve lower variance than stratified sampling (Example 1). Finally, we
compare neighborhoods using the stated assumption.

Lemma 2. Given Assumption 10, the following holds: σ2
⋆,SS (Cb,SS) ≤ σ2

⋆,NICE for arbitrary b.

Lemma 2 demonstrates that, under specific conditions, the stratified sampling neighborhood is
preferable to that of nice sampling. One might assume that, under the same assumptions, a similar
assertion could be made for showing that block sampling is inferior to stratified sampling . However,
this has only been verified for the simplified case where both the block size and the number of blocks
are b = 2, as detailed in Appendix F.8.

3 Experiments

Practical Decision-Making with SPPM-AS. In
our analysis of SPPM-AS, guided by theoreti-
cal foundations of Theorem 1 and empirical ev-
idence summarized in Table 1, we explore practi-
cal decision-making for varying scenarios. This
includes adjustments in hyperparameters within
the framework KT (ϵ,S, γ,A (K)). Here, ϵ rep-
resents accuracy goal, S represents the sampling
distribution, γ is representing global learning rate
(proximal operator parameter),A denotes the prox-
imal optimization algorithm, while K denotes the
number of local communication rounds.

Table 1: KT (ϵ,S, γ,A (K))

HP Control KT (· · · ) Exp.

γ
γ ↑ KT ↓, ϵ ↑ (1) D.2

optimal (γ,K) ↑ ↓ 3.3

A
µ-convex + BFGS/CG ↓ compared

to LocalGD 3.3

NonCVX and Hierar-
chical FL + Adam with
tuned lr

↓ compared
to LocalGD 3.7

(1) ϵ is a convergence neighborhood or accuracy.

In table 1, we summarize how changes on following hyperparameters will influence target metric.
With increasing learning rate γ one achieves faster convergence with smaller accuracy, also noted as
accuracy-rate tradeoff. Our primary observation that with an increase in both the learning rate, γ, and
the number of local steps, K, leads to an improvement in the convergence rate. Employing various
local solvers for proximal operators also shows an improvement in the convergence rate compared to
FedAvg in both convex and non-convex cases.

3.1 Objective and Datasets

Our analysis begins with logistic regression with a convex l2 regularizer, which can be represented as:

fi(x) :=
1

ni

ni∑
j=1

log
(
1 + exp(−bi,jxTai,j)

)
+

µ

2
∥x∥2,

where µ is the regularization parameter, ni denotes the total number of data points at client i,
ai,j are the feature vectors, and bi,j ∈ {−1, 1} are the corresponding labels. Each function fi
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Figure 2: Analysis of total communication costs against local communication rounds for computing
the proximal operator. For LocalGD, we align the x-axis to the total local iterations, highlighting
the absence of local communication. The aim is to minimize total communication for achieving a
predefined global accuracy ϵ, where ∥xT − x⋆∥2 < ϵ. The optimal step size and minibatch sampling
setup for LocalGD are denoted as LocalGD, optim. This showcases a comparison across varying ϵ
values and proximal operator solvers (CG and BFGS).

exhibits µ-strong convexity and Li-smoothness, with Li computed as 1
4ni

∑ni

j=1 ∥ai,j∥2 + µ. For
our experiments, we set µ to 0.1.

Our study utilized datasets from the LibSVM repository (Chang & Lin, 2011), including mushrooms,
a6a, ijcnn1.bz2, and a9a. We divided these into feature-wise heterogeneous non-iid splits for
FL, detailed in Appendix C.1, with a default cohort size of 10. We primarily examined logistic
regression, finding results consistent with our theoretical framework, as discussed extensively in
Section 3.3 through Appendix D.2. Additional neural network experiments are detailed in Section 3.7
and Appendix E.

3.2 On Choosing Sampling Strategy

As shown in Section 2.3, multiple sampling techniques exist. We propose using clustering approach
in conjuction with SPPM-SS as the default sampling strategy for all our experiments. The stratified
sampling optimal clustering is impractical due to the difficulty in finding x⋆; therefore, we employ
a clustering heuristic that aligns with the concept of creating homogeneous worker groups. One
such method is K-means, which we use by default. More details on our clustering approach can be
found in the Appendix C.1. We compare various sampling techniques in the left panel of Figure 3.
Extensive ablations verified the efficiency of stratified sampling over other strategies, due to variance
reduction (Lemma 1).

3.3 Communication Cost Reduction through Increased Local Communication Rounds

In this study, we investigate whether increasing the number of local communication rounds, denoted
as K, in our proposed algorithm SPPM-SS, can lead to a decrease in the total communication cost
required to converge to a predetermined global accuracy ϵ > 0. In Figure 1, we analyzed various
datasets, including a6a and mushrooms, confirming that higher local communication rounds reduce
communication costs, especially with larger learning rates. Our study includes both self-ablation of
SPPM-SS across different learning rate scales and comparisons with the widely-used cross-device FL
method LocalGD (or FedAvg) on the selected cohort. Ablation studies were conducted with a large
empirical learning rate of 0.1, a smaller rate of 0.01, and an optimal rate as discussed by Khaled &
Richtárik (2023), alongside minibatch sampling described by Gower et al. (2019).

In Figure 2, we present more extensive ablations. Specifically, we set the base method (Figure 2a)
using the dataset a6a, a proximal solver BFGS, and ϵ = 5 · 10−3. In Figure 2b, we explore the use of
an alternative solver, CG (Conjugate Gradient), noting some differences in outcomes. For instance,
with a learning rate γ = 1000, the optimal K with CG becomes 7, lower than 10 in the base setting
using BFGS. In Figure 2c, we investigate the impact of varying ϵ = 10−2. Our findings consistently
show SPPM-SS’s significant performance superiority over LocalGD.
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Figure 3: The first column compares sampling methods, while the right two columns analyze
convergence relative to popular baselines. γ = 1.0.

3.4 Evaluating the Performance of Various Solvers A

We further explore the impact of various solvers on optimizing the proximal operators, showcasing
representative methods in Table 2 in the Appendix A.3. A detailed overview and comparison of local
optimizers listed in the table are provided in Section A.3, given the extensive range of candidate
options available. To emphasize key factors, we compare the performance of first-order methods,
such as the Conjugate Gradient (CG) method (Hestenes et al., 1952), against second-order methods,
like the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden, 1967; Shanno, 1970), in
the context of strongly convex settings. For non-convex settings, where first-order methods are
prevalent in deep learning experiments, we examine an ablation among popular first-order local
solvers, specifically choosing MimeLite (Karimireddy et al., 2020a) and FedOpt (Reddi et al., 2020).
The comparisons of different solvers for strongly convex settings are presented in Figure 2b, with
the non-convex comparison included in the appendix. Upon comparing first-order and second-order
solvers in strongly convex settings, we observed that CG outperforms BFGS for our specific problem.
In neural network experiments, MimeLite-Adam was found to be more effective than FedOpt variations.
However, it is important to note that all these solvers are viable options that have led to impressive
performance outcomes.

3.5 Comparative Analysis with Baseline Algorithms

In this section, we conduct an extensive comparison with several established cross-device FL baseline
algorithms. Specifically, we examine MB-GD (MiniBatch Gradient Descent with partial client
participation), and MB-LocalGD, which is the local gradient descent variant of MB-GD. We default the
number of local iterations to 5 and adopt the optimal learning rate as suggested by Gower et al. (2019).
To ensure a fair comparison, the cohort size |C| is fixed at 10 for all minibatch methods, including our
proposed SPPM-SS. The results of this comparative analysis are depicted in Figure 3. Our findings
reveal that SPPM-SS consistently achieves convergence within a significantly smaller neighborhood
when compared to the existing baselines. Notably, in contrast to MB-GD and MB-LocalGD, SPPM-SS
is capable of utilizing arbitrarily large learning rates. This attribute allows for faster convergence,
although it does result in a larger neighborhood size.

3.6 Hierarchical Federated Learning

We extend our analysis to a hub-based hierarchical FL structure, as conceptualized in the left part of
Figure 4. This structure envisions a cluster directly connected to m hubs, with each hub mi serving
ni clients. The clients, grouped based on criteria such as region, communicate exclusively with their
respective regional hub, which in turn communicates with the central server. Given the inherent nature
of this hierarchical model, the communication cost c1 from each client to its hub is consistently lower
than the cost c2 from each hub to the server. We define communication from clients to hubs as local
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Figure 4: The left column shows the Server-hub-client hierarchical FL architecture. For the right two
columns: on the left, communication cost for achieving 70% accuracy in hierarchical FL (c1 = 0.05,
c2 = 1); on the right, convergence with optimal hyperparameters (c1 = 0.05, c2 = 1).

communication and from hubs to the server as global communication. Under SPPM-SS, the total cost
is expressed as (c1K + c2)TSPPM-SS, while for LocalGD, it is (c1 + c2)TLocalGD. As established in
Section 3.3, TSPPM-SS demonstrates significant improvement in total communication costs compared
to LocalGD within a hierarchical setting. Our objective is to illustrate this by contrasting the standard
FL setting, depicted in Figure 2a with parameters c1 = 1 and c2 = 0, against the hierarchical
FL structure, which assumes c1 = 0.1 and c2 = 1, as shown in Figure 2d. Given the variation
in c1 and c2 values between these settings, a direct comparison of absolute communication costs
is impractical. Therefore, our analysis focuses on the ratio of communication cost reduction in
comparison to LocalGD. For the base setting, LocalGD’s optimal total communication cost is 39
with 12 local iterations, whereas for SPPM-SS (γ = 1000), it is reduced to 10 with 10 local and 1
global communication rounds, amounting to a 74.36% reduction. With the hierarchical FL structure
in Figure 2d, SPPM-SS achieves an even more remarkable communication cost reduction of 94.87%.
Further ablation studies on varying local communication cost c1 in the Appendix D.3 corroborate
these findings.

3.7 Neural Network Evaluations

Our empirical analysis includes experiments on Convolutional Neural Networks (CNNs) using the
FEMNIST dataset, as described by Caldas et al. (2018). We designed the experiments to include a
total of 100 clients, with each client representing data from a unique user, thereby introducing natural
heterogeneity into our study. We employed the Nice sampling strategy with a cohort size of 10. In
contrast to logistic regression models, here we utilize training accuracy as a surrogate for the target
accuracy ϵ. For the optimization of the proximal operator, we selected the Adam optimizer, with
the learning rate meticulously fine-tuned over a linear grid. Detailed descriptions of the training
procedures and the CNN architecture are provided in the Appendix E.

Our analysis primarily focuses on the hierarchical FL structure. Initially, we draw a comparison
between our proposed method, SPPM-AS, and LocalGD. The crux of our investigation is the total
communication cost required to achieve a predetermined level of accuracy, with findings detailed
in the right part of Figure 4. Significantly, SPPM-AS demonstrates enhanced performance with
the integration of multiple local communication rounds. Notably, the optimal number of these
rounds tends to increase alongside the parameter γ. For each configuration, the convergence patterns
corresponding to the sets of optimally tuned hyperparameters are depicted in Figure 4.

4 Conclusion

Our research challenges the conventional single-round communication model in federated learning
by presenting a novel approach where cohorts participate in multiple communication rounds. This
adjustment leads to a significant 74% reduction in communication costs, underscoring the efficacy
of extending cohort engagement beyond traditional limits. Our method, SPPM-AS, equipped with
diverse client sampling procedures, contributes substantially to this efficiency. This foundational
work showcases a pivotal shift in federated learning strategies. Future work could focus on improving
algorithmic robustness and ensuring privacy compliance.
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A Related Work

A.1 Cross-Device Federated Learning

This paper delves into the realm of Federated Learning (FL), focusing on the cross-device variant,
which presents unique and significant challenges. In FL, two predominant settings are recognized:
cross-silo and cross-device scenarios, as detailed in Table 1 of Kairouz et al., 2019. The primary
distinction lies in the nature of the clients: cross-silo FL typically involves various organizations
holding substantial data, whereas cross-device FL engages a vast array of mobile or IoT devices. In
cross-device FL, the complexity is heightened by the inability to maintain a persistent hidden state
for each client, unlike in cross-silo environments. This factor renders certain approaches impractical,
particularly those reliant on stateful clients participating consistently across all rounds. Given the
sheer volume of clients in cross-device FL, formulating and analyzing outcomes in an expectation
form is more appropriate, but more complex than in finite-sum scenarios.

The pioneering and perhaps most renowned algorithm in cross-device FL is FedAvg (McMahan
et al., 2017) and implemented in applications like Google’s mobile keyboard (Hard et al., 2018;
Yang et al., 2018; Ramaswamy et al., 2019). However, it is noteworthy that popular accelerated
training algorithms such as Scaffold (Karimireddy et al., 2020b) and ProxSkip (Mishchenko et al.,
2022b) are not aligned with our focus due to their reliance on memorizing the hidden state for each
client, which is applicable for cross-device FL. Our research pivots on a novel variant within the
cross-device framework. Once the cohort are selected for each global communication round, these
cohorts engage in what we term as ‘local communications’ multiple times. The crux of our study is
to investigate whether increasing the number of local communication rounds can effectively reduce
the total communication cost to converge to a targeted accuracy.

A.2 Stochastic Proximal Point Method

Our exploration in this paper centers on the Stochastic Proximal Point Method (SPPM), a method
extensively studied for its convergence properties. Initially termed as the incremental proximal point
method by Bertsekas (2011), it was shown to converge nonasymptotically under the assumption of
Lipschitz continuity for each fi. Following this, Ryu & Boyd (2016) examined the convergence rates
of SPPM, noting its resilience to inaccuracies in learning rate settings, contrasting with the behavior
of Stochastic Gradient Descent (SGD). Further developments in SPPM’s application were seen in
the works of Patrascu & Necoara (2018), who analyzed its effectiveness in constrained optimization,
incorporating random projections. Asi & Duchi (2019) expanded the scope of SPPM by studying a
generalized method, AProx, providing insights into its stability and convergence rates under convex
conditions. The research by Asi et al. (2020) and Chadha et al. (2022) further extended these findings,
focusing on minibatching and convergence under interpolation in the AProx framework.

In the realm of federated learning, particularly concerning non-convex optimization, SPPM is also
known as FedProx, as discussed in works like those of Li et al. (2020a) and Yuan & Li (2022).
However, it is noted that in non-convex scenarios, the performance of FedProx/SPPM in terms
of convergence rates does not surpass that of SGD. Beyond federated learning, the versatility of
SPPM is evident in its application to matrix and tensor completion such as in the work of Bumin
& Huang (2021). Moreover, SPPM has been adapted for efficient implementation in a variety of
optimization problems, as shown by Shtoff (2022). While non-convex SPPM analysis presents
significant challenges, with a full understanding of its convex counterpart still unfolding, recent
studies such as the one by Khaled & Jin (2023) have reported enhanced convergence by leveraging
second-order similarity. Diverging from this approach, our contribution is the development of an
efficient minibatch SPPM method SPPM-AS that shows improved results without depending on
such assumptions. Significantly, we also provide the first empirical evidence that increasing local
communication rounds in finding the proximal point can lead to a reduction in total communication
costs.

A.3 Local Solvers

In the exploration of local solvers for the SPPM-AS algorithm, the focus is on evaluating the
performance impact of various inexact proximal solvers within federated learning settings, spanning
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Setting 1st order 2nd order

Strongly-Convex

Conjugate Gradients (CG)
Accelerated GD
Local GD
Scaffnew

BFGS
AICN
LocalNewton

Nonconvex
Mime-Adam
FedAdam-AdaGrad
FedSpeed

Apollo
OASIS

Table 2: Local optimizers for solving the proximal subproblem.

both strongly convex and non-convex objectives. Here’s a simple summary of the algorithms
discussed:

FedAdagrad-AdaGrad (Wang et al., 2021b): Adapts AdaGrad for both client and server sides within
federated learning, introducing local and global corrections to address optimizer state handling and
solution bias.

BFGS (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970): A quasi-Newton method that
approximates the inverse Hessian matrix to improve optimization efficiency, particularly effective in
strongly convex settings but with limitations in distributed implementations.

AICN (Hanzely et al., 2022): Offers a global O(1/k2) convergence rate under a semi-strong self-
concordance assumption, streamlining Newton’s method without the need for line searches.

LocalNewton (Bischoff et al., 2023): Enhances local optimization steps with second-order information
and global line search, showing efficacy in heterogeneous data scenarios despite a lack of extensive
theoretical grounding.

Fed-LAMB (Karimi et al., 2022): Extends the LAMB optimizer to federated settings, incorporating
layer-wise and dimension-wise adaptivity to accelerate deep neural network training.

FedSpeed (Sun et al., 2023): Aims to overcome non-vanishing biases and client-drift in federated
learning through prox-correction and gradient perturbation steps, demonstrating effectiveness in
image classification tasks.

Mime-Adam (Karimireddy et al., 2020a): Mitigates client drift in federated learning by integrating
global optimizer states and an SVRG-style correction term, enhancing the adaptability of Adam to
distributed settings.

OASIS (Jahani et al., 2021): Utilizes local curvature information for gradient scaling, providing an
adaptive, hyperparameter-light approach that excels in handling ill-conditioned problems.

Apollo (Ma, 2020): A quasi-Newton method that dynamically incorporates curvature information,
showing improved efficiency and performance over first-order methods in deep learning applications.

Each algorithm contributes uniquely to the landscape of local solvers in federated learning, ranging
from enhanced adaptivity and efficiency to addressing specific challenges such as bias, drift, and
computational overhead.

B Theoretical Overview and Recommendations

B.1 Parameter Control

We have explored the effects of changing the hyperparameters of SPPM-AS on its theoretical
properties, as summarized in Table 3. This summary shows that as the learning rate increases,
the number of iterations required to achieve a target accuracy decreases, though this comes with
an increase in neighborhood size. Focusing on sampling strategies, for SPPM-NICE employing
NICE sampling, an increase in the sampling size τS results in fewer iterations (T ) and a smaller
neighborhood. Furthermore, given that stratified sampling outperforms both block sampling and
NICE sampling, we recommend adopting stratified sampling, as advised by Lemma 1.
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Table 3: Theoretical summary
Hyperparameter Control Rate (T) Neighborhood

γ ↑ ↓ ↑

S τS ↑(1) ↓ ↓
Stratified sampling optimal clustering in-
stead of BS or NICE sampling ↓ Lemma 1

(1) We define τS := ES∼S [|S|] .

Table 4: Arbitrary samplings comparison.

Setting/Requirement µAS σ⋆,AS

Full 1
n

∑n
i=1 µi 0

Non-Uniform mini
µi

npi

1
n

∑n
i=1

1
npi
∥∇fi (x⋆)∥2

Nice minC⊆[n],|C|=τ
1
τ

∑
i∈C µi

∑
C⊆[n],|C|=τ

1

(nτ)

∥∥ 1
τ

∑
i∈C ∇fi (x⋆)

∥∥2
Block minj∈[b]

1
nqj

∑
i∈Cj

µi

∑
j∈[b] qj

∥∥∥∑i∈Cj

1
npi
∇fi (x⋆)

∥∥∥2
Stratified

minib∈Cb

∑b
j=1

µij
|Cj |
n

∑
ib∈Cb

(∏b
j=1

1
|Cj |

)∥∥∥∑b
j=1

|Cj |
n ∇fij (x⋆)

∥∥∥2
Upper bound: b

n2

∑b
j=1 |Cj |2 σ2

j

B.2 Comparison of Sampling Strategies

Full Sampling (FS). Let S = [n] with probability 1. Then SPPM-AS applied to Equation (9)
becomes PPM (Moreau, 1965; Martinet, 1970) for minimizing f . Moreover, in this case, we have
pi = 1 for all i ∈ [n] and Equation (5) takes on the form

µAS = µFS :=
1

n

n∑
i=1

µi, σ2
⋆,AS = σ2

⋆,FS := 0.

Note that µFS is the strong convexity constant of f , and that the neighborhood size is zero, as we
would expect.

Nonuniform Sampling (NS). Let S = {i} with probability pi > 0, where
∑

i pi = 1. Then
Equation (5) takes on the form

µAS = µNS := min
i

µi

npi
, σ2

⋆,AS = σ2
⋆,NS :=

1

n

n∑
i=1

1

npi
∥∇fi (x⋆)∥2 .

If we take pi =
µi∑n

j=1 µj
for all i ∈ [n], we shall refer to Algorithm 1 as SPPM with importance

sampling (SPPM-IS). In this case,

µNS = µIS :=
1

n

n∑
i=1

µi, σ2
⋆,NS = σ2

⋆,IS :=

∑n
i=1 µi

n

n∑
i=1

∥∇fi (x⋆)∥2

nµi
.

This choice maximizes the value of µNS (and hence minimizes the first part of the convergence rate)
over the choice of the probabilities.

Table 4 summarizes the parameters associated with various sampling strategies, serving as a con-
cise overview of the methodologies discussed in the main text. This summary facilitates a quick
comparison and reference.

B.3 Extreme Cases of Block Sampling and Stratified Sampling

Extreme cases of block sampling. We now consider two extreme cases:
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• If b = 1, then SPPM-BS = SPPM-FS = PPM. Let’s see, as a sanity check, whether we
recover the right rate as well. We have q1 = 1, C1 = [n], pi = 1 for all i ∈ [n], and the
expressions for µAS and σ2

⋆, BS simplify to

µBS = µFS :=
1

n

n∑
i=1

µi, σ
2
⋆,BS = σ2

⋆,FS := 0.

So, indeed, we recover the same rate as SPPM-FS.

• If b = n, then SPPM-BS = SPPM-NS. Let’s see, as a sanity check, whether we recover the
right rate as well. We have Ci = {i} and qi = pi for all i ∈ [n], and the expressions for
µAS and σ2

⋆,BS simplify to

µBS = µNS := min
i∈[n]

µi

npi
, σ2

⋆,BS = σ2
⋆,NS :=

1

n

n∑
i=1

1

npi
∥∇fi (x⋆)∥2 .

So, indeed, we recover the same rate as SPPM-NS.

Extreme cases of stratified sampling. We now consider two extreme cases:

• If b = 1, then SPPM-SS = SPPM-US. Let’s see, as a sanity check, whether we recover the
right rate as well. We have C1 = [n], |C1| = n,

(∏b
j=1

1
|Cj |

)
= 1

n and hence

µSS = µUS := min
i

µi, σ2
⋆,SS = σ2

⋆,US :=
1

n

n∑
i=1

∥∇fi (x⋆)∥2 .

So, indeed, we recover the same rate as SPPM-US.

• If b = n, then SPPM-SS = SPPM-FS. Let’s see, as a sanity check, whether we recover the
right rate as well. We have Ci = {i} for all i ∈ [n],

(∏b
j=1

1
|Cj |

)
= 1, and hence

µSS = µFS :=
1

n

n∑
i=1

µi, σ2
⋆,SS = σ2

⋆,FS := 0.

So, indeed, we recover the same rate as SPPM-FS.

B.4 Federated Averaging SPPM Baselines

In this section we propose two new algorithms based on Federated Averaging principle. Since to the
best of our knowledge there are no federated averaging analyses within the same assumptions, we
provide analysis of modified versions of SPPM-AS.

Averaging on proxγfi . We introduce FedProx-SPPM-AS (see Algorithm 2), which is inspired by
the principles of FedProx (Li et al., 2020a). Unlike the traditional approach where a proximal operator
is computed for the chosen cohort as a whole, in FedProx-SPPM-AS, we compute and then average
the proximal operators calculated for each member within the cohort. However, this algorithm is not
a simple case of SPPM-AS because it does not directly estimate the proximal operator at each step.
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Algorithm 2 Proximal Averaging SPPM-AS
(FedProx-SPPM-AS)

1: Input: starting point x0,0 ∈ Rd, arbitrary
sampling distribution S, learning rate γ >
0, local communication rounds K.

2: for t = 0, 1, 2, · · · , T − 1 do
3: Sample St ∼ S
4: for k = 0, 1, 2, · · ·K − 1 do
5: xk+1,t =

∑
i∈St

1
|St| proxγfi(xk,t)

6: end for
7: x0,t+1 ← xK,t

8: end for
9: Output: x0,T

Algorithm 3 Federated Averaging SPPM-AS
(FedAvg-SPPM-AS)

1: Input: starting point x0,0 ∈ Rd, arbitrary
sampling distribution S, global learning rate
γ > 0, local learning rate α > 0, local com-
munication rounds K

2: for t = 0, 1, 2, · · · , T − 1 do
3: Sample St ∼ S
4: ∀i ∈ St f̃i,t(x)← fi(x) +

1
2γ ∥x− xt∥2

5: for k = 0, 1, 2, · · ·K − 1 do
6: xk+1,t =

∑
i∈St

1
|St| proxαf̃i,t(xk,t)

7: end for
8: x0,t+1 ← xK,t

9: end for
10: Output: x0,T

Here, we employ a proof technique similar to that of Theorem 1 and obtain the following convergence.

Theorem 2 (FedProx-SPPM-AS convergence). Let the number of local iterations K = 1, and assume
that Assumption 1 (differentiability) and Assumption 2 (strong convexity) hold. Let x0 ∈ Rd be
an arbitrary starting point. Then, for any t ≥ 0 and any γ > 0, the iterates of FedProx-SPPM (as
described in Algorithm 2) satisfy:

E
[
∥xt − x⋆∥2

]
≤ At

S ∥x0 − x⋆∥2 +
BS

1−AS
,

where AS := ESt∼S

[
1

|St|
∑

i∈St

1
1+γµi

]
and BS := ESt∼S

[
1

|St|
∑

i∈St

γ
(1+γµi)µi

∥∇fi(x⋆))∥2
]
.

Federated averaging for prox approximation. An alternative method involves estimating the
proximal operator by averaging the proximal operators calculated for each worker’s function. We
call it Federated Averaging Stochastic Proximal Point Method (FedAvg-SPPM-AS, see Algorithm 3).
(FedAvg-SPPM-AS, see Algorithm 3).

After selecting and fixing a sample of workers Sk, the main objective is to calculate the proximal
operator. This can be accomplished by approximating the proximal calculation with the goal of
minimizing f̃S(x) = fS(x) +

2
γ ∥x− xt∥2. It can be observed that this approach is equivalent to

FedProx-SPPM-AS, as at each local step we calculate

proxαf̃i(xk,t) := argmin
z∈Rd

[
f̃i(z) +

2

α
∥z − xk,t∥2

]
= argmin

z∈Rd

[
fi(z) +

(
2

γ
+

2

α

)
∥z − xk,t∥2

]
.

C Training Details

C.1 Non-IID Data Generation

In our study, we validate performance and compare the benefits of SPPM-AS over SPPM using well-
known datasets such as mushrooms, a6a, w6a, and ijcnn1.bz2 from LibSVM (Chang & Lin, 2011).
To ensure relevance to our research focus, we adopt a feature-wise non-IID setting, characterized by
variation in feature distribution across clients. This variation is introduced by clustering the features
using the K-means algorithm, with the number of clusters set to 10 and the number of clients per
cluster fixed at 10 for simplicity. We visualize the clustered data using t-SNE in Figure 5, where we
observe that the data are divided into 10 distinct clusters with significantly spaced cluster centers.

C.2 Sampling

To simulate random sampling among clients within these 10 clusters, where each cluster comprises
10 clients, we consider two contrasting scenarios:
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Figure 5: t-SNE visualization of cluster-features across data samples on clients.
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Figure 6: Comparison with SPPM-SS and SPPM-BS samplings.

• Case I - SPPM-BS: Assuming clients within the same cluster share similar features and
data distributions, sampling all clients from one cluster (i.e., C = 10 clients) results in a
homogeneous sample.

• Case II - SPPM-SS: Conversely, by traversing all 10 clusters and randomly sampling one
client from each, we obtain a group of 10 clients representing maximum heterogeneity.

We hypothesize that any random sampling from the 100 clients will yield performance metrics lying
between these two scenarios. In Figure 6, we examine the impact of sampling clients with varying
degrees of heterogeneity using a fixed learning rate of 0.1. Our findings indicate that heterogeneous
sampling results in a significantly smaller convergence neighborhood σ2

⋆ . This outcome is attributed to
the broader global information captured through heterogeneous sampling, in contrast to homogeneous
sampling, which increases the data volume without contributing additional global insights. As these
two sampling strategies represent the extremes of arbitrary sampling, any random selection will
fall between them in terms of performance. Given their equal cost and the superior performance of
the SPPM-SS strategy in heterogeneous FL environments, we designate SPPM-SS as our default
sampling approach.

C.3 SPPM-AS Algorithm Adaptation for Federated Learning

In the main text, Algorithm 1 outlines the general form of SPPM-AS. For the convenience of
implementation in FL contexts and to facilitate a better understanding, we introduce a tailored version
of the SPPM-AS algorithm specific to FL, designated as Algorithm 4. Notably, as block sampling is
adopted as our default method, this adaptation of the algorithm specifically addresses the nuances of
the block sampling approach. We also conducted arbitrary sampling on synthetic datasets and neural
networks to demonstrate the algorithm’s versatility.
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Algorithm 4 SPPM-AS Adaptation for Federated Learning

1: Input: Initial point x0 ∈ Rd, cohort size C ≥ 1, learning rate γ > 0, clusters q ≥ C, local
communication rounds K

2: for t = 0, 1, 2, · · · do
3: SPPM-BS:
4: Server samples a cluster qi from [q]
5: Server samples C clients, denoted as [C] from cluster qi
6: SPPM-SS:
7: Server samples C clusters from [q]
8: Server sample 1 client from each selected cluster to construct C clients
9: Server broadcasts the model xt to each Ci ∈ [C]

10: All selected clients in parallel construct Fξ1t ,··· ,ξCt (xt)
11: All selected clients together evaluate the prox for K local communication rounds to obtain
12:

xt+1 ≃ proxγF
ξ1t ,··· ,ξCt

(xt)

13: All selected clients send the updated model xt+1 to the server
14: end for
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D Additional Experiments on Logistic Regression

D.1 Communication Cost on Various Datasets to a Target Accuracy

In Figure 1, we presented the total communication cost relative to the number of rounds required to
achieve the target accuracy for the selected cohort. In this section, we provide more details on how is
this figure was obtained and present additional results for various datasets.
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Figure 7: Total communication cost with respect to the local communication round. For LocalGD,
K represents the local communication round K for finding the prox of the current model. For
LocalGD, we slightly abuse the x-axis, which represents the total number of local iterations, no
local communication is required. We calculate the total communication cost to reach a fixed global
accuracy ϵ such that ∥xt − x⋆∥2 < ϵ. LocalGD, optim represents using the theoretical optimal stepsize
of LocalGD with minibatch sampling.
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Figure 8: K = 4.
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Figure 9: K = 16.

D.2 Convergence Speed and σ2
⋆,SS Trade-Off

Unlike SGD-type methods such as MB-GD and MB-LocalGD, in which the largest allowed learning rate
is 1/A, where A is a constant proportion to the smoothness of the function we want to optimize (Gower
et al., 2019). For larger learning rate, SGD-type method may not converge and exploding. However,
for stochastic proximal point methods, they have a very descent benefit of allowing arbitrary learning
rate. In this section, we verify whether our proposed method can allow arbitrary learning rate and
whether we can find something interesting. We considered different learning rate scale from 1e-5 to
1e+5. We randomly selected three learning rates [0.1, 1, 100] for visual representation with the results
presented in Figure 8 and Figure 9. We found that a larger learning rate leads to a faster convergence
rate but results in a much larger neighborhood, σ2

⋆,SS/µ
2
SS. This can be considered a trade-off between

convergence speed and neighborhood size, σ2
⋆,SS. By default, we consider setting the learning rate to

1.0 which has a good balance between the convergence speed and the neighborhood size.
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In this section, we extend our analysis by providing additional results across a broader range of
datasets and varying learning rates. Specifically, Figure 8 illustrates the outcomes using 4 local
communication rounds (K = 4), while Figure 9 details the results for 16 local communication
rounds (K = 16). Previously, in Figure 1, we explored the advantages of larger K values. Here,
our focus shifts to determining if similar trends are observable across different K values. Through
comprehensive evaluations on various datasets and multiple K settings, we have confirmed that lower
learning rates in SPPM-AS result in slower convergence speeds; however, they also lead to a smaller
final convergence neighborhood.

D.3 Additional Experiments on Hierarchical Federated Learning

In Figure 2d of the main text, we detail the total communication cost for hierarchical Federated
Learning (FL) utilizing parameters c1 = 0.1 and c2 = 1 on the a6a dataset. Our findings reveal that
SPPM-AS achieves a significant reduction in communication costs, amounting to 94.87%, compared
with the conventional FL setting where c1 = 1 and c2 = 1, which shows a 74.36% reduction. In
this section, we extend our analysis with comprehensive evaluations on additional datasets, namely
ijcnn1.bz2, a9a, and mushrooms. Beyond considering c1 = 0.1, we further explore the impact of
reducing the local communication cost from each client to the corresponding hub to c1 = 0.05. The
results, presented in Figure 10 and the continued Figure 11, reinforce our observation: hierarchical FL
consistently leads to further reductions in communication costs. A lower c1 parameter correlates with
even greater savings in communication overhead. These results not only align with our expectations
but also underscore the efficacy of our proposed SPPM-AS in cross-device FL settings.
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Figure 10: The total communication cost is analyzed with respect to the number of local communica-
tion rounds. For LocalGD, K represents the local communication round used for finding the prox of
the current model. In the case of LocalGD, we slightly abuse the x-axis to represent the total number
of local iterations, as no local communication is required. We calculate the total communication cost
needed to reach a fixed global accuracy ϵ, such that ∥xt − x⋆∥2 < ϵ. LocalGD, optim denotes the use
of the theoretically optimal stepsize for LocalGD with minibatch sampling. Comparisons are made
between different prox solvers (CG and BFGS).

E Additional Neural Network Experiments

E.1 Experiment Details

For our neural network experiments, we used the FEMNIST dataset (Caldas et al., 2018). Each
client was created by uniformly selecting from user from original dataset, inherently introducing
heterogeneity among clients. We tracked and reported key evaluation metrics—training and testing
loss and accuracy—after every 5 global communication rounds. The test dataset was prepared
by dividing each user’s data into a 9:1 ratio, following the partitioning approach of the FedLab
framework (Zeng et al., 2023). For the SPPM-AS algorithm, we selected Adam as the optimizer for the
proximal operator. The learning rate was determined through a grid search across the following range:
[0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5]. The model architecture comprises a convolutional
neural network (CNN) with the following layers: Conv2d(1, 32, 5), ReLU, Conv2d(32, 64, 5),
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Figure 11: Total communication cost with respect to the local communication round.

Layer Output Shape # of Trainable
Parameters

Activation Hyperparameters

Input (28, 28, 1) 0
Conv2d (24, 24, 32) 832 ReLU kernel size = 5;

strides = (1, 1)
Conv2d (10, 10, 64) 51,264 ReLU kernel size = 5;

strides = (1, 1)
MaxPool2d (5, 5, 64) 0 pool size = (2, 2)
Flatten 6400 0
Dense 128 819,328 ReLU
Dense 62 7,998 softmax

Table 5: Architecture of the CNN model for FEMNIST symbol recognition.

MaxPool2d(2, 2), a fully connected (FC) layer with 128 units, ReLU, and another FC layer with 128
units, as specified in Table 5. Dropout, learning rate scheduling, gradient clipping, etc., were not used
to improve the interpretability of results.

We explore various values of targeted training accuracy, as illustrated in Figure 12. This analysis helps
us understand the impact of different accuracy thresholds on the model’s performance. For instance,
we observe that as the target accuracy changes, SPPM-NICE consistently outperforms LocalGD in
terms of total communication cost. As the target accuracy increases, the performance gap between
these two algorithms also widens. Additionally, we perform ablation studies on different values of
c1, as shown in Figure 13, to assess their effects on the learning process. Here, we note that with
c2 = 0.2, SPPM-NICE performs similarly to LocalGD, suggesting that an increase in c2 value could
narrow the performance gap between SPPM-NICE and LocalGD.
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Figure 12: Varying targeted training accuracy level for SPPM-AS.
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Figure 13: Varying c1 cost.

E.2 Convergence Analysis Compared with Baselines

Further, we compare SPPM-AS, SPPM, and LocalGD in Figure 15, placing a particular emphasis on
evaluating the total computational complexity. This measure gains importance in scenarios where
communication rounds are of secondary concern, thereby shifting the focus to the assessment of
computational resource expenditure.

E.3 Prox Solvers Baselines

We compare baselines from A.3 for training a CNN model over 100 workers using data from the
FEMNIST dataset, as shown in Figure 14. The number of local communication rounds and worker
optimizer steps is consistent among various solvers for the purpose of fair comparison. All local
solvers optimize the local objective, which is prox on the selected cohort. The solvers compared
are: LocalGD referred as FedSGD (McMahan et al., 2017) - the Federated Averaging algorithm with
SGD as the worker optimizer, FedAdam - the Federated Averaging algorithm with Adam as the
worker optimizer, FedAdam-Adam based on the FedOpt framework (Reddi et al., 2020), and finally
MimeLite-Adam, which is based on the Mime (Karimireddy et al., 2020a) framework and the Adam
optimizer. The hyperparameter search included a double-level sweep of the optimizer learning rates:
[0.00001, 0.0001, 0.001, 0.01, 0.1], followed by [0.25, 0.5, 1.0, 2.5, 5] ∗ lrbest. One can see that all
methods perform similarly, with MimeLite-Adam and FedSGD converging better on the test data.
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Figure 14: Different local solvers for prox baselines for training a CNN model over 100 workers
using data from the FEMNIST dataset. The number of local communication rounds is fixed at 3 and
the number of worker optimizer steps is fixed at 3. Nice sampling with a minibatch size of 10 is used.
γ is fixed at 1.0.

0 2000 4000 6000 8000 10000
Computation rounds

0

1

2

3

4
Train Loss

SPPM-NICE
SPPM
FedAvg

0 2000 4000 6000 8000 10000
Computation rounds

0

20

40

60

80
Train Accuracy

SPPM-NICE
SPPM
FedAvg

0 2000 4000 6000 8000 10000
Computation rounds

0

1

2

3

4
Test Loss

SPPM-NICE
SPPM
FedAvg

0 2000 4000 6000 8000 10000
Computation rounds

0

20

40

60

80
Test Accuracy

SPPM-NICE
SPPM
FedAvg

0 2000 4000 6000 8000 10000
Computation rounds

0

1

2

3

4
Train Loss

SPPM-NICE
SPPM
FedAvg

0 2000 4000 6000 8000 10000
Computation rounds

0

20

40

60

80
Train Accuracy

SPPM-NICE
SPPM
FedAvg

0 2000 4000 6000 8000 10000
Computation rounds

0

1

2

3

4
Test Loss

SPPM-NICE
SPPM
FedAvg

0 2000 4000 6000 8000 10000
Computation rounds

0

20

40

60

80
Test Accuracy

SPPM-NICE
SPPM
FedAvg

Figure 15: Accuracy compared with baselines.
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F Missing Proof and Additional Theoretical Analysis

F.1 Facts Used in the Proof

Fact 1 (Differentiation of integral with a parameter (theorem 2.27 from Folland (1984))). Suppose
that f : X × [a, b] → C(−∞ < a < b < ∞) and that f(·, t) : X → C is integrable for each
t ∈ [a, b]. Let F (t) =

∫
X
f(x, t)dµ(x).

a. Suppose that there exists g ∈ L1(µ) such that |f(x, t)| ≤ g(x) for all x, t. If
limt→t0 f(x, t) = f (x, t0) for every x, then limt→t0 F (t) = F (t0); in particular, if
f(x, ·) is continuous for each x, then F is continuous.

b. Suppose that ∂f/∂t exists and there is a g ∈ L1(µ) such that |(∂f/∂t)(x, t)| ≤ g(x) for all
x, t. Then F is differentiable and F ′(x) =

∫
(∂f/∂t)(x, t)dµ(x).

Fact 2 (Tower Property). For any random variables X and Y , we have

E [E [X|Y ]] = E [X] .

Fact 3 (Every point is a fixed point (Khaled & Jin, 2023)). Let φ : Rd → R be a convex differentiable
function. Then

proxγφ(x+ γ∇φ(x)) = x, ∀γ > 0, ∀x ∈ Rd.

In particular, if x⋆ is a minimizer of φ, then proxγφ(x⋆) = x⋆.

Proof. Evaluating the proximity operator is equivalent to

proxγφ(y) = argmin
x∈Rd

(
φ(x) +

1

2γ
∥x− y∥2

)
.

This is a strongly convex minimization problem for any γ > 0, hence the (necessarily unique)
minimizer x = proxγφ(y) of this problem satisfies the first-order optimality condition

∇φ(x) + 1

γ
(x− y) = 0.

Solving for y, we observe that this holds for y = x + γ∇ϕ(x). Therefore, x = proxγφ(x +
γ∇φ(x)).

Fact 4 (Contractivity of the prox (Mishchenko et al., 2022a)). If φ is differentiable and µ-strongly
convex, then for all γ > 0 and for any x, y ∈ Rd we have∥∥proxγφ(x)− proxγφ(y)

∥∥2 ≤ 1

(1 + γµ)2
∥x− y∥2 .

Fact 5 (Recurrence (Khaled & Jin, 2023, Lemma 1)). Assume that a sequence {st}t≥0 of positive
real numbers for all t ≥ 0 satisfies

st+1 ≤ ast + b,

where 0 < a < 1 and b ≥ 0. Then the sequence for all t ≥ 0 satisfies

st ≤ ats0 + bmin

{
t,

1

1− a

}
.

Proof. Unrolling the recurrence, we get

st ≤ ast−1 + b ≤ a(ast−2 + b) + b ≤ · · · ≤ ats0 + b

t−1∑
i=0

ai.

We can now bound the sum
∑t−1

i=0 a
i in two different ways. First, since a < 1, we get the estimate

t−1∑
i=0

ai ≤
t−1∑
i=0

1 = t.
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Second, we sum a geometic series

t−1∑
i=0

ai ≤
inf∑
i=0

ai =
1

1− a
.

Note that either of these bounds can be better. So, we apply the best of these bounds. Substituing the
above two bounds gived the target inequality.

F.2 Simplified Proof of SPPM

We provide a simplified proof of SPPM (Khaled & Jin, 2023) in this section. Using the fact that
x⋆ = proxγfξt (x⋆ + γ∇fξt(x⋆)) (see Fact 3) and then applying contraction of the prox (Fact 4), we
get

∥xt+1 − x⋆∥2 =
∥∥∥proxγfξt −x⋆

∥∥∥2
(Fact 3)

=
∥∥∥proxγfξt (xt)− proxγfξt (x⋆ + γ∇fξt(x⋆))

∥∥∥2
(Fact 4)

≤ 1

(1 + γµ)2
∥xt − (x⋆ + γ∇fξt(x⋆))∥2

=
1

(1 + γµ)2

(
∥xt − x⋆∥2 − 2γ ⟨∇fξt(x⋆), xt − x⋆⟩+ γ2∥∇fξt(x⋆)∥2

)
.

Taking expectation on both sides, conditioned on xt, we get

E
[
∥xt+1 − x⋆∥2|xt

]
≤ 1

(1 + γµ)2

(
∥xt − x⋆∥2 − 2γ ⟨E [∇fξt(x⋆)] , xt − x⋆⟩+ γ2E

[
∥∇fξt(x⋆)∥2

])
=

1

(1 + γµ)2

(
∥xt − x⋆∥2 + γ2σ2

⋆

)
,

where we used the fact that E [∇fξt(x⋆)] = ∇f(x⋆) = 0 and σ2
⋆ := E

[
∥∇fξt(x⋆)∥2

]
. Taking

expectation again and applying the tower property (Fact 2), we get

E
[
∥xt+1 − x⋆∥2

]
≤ 1

(1 + γµ)2

(
∥xt − x⋆∥2 + γ2σ2

⋆

)
.

It only remains to solve the above recursion. Luckily, that is exactly what Fact 5 does. In particular,
we use it with st = E

[
∥xt − x⋆∥2

]
, a = 1

(1+γµ)2 and b =
γ2σ2

⋆

(1+γµ)2 to get

E
[
∥xt − x⋆∥2

] (Fact 5)

≤
(

1

1 + γµ

)2t

∥x0 − x⋆∥2 +
γ2σ2

⋆

(1 + γµ)2
min

{
t,

(1 + γµ)2

(1 + γµ)2 − 1

}
≤
(

1

1 + γµ

)2t

∥x0 − x⋆∥2 +
γ2σ2

⋆

(1 + γµ)2 − 1

≤
(

1

1 + γµ

)2t

∥x0 − x⋆∥2 +
γσ2

⋆

γµ2 + 2µ
.

F.3 Missing Proof of Theorem 1

We first prove the following useful lemma.
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Lemma 4. Let ϕξ : Rd → R be differentiable functions for almost all ξ ∼ D, with ϕξ being
µξ-strongly convex for almost all ξ ∼ D. Further, let wξ be positive scalars. Then the function
ϕ := Eξ∼D [wξϕξ] is µ-strongly convex with µ = Eξ∼D [wξµξ].

Proof. By assumption,

ϕξ(y) + ⟨∇ϕξ(y), x− y⟩+ µξ

2
∥x− y∥2 ≤ ϕξ(x), for almost all ξ ∈ D,∀x, y ∈ Rd.

This means that

Eξ∼D

[
wξ

(
ϕξ(y) + ⟨∇ϕξ(y), x− y⟩+ µξ

2
∥x− y∥2

)]
≤ Eξ∼D [wξϕξ(x)] , ∀x, y ∈ Rd,

which is equivalent to

ϕ(y) + ⟨∇ϕ(y), x− y⟩+ Eξ∼D [wξµξ]

2
∥x− y∥2 ≤ ϕ(x), ∀x, y ∈ Rd,

So, ϕ is µ-strongly convex.

Now, we are ready to prove our main Theorem 1.

Proof. Let C be any (necessarily nonempty) subset of [n] such that pC > 0. Recall that in view of
Equation (8) we have

fC(x) = Eξ∼D

[
I (ξ ∈ C)

pξ
fξ(x)

]
i.e., fC is a conic combination of the functions {fξ : ξ ∈ C} with weights wξ = I(ξ∈C)

pξ
. Since each

fξ is µξ-strongly convex, Theorem 4 says that fC is µC-strongly convex with

µC := Eξ∼D

[
I (ξ ∈ C)µξ

pξ

]
.

So, every such fC is µ-strongly convex with

µ = µAS := min
C⊆[n],pC>0

Eξ∼D

[
I (ξ ∈ C)µξ

pξ

]
.

Further, the quantity σ2
⋆ from (2.3) is equal to

σ2
⋆ := Eξ∼D

[
∥∇fξ (x⋆)∥2

]
Eqn. (10)

=
∑

C⊆[n],pC>0

pC ∥∇fC (x⋆)∥2 := σ2
⋆,AS.

Incorporating Appendix F.2 into the above equation, we prove the theorem.

F.4 Theory for Expectation Formulation

We will formally define our optimization objective, focusing on minimization in expectation form.
We consider

min
x∈Rd

f(x) := Eξ∼D [fξ(x)], (6)

where fξ : Rd → R, ξ ∼ D is a random variable following distribution D.

Assumption 5. Function fξ : Rd → R is differentiable for almost all samples ξ ∼ D.

This implies that f is differentiable. We will implicitly assume that the order of differentiation and
expectation can be swapped 1, which means that

∇f(x) Eqn. (1)
= ∇Eξ∼D [fξ(x)] = Eξ∼D [∇fξ(x)] .

1This assumption satisfies the conditions required for the theorem about differentiating an integral with a
parameter (Fact 1).
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Assumption 6. Function fξ : Rd → R is µ-strongly convex for almost all samples ξ ∼ D, where
µ > 0. That is

fξ(y) + ⟨∇fξ, x− y⟩+ µ

2
∥x− y∥2 ≤ fξ(x),

for all x, y ∈ Rd.

This implies that f is µ-strongly convex, and hence f has a unique minimizer, which we denote by
x⋆. We know that ∇f(x⋆) = 0. Notably, we do not assume f to be L-smooth.

Let S be a probability distribution over all finite subsets of N. Given a random set S ∼ S , we define

pi := Prob(i ∈ S), i ∈ N.

We will restrict our attention to proper and nonvacuous random sets.

Assumption 7. S is proper (i.e., pi > 0 for all i ∈ N) and nonvacuous (i.e., Prob(S = ∅) = 0).

Let C be the selected cohort. Given ∅ ≠ C ⊂ N and i ∈ N, we define

vi(C) :=

{
1
pi

i ∈ C

0 i /∈ C,
(7)

and

fC(x) := Eξ∼D [vξ(C)fξ(x)]
Eqn. (7)

= Eξ∼D

[
I (ξ ∈ C)

pξ
fξ(x)

]
. (8)

Note that vi(S) is a random variable and fS is a random function. By construction, ES∼S [vi(S)] = 1
for all i ∈ N, and hence

ES∼S [fS(x)] = ES∼S [Eξ∼D [vξ(C)∇fξ(x)]]
= Eξ∼D [ES∼S [vξ(S)]∇fξ(x)] = Eξ∼D [fξ(x)] = f(x).

Therefore, the optimization problem in Equation (1) is equivalent to the stochastic optimization
problem

min
x∈Rd

{f(x) := ES∼S [fS(x)]} . (9)

Further, if for each C ⊂ N we let pC := Prob(S = C), f can be written in the equivalent form

f(x) = ES∼S [fS(x)] =
∑
C⊂N

pCfC(x) =
∑

C⊂N,pC>0

pCfC(x). (10)

Theorem 8 (Main Theorem). Let Assumption 1 (diferentiability) and Assumption 2 (strong convexity)
hold. Let S be a random set satisfying Assumption 3, and define

µAS := min
C⊂N,pC>0

Eξ∼D

[
I (ξ ∈ C)µξ

pξ

]
,

σ2
⋆,AS :=

∑
C⊂N,pC>0

pC ∥∇fC (x⋆)∥2 . (11)

Let x0 ∈ Rd be an arbitrary starting point. Then for any t ≥ 0 and any γ > 0, the iterates of
SPPM-AS (Algorithm 1) satisfy

E
[
∥xt − x⋆∥2

]
≤
(

1

1 + γµAS

)2t

∥x0 − x⋆∥2 +
γσ2

⋆,AS

γµ2
AS + 2µAS

.

30



F.5 Missing Proof of Iteration Complexity of SPPM-AS

We have seen above that accuracy arbitrarily close to (but not reaching) σ2
⋆,AS/µ2

AS can be achieved via
a single step of the method, provided the stepsize γ is large enough. Assume now that we aim for ϵ
accuracy where ϵ ≤ σ2

⋆,AS/µ2
AS. Using the inequality 1− k ≤ exp(−k) which holds for all k > 0, we

get

(
1

1 + γµAS

)2t

=

(
1− γµ

1 + γµAS

)2t

≤ exp

(
− 2γµASt

1 + γµAS

)
Therefore, provided that

t ≥ 1 + γµAS

2γµAS
log

(
2 ∥x0 − x⋆∥2

ε

)
,

we get
(

1
1+γµAS

)2t
∥x0 − x⋆∥2 ≤ ε

2 . Furthermore, as long as γ ≤ 2εµAS

2σ2
⋆,AS−εµ2

AS
(this is true

provided that the more restrictive but also more elegant-looking condition γ ≤ εµAS/σ2
⋆,AS holds),

we get
γσ2

⋆,AS

γµ2
AS+2µAS

≤ ε
2 . Putting these observations together, we conclude that with the stepsize

γ = εµAS/σ2
⋆,AS, we get E

[
∥xt − x⋆∥2

]
≤ ε provided that

t ≥ 1 + γµAS

2γµAS
log

2 ∥x0 − x⋆∥2

ε
=

(
σ2
⋆,AS

2εµ2
AS

+
1

2

)
log

(
2 ∥x0 − x⋆∥2

ε

)
.

F.6 σ2
⋆,NICE(τ) and µNICE(τ) are Monotonous Functions of τ

Lemma 9. For all 0 ≤ τ ≤ n− 1:

1. µNICE(τ + 1) ≥ µNICE(τ),

2. σ2
⋆,NICE(τ) =

n
τ −1

n−1 σ
2
⋆,NICE(1) ≤ 1

τ σ
2
⋆,NICE(1).

Proof. 1. Pick any 1 ≤ τ < n, and consider a set C for which the minimum is attained in

µNICE(τ + 1) = min
C⊆[n],|C|=τ+1

1

τ + 1

∑
i∈C

µi.

Let j = argmaxi∈C µi. That is, µj ≥ µi for all i ∈ C. Let Cj be the set obtained from C
by removing the element j. Then |Cj | = τ and

µj = max
i∈C

µi ≥ max
i∈Cj

µi ≥
1

τ

∑
i∈Cj

µi.

By adding
∑

i∈Cj
µi to the above inequality, we obtain

µj +
∑
i∈Cj

µi ≥
1

τ

∑
i∈Cj

µi +
∑
i∈Cj

µi.

Observe that the left-hand side is equal to
∑

i∈C µi, and the right-hand side is equal to
τ+1
τ

∑
i∈Cj

µi. If we divide both sides by τ + 1, we obtain

1

τ + 1

∑
i∈C

µi ≥
1

τ

∑
i∈Cj

µi.

Since the left-hand side is equal to µNICE(τ + 1), and the right hand side is an upper bound
on µNICE(τ), we conclude that µNICE(τ + 1) ≥ µNICE(τ).
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2. In view of (8) we have

fC(x) =
∑
i∈C

1

npi
fi(x). (12)

σ2
⋆,AS = ES∼S

∥∥∥∥∥∑
i∈S

1

npi
∇fi(x⋆)

∥∥∥∥∥
2
 = ES∼S

∥∥∥∥∥∑
i∈S

1

τ
∇fi(x⋆)

∥∥∥∥∥
2


(13)

Let χi be the random variable defined by

χj =

{
1 j ∈ S
0 j /∈ S.

(14)

It is easy to show that

E[χj ] = Prob(j ∈ S) =
τ

n
. (15)

Let fix the cohort S. Let χij be the random variable defined by

χij =

{
1 i ∈ S and j ∈ S
0 otherwise. (16)

Note that

χij = χiχj . (17)

Further, it is easy to show that

E[χij ] = Prob(i ∈ S, j ∈ S) =
τ(τ − 1)

n(n− 1)
. (18)

Denote ai := ∇fi(x⋆).
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E

∥∥∥∥∥1τ ∑
i∈S

ai

∥∥∥∥∥
2
 =

1

τ2
E

∥∥∥∥∥∑
i∈S

ai

∥∥∥∥∥
2


=
1

τ2
E

∥∥∥∥∥
n∑

i=1

χiai

∥∥∥∥∥
2


=
1

τ2
E

 n∑
i=1

∥χiai∥2 +
∑
i̸=j

⟨χiai, χjaj⟩


=

1

τ2
E

 n∑
i=1

∥χiai∥2 +
∑
i̸=j

χij ⟨ai, aj⟩


=

1

τ2

n∑
i=1

E[χi] ∥ai∥2 +
∑
i ̸=j

E[χij ] ⟨ai, aj⟩

=
1

τ2

 τ

n

n∑
i=1

∥ai∥2 +
τ(τ − 1)

n(n− 1)

∑
i̸=j

⟨ai, aj⟩


=

1

τn

n∑
i=1

∥ai∥2 +
τ − 1

τn(n− 1)

∑
i ̸=j

⟨ai, aj⟩

=
1

τn

n∑
i=1

∥ai∥2 +
τ − 1

τn(n− 1)

∥∥∥∥∥
n∑

i=1

aj

∥∥∥∥∥
2

−
n∑

i=1

∥ai∥2


=
n− τ

τ(n− 1)

1

n

n∑
i=1

∥ai∥2 +
n(τ − 1)

τ(n− 1)

∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2

=
n− τ

τ(n− 1)

1

n

n∑
i=1

∥∇fi(x⋆)∥2 +
n(τ − 1)

τ(n− 1)

∥∥∥∥∥ 1n
n∑

i=1

∇fi(x⋆)

∥∥∥∥∥
2

=
n− τ

τ(n− 1)

1

n

n∑
i=1

∥∇fi(x⋆)∥2

≤ 1

τ

1

n

n∑
i=1

∥∇fi(x⋆)∥2

F.7 Missing Proof of Lemma 1

For ease of notation, let ai = ∇fi (x⋆) and ẑj = |Cj | aξj , and recall that

σ2
⋆,SS = Eξ1,...,ξb


∥∥∥∥∥∥ 1n

b∑
j=1

ẑj

∥∥∥∥∥∥
2
 . (19)
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where ξj ∈ Cj is chosen uniformly at random. Further, for each j ∈ [b], let zj =
∑

i∈Cj
ai. Observe

that
∑b

j=1 zj =
∑b

j=1

∑
i∈Cj

ai =
∑n

i=1 ai = ∇f (x⋆) = 0. Therefore,∥∥∥∥∥∥ 1n
b∑

j=1

ẑj

∥∥∥∥∥∥
2

=
1

n2

∥∥∥∥∥∥
b∑

j=1

ẑj −
b∑

j=1

zj

∥∥∥∥∥∥
2

=
b2

n2

∥∥∥∥∥∥1b
b∑

j=1

(ẑj − zj)

∥∥∥∥∥∥
2

≤ b2

n2

1

b

b∑
j=1

∥ẑj − zj∥2

=
b

n2

b∑
j=1

∥ẑj − zj∥2 , (20)

where the inequality follows from convexity of the function u 7→ ∥u∥2. Next,

∥ẑj − zj∥2 =

∥∥∥∥∥∥|Cj | aξj −
∑
i∈Cj

ai

∥∥∥∥∥∥
2

= |Cj |2
∥∥∥∥∥∥aξj − 1

|Cj |
∑
i∈Cj

ai

∥∥∥∥∥∥
2

≤ |Cj |2 σ2
j . (21)

By combining Equation (19), Equation (20) and Equation (21), we get

σ2
⋆,SS

Eqn. (19)
= Eξ1,...,ξb


∥∥∥∥∥∥ 1n

b∑
j=1

ẑj

∥∥∥∥∥∥
2


Eqn. (20)

≤ Eξ1,...,ξb

 b

n2

b∑
j=1

∥ẑj − zj∥2


Eqn. (21)

≤ Eξ1,...,ξb

 b

n2

b∑
j=1

|Cj |2 σ2
j


=

b

n2

b∑
j=1

|Cj |2 σ2
j .

The last expression can be further bounded as follows:

b

n2

b∑
j=1

|Cj |2 σ2
j ≤

b

n2

 b∑
j=1

|Cj |2
max

j
σ2
j ≤

b

n2

 b∑
j=1

|Cj |

2

max
j

σ2
j = bmax

j
σ2
j ,

where the second inequality follows from the relation ∥u∥2 ≤ ∥u∥1 between the L2 and L1 norms,
and the last identity follows from the fact that

∑b
j=1 |Cj | = n.

F.8 Stratified Sampling Against Block Sampling and Nice Sampling

In this section, we present a theoretical comparison of block sampling and its counterparts, providing
a theoretical justification for selecting block sampling as the default clustering method in future
experiments. Additionally, we compare various sampling methods, all with the same sampling size,
b: b-nice sampling, block sampling with b clusters, and block sampling, where all clusters are of
uniform size b.
Assumption 10. For simplicity of comparison, we assume b clusters, each of the same size, b:

|C1| = |C2| = . . . = |Cb| = b.
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It is crucial to acknowledge that, without specific assumptions, the comparison of different sampling
methods may not provide meaningful insights. For instance, the scenario described in Lemma 1,
characterized by complete inter-cluster homogeneity, demonstrates that block sampling achieves a
variance term, denoted as σ2

⋆,SS, which is lower than the variance terms associated with both block
sampling and nice sampling. However, a subsequent example illustrates examples in which the
variance term for block sampling surpasses those of block sampling and nice sampling.
Example 1. Without imposing any additional clustering assumptions, there exist examples for any
arbitrary n, such that σ2

⋆,SS ≥ σ2
⋆,BS and σ2

⋆,SS ≥ σ2
⋆,NICE.

Proof. Counterexample when SS is worse in neighborhood than BS
Assume we have such clustering and ∇fi(x⋆) such that the centroids of each cluster are equal
to zero: ∀i ∈ [b], 1

|Ci|
∑

j∈Ci
∇fj(x⋆) = 0. For instance, this can be achieved in the following

case: The dimension is d = 2, all clusters are of equal size m, then assign ∀i ∈ [b], ∀j ∈ Ci,
∇fj(x⋆) =

(
Re
(
ωmj+i

)
, Im

(
ωmj+i

))
where ω = n

√
1 ∈ C. Let us calculate σ2

⋆,BS:

σ2
⋆,BS :=

b∑
j=1

qj

∥∥∥∥∥∥
∑
i∈Cj

1

npi
∇fi(x⋆)

∥∥∥∥∥∥
2

=

=
1

n2

b∑
j=1

|Cj |2

qj

∥∥∥∥∥∥ 1

|Cj |
∑
i∈Cj

∇fi(x⋆)

∥∥∥∥∥∥
2

= 0.

As a result:
σ2
⋆,BS = 0 ≤ σ2

⋆,SS.

Counterexample when SS is worse in neighborhood than NICE
Here, we employ a similar proof technique as in the proof of Lemma 2. Let us choose such
clustering Cb,SS,max = argmaxCb

σ2
⋆,SS(Cb). Denote ib := (i1, · · · , ib), Cb := C1 × · · · × Cb, and

Sib :=
∥∥ 1
τ

∑
i∈ib
∇fi(x⋆)

∥∥.

σ2
⋆,NICE =

1

C(n, τ)

∑
C⊆[n],|C|=τ

∥∥∥∥∥1τ ∑
i∈C

∇fi(x⋆)

∥∥∥∥∥
2

=
1

C(n, b)

∑
ib⊆[n]

Sib

1
=

1

#clusterizations

∑
Cb

1

bb

∑
ib∈Cb

Sib

=
1

#clusterizations

∑
Cb

σ2
⋆,SS(Cb)

2
≤ σ2

⋆,SS(Cb,SS,max).

Equation 1 holds because, in every clusterization Cb, there are 1
bb

possible sample combinations ib.
Due to symmetry, one can conclude that each combination Sib is counted the same number of times.
Equation 2 follows from the definition of Cb,SS,max.
For illustrative purposes, we can demonstrate this effect with a specific example. Let n = 4 and
define ∀i ai = ∇fi(x∗) ∈ R2. Let a1 = (0, 1)T , a2 = (1, 0)T , a3 = (0,−1)T , and a4 = (−1, 0)T .
Then fix clustering Cb = {C1 = {a1, a3}, C2 = {a2, a4}}. Then:

σ2
⋆,SS =

1

4

∑
ib∈Cb

∥∥∥∥ai1 + ai2
2

∥∥∥∥2

=
1

4

∑
ib∈Cb

∥∥∥∥(±1

2
,±1

2
)

∥∥∥∥2
=

1

2
.
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σ2
⋆,NICE =

1

C(4, 2)

∑
i<j

∥∥∥∥ai + aj
2

∥∥∥∥2

=
1

6

∑
i<j

∥∥∥∥ai + aj
2

∥∥∥∥2

=
1

6

([∥∥∥∥a1 + a3
2

∥∥∥∥2 + ∥∥∥∥a2 + a4
2

∥∥∥∥2
]
+ 2×

∥∥∥∥ai1 + ai2
2

∥∥∥∥2
)

=
1

6

(
0 + 2× 2× 1

2

)
=

1

3

=
2

3
× σ2

⋆,SS

≤ σ2
⋆,SS

To select the optimal clustering, we will choose the clustering that minimizes σ2
⋆,SS.

Definition 11 (Stratified sampling optimal clustering). Denote the clustering of workers into blocks
as Cb := {C1, C2, . . . , Cb}, such that the disjoint union of all clusters C1 ∪ C2 ∪ . . . ∪ Cb = [n].
Define block sampling Optimal Clustering as the clustering configuration that minimizes σ2

⋆,SS,
formally given by:

Cb,SS := argmin
Cb

σ2
⋆,SS(Cb).

Lemma 12. Given Assumption 10, the following holds: σ2
⋆,SS (Cb,SS) ≤ σ2

⋆,NICE for arbitrary b.

Proof.

Denote ib := (i1, · · · , ib), Cb := C1 × · · · × Cb, and Sib :=
∥∥ 1
τ

∑
i∈ib
∇fi(x⋆)

∥∥.

σ2
⋆,NICE =

1

C(n, τ)

∑
C⊆[n],|C|=τ

∥∥∥∥∥1τ ∑
i∈C

∇fi(x⋆)

∥∥∥∥∥
2

=
1

C(n, b)

∑
ib⊆[n]

Sib

1
=

1

#clusterizations

∑
Cb

1

bb

∑
ib∈Cb

Sib

=
1

#clusterizations

∑
Cb

σ2
⋆,SS(Cb)

2
≥ σ2

⋆,SS(Cb,SS,min)

Equation 1 holds because, in every clusterization Cb, there are 1
bb

possible sample combinations ib.
Due to symmetry, one can conclude that each combination Sib is counted the same number of times.
Equation 2 follows from the definition of Cb,SS,min as the clustering that minimizes σ2

⋆,SS, according
to Definition 11.

Example 2. Consider the number of clusters and the size of each cluster, with b = 2, under
Assumption 10. Then, σ2

⋆,SS (Cb,SS) ≤ σ2
⋆,BS.
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Proof. Let n = 4, b = 2. Denote ∀i ai = ∇fi(x∗). Define S2 :=
∑

i<j

∥∥∥ai+aj

2

∥∥∥2.

σ2
⋆,SS =

1

4

(
S2 −

∥∥∥∥aC1
1
+ aC2

1

2

∥∥∥∥2 − ∥∥∥∥aC1
2
+ aC2

2

2

∥∥∥∥2
)

=
1

4

(
S2 − 2σ2

⋆,BS

)
Cb,SS clustering minimizes σ2

⋆,SS, thereby maximizing σ2
⋆,BS. Thus,

σ2
⋆,SS =

1

4

([∥∥∥∥aC1
1
+ aC1

2

2

∥∥∥∥2 + ∥∥∥∥aC2
1
+ aC2

2

2

∥∥∥∥2
]
+

[∥∥∥∥aC1
1
+ aC2

2

2

∥∥∥∥2 + ∥∥∥∥aC2
1
+ aC1

2

2

∥∥∥∥2
])

=
1

4

(
2σ2

⋆,BS

(
(C1

1 , C
1
2 ), (C

2
1 , C

2
2 )
)
+ 2σ2

⋆,BS

(
(C1

1 , C
2
2 ), (C

2
1 , C

1
2 )
))

=
1

2

(
σ2
⋆,BS

(
(C1

1 , C
1
2 ), (C

2
1 , C

2
2 )
)
+ σ2

⋆,BS

(
(C1

1 , C
2
2 ), (C

2
1 , C

1
2 )
))

≤ σ2
⋆,BS.

However, it is possible that this relationship might hold more generally. Empirical experiments for
different configurations, such as b = 3, support this possibility. For example, with n = 9, b = 3,
and d = 10, Python simulations where gradients ∇fi are sampled from N (0, 1) and N (e, 1) across
1000 independent trials, show that σ2

⋆,SS ≤ σ2
⋆,BS. Question of finding theoretical proof for arbitraty

n remains open and has yet to be addressed in the existing literature.

F.9 Different Approaches of Federated Averaging

Proof of Theorem 2:

Proof.

∥xt − x⋆∥2 =

∥∥∥∥∥∑
i∈St

1

|St|
proxγfi(xt−1)−

1

|St|
∑
i∈St

x⋆

∥∥∥∥∥
2

(Fact 3)
=

∥∥∥∥∥∑
i∈St

1

|St|
[
proxγfi(xt−1)− proxγfi(x⋆ + γ∇fi(x⋆))

]∥∥∥∥∥
2

Jensen
≤

∑
i∈St

1

|St|
∥∥[proxγfi(xt−1)− proxγfi(x⋆ + γ∇fi(x⋆))

]∥∥2
(Fact 4)

≤
∑
i∈St

1

|St|
1

(1 + γµi)2
∥xt−1 − (x⋆ + γ∇fi(x⋆))∥2
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ESt∼S

[
∥xt − x⋆∥2|xt−1

]
≤ ESt∼S

[∑
i∈St

1

|St|
1

(1 + γµi)2
∥(xt−1 − x⋆)− γ∇fi(x⋆))∥2|xt−1

]
Young, αi>0

≤ ESt∼S

[∑
i∈St

1

|St|
1

(1 + γµi)2

(
(1 + αi) ∥xt−1 − x⋆∥2 +

(
1 + α−1

i

)
∥γ∇fi(x⋆))∥2

)
|xt−1

]
αi=γµi
= ESt∼S

[∑
i∈St

1

|St|
1

(1 + γµi)2

(
(1 + γµi) ∥xt−1 − x⋆∥2 +

(
1 +

1

γµi

)
∥γ∇fi(x⋆))∥2

)
|xt−1

]

= ESt∼S

[∑
i∈St

1

|St|

(
1

1 + γµi
∥xt−1 − x⋆∥2 +

γ

(1 + γµi)µi
∥∇fi(x⋆))∥2

)
|xt−1

]

= ESt∼S

[
1

|St|
∑
i∈St

1

1 + γµi
|xt−1

]
∥xt−1 − x⋆∥2 + ESt∼S

[
1

|St|
∑
i∈St

γ

(1 + γµi)µi
∥∇fi(x⋆))∥2|xt−1

]

By applying tower property one can get the following:

ESt∼S

[
∥xt − x⋆∥2

]
= ESt∼S

[
1

|St|
∑
i∈St

1

1 + γµi

]
∥xt−1 − x⋆∥2 + ESt∼S

[
1

|St|
∑
i∈St

γ

(1 + γµi)µi
∥∇fi(x⋆))∥2

]
= AS∥xt−1 − x⋆∥2 +BS .

where AS := ESt∼S

[
1

|St|
∑

i∈St

1
1+γµi

]
and BS := ESt∼S

[
1

|St|
∑

i∈St

γ
(1+γµi)µi

∥∇fi(x⋆))∥2
]
.

By directly applying Fact 5:

ESt∼S

[
∥xt − x⋆∥2

]
≤ At

S∥x0 − x⋆∥2 +
BS

1−AS
.

Lemma 13 (Inexact formulation of SPPM-AS). Let b > 0 ∈ R and define p̃roxγf (x) such that

∀x
∥∥p̃roxγf (x)− proxγf (x)

∥∥2 ≤ b. Let Assumption 1 and Assumption 2 hold. Let x0 ∈ Rd be an
arbitrary starting point. Then for any t ≥ 0 and any γ > 0, s > 0, the iterates of SPPM-AS satisfy

E
[
∥xt − x⋆∥2

]
≤
(

1 + s

(1 + γµ)2

)t

∥x0 − x⋆∥2 +
(1 + s)

(
γ2σ2

⋆ + s−1b(1 + γµ)2
)

γ2µ2 + 2γµ− s
.

Proof of Lemma 13. We provide more general version of SPPM proof

∥xt+1 − x⋆∥2 =
∥∥∥p̃roxγfξt (xt) − proxγfξt (xt) + proxγfξt (xt)− x⋆

∥∥∥2
Y oung,s>0

≤ (1 + s−1)
∥∥∥p̃roxγfξt (xt)− proxγfξt

∥∥∥2(xt) + (1 + s)
∥∥∥proxγfξt (xt)− x⋆

∥∥∥2
≤ (1 + s−1)b+ (1 + s)

∥∥∥proxγfξt (xt)− x⋆

∥∥∥2.
Then proof follows same path as proof Theorem 1 and we get

E
[
∥xt+1 − x⋆∥2

]
≤ (1 + s−1)b+ (1 + s)

1

(1 + γµ)2

(
∥xt − x⋆∥2 + γ2σ2

⋆

)
=

1 + s

(1 + γµ)2

(
∥xt − x⋆∥2 +

[
γ2σ2

⋆ + s−1b(1 + γµ)2
])

.
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azc It only remains to solve the above recursion. Luckily, that is exactly what Fact 5 does. In

particular, we use it with st = E
[
∥xt − x⋆∥2

]
, A = 1+s

(1+γµ)2 and B =
(1+s)(γ2σ2

⋆+s−1b(1+γµ)2)
(1+γµ)2 to

get

E
[
∥xt − x⋆∥2

]
≤ At∥x0 − x⋆∥2 +B

1

1−A

≤ At∥x0 − x⋆∥2 +B
(1 + γµ)2

(1 + γµ)2 − 1− s

≤ At∥x0 − x⋆∥2 +
(1 + s)

(
γ2σ2

⋆ + s−1b(1 + γµ)2
)

(1 + γµ)2 − 1− s

=

(
1 + s

(1 + γµ)2

)t

∥x0 − x⋆∥2 +
(1 + s)

(
γ2σ2

⋆ + s−1b(1 + γµ)2
)

γ2µ2 + 2γµ− s
.
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