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ABSTRACT

Many scientific communities agree on the potential of reinforcement learning (RL)
agents to solve real-world problems, yet such consensus does not extend to how
these agents should be designed. In some practical applications, the increasing
literature on RL does not shed light on which RL components work better for a
particular problem, they are usually treated just as configuration elements to be
reported. One of these components is the choice of observation space, which in
some cases entails dealing with tens of thousands of observable features. Choosing
arich yet efficient observation space is key to encoding useful information while
limiting the tangible implications of adding extra features. Gaining understanding
of feature relevance has already been studied for RL. In comparison to supervised
learning, the effect of dependencies across states adds a layer of complexity to the
structure of the problem. Many of the proposed methods require training RL agents
from scratch several times, which is costly in real-world applications. In this paper
we propose a simple and cost-efficient way to find good observation spaces that
does not require training. Specifically, we propose leveraging multiple random
policies when comparing candidate spaces for the same problem. By conducting
rollouts with different random policies for each candidate space, we are able to
identify statistically-significant signals that indicate which features are better suited
for the application considered. We demonstrate the usefulness of our approach in
different RL problems, including Traffic Signal Control. By combining random
policy sampling with the Hill Climbing search algorithm, we find observation
spaces that use less features and achieve comparable or greater return. Overall, this
work suggests a straightforward and inexpensive approach to an important aspect
of RL design that is often overlooked and is crucial for applied problems.

1 INTRODUCTION

Reinforcement Learning (RL) is a rapidly growing field with the potential to solve a wide range of
real-world problems. Even though progress is reported in the literature, it seems that the impact
in practical applications is currently limited (Henderson et al., 2018; |Andrychowicz et al., [2020;
Parker-Holder et al.,|2022)) and mostly occurs when a large amount of computational resources and
human expertise is available (Ceron & Castro, [2021). One aspect of this bottleneck is the little
understanding of optimal RL design for real-world problems. In many cases, the literature does not
provide clear guidance on which components work best for a specific problem and consensus does
not naturally emerge either.

One of these key RL components is the observation space. The choice of observation space has
a direct impact on the performance of the agent (Reda et al., |2020; Singh et al., [2020; Kim &
Ha, |2021) and it often consists of hand-crafted sets of features. The literature around concrete
applications demonstrates that in many cases there is no convergence on which feature sets to use. For
example, recent studies on RL for Traffic Signal Control (TSC) (Wei et al.|[2021; |Higuera et al.||2019;
Zhou et al.| [2019) propose more than 10 different feature sets to solve the same problem (Noaeen
et al.,[2022). Another common approach to observation space design is using feature sets of high
dimensions (e.g., adding features for completion, for symmetry, etc). While adding extra features
may not confer any additional advantage (Guyon & Elisseeff]|2003)), it may not be desirable from a
practical perspective either, as every extra feature may entail additional data that must be collected,
which may be more intrusive for users or incur substantial hardware costs.
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Reducing the dimensionality of feature sets by identifying the most useful features is a long-studied
problem in optimization and Machine Learning (ML) (Hall} |1999; Chandrashekar & Sahin, 2014
Cai et al.||2018). Its application in RL adds a layer of complexity, since the impact of a feature at
a certain timestep might not be obvious until a subsequent timestep in the future. Therefore, any
feature selection strategy must account for these temporal dependencies. Different approaches have
been proposed to address this in RL (Bertsekas et al.,|1988; [Keller et al., 2006; |Parr et al., 2008} |Liu
et al.,[2012; [Shen & Chi, 20165 Liu et al.,|2021); in the majority of the cases they require training the
RL agent many times. This approach is not sustainable in real-world RL problems, since training
multiple times is costly and other components must be also designed during the search process.

In this paper we address this gap by proposing an observation space design method that is cost-efficient
and straightforward to use. Specifically, we argue that sampling random policies and evaluating
them in the environment through multiple rollouts is informative and can help in identifying which
features are relevant. The outcome of this process is a distribution of returns; when comparing such
distribution for different candidate observation spaces, statistically significant differences can be
observed. The idea of random sampling is not new in ML (Bergstra & Bengio, [2012) nor in RL
(Mania et al., 2018} Barrett et al., 2020), although its potential remains unexplored. We demonstrate
that, combined with a search algorithm like Hill Climbing, it offers a powerful yet inexpensive
method of finding optimal observation spaces or, at least, greatly reduce the set of candidates.

We ground our analyses in different RL problems, including TSC. We first derive theoretical intuition
behind random policy sampling and present a toy example with random linear policies. Then, we
propose an algorithm that integrates Hill Climbing search with random policy sampling and test it
on the Paddle environment (Verma, [2020) and the RESCO benchmark in TSC (Eom & Kim, 2020).
Without any kind of training, our approach finds observation spaces that use less features. Then, after
using these observation spaces in training runs, these achieve better returns. While the strength of
our approach is its simplicity and cost-efficiency, we observe that, in some cases, the stochasticity of
this approach entails no guarantee of finding the optimal observation space. Still, our method always
identifies a subset of promising candidates, which is very valuable in real-world RL. We hope this
work serves as a stepping stone towards improving observation space design in RL and adapting
feature selection mechanisms to the unique context of RL.

2 LIMITATIONS OF CURRENT OBSERVATION SPACE DESIGN STRATEGIES

We begin by motivating the study of observation space design in RL. In this section we discuss two
limitations of many of current observation spaces: an excess of features, and literature not showing
signs of practitioners converging to uniform representations.

2.1 EXCESS OF FEATURES

Designing an observation representation is frequently an empirical process; when RL agents do not
work with raw sensor inputs, this process typically involves selecting features that are relevant to the
problem at hand. When constructing these hand-crafted features, a common approach is to include as
many features as possible, as it increases the amount of information available to the agent, hoping to
achieve better performance.

However, we observe that providing too much information to the agent in the form of an excess
of features can degrade performance. We show this effect in Figure[I, in which we run the same
experiment across three different robotics environments from PyBullet (Coumans & Bai, 2016). In
each experiment, we take the default state space given by the environments’ codebases, which is
composed by features encoding positional and inertial information of the robot body and its joints,
and mask out groups of features one group at a time. We use PPO (Schulman et al.,2017) and a fixed
configuration (see Appendix [A) to train seven different agents from scratch, each using a different
feature mask, and compare the resulting performance with an eighth agent that uses all features.

In all cases, we observe that using all features does not confer any additional advantage over masking
out a group of features and sometimes it actually leads to a worse result. These outcomes align with
similar experiments conducted by Reda et al.|(2020) and Kim & Ha|(2021). In addition, even though
the environments share certain dynamics, the features that are beneficial and detrimental in each
environment are different (e.g., masking out the XYZ body velocity helps in Ant but not in Hopper).



Under review as a conference paper at ICLR 2024

1750 - — None
body_pos

1500 —— body_vel

— roll

— pitch

— joint_pos

joint_vel

R

—— None

body_pos
—— body_vel
— roll

body_pos
body_vel
roll

pitch

20

Smooth return
Smooth return

joint_pos.
joint_vel
contact

150 175 200 0 25 5 75 100 125 150 175 200
Epoch Epoch Epoch

(a) Hopper (b) Ant (¢c) Humanoid

Figure 1: Training curves in three different PyBullet environments comparing a complete observation space
(None) with subspaces in which we mask one of the following elements: XYZ position of the body, XYZ
velocity of the body, roll, pitch, position of the joints, velocity of the joints, robot-ground contact features. We
run 5 different seeds for each configuration and report the average return per epoch and the 95% CI.

This suggests that basing the design of the observation space from similar environments, something
common in domain-specific literature, might lead to relying on suboptimal feature sets.

We argue that not defaulting to using as many features as possible also has tangible implications.
In some applications like robotics, placing sensors that provide additional features might be costly,
especially if done at scale (Alatise & Hancke, 2020). Therefore, doing so should only occur when
the extra features provide a clear learning advantage. In addition, it could also be too intrusive
for the human interacting with the RL agent (e.g., requiring information related to gender or race).
This is an important issue for the broad ML community (Corbett-Davies & Goel, |2018) and better
understanding tradeoffs between intrusiveness and learning outcomes is an ongoing effort.

2.2 LITERATURE NOT CONVERGING

We also observe that consensus on RL observation spaces does not naturally emerge in domain-
specific communities. To further highlight this issue, we analyze the Traffic Signal Control (TSC)
problem (Wei et al.,|2021; |Higuera et al.,[2019;[Zhou et al., [2019), which has also been a use case
in other studies focusing on empirical aspects of RL design (Jayawardana et al., [2022). The TSC
problem consists of controlling a set of traffic lights at a road intersection in order to optimize traffic
flow. Even though there are more than 160 peer-reviewed studies proposing new RL approaches to
solve the problem or aspects of it (Noaeen et al.|[2022)), and many high-fidelity simulators have been
developed (Lopez et al., 2018;|Zhang et al.|[2019}; Mei et al.,2022), the deployment of RL systems in
real road networks is still a path to be traversed.

In Table [T we present different observation spaces for the TSC problem found in the literature.
Specifically, we look at the most recent papers identified in the systematic literature review from
(Noaeen et al., 2022). The vast majority of the methods propose feature-based spaces encoding
features from one or more of six different categories.

We can observe that there is little overlap between observation spaces considered in different works.
In addition, multiple studies that use the same feature might encode it differently. As a result, when
designing a new RL method that addresses the TSC problem, it is not clear which features it should
rely on to get the best performance. This phenomenon is also observed in other applications such as
robotics (Kim & Ha, 2021)).

3 FEATURE SELECTION VIA RANDOM POLICY SAMPLING

The previous section underlies that there is room for improvement in current observation space design
strategies for RL. The problem of identifying how many and which features to use has already been
studied in RL (Liu et al.,|2015), and different approaches have been proposed to do so (Bertsekas
et al.,|1988; [Keller et al., 2006; |Parr et al., 2008; |Liu et al., 2012 |Shen & Chi, |[2016; |Liu et al., [2021).
However, current methods rely on trained agents to assess a certain feature set and thus often multiple
training runs are needed. In the context of real-world problems, where environments are complex and
training often consumes non-negligible time and resources, two problems arise: 1) training multiple
times is costly, and 2) other design choices such as the RL algorithm can impact the outcome.
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Table 1: Feature utilization in the observation space for multiple papers using RL for Traffic Signal Control.
Feature categories include the current phase, the occupancy of each lane in the intersection, the position of the
vehicles in the lane, the vehicles’ speed, and their waiting time. In addition, some observation spaces are encoded
as images of the intersection seen from above. Reference groups: (A)Jin & Ma (2019); /Chu et al.|(2019), (B)
Wei et al.| (2019b)); Horsuwan & Aswakul|(2019); Wei et al.|(2019a); Zheng et al.|(2019) (C) [Kitagawa et al.
(2019);Rizzo et al.|(2019a); |Aslani et al. (2019); Rizzo et al.|(2019b) (D)|Reda et al. (2019) (E) [Shabestray &
‘Abdulhai| (2019) (F)|Chen et al.|(2019); Zhou et al.|(2019) (G)|[Huang et al.|(2019); [Shu et al.|(2019) (H) (Gong
et al.|(2019) (I) Higuera et al.|(2019) (J)|Ge et al. (2019) (K) |Kim & Jeong (2019).
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To address this gap, we propose to leverage inexpensive ensembles of random policies and multiple
rollouts to identify statistically significant differences between candidate observation spaces. Simply
put, when comparing two state representations, we propose collecting multiple rollouts from several
random policies and generating a distribution of average returns for each representation. Then, we
conduct a statistical analysis to determine whether one representation is more advantageous. This
strategy does not require training the agent, thus avoiding the need to design and finetune other
components of the RL setup, and reducing the amount of resources required.

While the concept of random search is not new in ML (Bergstra & Bengio, 2012), its potential in RL
has not been sufficiently explored. Previous work demonstrates that random search provides more
cost-efficient RL agents without substantially affecting performance (Mania et al., [2018)). It can also
be used as a good warm-starting approach (Barrett et al.,|2020). We argue that combining random
policy sampling with a search approach such as grid search or Hill Climbing (Russell & Norvig|[2002)
can provide a good understanding of which features are relevant for a particular problem without
incurring large computational costs.

This section explains our approach in more detail. We begin by building theoretical intuition into our
method, using a simple use case with linear random policies. Then, we use a grid world example
to practically illustrate our approach under a series of simple observation spaces. We conclude by
integrating random policy sampling into the Hill Climbing algorithm, outlining the proposed feature
selection method end-to-end.

3.1 THEORETICAL ANALYSIS OF RANDOM POLICY SAMPLING

We first present a simple theoretical example to justify our choice of random policy sample. We
consider a toy environment that can be modeled by the tree shown in Figure [2al Nodes in the tree are
states, and two actions are possible: A; (left) and A5 (right). We assume an observation space of one
single feature x and a linear policy of the form f(z) = a - = + b. In all cases, if f(x) < 0, we take
Ay, Ay otherwise. The tree has a root node in yellow that acts as an initial state, and leaf nodes in
which the reward is zero (gray), +1 (green), or -1 (red).

In this case, we want random policy sampling to guide us in determining whether feature = matters,
therefore we compare the case in which the policy takes the aforementioned form with the case in
which the policy is simply f(z) = b. Random policy sampling provides us with random values for a
and b, which we assume follow a, b ~ Unif[—1, 1]. Given the policy is linear, for any x, the space
of values for a and b can be partitioned with a straight line through zero (see Figure[2b). Therefore,
randomly sampling a and b entails that f(x) will have positive sign half of the times.
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Figure 2: Toy experiment in which randomly sampling a and b leads to finding policies with return +1 only
when z is considered.

One can realize that, in the absence of feature x, the bias-only policy consistently achieves zero
reward, no matter the value of b. If constantly taking the same action led to the best reward, then no
features would be needed. When considering the policy with feature x, for any pair of consecutive
nodes, there exists a certain probability of taking the same action in both nodes or not; it depends on
the overlap between the action-partition as depicted in Figure [2b|for each value of . Therefore, with
enough rollouts, for some pairs ¢ and b, the best reward will be achieved. However, the opposite is
also true, one can randomly sample policies that lead to the worst reward. Therefore, when collecting
rollouts from multiple policies, we have to look at the right tail of the distribution.

While there exsist problem structures that are robust against this approach (e.g., when always taking
the same action is the best), the majority of real-world problems follow a similar structure to Figure
[2afs, in which there is a distribution of best actions depending on the observation space.

3.2 GRID WORLD EXAMPLE WITH RANDOM LINEAR POLICIES

To better understand random policy sampling, we design a toy experiment consisting of a grid world
environment. At the beginning of every episode, the agent is placed on a random cell in the grid and
its position is defined as pg, = (Zaq; Ya, ). Similarly, a different goal cell is randomly selected when
the episode begins, its position being pg = (24,y4). We define the complete observation space of
the problem as sy = (4 — %4, , Yy — Ya,); the agent can move up, down, left, and right as long as it
remains inside the grid. Whenever the agent reaches the goal position, it receives a reward of 10 and
the episode ends. If the agent reaches a certain timestep ¢’ without getting to the goal cell, it receives
areward of -10 and the episode also terminates. In any other case, the reward is zero.

Our goal is to conduct multiple rollouts in this environment using different random policies. To that
end, we rely on a linear policy, defined as follows. At each timestep ¢, we compute fi, = wy - S¢
and fa, = wa + 8¢, Where wq and wy are linear coefficients sampled uniformly between -1 and 1 for
each policy (including a bias term). To decide which action to take at each timestep, we look at the
signs of f; and f> and assign one of the actions to each of the four possible sign combinations.

It is straightforward to see that an RL agent needs to have access to both features of the observation
to learn the best policy; any other representation is suboptimal or overdefined. We show this in Figure
[3. We define three alternative observation spaces by masking one or both features (e.g., one of the
alternative spaces is s; = (0, Y4 — ¥aq, ))- Then, we use random policy sampling and collect N, sets
of weights wy and waz; we repeat this process for each of the state spaces S;. For each set of weights,
we run Ny rollouts and compute the average rollout return, resulting in a distribution Gs, for each
space considered. As discussed in the previous section, we are only interested in the right tail of
this distribution, therefore we only take the best 15% of average returns per space. Figures|3a|-
compare the right tail of the return distribution when using both features (XY) against the cases in
which only one feature is used (X or Y) or the observation is always zero (None).

In all cases, the distribution of returns corresponding to the observation space that includes both
features achieves a longer tail and a higher average return. This indicates that, during the sampling
process, there are certain pairs of weights w; and ws that, by relying on both features, lead to higher
returns in this environment. This remark is aligned with the premise that the best observation space is
given by both features. To further illustrate this, in Figure[3d we add a third feature: the number of
steps until the episode terminates (i.e., the difference ¢’ — ¢). By comparing the distribution for the
case in which this feature is used (XYT) against the case in which it is masked (XY), we can see that
the former adds artifacts that prevent random sampling from finding good sets of weights more often.
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Figure 3: Distribution of average rollout returns when doing random policy sampling in the grid world
environment. We compare the distributions obtained for the optimal observation space using both features XY
against suboptimal spaces using (a) no features, (b) only feature X, and (c) only feature Y. We also compare the
optimal space against a (d) overdefined observation space (XYT). We show the average of each distribution with
a dashed line. In all cases, the optimal distribution achieves a longer tail and higher average returns.

3.3 INTEGRATION WITH HILL CLIMBING

Having established the utility of random policy sampling for evaluating observation spaces, we
now combine it with the Hill Climbing (HC) algorithm to produce optimized representations. Our
method couples the HC algorithm’s iterative search with the cost-efficient evaluation of random
policy sampling. For each iteration, the algorithm explores neighboring state space representations.
For every neighbor, random policies are sampled and rollouts are conducted; the sampling process
can be parallelized. A t-test (Walpole et al.,|[1993) is then performed to compare the resulting return
distributions. Based on this statistical comparison, the algorithm navigates towards representations
that show significant improvement. This iterative process stops once no statistically conclusive
improvements are observed among neighbors. The process is described in Algorithm [T}

Algorithm 1 Hill Climbing Integration with Random Policy Sampling

—_

Input: initial_obs_space

2: Output: optimized_obs_space

3: current_obs_space < initial_obs_space

4: while not converged do

5: netghbors < generate_neighbors(current_obs_space)

6: for each obs_space in neighbors do

7: policies < sample_random_policies(obs_space)

8: returns < conduct_rollouts(policies)

9: avg_return, p_value < t_test(returns, current_obs_space_returns)

10: end for

11: if a obs_space in neighbors shows higher avg_return and p_value < significance_level
then

12: current_obs_space < obs_space

13: end if

14: end while

15: return current_obs_space

The combination of HC and random policy sampling offers an approach to observation space design
that is both systematic and cost-efficient. While the stochasticity of this approach does not guarantee
always taking a step towards a better observation space, its inexpensive and straightforward nature
makes it suitable for screening multiple candidate observation spaces in real-world problems where
policy training requires a large computational overhead. Our method can be also used to identify a
reduced set of promising observation spaces, which practitioners can further assess more efficiently.

4 EXPERIMENTS

We now apply random policy sampling and its integration with the HC algorithm in the context of
two RL problems: a single-player version of the paddle game and the real-world problem of TSC,
introduced in Section2.2]
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4.1 APPLYING HILL CLIMBING TO A PADDLE ENVIRONMENT

We first take the Paddle environment [2020), a single-player version of the Pong game in
which the goal is to hit, for as long as possible, a ball moving in a 2D space with a paddle that can only
move in the left-right direction. The environment’s full observation space consists of five features:
the x position of the paddle, the = position of the ball, the y position of the ball, the x velocity of
the ball, and the y velocity of the ball. Our objective is to determine whether we can reduce the
observation space for this problem applying the HC algorithm described in the previous section.

We take the environment configuration reported in the codebase and define a family of random
policies consisting of a two-layer multilayer perceptron (MLP) in which all parameters are randomly
sampled following uniform distributions (full experiment configuration reported in Appendix [B].
For each space, we sample multiple policies and compute the average rollout return for every policy.
Within the distribution of average returns, we take the right tail for each observation space. There are
32 possible observation spaces for this environment; since the outcome of the HC algorithm depends
on its initialization, we repeat this experiment using each possible observation space as initial space
and report statistics over the outcomes; this is summarized in Table |Zl

We report the observation spaces that, for one or more of the 32 initializations, have been returned by
the HC algorithm. We also include the average number of spaces evaluated per trial. In the baseline
scenario we can see there are different candidate observation spaces. In all cases, the number of
evaluated spaces is less than one third of all the possibilities. We now train an RL agent using each
of the observation spaces in Table[2 and report its performance in Figure da] The returns show that,
among the candidate observation spaces, the one that uses all features reaches the best outcome. In
all cases, we train using the same neural network structure used during random policy sampling.

Table 2: Running the Hill Climbing algorithm in the paddle environment with all possible observation spaces as
initial space. We report the observation spaces that achieved the best result and how many times they did (out
of 32). In addition, we include the average number of spaces evaluated (max. is 32). Observation spaces are
reported as binary strings indicating whether feature in position ¢ was used.

Baseline scenario Hard scenario
Obs. space  Successes Avg. num. evals. | Obs. space Successes Avg. num. evals.
00111 15 12.9 00111 12 12.4
11111 12 10.7 10011 12 114
11010 3 8.7 11111 4 9.8
10001 2 8.0 01011 4 9.8
0
2
o £t
2 2
-2 -2
—4 -3
11111 00111 10001 11010 11111 00111 11011 10011
Observation space Observation space
(a) Baseline scenario. (b) Hard scenario.

Figure 4: Training RL agents using each of the candidate observation spaces. Observation spaces are reported
as binary strings indicating whether feature in position ¢ was used. 95% CI is shown.

To further assess the utility of our approach, we define a second configuration for the paddle
environment in which the ball and the paddle move faster, making the task harder. We repeat the
same procedure and report the results in Table [2 (Hard scenario) and Figure @b. When the task
becomes harder, using all features does not confer the best advantage. Instead, another of the proposed
observation spaces achieves better return. These results confirm the basis of our approach: trading
optimality for search cost. We are able to identify good candidate state spaces, which sometimes
involve using less features, without the need to train RL agents during exploration.



Under review as a conference paper at ICLR 2024

4.2 RANDOM POLICY SAMPLING FOR TRAFFIC SIGNAL CONTROL

In this section we test our approach using a real-world problem, TSC. The goal is to control the traffic
lights at an intersection by setting them to different phases. A phase is defined as an assignment of
states to each traffic light (e.g., green, red). The goal is to optimize the traffic flow at the intersection
by performance metrics such as the average waiting time. This problem can be formulated in multiple
ways that affect the specific available actions, the timescale, and the concrete goals to achieve (Eom
& Kim) |[2020). In this work we focus on the most frequent formulation, in which time is discretized
in equal intervals and a phase from a set of predefined phases is chosen at each timestep.

We carry out several experiments to gain insights on the significance of the features in Table[I. To
that end, we leverage the RESCO benchmark for TSC (Ault & Sharon,|[2021) and a real-world road
network and simulation with 21 agent-controlled traffic lights as our scenario. Among those, we
control seven of them with RL (blue dots in Figure[5a).
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(a) Simulated road network. (b) Rollout return distributions.  (c) Achieved average waiting time.

Figure 5: Experiments in the Traffic Signal Control problem using the RESCO benchmark. (a) We simulate a
real-world road network with 7 RL-controlled intersections (blue dots). (b) After running the Hill Climbing
algorithm with random policy sampling, we find a reduced observation space with just 3 features that, compared
to the full observation space with 5 features, achieves higher average rollout return in the right tail of the
distribution. (c) After training an RL agent with both observation spaces, the reduced one achieves lower (better)
average waiting time per vehicle. 95% CI is shown.

We take the observation space used in one of the benchmark models in RESCO; it is composed of five
different features for each lane in the intersection (an intersection has a variable number of lanes): the
current phase, the number of vehicles approaching, the average waiting time, the number of vehicles
waiting, and the average vehicle speed in the lane. After running the HC algorithm, an alternative
space with only three features (the first, third, and fourth) is proposed. The distribution of rollout
returns in the right tail is shown in Figure [5b|for the full observation space (5 features) and for the
reduced one (3 features). We use 500 random policies in each case.

Finally, we take both the full observation space and the reduced space with three features and train an
RL agent for each using the default configuration in RESCO. This corresponds to setting the action
to be the phase at each timestep and the reward is the total waited time at an intersection multiplied
by -1; additional implementation details can be found in Appendix [C] As shown in Figure[5c] the
proposed space with three features achieves lower (better) waiting time per vehicle compared to using
all features. These results validate the usefulness of our approach in real-world RL problems. This is
especially relevant in environments in which training is costly.

5 RELATED WORK

Design of observation spaces for real-world problems Our work aligns with improving the
design of observation spaces for practical applications. Singh et al.| (2020) discuss what makes a
good state representation for an RL task and outline why it is a nontrivial problem. Reda et al.| (2020)
emphasize that the observation space design process in many practical applications is empirical and
benchmark different observation spaces for robot locomotion. |Kim & Ha|(2021)) extend the analysis
of observation spaces for robotics and propose a method to select features as the agent trains. Our
work is also framed in the context of practical applications and empirical analysis; we propose a
cost-efficient method to select raw features that complements empirical design in real-world tasks.
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Learning state representations and abstractions Other works don’t optimize over the space of
raw features; instead they use all features and focus on learning abstractions that improve agent
performance (Li et al., |2006). Different approaches stand out: factoring and reducing MDPs (Givan
et al., 2003), randomly sampling features at each iteration (Afshar et al.,2020), using contrastive
learning for learning Markov state abstractions (Allen et al.|[2021), learning invariant representations
(Zhang et al., [2020), treating the state as an evolvable entity following a curriculum (Wang et al.|
2019), choosing different transformations for image-based states (Raileanu et al.| [2020), and using
canonical states to remove redundancy across observations (Wu et al., [2017). In this paper we
focus on optimizing the raw state representation instead of relying on all the feature set to create an
abstraction from it; we seek to minimize the number of sensors required in the real setup. Our work
can be seen as a previous step before applying some of the methods above.

Feature Selection in Reinforcement Learning The problem of selecting features has been long-
studied in ML, and the number of studies addressing it does not cease to grow (Hall,|1999; Chan-
drashekar & Sahin, |2014;|Cai et al., 2018). While the majority of works are framed within supervised
learning, there are studies which have specifically addressed feature selection and dimensionality
reduction in RL (Liu et al., 2015). Different methods that have been proposed include aggregating
states when approximating value functions (Bertsekas et al., [1988; [Keller et al., [2006; |Parr et al.}
2007} 2008), mutual information (Hachiya & Sugiyama, [2010; [Shen & Chi, 2016), regularization
(Loth et al.,[2007; |[Kolter & Ng,[2009; [Liu et al., 2012; Hao et al.,[2021), matching pursuit methods
(Johns & Mahadevan, 2009; |Painter-Wakefield & Parr, 2012), entropy-based dimensionality reduction
(Tangkaratt et al., 2016; |Parisi et al., 2017), and using RL itself to pick features (Liu et al.|[2021). The
majority of this methods are approximate, require several training runs, and have not been studied in
the context of real-world problems. We propose a straightforward and cost-efficient method that does
not require training and which can be applied to multiple practical applications.

Practical considerations of empirical RL.  Our work is framed within the study of empirical RL
and the practical problems of RL. Progress in RL is brittle; the real world is challenging (Dulac+
Arnold et al.,[2021) and current RL practices have been proven not to be robust against different
elements such as experimental setups (Henderson et al., 2018), codebases (Engstrom et al.|[2019),
hyperparameter tuning (Islam et al.| 2017; Zhang et al.| 2021), and statistical reporting (Agarwal
et al.,|[2021;|Colas et al., |2018;[2019). Design choices have a major impact in practical RL; Reda
et al.| (2020); Kim & Ha (2021) consider the effect of multiple design choices on the agent side
and |/Andrychowicz et al.|(2020) run a similar analysis on algorithmic components. The effect of
RL components on the performance vs. generality tradeoff is discussed by |Hessel et al.| (2019).
Ceron & Castro|(2021) find that smaller-sized environments are well suited for empirical work in RL,
Jayawardana et al.|(2022) study the impact of evaluating in MDP instances instead of MDP families,
and|Chan et al./(2019); Jordan et al. (2020) address the reliability of RL results. We further investigate
the choice of the observation space and propose a method to support practical decision-making which
does not need multiple costly evaluations.

6 CONCLUSION AND FUTURE WORK

In this paper, we focus on observation space design in real-world reinforcement learning (RL). We
propose an inexpensive method to gauge the relevance of state features based on random policy
sampling, which does not require training. This is an overlooked problem in the literature, since
the structure of RL renders many feature selection methods designed for supervised learning of
little use and the proposed solutions require training multiple times. We demonstrate that random
policy sampling, combined with a search algorithm such as Hill Climbing, is well-suited to find
good observation spaces in a simple way that can be leveraged in practical applications. We evaluate
our approach in different RL problems, including Traffic Signal Control, which has been attempted
many times using RL and feature selection still remains one of its unsolved aspects. While this
work focused on feature selection without training at all, future work will consider combining this
random search strategy with limited training paradigms, such as transfer learning between different
observation configurations. Overall, we hope our findings help gain momentum for the study of how
RL state spaces should be designed in practical contexts and contribute to a better understanding of
the brittleness in RL research.
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