
Under review as a conference paper at ICLR 2024

Look Ma, No Training! OBSERVATION SPACE
DESIGN FOR REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many scientific communities agree on the potential of reinforcement learning (RL)
agents to solve real-world problems, yet such consensus does not extend to how
these agents should be designed. In some practical applications, the increasing
literature on RL does not shed light on which RL components work better for a
particular problem, they are usually treated just as configuration elements to be
reported. One of these components is the choice of observation space, which in
some cases entails dealing with tens of thousands of observable features. Choosing
a rich yet efficient observation space is key to encoding useful information while
limiting the tangible implications of adding extra features. Gaining understanding
of feature relevance has already been studied for RL. In comparison to supervised
learning, the effect of dependencies across states adds a layer of complexity to the
structure of the problem. Many of the proposed methods require training RL agents
from scratch several times, which is costly in real-world applications. In this paper
we propose a simple and cost-efficient way to find good observation spaces that
does not require training. Specifically, we propose leveraging multiple random
policies when comparing candidate spaces for the same problem. By conducting
rollouts with different random policies for each candidate space, we are able to
identify statistically-significant signals that indicate which features are better suited
for the application considered. We demonstrate the usefulness of our approach in
different RL problems, including Traffic Signal Control. By combining random
policy sampling with the Hill Climbing search algorithm, we find observation
spaces that use less features and achieve comparable or greater return. Overall, this
work suggests a straightforward and inexpensive approach to an important aspect
of RL design that is often overlooked and is crucial for applied problems.

1 INTRODUCTION

Reinforcement Learning (RL) is a rapidly growing field with the potential to solve a wide range of
real-world problems. Even though progress is reported in the literature, it seems that the impact
in practical applications is currently limited (Henderson et al., 2018; Andrychowicz et al., 2020;
Parker-Holder et al., 2022) and mostly occurs when a large amount of computational resources and
human expertise is available (Ceron & Castro, 2021). One aspect of this bottleneck is the little
understanding of optimal RL design for real-world problems. In many cases, the literature does not
provide clear guidance on which components work best for a specific problem and consensus does
not naturally emerge either.

One of these key RL components is the observation space. The choice of observation space has
a direct impact on the performance of the agent (Reda et al., 2020; Singh et al., 2020; Kim &
Ha, 2021) and it often consists of hand-crafted sets of features. The literature around concrete
applications demonstrates that in many cases there is no convergence on which feature sets to use. For
example, recent studies on RL for Traffic Signal Control (TSC) (Wei et al., 2021; Higuera et al., 2019;
Zhou et al., 2019) propose more than 10 different feature sets to solve the same problem (Noaeen
et al., 2022). Another common approach to observation space design is using feature sets of high
dimensions (e.g., adding features for completion, for symmetry, etc). While adding extra features
may not confer any additional advantage (Guyon & Elisseeff, 2003), it may not be desirable from a
practical perspective either, as every extra feature may entail additional data that must be collected,
which may be more intrusive for users or incur substantial hardware costs.

1

Under review as a conference paper at ICLR 2024

Reducing the dimensionality of feature sets by identifying the most useful features is a long-studied
problem in optimization and Machine Learning (ML) (Hall, 1999; Chandrashekar & Sahin, 2014;
Cai et al., 2018). Its application in RL adds a layer of complexity, since the impact of a feature at
a certain timestep might not be obvious until a subsequent timestep in the future. Therefore, any
feature selection strategy must account for these temporal dependencies. Different approaches have
been proposed to address this in RL (Bertsekas et al., 1988; Keller et al., 2006; Parr et al., 2008; Liu
et al., 2012; Shen & Chi, 2016; Liu et al., 2021); in the majority of the cases they require training the
RL agent many times. This approach is not sustainable in real-world RL problems, since training
multiple times is costly and other components must be also designed during the search process.

In this paper we address this gap by proposing an observation space design method that is cost-efficient
and straightforward to use. Specifically, we argue that sampling random policies and evaluating
them in the environment through multiple rollouts is informative and can help in identifying which
features are relevant. The outcome of this process is a distribution of returns; when comparing such
distribution for different candidate observation spaces, statistically significant differences can be
observed. The idea of random sampling is not new in ML (Bergstra & Bengio, 2012) nor in RL
(Mania et al., 2018; Barrett et al., 2020), although its potential remains unexplored. We demonstrate
that, combined with a search algorithm like Hill Climbing, it offers a powerful yet inexpensive
method of finding optimal observation spaces or, at least, greatly reduce the set of candidates.

We ground our analyses in different RL problems, including TSC. We first derive theoretical intuition
behind random policy sampling and present a toy example with random linear policies. Then, we
propose an algorithm that integrates Hill Climbing search with random policy sampling and test it
on the Paddle environment (Verma, 2020) and the RESCO benchmark in TSC (Eom & Kim, 2020).
Without any kind of training, our approach finds observation spaces that use less features. Then, after
using these observation spaces in training runs, these achieve better returns. While the strength of
our approach is its simplicity and cost-efficiency, we observe that, in some cases, the stochasticity of
this approach entails no guarantee of finding the optimal observation space. Still, our method always
identifies a subset of promising candidates, which is very valuable in real-world RL. We hope this
work serves as a stepping stone towards improving observation space design in RL and adapting
feature selection mechanisms to the unique context of RL.

2 LIMITATIONS OF CURRENT OBSERVATION SPACE DESIGN STRATEGIES

We begin by motivating the study of observation space design in RL. In this section we discuss two
limitations of many of current observation spaces: an excess of features, and literature not showing
signs of practitioners converging to uniform representations.

2.1 EXCESS OF FEATURES

Designing an observation representation is frequently an empirical process; when RL agents do not
work with raw sensor inputs, this process typically involves selecting features that are relevant to the
problem at hand. When constructing these hand-crafted features, a common approach is to include as
many features as possible, as it increases the amount of information available to the agent, hoping to
achieve better performance.

However, we observe that providing too much information to the agent in the form of an excess
of features can degrade performance. We show this effect in Figure 1, in which we run the same
experiment across three different robotics environments from PyBullet (Coumans & Bai, 2016). In
each experiment, we take the default state space given by the environments’ codebases, which is
composed by features encoding positional and inertial information of the robot body and its joints,
and mask out groups of features one group at a time. We use PPO (Schulman et al., 2017) and a fixed
configuration (see Appendix A) to train seven different agents from scratch, each using a different
feature mask, and compare the resulting performance with an eighth agent that uses all features.

In all cases, we observe that using all features does not confer any additional advantage over masking
out a group of features and sometimes it actually leads to a worse result. These outcomes align with
similar experiments conducted by Reda et al. (2020) and Kim & Ha (2021). In addition, even though
the environments share certain dynamics, the features that are beneficial and detrimental in each
environment are different (e.g., masking out the XYZ body velocity helps in Ant but not in Hopper).

2

Under review as a conference paper at ICLR 2024

(a) Hopper (b) Ant (c) Humanoid

Figure 1: Training curves in three different PyBullet environments comparing a complete observation space
(None) with subspaces in which we mask one of the following elements: XYZ position of the body, XYZ
velocity of the body, roll, pitch, position of the joints, velocity of the joints, robot-ground contact features. We
run 5 different seeds for each configuration and report the average return per epoch and the 95% CI.

This suggests that basing the design of the observation space from similar environments, something
common in domain-specific literature, might lead to relying on suboptimal feature sets.

We argue that not defaulting to using as many features as possible also has tangible implications.
In some applications like robotics, placing sensors that provide additional features might be costly,
especially if done at scale (Alatise & Hancke, 2020). Therefore, doing so should only occur when
the extra features provide a clear learning advantage. In addition, it could also be too intrusive
for the human interacting with the RL agent (e.g., requiring information related to gender or race).
This is an important issue for the broad ML community (Corbett-Davies & Goel, 2018) and better
understanding tradeoffs between intrusiveness and learning outcomes is an ongoing effort.

2.2 LITERATURE NOT CONVERGING

We also observe that consensus on RL observation spaces does not naturally emerge in domain-
specific communities. To further highlight this issue, we analyze the Traffic Signal Control (TSC)
problem (Wei et al., 2021; Higuera et al., 2019; Zhou et al., 2019), which has also been a use case
in other studies focusing on empirical aspects of RL design (Jayawardana et al., 2022). The TSC
problem consists of controlling a set of traffic lights at a road intersection in order to optimize traffic
flow. Even though there are more than 160 peer-reviewed studies proposing new RL approaches to
solve the problem or aspects of it (Noaeen et al., 2022), and many high-fidelity simulators have been
developed (Lopez et al., 2018; Zhang et al., 2019; Mei et al., 2022), the deployment of RL systems in
real road networks is still a path to be traversed.

In Table 1 we present different observation spaces for the TSC problem found in the literature.
Specifically, we look at the most recent papers identified in the systematic literature review from
(Noaeen et al., 2022). The vast majority of the methods propose feature-based spaces encoding
features from one or more of six different categories.

We can observe that there is little overlap between observation spaces considered in different works.
In addition, multiple studies that use the same feature might encode it differently. As a result, when
designing a new RL method that addresses the TSC problem, it is not clear which features it should
rely on to get the best performance. This phenomenon is also observed in other applications such as
robotics (Kim & Ha, 2021).

3 FEATURE SELECTION VIA RANDOM POLICY SAMPLING

The previous section underlies that there is room for improvement in current observation space design
strategies for RL. The problem of identifying how many and which features to use has already been
studied in RL (Liu et al., 2015), and different approaches have been proposed to do so (Bertsekas
et al., 1988; Keller et al., 2006; Parr et al., 2008; Liu et al., 2012; Shen & Chi, 2016; Liu et al., 2021).
However, current methods rely on trained agents to assess a certain feature set and thus often multiple
training runs are needed. In the context of real-world problems, where environments are complex and
training often consumes non-negligible time and resources, two problems arise: 1) training multiple
times is costly, and 2) other design choices such as the RL algorithm can impact the outcome.

3

Under review as a conference paper at ICLR 2024

Table 1: Feature utilization in the observation space for multiple papers using RL for Traffic Signal Control.
Feature categories include the current phase, the occupancy of each lane in the intersection, the position of the
vehicles in the lane, the vehicles’ speed, and their waiting time. In addition, some observation spaces are encoded
as images of the intersection seen from above. Reference groups: (A) Jin & Ma (2019); Chu et al. (2019), (B)
Wei et al. (2019b); Horsuwan & Aswakul (2019); Wei et al. (2019a); Zheng et al. (2019) (C) Kitagawa et al.
(2019); Rizzo et al. (2019a); Aslani et al. (2019); Rizzo et al. (2019b) (D) Reda et al. (2019) (E) Shabestray &
Abdulhai (2019) (F) Chen et al. (2019); Zhou et al. (2019) (G) Huang et al. (2019); Shu et al. (2019) (H) Gong
et al. (2019) (I) Higuera et al. (2019) (J) Ge et al. (2019) (K) Kim & Jeong (2019).

Reference group Feature categories observed for each lane of the intersection

Phase Occupancy Position Speed Waiting time Spatial encoding

(A) X X
(B) X X
(C) X
(D) X X X X X
(E) X X X X
(F) X X
(G) X X X
(H) X X
(I) X
(J) X X X
(K) X

To address this gap, we propose to leverage inexpensive ensembles of random policies and multiple
rollouts to identify statistically significant differences between candidate observation spaces. Simply
put, when comparing two state representations, we propose collecting multiple rollouts from several
random policies and generating a distribution of average returns for each representation. Then, we
conduct a statistical analysis to determine whether one representation is more advantageous. This
strategy does not require training the agent, thus avoiding the need to design and finetune other
components of the RL setup, and reducing the amount of resources required.

While the concept of random search is not new in ML (Bergstra & Bengio, 2012), its potential in RL
has not been sufficiently explored. Previous work demonstrates that random search provides more
cost-efficient RL agents without substantially affecting performance (Mania et al., 2018). It can also
be used as a good warm-starting approach (Barrett et al., 2020). We argue that combining random
policy sampling with a search approach such as grid search or Hill Climbing (Russell & Norvig, 2002)
can provide a good understanding of which features are relevant for a particular problem without
incurring large computational costs.

This section explains our approach in more detail. We begin by building theoretical intuition into our
method, using a simple use case with linear random policies. Then, we use a grid world example
to practically illustrate our approach under a series of simple observation spaces. We conclude by
integrating random policy sampling into the Hill Climbing algorithm, outlining the proposed feature
selection method end-to-end.

3.1 THEORETICAL ANALYSIS OF RANDOM POLICY SAMPLING

We first present a simple theoretical example to justify our choice of random policy sample. We
consider a toy environment that can be modeled by the tree shown in Figure 2a. Nodes in the tree are
states, and two actions are possible: A1 (left) and A2 (right). We assume an observation space of one
single feature x and a linear policy of the form f(x) = a · x+ b. In all cases, if f(x) < 0, we take
A1, A2 otherwise. The tree has a root node in yellow that acts as an initial state, and leaf nodes in
which the reward is zero (gray), +1 (green), or -1 (red).

In this case, we want random policy sampling to guide us in determining whether feature x matters,
therefore we compare the case in which the policy takes the aforementioned form with the case in
which the policy is simply f(x) = b. Random policy sampling provides us with random values for a
and b, which we assume follow a, b ⇠ Unif[�1, 1]. Given the policy is linear, for any x, the space
of values for a and b can be partitioned with a straight line through zero (see Figure 2b). Therefore,
randomly sampling a and b entails that f(x) will have positive sign half of the times.

4

Under review as a conference paper at ICLR 2024
Variables

Formulation inputs ILP Formulation

Constraints

Objective

ILP
Solver

Warm-start

Optimized
frequency plan

Case 2:
Large NB

Iterations

ILP
Solver

Iterations

+1-1

!

"

= −∞

!

"

= −1

!

"

= 0

!

"

= 1

!

"

= +∞

*!

*"

*!
*!

*! *!*"
*"

*" *"
*! *"

(a) State tree.

Variables

Formulation inputs ILP Formulation

Constraints

Objective

ILP
Solver

Warm-start

Optimized
frequency plan

Case 2:
Large NB

Iterations

ILP
Solver

Iterations

+1-1

!

"

= −∞

!

"

= −1

!

"

= 0

!

"

= 1

!

"

= +∞

*!

*"

*!
*!

*! *!*"
*"

*" *"

(b) Partition of the space of parameters a and b for different values for feature x.

Figure 2: Toy experiment in which randomly sampling a and b leads to finding policies with return +1 only
when x is considered.

One can realize that, in the absence of feature x, the bias-only policy consistently achieves zero
reward, no matter the value of b. If constantly taking the same action led to the best reward, then no
features would be needed. When considering the policy with feature x, for any pair of consecutive
nodes, there exists a certain probability of taking the same action in both nodes or not; it depends on
the overlap between the action-partition as depicted in Figure 2b for each value of x. Therefore, with
enough rollouts, for some pairs a and b, the best reward will be achieved. However, the opposite is
also true, one can randomly sample policies that lead to the worst reward. Therefore, when collecting
rollouts from multiple policies, we have to look at the right tail of the distribution.

While there exsist problem structures that are robust against this approach (e.g., when always taking
the same action is the best), the majority of real-world problems follow a similar structure to Figure
2a’s, in which there is a distribution of best actions depending on the observation space.

3.2 GRID WORLD EXAMPLE WITH RANDOM LINEAR POLICIES

To better understand random policy sampling, we design a toy experiment consisting of a grid world
environment. At the beginning of every episode, the agent is placed on a random cell in the grid and
its position is defined as pa0 = (xa0 , ya0). Similarly, a different goal cell is randomly selected when
the episode begins, its position being pg = (xg, yg). We define the complete observation space of
the problem as st = (xg � xat , yg � yat); the agent can move up, down, left, and right as long as it
remains inside the grid. Whenever the agent reaches the goal position, it receives a reward of 10 and
the episode ends. If the agent reaches a certain timestep t0 without getting to the goal cell, it receives
a reward of -10 and the episode also terminates. In any other case, the reward is zero.

Our goal is to conduct multiple rollouts in this environment using different random policies. To that
end, we rely on a linear policy, defined as follows. At each timestep t, we compute f1t = w1 · st
and f2t = w2 · st, where w1 and w2 are linear coefficients sampled uniformly between -1 and 1 for
each policy (including a bias term). To decide which action to take at each timestep, we look at the
signs of f1 and f2 and assign one of the actions to each of the four possible sign combinations.

It is straightforward to see that an RL agent needs to have access to both features of the observation
to learn the best policy; any other representation is suboptimal or overdefined. We show this in Figure
3. We define three alternative observation spaces by masking one or both features (e.g., one of the
alternative spaces is st = (0, yg � yat)). Then, we use random policy sampling and collect N⇡ sets
of weights w1 and w2; we repeat this process for each of the state spaces Si. For each set of weights,
we run NR rollouts and compute the average rollout return, resulting in a distribution GSi for each
space considered. As discussed in the previous section, we are only interested in the right tail of
this distribution, therefore we only take the best 15% of average returns per space. Figures 3a - 3c
compare the right tail of the return distribution when using both features (XY) against the cases in
which only one feature is used (X or Y) or the observation is always zero (None).

In all cases, the distribution of returns corresponding to the observation space that includes both
features achieves a longer tail and a higher average return. This indicates that, during the sampling
process, there are certain pairs of weights w1 and w2 that, by relying on both features, lead to higher
returns in this environment. This remark is aligned with the premise that the best observation space is
given by both features. To further illustrate this, in Figure 3d we add a third feature: the number of
steps until the episode terminates (i.e., the difference t0 � t). By comparing the distribution for the
case in which this feature is used (XYT) against the case in which it is masked (XY), we can see that
the former adds artifacts that prevent random sampling from finding good sets of weights more often.

5

Under review as a conference paper at ICLR 2024

(a) XY vs. None (b) XY vs. X (c) XY vs. Y (d) XY vs. XYT

Figure 3: Distribution of average rollout returns when doing random policy sampling in the grid world
environment. We compare the distributions obtained for the optimal observation space using both features XY
against suboptimal spaces using (a) no features, (b) only feature X, and (c) only feature Y. We also compare the
optimal space against a (d) overdefined observation space (XYT). We show the average of each distribution with
a dashed line. In all cases, the optimal distribution achieves a longer tail and higher average returns.

3.3 INTEGRATION WITH HILL CLIMBING

Having established the utility of random policy sampling for evaluating observation spaces, we
now combine it with the Hill Climbing (HC) algorithm to produce optimized representations. Our
method couples the HC algorithm’s iterative search with the cost-efficient evaluation of random
policy sampling. For each iteration, the algorithm explores neighboring state space representations.
For every neighbor, random policies are sampled and rollouts are conducted; the sampling process
can be parallelized. A t-test (Walpole et al., 1993) is then performed to compare the resulting return
distributions. Based on this statistical comparison, the algorithm navigates towards representations
that show significant improvement. This iterative process stops once no statistically conclusive
improvements are observed among neighbors. The process is described in Algorithm 1.

Algorithm 1 Hill Climbing Integration with Random Policy Sampling
1: Input: initial_obs_space
2: Output: optimized_obs_space
3: current_obs_space initial_obs_space
4: while not converged do
5: neighbors generate_neighbors(current_obs_space)
6: for each obs_space in neighbors do
7: policies sample_random_policies(obs_space)
8: returns conduct_rollouts(policies)
9: avg_return, p_value t_test(returns, current_obs_space_returns)

10: end for
11: if a obs_space in neighbors shows higher avg_return and p_value < significance_level

then
12: current_obs_space obs_space
13: end if
14: end while
15: return current_obs_space

The combination of HC and random policy sampling offers an approach to observation space design
that is both systematic and cost-efficient. While the stochasticity of this approach does not guarantee
always taking a step towards a better observation space, its inexpensive and straightforward nature
makes it suitable for screening multiple candidate observation spaces in real-world problems where
policy training requires a large computational overhead. Our method can be also used to identify a
reduced set of promising observation spaces, which practitioners can further assess more efficiently.

4 EXPERIMENTS

We now apply random policy sampling and its integration with the HC algorithm in the context of
two RL problems: a single-player version of the paddle game and the real-world problem of TSC,
introduced in Section 2.2.

6

Under review as a conference paper at ICLR 2024

4.1 APPLYING HILL CLIMBING TO A PADDLE ENVIRONMENT

We first take the Paddle environment (Verma, 2020), a single-player version of the Pong game in
which the goal is to hit, for as long as possible, a ball moving in a 2D space with a paddle that can only
move in the left-right direction. The environment’s full observation space consists of five features:
the x position of the paddle, the x position of the ball, the y position of the ball, the x velocity of
the ball, and the y velocity of the ball. Our objective is to determine whether we can reduce the
observation space for this problem applying the HC algorithm described in the previous section.

We take the environment configuration reported in the codebase and define a family of random
policies consisting of a two-layer multilayer perceptron (MLP) in which all parameters are randomly
sampled following uniform distributions (full experiment configuration reported in Appendix B).
For each space, we sample multiple policies and compute the average rollout return for every policy.
Within the distribution of average returns, we take the right tail for each observation space. There are
32 possible observation spaces for this environment; since the outcome of the HC algorithm depends
on its initialization, we repeat this experiment using each possible observation space as initial space
and report statistics over the outcomes; this is summarized in Table 2.

We report the observation spaces that, for one or more of the 32 initializations, have been returned by
the HC algorithm. We also include the average number of spaces evaluated per trial. In the baseline
scenario we can see there are different candidate observation spaces. In all cases, the number of
evaluated spaces is less than one third of all the possibilities. We now train an RL agent using each
of the observation spaces in Table 2 and report its performance in Figure 4a. The returns show that,
among the candidate observation spaces, the one that uses all features reaches the best outcome. In
all cases, we train using the same neural network structure used during random policy sampling.

Table 2: Running the Hill Climbing algorithm in the paddle environment with all possible observation spaces as
initial space. We report the observation spaces that achieved the best result and how many times they did (out
of 32). In addition, we include the average number of spaces evaluated (max. is 32). Observation spaces are
reported as binary strings indicating whether feature in position i was used.

Baseline scenario Hard scenario
Obs. space Successes Avg. num. evals. Obs. space Successes Avg. num. evals.

00111 15 12.9 00111 12 12.4
11111 12 10.7 10011 12 11.4
11010 3 8.7 11111 4 9.8
10001 2 8.0 01011 4 9.8

(a) Baseline scenario. (b) Hard scenario.

Figure 4: Training RL agents using each of the candidate observation spaces. Observation spaces are reported
as binary strings indicating whether feature in position i was used. 95% CI is shown.

To further assess the utility of our approach, we define a second configuration for the paddle
environment in which the ball and the paddle move faster, making the task harder. We repeat the
same procedure and report the results in Table 2 (Hard scenario) and Figure 4b. When the task
becomes harder, using all features does not confer the best advantage. Instead, another of the proposed
observation spaces achieves better return. These results confirm the basis of our approach: trading
optimality for search cost. We are able to identify good candidate state spaces, which sometimes
involve using less features, without the need to train RL agents during exploration.

7

Under review as a conference paper at ICLR 2024

4.2 RANDOM POLICY SAMPLING FOR TRAFFIC SIGNAL CONTROL

In this section we test our approach using a real-world problem, TSC. The goal is to control the traffic
lights at an intersection by setting them to different phases. A phase is defined as an assignment of
states to each traffic light (e.g., green, red). The goal is to optimize the traffic flow at the intersection
by performance metrics such as the average waiting time. This problem can be formulated in multiple
ways that affect the specific available actions, the timescale, and the concrete goals to achieve (Eom
& Kim, 2020). In this work we focus on the most frequent formulation, in which time is discretized
in equal intervals and a phase from a set of predefined phases is chosen at each timestep.

We carry out several experiments to gain insights on the significance of the features in Table 1. To
that end, we leverage the RESCO benchmark for TSC (Ault & Sharon, 2021) and a real-world road
network and simulation with 21 agent-controlled traffic lights as our scenario. Among those, we
control seven of them with RL (blue dots in Figure 5a).

(a) Simulated road network. (b) Rollout return distributions. (c) Achieved average waiting time.

Figure 5: Experiments in the Traffic Signal Control problem using the RESCO benchmark. (a) We simulate a
real-world road network with 7 RL-controlled intersections (blue dots). (b) After running the Hill Climbing
algorithm with random policy sampling, we find a reduced observation space with just 3 features that, compared
to the full observation space with 5 features, achieves higher average rollout return in the right tail of the
distribution. (c) After training an RL agent with both observation spaces, the reduced one achieves lower (better)
average waiting time per vehicle. 95% CI is shown.

We take the observation space used in one of the benchmark models in RESCO; it is composed of five
different features for each lane in the intersection (an intersection has a variable number of lanes): the
current phase, the number of vehicles approaching, the average waiting time, the number of vehicles
waiting, and the average vehicle speed in the lane. After running the HC algorithm, an alternative
space with only three features (the first, third, and fourth) is proposed. The distribution of rollout
returns in the right tail is shown in Figure 5b for the full observation space (5 features) and for the
reduced one (3 features). We use 500 random policies in each case.

Finally, we take both the full observation space and the reduced space with three features and train an
RL agent for each using the default configuration in RESCO. This corresponds to setting the action
to be the phase at each timestep and the reward is the total waited time at an intersection multiplied
by -1; additional implementation details can be found in Appendix C. As shown in Figure 5c, the
proposed space with three features achieves lower (better) waiting time per vehicle compared to using
all features. These results validate the usefulness of our approach in real-world RL problems. This is
especially relevant in environments in which training is costly.

5 RELATED WORK

Design of observation spaces for real-world problems Our work aligns with improving the
design of observation spaces for practical applications. Singh et al. (2020) discuss what makes a
good state representation for an RL task and outline why it is a nontrivial problem. Reda et al. (2020)
emphasize that the observation space design process in many practical applications is empirical and
benchmark different observation spaces for robot locomotion. Kim & Ha (2021) extend the analysis
of observation spaces for robotics and propose a method to select features as the agent trains. Our
work is also framed in the context of practical applications and empirical analysis; we propose a
cost-efficient method to select raw features that complements empirical design in real-world tasks.

8

Under review as a conference paper at ICLR 2024

Learning state representations and abstractions Other works don’t optimize over the space of
raw features; instead they use all features and focus on learning abstractions that improve agent
performance (Li et al., 2006). Different approaches stand out: factoring and reducing MDPs (Givan
et al., 2003), randomly sampling features at each iteration (Afshar et al., 2020), using contrastive
learning for learning Markov state abstractions (Allen et al., 2021), learning invariant representations
(Zhang et al., 2020), treating the state as an evolvable entity following a curriculum (Wang et al.,
2019), choosing different transformations for image-based states (Raileanu et al., 2020), and using
canonical states to remove redundancy across observations (Wu et al., 2017). In this paper we
focus on optimizing the raw state representation instead of relying on all the feature set to create an
abstraction from it; we seek to minimize the number of sensors required in the real setup. Our work
can be seen as a previous step before applying some of the methods above.

Feature Selection in Reinforcement Learning The problem of selecting features has been long-
studied in ML, and the number of studies addressing it does not cease to grow (Hall, 1999; Chan-
drashekar & Sahin, 2014; Cai et al., 2018). While the majority of works are framed within supervised
learning, there are studies which have specifically addressed feature selection and dimensionality
reduction in RL (Liu et al., 2015). Different methods that have been proposed include aggregating
states when approximating value functions (Bertsekas et al., 1988; Keller et al., 2006; Parr et al.,
2007; 2008), mutual information (Hachiya & Sugiyama, 2010; Shen & Chi, 2016), regularization
(Loth et al., 2007; Kolter & Ng, 2009; Liu et al., 2012; Hao et al., 2021), matching pursuit methods
(Johns & Mahadevan, 2009; Painter-Wakefield & Parr, 2012), entropy-based dimensionality reduction
(Tangkaratt et al., 2016; Parisi et al., 2017), and using RL itself to pick features (Liu et al., 2021). The
majority of this methods are approximate, require several training runs, and have not been studied in
the context of real-world problems. We propose a straightforward and cost-efficient method that does
not require training and which can be applied to multiple practical applications.

Practical considerations of empirical RL Our work is framed within the study of empirical RL
and the practical problems of RL. Progress in RL is brittle; the real world is challenging (Dulac-
Arnold et al., 2021) and current RL practices have been proven not to be robust against different
elements such as experimental setups (Henderson et al., 2018), codebases (Engstrom et al., 2019),
hyperparameter tuning (Islam et al., 2017; Zhang et al., 2021), and statistical reporting (Agarwal
et al., 2021; Colas et al., 2018; 2019). Design choices have a major impact in practical RL; Reda
et al. (2020); Kim & Ha (2021) consider the effect of multiple design choices on the agent side
and Andrychowicz et al. (2020) run a similar analysis on algorithmic components. The effect of
RL components on the performance vs. generality tradeoff is discussed by Hessel et al. (2019).
Ceron & Castro (2021) find that smaller-sized environments are well suited for empirical work in RL,
Jayawardana et al. (2022) study the impact of evaluating in MDP instances instead of MDP families,
and Chan et al. (2019); Jordan et al. (2020) address the reliability of RL results. We further investigate
the choice of the observation space and propose a method to support practical decision-making which
does not need multiple costly evaluations.

6 CONCLUSION AND FUTURE WORK

In this paper, we focus on observation space design in real-world reinforcement learning (RL). We
propose an inexpensive method to gauge the relevance of state features based on random policy
sampling, which does not require training. This is an overlooked problem in the literature, since
the structure of RL renders many feature selection methods designed for supervised learning of
little use and the proposed solutions require training multiple times. We demonstrate that random
policy sampling, combined with a search algorithm such as Hill Climbing, is well-suited to find
good observation spaces in a simple way that can be leveraged in practical applications. We evaluate
our approach in different RL problems, including Traffic Signal Control, which has been attempted
many times using RL and feature selection still remains one of its unsolved aspects. While this
work focused on feature selection without training at all, future work will consider combining this
random search strategy with limited training paradigms, such as transfer learning between different
observation configurations. Overall, we hope our findings help gain momentum for the study of how
RL state spaces should be designed in practical contexts and contribute to a better understanding of
the brittleness in RL research.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Reza Refaei Afshar, Yingqian Zhang, Murat Firat, and Uzay Kaymak. A state aggregation approach
for solving knapsack problem with deep reinforcement learning. In Asian Conference on Machine

Learning, pp. 81–96. PMLR, 2020.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Information

Processing Systems, 34, 2021.

Mary B Alatise and Gerhard P Hancke. A review on challenges of autonomous mobile robot and
sensor fusion methods. IEEE Access, 8:39830–39846, 2020.

Cameron Allen, Neev Parikh, Omer Gottesman, and George Konidaris. Learning markov state
abstractions for deep reinforcement learning. Advances in Neural Information Processing Systems,
34:8229–8241, 2021.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, and Others. What matters
for on-policy deep actor-critic methods? a large-scale study. In International conference on

learning representations, 2020.

Mohammad Aslani, Mohammad Saadi Mesgari, Stefan Seipel, and Marco Wiering. Developing
adaptive traffic signal control by actor–critic and direct exploration methods. In Proceedings of the

Institution of Civil Engineers-Transport, volume 172, pp. 289–298. Thomas Telford Ltd, 2019.

James Ault and Guni Sharon. Reinforcement learning benchmarks for traffic signal control. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track

(Round 1), 2021.

Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. Exploratory combinatorial
optimization with reinforcement learning. In Proceedings of the AAAI conference on artificial

intelligence, volume 34, pp. 3243–3250, 2020.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of

machine learning research, 13(2), 2012.

Dimitri P Bertsekas, David A Castanon, et al. Adaptive aggregation methods for infinite horizon
dynamic programming. 1988.

Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang. Feature selection in machine learning: A new
perspective. Neurocomputing, 300:70–79, 2018.

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful
and inclusive deep reinforcement learning research. In International Conference on Machine

Learning, pp. 1373–1383. PMLR, 2021.

Stephanie CY Chan, Samuel Fishman, John Canny, Anoop Korattikara, and Sergio Guadarrama.
Measuring the reliability of reinforcement learning algorithms. arXiv preprint arXiv:1912.05663,
2019.

Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Computers &

Electrical Engineering, 40(1):16–28, 2014.

Peng Chen, Zemao Zhu, and Guangquan Lu. An adaptive control method for arterial signal coordi-
nation based on deep reinforcement learning. In 2019 IEEE Intelligent Transportation Systems

Conference (ITSC), pp. 3553–3558. IEEE, 2019.

Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-agent deep reinforcement learning for
large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21(3):
1086–1095, 2019.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How many random seeds? statistical power
analysis in deep reinforcement learning experiments. arXiv preprint arXiv:1806.08295, 2018.

10

Under review as a conference paper at ICLR 2024

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. A hitchhiker’s guide to statistical comparisons
of reinforcement learning algorithms. arXiv preprint arXiv:1904.06979, 2019.

Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness: A critical review of
fair machine learning. arXiv preprint arXiv:1808.00023, 2018.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. 2016.

Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Machine Learning, apr 2021. ISSN 0885-6125. doi: 10.1007/s10994-021-05961-4. URL
https://link.springer.com/10.1007/s10994-021-05961-4.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation matters in deep rl: A case study on ppo and trpo. In
International conference on learning representations, 2019.

Myungeun Eom and Byung-In Kim. The traffic signal control problem for intersections: a review.
European transport research review, 12(1):1–20, 2020.

Hongwei Ge, Yumei Song, Chunguo Wu, Jiankang Ren, and Guozhen Tan. Cooperative deep q-
learning with q-value transfer for multi-intersection signal control. IEEE Access, 7:40797–40809,
2019.

Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization in
markov decision processes. Artificial Intelligence, 147(1-2):163–223, 2003.

Yaobang Gong, Mohamed Abdel-Aty, Qing Cai, and Md Sharikur Rahman. Decentralized network
level adaptive signal control by multi-agent deep reinforcement learning. Transportation Research

Interdisciplinary Perspectives, 1:100020, 2019.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal of

machine learning research, 3(Mar):1157–1182, 2003.

Hirotaka Hachiya and Masashi Sugiyama. Feature selection for reinforcement learning: Evaluating
implicit state-reward dependency via conditional mutual information. In Machine Learning and

Knowledge Discovery in Databases: European Conference, ECML PKDD 2010, Barcelona, Spain,

September 20-24, 2010, Proceedings, Part I 21, pp. 474–489. Springer Berlin Heidelberg, 2010.

Mark A Hall. Correlation-based feature selection for machine learning. PhD thesis, The University
of Waikato, 1999.

Botao Hao, Yaqi Duan, Tor Lattimore, Csaba Szepesvári, and Mengdi Wang. Sparse feature selection
makes batch reinforcement learning more sample efficient. In International Conference on Machine

Learning, pp. 4063–4073. PMLR, 2021.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In 32nd AAAI Conference on Artificial Intelligence,

AAAI 2018, 2018. ISBN 9781577358008.

Matteo Hessel, Hado van Hasselt, Joseph Modayil, and David Silver. On inductive biases in deep
reinforcement learning. arXiv preprint arXiv:1907.02908, 2019.

Carolina Higuera, Fernando Lozano, Edgar Camilo Camacho, and Carlos Hernando Higuera. Multia-
gent reinforcement learning applied to traffic light signal control. In International conference on

practical applications of agents and multi-agent systems, pp. 115–126. Springer, 2019.

Thanapapas Horsuwan and Chaodit Aswakul. Reinforcement learning agent under partial observabil-
ity for traffic light control in presence of gridlocks. In SUMO, pp. 29–47, 2019.

Rui Huang, Jianming Hu, Yusen Huo, and Xin Pei. Cooperative multi-intersection traffic signal
control based on deep reinforcement learning. In CICTP 2019, pp. 2959–2970. 2019.

11

https://link.springer.com/10.1007/s10994-021-05961-4

Under review as a conference paper at ICLR 2024

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of bench-
marked deep reinforcement learning tasks for continuous control. arXiv preprint arXiv:1708.04133,
2017.

Vindula Jayawardana, Catherine Tang, Sirui Li, Dajiang Suo, and Cathy Wu. The impact of task
underspecification in evaluating deep reinforcement learning. arXiv preprint arXiv:2210.08607,
2022.

Junchen Jin and Xiaoliang Ma. A multi-objective agent-based control approach with application in
intelligent traffic signal system. IEEE Transactions on Intelligent Transportation Systems, 20(10):
3900–3912, 2019.

Jeff Johns and Sridhar Mahadevan. Sparse approximate policy evaluation using graph-based basis
functions. Dept. Comput. Sci., Univ. Massachusetts Amherst, Amherst, MA, USA, Tech. Rep.

UM-CS-2009-041, 2009.

Scott Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang, and Philip Thomas. Evaluating the
performance of reinforcement learning algorithms. In International Conference on Machine

Learning, pp. 4962–4973. PMLR, 2020.

Philipp W Keller, Shie Mannor, and Doina Precup. Automatic basis function construction for
approximate dynamic programming and reinforcement learning. In Proceedings of the 23rd

international conference on Machine learning, pp. 449–456, 2006.

Daeho Kim and Okran Jeong. Cooperative traffic signal control with traffic flow prediction in
multi-intersection. Sensors, 20(1):137, 2019.

Joanne Taery Kim and Sehoon Ha. Observation space matters: Benchmark and optimization algorithm.
In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 1527–1534. IEEE,
2021.

Shunya Kitagawa, Ahmed Moustafa, and Takayuki Ito. Urban traffic control using distributed multi-
agent deep reinforcement learning. In Pacific rim international conference on artificial intelligence,
pp. 337–349. Springer, 2019.

J Zico Kolter and Andrew Y Ng. Regularization and feature selection in least-squares temporal
difference learning. In Proceedings of the 26th annual international conference on machine

learning, pp. 521–528, 2009.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction for
mdps. In AI&M, 2006.

Bo Liu, Sridhar Mahadevan, and Ji Liu. Regularized off-policy td-learning. Advances in Neural

Information Processing Systems, 25, 2012.

De-Rong Liu, Hong-Liang Li, and Ding Wang. Feature selection and feature learning for high-
dimensional batch reinforcement learning: A survey. International Journal of Automation and

Computing, 12(3):229–242, 2015.

Kunpeng Liu, Yanjie Fu, Le Wu, Xiaolin Li, Charu Aggarwal, and Hui Xiong. Automated feature
selection: A reinforcement learning perspective. IEEE Transactions on Knowledge and Data

Engineering, 2021.

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flötteröd,
Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie Wießner.
Microscopic traffic simulation using sumo. In 2018 21st international conference on intelligent

transportation systems (ITSC), pp. 2575–2582. IEEE, 2018.

Manuel Loth, Manuel Davy, and Philippe Preux. Sparse temporal difference learning using lasso. In
2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement

Learning, pp. 352–359. IEEE, 2007.

12

Under review as a conference paper at ICLR 2024

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. Advances in Neural Information Processing Systems, 31,
2018.

Hao Mei, Xiaoliang Lei, Longchao Da, Bin Shi, and Hua Wei. Libsignal: An open library for traffic
signal control. arXiv preprint arXiv:2211.10649, 2022.

Mohammad Noaeen, Atharva Naik, Liana Goodman, Jared Crebo, Taimoor Abrar, Zahra Shakeri Hos-
sein Abad, Ana LC Bazzan, and Behrouz Far. Reinforcement learning in urban network traffic
signal control: A systematic literature review. Expert Systems with Applications, pp. 116830, 2022.

Christopher Painter-Wakefield and Ronald Parr. Greedy algorithms for sparse reinforcement learning.
arXiv preprint arXiv:1206.6485, 2012.

Simone Parisi, Simon Ramstedt, and Jan Peters. Goal-driven dimensionality reduction for reinforce-
ment learning. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 4634–4639. IEEE, 2017.

Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer,
Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, Frank Hutter, and Marius Lindauer.
Automated Reinforcement Learning (AutoRL): A Survey and Open Problems. jan 2022. URL
http://arxiv.org/abs/2201.03916.

Ronald Parr, Christopher Painter-Wakefield, Lihong Li, and Michael Littman. Analyzing feature
generation for value-function approximation. In Proceedings of the 24th international conference

on Machine learning, pp. 737–744, 2007.

Ronald Parr, Lihong Li, Gavin Taylor, Christopher Painter-Wakefield, and Michael L Littman.
An analysis of linear models, linear value-function approximation, and feature selection for
reinforcement learning. In Proceedings of the 25th international conference on Machine learning,
pp. 752–759, 2008.

Roberta Raileanu, Max Goldstein, Denis Yarats, Ilya Kostrikov, and Rob Fergus. Automatic data
augmentation for generalization in deep reinforcement learning. arXiv preprint arXiv:2006.12862,
2020.

Daniele Reda, Tianxin Tao, and Michiel van de Panne. Learning to Locomote: Understanding
How Environment Design Matters for Deep Reinforcement Learning. In Motion, Interaction

and Games, pp. 1–10, New York, NY, USA, oct 2020. ACM. ISBN 9781450381710. doi:
10.1145/3424636.3426907.

Mali Reda, Fouad Mountassir, and Bousmah Mohamed. Introduction to coordinated deep agents
for traffic signal. In 2019 International Conference on Wireless Technologies, Embedded and

Intelligent Systems (WITS), pp. 1–6. IEEE, 2019.

Stefano Giovanni Rizzo, Giovanna Vantini, and Sanjay Chawla. Reinforcement learning with
explainability for traffic signal control. In 2019 IEEE Intelligent Transportation Systems Conference

(ITSC), pp. 3567–3572. IEEE, 2019a.

Stefano Giovanni Rizzo, Giovanna Vantini, and Sanjay Chawla. Time critic policy gradient methods
for traffic signal control in complex and congested scenarios. In Proceedings of the 25th ACM

SIGKDD international conference on knowledge discovery & data mining, pp. 1654–1664, 2019b.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Soheil Mohamad Alizadeh Shabestray and Baher Abdulhai. Multimodal intelligent deep (mind)
traffic signal controller. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp.
4532–4539. IEEE, 2019.

Shitian Shen and Min Chi. Aim low: Correlation-based feature selection for model-based reinforce-
ment learning. International Educational Data Mining Society, 2016.

13

http://arxiv.org/abs/2201.03916

Under review as a conference paper at ICLR 2024

Lingzhou Shu, Jia Wu, and Ziyan Li. Hierarchical regional control for traffic grid signal optimization.
In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3547–3552. IEEE, 2019.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-Driven Behavioral Priors for Reinforcement Learning. nov 2020. URL http://arxiv.

org/abs/2011.10024.

Voot Tangkaratt, Jun Morimoto, and Masashi Sugiyama. Model-based reinforcement learning with
dimension reduction. Neural Networks, 84:1–16, 2016.

Shiva Verma. Orbit: A collection of ml/dl models. https://github.com/shivaverma/

Orbit, 2020. GitHub repository.

Ronald E Walpole, Raymond H Myers, Sharon L Myers, and Keying Ye. Probability and statistics

for engineers and scientists, volume 5. Macmillan New York, 1993.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Poet: open-ended coevolution of
environments and their optimized solutions. In Proceedings of the Genetic and Evolutionary

Computation Conference, pp. 142–151, 2019.

Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai Xu, and Zhenhui Li. Presslight:
Learning max pressure control to coordinate traffic signals in arterial network. In Proceedings of

the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
1290–1298, 2019a.

Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang,
Yanmin Zhu, Kai Xu, and Zhenhui Li. Colight: Learning network-level cooperation for traffic
signal control. In Proceedings of the 28th ACM International Conference on Information and

Knowledge Management, pp. 1913–1922, 2019b.

Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. Recent advances in reinforcement learning
for traffic signal control: A survey of models and evaluation. ACM SIGKDD Explorations

Newsletter, 22(2):12–18, 2021.

Cathy Wu, Aboudy Kreidieh, Eugene Vinitsky, and Alexandre M Bayen. Emergent behaviors in
mixed-autonomy traffic. In Conference on Robot Learning, pp. 398–407. PMLR, 2017.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint

arXiv:2006.10742, 2020.

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua, Frank
Hutter, and Roberto Calandra. On the importance of hyperparameter optimization for model-based
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pp.
4015–4023. PMLR, 2021.

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong
Yu, Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning environment for
large scale city traffic scenario. In The world wide web conference, pp. 3620–3624, 2019.

Guanjie Zheng, Yuanhao Xiong, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai Xu,
and Zhenhui Li. Learning phase competition for traffic signal control. In Proceedings of the 28th

ACM international conference on information and knowledge management, pp. 1963–1972, 2019.

Pengyuan Zhou, Tristan Braud, Ahmad Alhilal, Pan Hui, and Jussi Kangasharju. Erl: Edge based
reinforcement learning for optimized urban traffic light control. In 2019 IEEE International

Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp.
849–854. IEEE, 2019.

14

http://arxiv.org/abs/2011.10024
http://arxiv.org/abs/2011.10024
https://github.com/shivaverma/Orbit
https://github.com/shivaverma/Orbit

	Introduction
	Limitations of current observation space design strategies
	Excess of features
	Literature not converging

	Feature selection via random policy sampling
	Theoretical analysis of random policy sampling
	Grid world example with random linear policies
	Integration with Hill Climbing

	Experiments
	Applying Hill Climbing to a Paddle environment
	Random policy sampling for Traffic Signal Control

	Related Work
	Conclusion and future work
	PyBullet experiment configurations
	Paddle environment experiment configurations
	Traffic Signal Control experiment configurations

