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Abstract

Model merging techniques like task arithmetic,001
which combines model parameters through002
weighted averaging, have proven effective.003
However, the success of task arithmetic relies004
on the linearity between model weight differ-005
ences and output feature changes, which is006
often lacking in conventional fine-tuned mod-007
els. In this work, we employ neuron descrip-008
tion methods to analyze and classify neurons009
based on their functionalities. We theoretically010
demonstrate that grouping Multi-Layer Percep-011
tron (MLP) neurons by functionality enhances012
model linearity. Building on this, we propose a013
neuron-based task arithmetic merging method014
that consistently improves performance across015
various tasks and model scales. Our approach016
is complementary to existing merging tech-017
niques, achieving superior results in merging018
models fine-tuned on fundamental tasks like019
Math, Code and Translation.020

1 Introduction021

In recent years, the scaling up in large language022

model (LLM) has greatly escalated data require-023

ments and computational expenses for fine-tuning024

multi-task models. To address this challenge, re-025

searchers have explored methods to combine the026

strengths of existing single-task models through027

model merging techniques (Yu et al., 2024; Jin028

et al., 2023; Matena and Raffel, 2022; Yadav et al.,029

2023). A simple and efficient model merging ap-030

proach, called task arithmetic (Ilharco et al., 2023)031

demonstrates remarkable effectiveness in creating032

a multi-task model through a basic weighted com-033

bination of parameters of existing models, without034

the need for costly retraining processes or addi-035

tional data collection.036

Recent studies (Ortiz-Jiménez et al., 2023; Zhou037

et al., 2024) introduce a concept Linearity which038

refers to the linear relationship between the dif-039

ferences in model weights and the differences in040

Figure 1: Functional neuron groups: grouping neurons
according to neuron functionalities such as General,
Math, Code and Translation.

output features caused by fine-tuning, and reveal 041

its connection with effectiveness of task arithmetic. 042

Studies show that models exhibiting linearity re- 043

tain their individual task performance better when 044

merged using task arithmetic, leading to superior 045

multi-task models (Ortiz-Jiménez et al., 2023; Tang 046

et al., 2024; Jin et al., 2024; Liu et al., 2024). How- 047

ever, conventionally fine-tuned models often lack 048

this ideal linearity (Ortiz-Jiménez et al., 2023). 049

To address this issue, Dai et al. (2025) proposes 050

a training-free method (SubModule Linear) intu- 051

itively by breaking models into multiple shallower 052

submodules (e.g., layers, self-attentions, MLPs) 053

and discovers that these submodules exhibit a level 054

of linearity that significantly surpasses that of the 055

overall model, thus achieves SOTA performance 056

on task arithmetic. But still, according to their anal- 057

ysis, non-linearity in MLPs is much higher than 058

in self-attentions, which suggests intuitively finer 059

further investigations and divisions for MLPs. And 060

the non-linearity in MLPs remains under-explored 061

within the community. 062

The rapid development of automatic neuron de- 063

scription methods in recent years (Bills et al., 2023; 064

Choi et al., 2024) provides in-depth analysis of 065

elements in MLPs (e.g. neurons), by generating 066

neuron functionality descriptions according to their 067

activation patterns. One of these (Choi et al., 2024) 068

achieves human-expert-level performance, which 069
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(a) Proportions of General, Math, Code and Translation cate-
gories of neurons in Qwen2.5-7B and Llama3.1-8B models.

(b) Cases of functionality descriptions and activation patterns
for different categories of neurons in Qwen2.5-7B.

Figure 2: Neurons exhibit a high degree of functionality in Qwen2.5 and Llama-3.1. (a) Proportions of different
categories of neurons in Qwen2.5-7B and Llama3.1-8B models are shown, and exhibit similar distributions except
that Qwen2.5 has more Translation, Math and Code neurons and less General neurons compared to Llama3.1. (b)
We show case the a exemplars for each of the four neuron functionalities. And the darkness of the background color
indicates the magnitude of neuron activation on that token. The activations demonstrate noteworthy patterns related
to specific functionality.

provides an effective way to classify neurons into070

groups for further study.071

We observe that neurons exhibit a high degree072

of functionality in both LLM series (shown in Fig-073

ure 2). Furthermore, theoretical derivation also074

demonstrates that grouping MLP neurons accord-075

ing to their functionality types (see Figure 1) can076

improve model linearity (refer to §2.4 and details077

in §B), and therefore improve the performance of078

task arithmetic model merging. Inspired by these079

observations and analysis, in this paper, to further080

improve the linearity of MLPs for task arithmetic081

model merging, we propose to grouping the neu-082

rons in MLPs by their functionalities (e.g. math,083

code, translate) and independently merging param-084

eters within each group. Firstly, we utilize a mod-085

ified version of the method (Choi et al., 2024) to086

analyze and classify neurons according to neuron087

functionality in two SOTA open-sourced LLM se-088

ries Qwen2.5 (Qwen Team, 2024) and Llama-3.1089

(AI@Meta, 2024). Secondly, we merge each group090

of neurons independently. To be specific, we merge091

the General neurons and drop the parameter differ-092

ences on other task-specific groups. Our method093

shows consistent improvements of performance on094

merging models fine-tuned at several fundamen-095

tal tasks (Math, Code and Translation) and model096

scales (7B, 8B, 13B, 14B).097

Our contributions are summarized as follows:098

• We conduct neuron analysis on SOTA open-099

sourced LLM series, and find neurons keep 100

a high consistent degree of functionalities on 101

General, Math, Code, Translation before and 102

after fine-tuning. 103

• We propose a novel model merge method via 104

functional neuron groups which groups neu- 105

rons according to their functionalities, and 106

conducts task arithmetic for each group inde- 107

pendently. We demonstrate its effectiveness 108

both theoretical and experimental. 109

• Our method achieves superior performance 110

on different types of foundation models, and 111

is consistently effective for merging different 112

down-stream-task fine-tuned models. More 113

importantly, our method is orthogonal and 114

complementary to existing model merging 115

methods. 116

2 Neuron Functionality Analysis 117

In this section, we systematically investigate neu- 118

ron functionalities in a base model and its fine- 119

tuning variants. We first introduce the basic defi- 120

nitions of neurons and activation patterns in §2.1. 121

Building on this foundation, we present a modi- 122

fied data-driven framework to classify neurons into 123

task-specific categories by analyzing their activa- 124

tion patterns efficiently, as detailed in §2.2. In §2.3, 125

we validate the framework through several key ob- 126

servations. Finally, in §2.4, we bridge these find- 127
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ings to task arithmetic techniques (Ilharco et al.,128

2023), demonstrating how neuron-type-aware pa-129

rameter composition improves Linearity for task130

vectors. This structured analysis provides both131

theoretical insights into neuron functionality and132

practical guidelines for optimizing task arithmetic133

through neuron functionality classification.134

2.1 Preliminary135

Introduction to Neurons. In a transformer model,136

neurons are part of the MLP layers (Bills et al.,137

2023). Each neuron computes a weighted sum138

of its inputs, applies an activation function, and139

produces an output.140

Neuron Activation. The activation of a neuron141

refers to the output value produced by the neuron142

in response to its inputs, and indicates the degree143

to which the neuron is "firing" or contributing to144

the overall output of the model. Mathematically,145

in modern decoder-only architecture LLMs like146

Llama3.1 and Qwen2.5 the activation of a neuron i147

can be represented as:148

ϕi(z) = SiLU
(
(w1

i )
⊤z

)
· (w2

i )
⊤z, (1)149

where z is the pre-MLP value of the residual150

stream after RMS Norm. w1
i and w2

i are the d-151

dimensional weight vectors for the neuron, where152

d is the dimension of residual stream. SiLU153

is the Swish-like activation function, defined as154

SiLU(x) = x · σ(x), where σ(x) is the logistic155

sigmoid function.156

2.2 Classification of Neuron Functionality157

Neuron Functionality. The functionality of a neu-158

ron is determined by its activation pattern across159

different input exemplars. By analyzing the acti-160

vation values, we can identify the types of inputs161

that strongly activate the neuron and thus infer its162

functionality. This is often done by selecting the163

top k inputs where the neuron’s activation is high-164

est as exemplars and generating descriptions based165

on these exemplars (Bills et al., 2023).166

Classification Method. Inspired by the Transluce167

(Choi et al., 2024) framework, we adopt a stream-168

lined approach to perform large-scale classification169

of neuron functionalities. Instead of generating170

descriptive descriptions, our method categorizes171

neuron functionality based on the frequency of ac-172

tivation across different corpus exemplars directly.173

Let C = {c1, c2, . . . , cN} denote the set of N174

distinct categories. For each category ci, we curate175

M representative corpus exemplars, resulting in 176

a total of N × M exemplars. Each exemplar is 177

forwarded by a target LLM, and for each MLP 178

neuron j, we record its activation values across all 179

tokens in the input sentence. 180

For a given exemplar s belonging to category 181

ci, and for each token t in s, let ϕj(s, t) represent 182

the activation value of neuron j. To summarize 183

the neuron’s activation for the entire sentence, we 184

define: 185

aj(s) = max
t

|ϕj(s, t)|. 186

Here, aj(s) captures the highest absolute activa- 187

tion value of neuron j across all tokens in exemplar 188

s. This process is applied uniformly across all lay- 189

ers of the LLM. 190

After computing aj(s) for all exemplars s ∈ S, 191

where S is the complete set of N ×M exemplars, 192

we identify the top-k exemplars that elicit the high- 193

est activations for neuron j: 194

Sk(j) = Top-k ({aj(s) | s ∈ S}) . 195

The functionality category of neuron j is as- 196

signed based on the most frequent category among 197

the top-k activated exemplars. Formally, the func- 198

tionality category Category(j) is determined as: 199

Category(j) = argmax
ci∈C

|{s ∈ Sk(j) | s ∈ ci}| .

(2) 200

In this equation, |·| denotes the cardinality of the 201

set, and argmax identifies the category ci with the 202

highest representation within Sk(j). 203

By aggregating the maximum activation values 204

of each neuron across a diverse set of categorized 205

exemplars and selecting the top-k activations, we 206

effectively classify neuron functionalities based on 207

the predominant category present in these high- 208

activation instances. This method facilitates a scal- 209

able and interpretable analysis of neuron functions 210

without relying on direct descriptive generation. 211

Classification Settings. In practice, we classify 212

neuron functionalities into four distinct categories: 213

General, Math, Code, and Translation. And the tar- 214

get LLMs are Qwen2.5-7B and three fine-tuned 215

models based on Qwen2.5-7B trained on three 216

datasets respectively: gsm8k (Cobbe et al., 2021), 217

code alpaca (Chaudhary, 2023) and a zh↔ en trans- 218

lation dataset (Xu et al., 2024a) (for training details, 219
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Figure 3: Neuron classification results in layer 0 for
Qwen2.5-7B and three fine-tuned models, shown as bar
charts for different categories of neurons. Base model
is Qwen2.5-7B, gsm8k_sft, code_sft, translate_sft are
Qwen2.5-7B fine-tuned variants on Math, Code, Trans-
lation dataset respectively. Purple bar is the number of
intersection neurons for each functionality category.

see §4.1). To facilitate this classification, we con-220

structed a corpus comprising a total of 1, 200 exem-221

plars, evenly distributed across the four categories.222

Specifically, we randomly selected 300 exemplars223

from each of the following sources. For the general224

category, we used data from CommonCrawl in Red-225

Pajama (Weber et al., 2024). For the mathematics226

category, we sourced exemplars from Proof-file-2227

(Azerbayev et al., 2024). The coding examples228

were drawn from Python dataset in StarCoder (Li229

et al., 2023). The translation category utilized the230

en↔zh dataset from Xu et al. (2024a).231

Each text in these exemplars was processed with232

a maximum input length of 512 tokens, truncating233

any content that exceeded this limit to ensure uni-234

formity across inputs. To identify sentences that235

most strongly activate each neuron, we selected the236

top-k sentences exhibiting the highest activation237

values, where k = 10.238

2.3 Classification Result.239

From Figure 3, we can observe that after fine-240

tuning, the distribution of neuron functionality cat-241

egories remains largely consistent across Qwen2.5-242

7B and its fine-tuned variants, demonstrating high243

distributional uniformity. Specifically, in all four244

models, the proportion of neurons overlapping245

within each category (depicted by the purple bar)246

is substantially high. This suggests that most neu-247

rons retain their functionality types before and after248

fine-tuning regardless of down-stream tasks. The249

results presented correspond to the classification250

Figure 4: Knock-out code neurons in Qwen2.5-7B
(layer 13) will lead to a greater decline in coding ability
than random neuron knock-out. The horizontal coordi-
nate indicates the knock-out proportion. Performances
are tested on HumanEval (Chen et al., 2021).

results of the first layer (Layer 0). Additional clas- 251

sification results across other layers and detailed 252

case studies are available in the §A.1, all of which 253

exhibit similar patterns consistently. 254

Cosine similarity of neurons provides another 255

evidence that verify the consistency above. We 256

analyzed the cosine similarity between the weight 257

vectors of the positional corresponding neurons 258

in base and fine-tuned models. It revealed that 259

the corresponding neurons exhibit an exceptionally 260

high cosine similarity of up to 0.999 (for details, 261

see §A.3), indicating highly similar parameter pat- 262

terns. This suggests why neurons preserve their 263

functionalities after fine-tuning, as similar weights 264

lead to similar activations (Jacot et al., 2018) and 265

consistent maximally activated sentences. 266

To validate the effectiveness of our neuron 267

functionality classification, we performed ablation 268

experiments by selectively deactivating neurons 269

based on their classified categories. Specifically, 270

we knock-out the parameters of neurons associ- 271

ated with different functionalities in the base model 272

in varying proportions (20%, 40%, · · · , 100%) and 273

evaluated the performance on corresponding tasks. 274

As a control, we also conducted random ablations 275

in which an equivalent number of neurons were 276

randomly deactivated, repeating each random abla- 277

tion 3 times and averaging the performance. The 278

ablation results, depicted in Figure 4, demonstrate 279

that neuron ablation based on the Code category 280

leads to a significant degradation in model perfor- 281

mance (tested on HumanEval (Chen et al., 2021)) 282

compared to random ablation. For Math and Trans- 283

lation categories, the results exhibit consistency, 284

see the §A.2. This stark contrast underscores the 285

relevance of neuron classifications to the model’s 286
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Figure 5: The framework for neuron grouping and merging in LLM. It consists of three main steps: 1) Neuron
Grouping Based on Functionality, which classifies neurons into different categories; 2) Merging for MLP Layers,
where General neurons are merged by SubModule Linear and other neurons’ coefficients are set to zero; and
3) Merging for Attention and Embedding Layers, where different methods can be utilized as complementary
approaches.

task performance and reinforces the validity of our287

classification methodology and indicates that neu-288

rons w.r.t. their functions play a key role in model289

performance for corresponding tasks.290

2.4 Task Arithmetic and Linearity291

Task arithmetic (Ilharco et al., 2023) is a simple292

and efficient model merging strategy. It combines293

model weights by a simple weighted average. This294

approach gives the merged model multi-task per-295

formance without needing extra training or data.296

Task vector for task t is defined as the difference297

between the fine-tuned and the pre-trained weights,298

namely, τt = θt − θ0. Task arithmetic involves a299

linear combination of the task vectors added to the300

pre-trained model weights θ0. The merged weights301

can be expressed as302

θmerge = θ0 +

T∑
t=1

αtτt, (3)303

where αt is the weight corresponding to τt.304

Linearity (Ortiz-Jiménez et al., 2023) is benefi-305

cial for task arithmetic performance. We theoreti-306

cally investigate the sources of non-linearity arising307

from MLP in §B. We prove a theorem to estimate308

the non-linearity with ReLU activation function for309

simplification. The theorem reveals two primary310

components contributing to non-linearity: firstly,311

the second-order terms arising from task vectors,312

which is negligible under task arithmetic setting;313

secondly, the change of neuron activation state be-314

fore and after fine-tuning causes non-linearity.315

If we group neurons based on their function-316

alities—such as Math neurons, which activate317

strongly in response to a Math dataset—their ac-318

tivation states will remain stable since the norm319

of the task vector ∥τ∥2 is small under task arith-320

metic setting. So the non-linearity from the second321

source will be reduced, thereby enhancing the per- 322

formance of task arithmetic. 323

3 Neuron Grouping and Merging 324

In this section, we present our approach for task 325

arithmetic based on neuron functionalities. Our pro- 326

posed framework, depicted in Figure 5, involves 327

several key steps. Initially, we classify neurons 328

across all layers of the base model according to 329

their functionalities and assign them into groups. 330

Subsequently, for MLP layers, we perform a sep- 331

arate task arithmetic for each group of neurons 332

independently. Finally, we address the merging 333

of the remaining parameters (e.g. self-attention 334

and embeddings). In the following sections, we 335

provide a detailed explanation of each step in our 336

methodology. 337

Neuron Grouping Based on Functionality. Let 338

D = {Dt}t∈{1,2,··· ,T} be a collection of datasets 339

for T tasks, with θ1, ..., θT representing the param- 340

eters of models fine-tuned from base model θ0 us- 341

ing the corresponding datasets. The parameters 342

resulting from the merging process are denoted by 343

θmerge. 344

We conduct a functionality classification of neu- 345

rons within each MLP layer of the base model θ0. 346

The detailed methodology for this classification is 347

elaborated in section 2, and we keep the same nota- 348

tion throughout. We establish a total of N = T +1 349

categories: for each task, there is a corresponding 350

category ci, along with an additional category c0 351

designated for task-agnostic classifications namely 352

General. To enhance the robustness and general- 353

ization of the classification, all N ×M exemplars 354

in S are sourced from external datasets that are 355

highly relevant for the respective tasks. Based on 356

Equation (2), the classification result for neuron 357

j in layer l is determined as Categoryl(j), where 358

l ∈ {1, 2, ..., L}, and L is the number of total lay- 359
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ers of the base model. Consequently, we group360

neurons for every layer:361

gl(t) = {j : Categoryl(j) = t}, t = 0, · · · , T.362

Merging for MLP layers. We further merge363

the MLP layers of the base model and fine-tuned364

models based on the established neuron groupings.365

Specifically, in accordance with the task arithmetic366

framework, we utilize the task vectors to merge neu-367

ron groups. For the task-agnostic group gl(0), we368

adopt the approach proposed by Dai et al. (2025),369

calculating T weights αt for each layer’s gl(0) neu-370

ron group to merge the task vectors from the fine-371

tuned models. In contrast, for the other groups372

gl(i) where i ∈ {1, 2, ..., T}, all task vectors are373

discarded, which means all the coefficients are set-374

ting to zero. Formally, denote the operation of Sub-375

Module Linear as α = SubLin(f), which means376

calculating the merge coefficient α from the sub-377

module f . Then for a neuron j, we can write378

θmerge,l(j) = θ0,l(j) +

T∑
t=1

αt,l(j)τt,l(j),379

where380

αt,l(j) =

{
0 if j /∈ gl(0),

SubLin(gl(0)) if j ∈ gl(0).
381

Merging for Attention and Embedding layers.382

For parameters unrelated to neuron groupings, such383

as those in the attention and embedding layers, var-384

ious integration strategies are applicable. In our385

study, we evaluated both DARE (Yu et al., 2024)386

and the Submodule Linear method (Dai et al., 2025)387

(denote by NeuronMerge1 and NauronMerge2 re-388

spectively) to merge these parameters.389

4 Experiments390

4.1 Experiments Setup391

Basic Settings. We adopt Qwen2.5-7B (Qwen392

Team, 2024) and Llama-3.1-8B (AI@Meta, 2024)393

as our backbone models. We follow the settings394

outlined in Dai et al. (2025) and fine-tune the mod-395

els on three tasks: math, coding, and translation.396

We utilize the GSM8K dataset (Cobbe et al., 2021)397

for the math task, the Code Alpaca dataset (Chaud-398

hary, 2023) for the coding task, and the zh↔ en399

dataset from (Xu et al., 2024a) for the translation400

task. During the training phase, we implement the401

FastChat template (Zheng et al., 2023) for prompt402

design, performing fine-tuning over 2 epochs with 403

a batch size of 128 and a learning rate of 2× 10−6. 404

For the evaluation phase, we employ the GSM8K 405

test set for math, HumanEval (Chen et al., 2021) 406

for coding, and the resources provided in Xu et al. 407

(2024a) for translation. Besides merging neurons 408

in MLP layers as proposed in this paper, we tested 409

both the "Submodule Linearity" technique (Dai 410

et al., 2025) and the "DARE" (Yu et al., 2024) for 411

attention layers. 412

Algorithm Implementation Details. In practice, 413

the classification settings for neurons are based on 414

the methodology outlined in section 2. We have 415

classified all layers of the base model, and the clas- 416

sification results for each layer can be found in 417

§C.1 and we also show some cases of neurons in 418

§D.4. In the setting of merging the two models, we 419

only select the corresponding two categories, merg- 420

ing the category of the third task into the general 421

category c0. When applying DARE to the attention 422

layers, we use the same hyperparameters as those 423

specified for DARE in §C.3. 424

4.2 Main Results 425

We compare our method with several baseline meth- 426

ods. Task Arithmetic (Ilharco et al., 2023), in- 427

volves a straightforward weighted combination of 428

task vectors and weights to merge models. DARE 429

(Yu et al., 2024), builds upon the Task Arithmetic 430

framework by incorporating random dropout of pa- 431

rameters within the task vectors. This mechanism 432

aims to mitigate conflicts between different task 433

vectors during the merging process. Submodule 434

Linearity (Dai et al., 2025), leverage the linear 435

properties at the submodule level when integrating 436

fine-tuned models with task arithmetic. 437

We present the results of fine-tuned models 438

merged in different approaches, with Qwen2.5- 439

7B and Llama-3.1-8B serving as the foundational 440

models. The results are shown in Tables 1 and 441

2, respectively. Each entry reflects the average 442

evaluation metrics obtained in related tasks. It 443

is evident that our method outperforms the base- 444

lines in most settings, both in the two SOTA open- 445

sourced foundation models in Qwen2.5-7B and 446

Llama-3.1-8B, the proposed method achieves an 447

improvement of around 1%. And also in the case of 448

Math-Translate merge for Qwen2.5-7B, and Math- 449

Coding merge, Coding-Translate merge for Llama- 450

3.1-8B, the performances surpass the original fine- 451

tuned models. For more results of Qwen2.5-14B 452

and Llama-2-13B (Touvron et al., 2023), please 453

6



Methods Math
& Coding

Math
& Translate

Coding
& Translate

Math & Coding
& Translate

Fine-tuned Model 71.48 81.43 77.02 76.64

Task Arithmetic 69.73 81.71 74.81 75.36
DARE 69.84 82.31 75.11 76.10
SubModule Linearity 69.18 82.19 74.77 75.42

NeuronMerge1 71.12 82.62 75.44 76.82
NeuronMerge2 70.80 82.70 74.90 76.21

Table 1: Results of Qwen2.5-7B. For each setting, we replicated for 5 times with different sample seeds and compute
the mean value of five results. The best and second-best results are highlighted in bold and underlined, respectively.

Methods Math
& Coding

Math
& Translate

Coding
& Translate

Math & Coding
& Translate

Fine-tuned Model 47.71 71.55 62.25 60.50

Task Arithmetic 47.41 70.45 61.93 59.04
DARE 46.81 70.27 61.96 58.26
Submodule Linearity 47.13 70.43 62.65 59.37

NeuronMerge1 47.24 70.39 62.89 59.94
NeuronMerge2 47.73 70.69 63.00 59.88

Table 2: Results of Llama-3.1-8B. For each setting, we replicated for 5 times with different sample seeds and
compute the mean value of five results. The best and second-best results are highlighted in bold and underlined,
respectively.

refer to §C.2. From these results, we have three ob-454

servations: 1) The proposed Neuron Merge method455

are superior on different types of foundation mod-456

els. 2) Merging models based on corresponding457

functional groups of neurons are consistently effec-458

tive for both closed-QA (math) and open-QA tasks459

(code/translate), especially in the case of merg-460

ing Math and Code models. 3) The performance461

gains on both "NeuronMerge1" vs. "DARE" and462

"NeuronMerge2" vs. "SubModule Linear" indicat-463

ing that our method is orthogonal and complemen-464

tary to the merging methods for other components465

in LLMs (i.e. attention and embedding layers).466

4.3 Ablation Study467

To validate the effectiveness of our neuron merg-468

ing method, we compare our approach with other469

options for the grouped neurons as well as random470

neuron grouping. Furthermore, we examine the471

stability of our neuron functionality classification472

method by testing the hyper-parameter top-k, which473

determines the number of top-activated sentences474

selected for neuron functionality classification.475

Different neuron merging approaches In the ex- 476

periment of merging math and code models, our 477

approach drops the task vectors for Math neurons 478

and Code neurons. Actually, there are several alter- 479

native options for each neuron functionality cate- 480

gories, including weighted merging with weights 481

calculated by SubModule Linear and direct replace- 482

ment using the neurons in corresponding fine-tuned 483

models. We evaluated math and code metrics on 484

Qwen2.5-7B while exploring these different op- 485

tions, as shown in Table 3. Our findings indicate 486

that, although all options show competitive scores, 487

the highest performance metrics are achieved when 488

the "task vector" for both neuron classes com- 489

pletely dropped. This results align with the concept 490

of "spurious forgetting" identified in Zheng et al. 491

(2025), where performance drops in models are 492

attributed to misalignment in task-specific adapta- 493

tions rather than true knowledge loss. The observed 494

improvement when discarding task-specific neu- 495

rons suggests conflicts of "task vectors" (Yu et al., 496

2024), and resemblance to the "Freeze" strategy, 497
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Math neuron \ Code neuron Choose Code Model Merge Drop
Choose Math Model 70.42 69.95 69.94

Merge 70.21 69.89 70.63
Drop 70.52 70.64 70.80

Table 3: Comparison of Math and Code Neurons across different options. The numbers represent the average scores
for GSM8K and HumanEval. The bold number indicates the setting we used in our main experiment.

Task Arithmetic Random grouping Our Method

Math 78.77 75.73 78.80
Coding 61.59 60.98 62.80

Avg 69.73 68.36 70.80

Table 4: Comparison of model performance between random neuron grouping and our proposed method across
Math and Coding tasks. The performance metrics illustrate the advantages of targeted neuron classification over
random assignment.

e.g. freezing certain parameters during training498

could preserve their knowledge while mitigating499

alignment issues (Zheng et al., 2025).500

Random neuron grouping. We randomly grouped501

the neurons of Qwen2.5-7B into three categories:502

General, Math, and Code, ensuring that each group503

size is the same as the result of neuron functionality504

classification. We discarded the parameter deltas505

from the Math and Code groups. The results are506

presented in Table 4. It can be seen that the perfor-507

mance of the merged model was inferior compared508

to our method. This indicates that merging neurons509

based on their functionalities leads to a more coher-510

ent and effective integration of their contributions511

within the model.512

The number of Top-Activated sentences. Since513

we classify the neuron functionality with top k514

highest-activated sentences where k = 10. We515

ablate k on the Qwen2.5-7B model on math and516

coding tasks, with the results presented in the Table517

9 in §D.1. In these experiments, we varied the top518

k parameter from 10 to 40 to evaluate its impact519

on the performance of merged models. The results520

indicate that, regardless of k, the performance of521

the merged model remains quite stable. And k =522

10 is a reasonable choice while keeping a lower523

computation and storage overhead.524

5 Related Works525

Task Arithmetic and Linearity Recent advances526

in large language models have spurred interest in527

efficient model merging techniques. Weight inter-528

polation methods (Frankle et al., 2020; Izmailov529

et al., 2018) improve generalization and multi-task530

performance by averaging parameters, while task531

arithmetic (Ilharco et al., 2023) integrates models532

through weighted parameter differences, inspiring533

variants like (Yang et al., 2024; Yu et al., 2024; Ya- 534

dav et al., 2023). Though fine-tuned models deviate 535

from NTK theory predictions (Jacot et al., 2018), 536

preserved parameter linearity remains critical for ef- 537

fective task arithmetic (Ortiz-Jiménez et al., 2023). 538

Recent work enhances linearity via constrained pa- 539

rameter updates or selective linearization (Jin et al., 540

2024), with submodule-level linearity enabling su- 541

perior block-wise task arithmetic performance (Dai 542

et al., 2025). 543

Neuron and Interpretability Growing interest in 544

large model interpretability has evolved from ana- 545

lyzing attention mechanisms (Elhage et al., 2021) 546

to probing MLP modules. Early work studied 547

MLP activations through key-value memory frame- 548

works (Geva et al., 2021), while later efforts ad- 549

dressed neuron superposition challenges (Black 550

et al., 2022) via sparse autoencoders (Bricken et al., 551

2023; Gao et al., 2024). Despite high training costs 552

for autoencoders, neuron-centric approaches (Choi 553

et al., 2024) remain prevalent, with interpretabil- 554

ity insights directly enhancing task performance 555

(Nikankin et al., 2024). 556

6 Conclusion 557

In conclusion, this work advances the understand- 558

ing of neuron functionalities in state-of-the-art 559

LLMs. We demonstrate that neurons maintain con- 560

sistent performance across various tasks, both be- 561

fore and after fine-tuning. Our novel model merg- 562

ing method, which integrates neuron analysis with 563

task arithmetic, showcases significant effectiveness 564

and superior performance across different founda- 565

tional models. Notably, our approach is orthogonal 566

and complementary to existing methods, highlight- 567

ing its potential for broader applicability in future 568

research. 569
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Limitations and Discussions570

This work has several limitations. First, the classifi-571

cation of neurons may lack precision, as we relied572

on top-activated examples and categorized them by573

data type, potentially overlooking nuanced func-574

tionalities. Additionally, we did not analyze the575

role of attention mechanisms in conjunction with576

neuron functionalities, highlighting a critical area577

for further exploration in future research. For more578

discussion, please refer to §D.579
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A More Results of Neuron Analysis850

A.1 Additional Neuron Functionality851

Classification Results852

In Figure 6, results for every 5 layers and the last853

layer (layer 27) are shown. The distribution of854

neuron categories remains largely consistent across855

base and fine-tuned models, demonstrating high856

distributional uniformity. In addition, the propor-857

tion of neurons that overlap within each category858

(depicted by the purple bar) is substantially high859

for almost all layers. This findings highlight that860

most neurons retain their functionalities after fine-861

tuning for all layers with both closed-QA (math)862

and open-QA tasks (code/translate).863

A.2 Additional Neuron Knock-out Results864

In Figure 7, knocking-out Code, Math, Transla-865

tion neuron categories respectively in Qwen2.5-7B866

(layer 13) will consistently lead to a greater decline867

in corresponding abilities compared with random868

knock-out. This result indicates that grouping neu-869

rons with respect to their functions plays a key role870

in model performance for corresponding tasks.871

A.3 Neuron Activation Cosine-Similarity872

Analysis873

To quantify the high consistency of neurons in base
and different fine-tuned models in the same posi-
tion, we analyzed the cosine similarity between the
weight vectors of corresponding neurons. Specif-
ically, fix layer L, for the i-th neuron in the base
model and the i-th neuron in the fine-tuned model ,
the cosine similarity cos_sim(wbase

i , wft
i ) is calcu-

lated as:

cos_sim(wbase
i , wft

i ) =
wbase
i · wft

i

∥wbase
i ∥2∥wft

i ∥2
,

where wbase
i and wft

i are the weight vectors of base874

neuron and fine-tuned neuron, respectively (each875

representing a row or column of the weight matrix876

in MLP).877

To better illustrate the closeness of the fine-tuned878

model to the base model, we compared the cosine879

similarities between the base-ft models and the880

base-CPT(continue pre-trained) models across all881

three matrices in the MLP. We selected Qwen2.5-882

Coder-7B (Hui et al., 2024) as the CPT model cor-883

responding to Qwen2.5-7B. Our analysis revealed884

that the corresponding neurons exhibit an excep-885

tionally high cosine similarity of up to 0.999 across886

all layers between Qwen2.5-7B and our code fine- 887

tuned models (Figure 8), indicating near-identical 888

parameter patterns. whereas the similarity between 889

the CPT model and the base model is only around 890

0.4. This shows that the neuron parameters change 891

very little after the fine-tuning, and also explains 892

why the neuron functionality remains largely un- 893

changed. 894

Moreover, due to the extremely high cosine sim- 895

ilarity, methods for adjusting the positions of neu- 896

rons such as Zipit (Stoica et al., 2023) and MuDSC 897

(Xu et al., 2024b) are unnecessary in our setting. 898

B Analysis of Non-linearity for ReLU 899

MLPs 900

In this section, we discuss the definition of linearity 901

and the sources of non-linearity of MLP layer with 902

ReLU activations. From this, we conclude that 903

grouping based on maximum activation values can 904

help enhance linearity. 905

Definition 1. (Linearity). Let f be a submodule 906

of LLM, θ0 and θ be parameters of f before and 907

after fine-tuning respectively. We call θ exhibits 908

linearity, if the differences in model weights caused 909

by fine-tuning are linearly related to the differences 910

in output features caused by fine-tuning for any 911

input x ∈ X , i.e. 912

f(x; θ0 + ατ) ≈ f(x; θ0) + α∆f(x; θ0 + τ)
(4) 913

where τ = θ−θ0 is the differences in model weights 914

before and after fine-tuning, and ∆f(x; θ0 + τ) = 915

f(x; θ0 + τ)− f(x; θ0) is the differences in model 916

output features before and after fine-tuning. 917

Remark 1. If we define g(α) := f(x; θ0 + ατ)− 918

f(x; θ0), the definition of linearity in equation (4) 919

is equivalent to g(α) is a linear function for α ∈ 920

[0, 1]. 921

We consider the simplest MLP module with 922

ReLU activation. Let d be the dimension of resid- 923

ual stream, n be the number of neurons in a MLP 924

layer. A MLP layer of the base model can be ex- 925

pressed as 926

f(x; θ0) = W2ReLU(W1x) 927

=
n∑

i=1

ReLU(w1i · x)w2i, (5) 928

where W1 ∈ Rn×d,W2 ∈ Rd×n are up and 929

down projection matrix, respectively, and w1i ∈ 930

Rd, w2i ∈ Rd(i-th row/column of W1,W2) are 931

12



(a) Layer 5 (b) Layer 10 (c) Layer 15

(d) Layer 20 (e) Layer 25 (f) Layer 27

Figure 6: Neuron functionality classification results for Qwen2.5-7B across different layers, shown as bar charts for
different categories of neurons. Base model is Qwen2.5-7B. gsm8k_sft, code_sft, translate_sft are Qwen2.5-7B
fine-tuned variants on Math, Code, Translation dataset respectively. Purple bars are the number of intersection
neurons for each functionality category. Results for every 5 layers and the last layer (layer 27) are shown.

(a) Code neuron knock-out (b) Math neuron knock-out (c) Translation neuron knock-out

Figure 7: Knock-out neuron categories in Qwen2.5-7B (layer 13 shown) will lead to a greater decline in correspond-
ing abilities compared with random knock-out. The horizontal coordinate indicates the knock-out proportion.

the weight of neuron i. The output of f(x; θ0)932

can be viewed as a linear combination of w2i, i =933

1, · · · , n and the coefficient are the activation of934

the neuron ReLU(w1i · x).935

Under the aforementioned notation, we can de-936

rive the following theorem.937

Theorem 1. Consider a MLP layer with ReLU938

activation function in (5), and further assume that939

sign(w1i · x+ τ1i · x) = sign(w1i · x), ∀x ∈ X,
(6)

940

where τ1i is the task vector with respect to w1i.941

Then we have942

g(α) = C1α+ C2α
2, (7)943

where C1, C2 are constants only depending on944

x,W1,W2 and τ and independent of α.945

Remark 2. The assumption (6) is reasonable due 946

to the extremely high cosine similarity between w1i 947

and w1i + τ1i observed in A.3. 948

Remark 3. By Remark 1, we expect g(α) to be 949

a linear function of α. So we find two sources of 950

non-linearity. 951

(1) The first comes from (7), which is a quadratic 952

term C2α
2. As shown in the proof below, C2 953

is the product term of τ1 and τ2. Under the set- 954

ting of task arithmetic, τ1, τ2 are small. Thus 955

C2 is negligible. 956

(2) The second comes from our assumption. Since 957

the inputs x in the base model and the fine- 958

tuned model are not perfectly identical, the 959

pre-activation after fine-tuning may not share 960

the same sign as base model. 961
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Figure 8: Mean Cosine similarity of neurons across
different layers in the Qwen2.5-7B model. The solid
lines represent the similarity between the Qwen2.5-7B
model and our fine-tuned model, while the dashed lines
indicate the cosine similarity between the Qwen2.5-7B
and the Qwen2.5-Coder-7B models. Notably, the cosine
similarity between our fine-tuned model and the base
model reaches as high as 0.999, whereas the similarity
between the CPT model and the base model is only
around 0.4.

Remark 4. To suppress sign-flip non-linearity, we
prioritize neurons with persistently high activations
on a specific dataset Dt, where w1i ·x ≫ 0 ensures

w1i · x+ τ1i · x > 0, ∀x ∈ Dt,

through the norm dominance ∥w1i∥ ≫ ∥τ1i∥. As a
result, these neurons

g(t) = {i : w1i · x ≫ 0,∀x ∈ Dt}

form a group that exhibits high linearity on the962

datasets Dt.963

Now we start to prove Theorem 1.964

Proof of Theorem 1. Denote x+ := ReLU(x) for965
ease of notation, now consider function g(α) :=966
f(x; θ0 + ατ)− f(x; θ0), we have967

g(α) =

n∑
i=1

(w1i · x+ ατ1i · x)+(w2i + ατ2i)968

−
n∑

i=1

(w1i · x)+w2i969

=

n∑
i=1

[(w1i · x+ ατ1i · x)+(w2i + ατ2i)970

− (w1i · x+ ατ1i · x)+w2i]971

+

n∑
i=1

[(w1i · x+ ατ1i · x)+w2i − (w1i · x)+w2i]972

= α

n∑
i=1

(w1i · x+ ατ1i · x)+τ2i973

+

n∑
i=1

(
(w1i · x+ ατ1i · x)+ − (w1i · x)+

)
w2i,974

where τ1i, τ2i are the task vectors with respect to975

w1i, w2i.976

Note that α ∈ [0, 1] and the assumption (6), we 977
can infer that w1i · x + ατ1i · x and w1i · x have 978
the same sign. Then the first term of g(α) can be 979
written as 980

I1 := α

n∑
i=1

(w1i · x+ ατ1i · x)+τ2i 981

= α

n∑
i=1

(w1i · x+ ατ1i · x)1{w1i·x+ατ1i·x>0}τ2i 982

= α

n∑
i=1

(w1i · x+ ατ1i · x)1{w1i·x>0}τ2i 983

= α

n∑
i=1

(w1i · x)+τ2i + α2
n∑

i=1

(τ1i · x)1{w1i·x>0}τ2i 984

=: αC1(x;W1, τ2) + α2C2(x;W1, τ1, τ2), 985

where C1, C2 are constants independent of α and 986

1{A} is the indicator function, which equals 1 if 987

event A happens and equals 0 otherwise. 988

For the second term, we have 989

I2 :=
n∑

i=1

(
(w1i · x+ ατ1i · x)+ − (w1i · x)+

)
w2i 990

= α
n∑

i=1

(τ1i · x)1{w1i·x>0}w2i 991

=: αC3(x;W1,W2, τ1), 992

where C3 is a constant independent of α. 993

In conclusion, we have 994

g(α) = I1 + I2 = (C1 + C3)α+ C2α
2. 995

996

C More Results in Merging Models 997

C.1 The Number of Neurons of each Category 998

In this section, we represent the number of Math, 999

Code and Translate neurons in each layer of 1000

Qwen2.5-7B and Llama3.1-8B in Figure 9a and 1001

Figure 9b, respectively. The pattern of Qwen2.5- 1002

7B differs significantly from that of Llama3.1-8B. 1003

Qwen2.5-7B contains more Translate neurons in 1004

the shallow layers, which may be attributed to its 1005

training on a larger amount of Chinese data. 1006

C.2 Detailed Results in Experiments 1007

In this section, we represent the detailed results of 1008

Tables 1 and 2 in Tables 5 and 6. We also present 1009

the detailed results on larger models Qwen2.5-14B 1010

and Llama2-13B for Math and Coding tasks in Ta- 1011

ble 7. For each setting, we replicated for 5 times 1012

with different sample seeds and compute the mean 1013
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(a) Qwen2.5-7B. (b) Llama3.1-8B.

Figure 9: The number of neurons in each layer.

value of five results. The best and second-best1014

results are highlighted in bold and underlined, re-1015

spectively. For the hyperparameters of DARE and1016

Task Arithmetic, we search for the best setting and1017

the specific values are listed in Appendix C.3.1018

C.3 More Details About The Baseline1019

For Task arithmetic, We explored the hyperparam-1020

eter merging weights α ∈ [0.1, 0.2, . . . , 0.9] and1021

selected the best results for reporting in the table.1022

For DARE, we fixed the merging weights α = 11023

and explored the dropout probability drop_ratio ∈1024

[0.6, . . . , 0.9], reporting the best results in the table.1025

For the Submodule Linearity, we utilize the At-1026

tn/MLP Level approach. This means that each1027

Attention Layer and MLP Layer has its own coeffi-1028

cients when it comes to merging the models. Fol-1029

lowing the recommendations of Dai et al. (2025),1030

we sample 30 data for each task.1031

The optimal hyperparameters corresponding to1032

the best results in Table 1 and 2 obtained in practice1033

are reported in Table 8.1034

D More Ablation and Discussion on1035

Different Settings1036

D.1 Ablation on The number of1037

Top-Activated sentences1038

We varied the top k parameter from 10 to 40 to1039

evaluate its impact on the performance of merged1040

models. The results in Table 3 indicate that, regard-1041

less of k, the performance of the merged model1042

remains quite stable. And k = 10 is a reasonable1043

choice while keeping a lower computation and stor-1044

age overhead.1045

D.2 Ablation on Neuron Grouping with 1046

Threshold 1047

In this ablation experiment, we restrict that the task 1048
specific neurons have to be statistically significant 1049
based on top activated sentences. We define the 1050
category of neurons as following instead of (2): 1051

Category(j) 1052

=


argmax

ci∈C
{s ∈ Sk(j) | s ∈ ci}

if max(Sk(j))−max2(Sk(j)) ≥ m

General otherwise

1053

where maxi means the i-th maximum element. 1054

We test this framework using three different 1055

threshold values for m : 1, 2, · · · 8. Table 10 sum- 1056

marizes the impact of these thresholds on neuron 1057

grouping and the corresponding performance met- 1058

rics. Despite some fluctuation, the Math scores 1059

generally decrease while the Coding scores gradu- 1060

ally increase as m increases from 1 to 8. 1061

D.3 Neuron Classification Based on LLM 1062

We also attempted to leverage LLM to automati- 1063

cally classify all the neurons, as demonstrated by 1064

Choi et al. (2024). For each neuron, we selected the 1065

top 10 activated sentences, as described in section 2. 1066

Additionally, we calculated the 0.9 percentile of the 1067

absolute activation values across all 1, 200 exem- 1068

plars. We then utilized Qwen2.5-72B-Instruct to 1069

identify tokens from these top 10 samples that ex- 1070

ceeded this percentile, which aided us in classifying 1071

the neurons. For each sentence, we asked the LLM 1072

to determine its category and provide a relevance 1073

score from 1 to 5. Finally, we aggregated the scores 1074

of the 10 sentences across the various categories 1075

and selected the category with the highest score as 1076

the classification for that neuron. For a detailed 1077

prompt, please refer to Appendix E. 1078
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Method
Qwen2.5-7B

Merging Two Models
Math Coding Avg Math Translate Avg

Fine-tuned Model 75.89 67.07 71.48 75.89 86.96 81.43

Task Arithmetic 78.77 61.59 69.73 76.65 86.77 81.71
DARE 77.48 62.20 69.84 77.79 86.82 82.31

Submodule Linearity 77.14 61.22 69.18 77.57 86.80 82.19

NeuronMerge1 78.95 63.29 71.12 78.73 86.51 82.62
NeuronMerge2 78.80 62.80 70.80 78.89 86.57 82.70

Method
Qwen2.5-7B

Merging Two Models Merging Three Models
Coding Translate Avg Math Coding Translate Avg

Fine-tuned Model 67.07 86.96 77.02 75.89 67.07 86.96 76.64

Task Arithmetic 62.80 86.62 74.81 78.84 60.97 86.28 75.36
DARE 63.41 86.81 75.11 78.17 63.41 86.72 76.10

Submodule Linearity 62.68 86.86 74.77 79.53 60.73 86.00 75.42

NeuronMerge1 64.26 86.61 75.44 79.91 63.79 86.76 76.82
NeuronMerge2 63.17 86.63 74.90 79.19 62.67 86.77 76.21

Table 5: Detailed experimental results on Qwen2.5-7B.

Figure 10: Classification results on 100 random sampled
neurons in Qwen2.5-7B with LLM based method and
sample type based method.

Due to the substantial costs associated with an-1079

alyzing neurons in each layer using this approach,1080

we opted not to employ LLM-based classification1081

in our main experiment.1082

In this section, we randomly sampled 100 neu-1083

rons from Qwen2.5-7B and compared the results1084

with our sample-type-based classification. As1085

shown in Figure 10, 72 out of the 100 neurons1086

were classified into the same category.1087

D.4 Cases for Different Categories of Neurons1088

In this section, we show some cases of activa-1089

tion pattern for different categories of neurons in1090

Qwen2.5-7B. For a given neuron, we calculated 1091

the 0.9 percentile of the absolute activation val- 1092

ues across all 1, 200 exemplars and displayed the 1093

tokens from the top 10 highly activated samples 1094

that exceed this percentile. The tokens in the 1095

same quotes represent consecutive activation val- 1096

ues greater than the 0.9 percentile. We found that 1097

neurons in shallow layers tend to activate on a sin- 1098

gle, discrete token while neurons in deep layers 1099

tend to activate on a consecutive context. We show 1100

some cases of neurons in Figure 11. 1101

E All the prompts used in our method 1102

In this section we provide the prompt we used to 1103

classify the neurons based on LLM in Figure 12. 1104
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(a) Math Neuron.

(b) Code Neuron.

(c) Translation Neuron.

Figure 11: More activation cases for different categories of neurons.
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Method
Llama3.1-8B

Merging Two Models
Math Coding Avg Math Translate Avg

Fine-tuned Model 57.01 38.41 47.71 57.01 86.09 71.55

Task Arithmetic 55.19 39.63 47.41 55.04 85.85 70.45
DARE 53.37 40.24 46.81 54.73 85.82 85.70

Submodule Linearity 55.37 38.90 47.13 55.02 85.84 70.43

NeuronMerge1 52.77 41.70 47.24 55.10 85.68 70.39
NeuronMerge2 54.50 40.97 47.73 55.68 85.71 70.69

Method
Llama3.1-8B

Merging Two Models Merging Three Models
Coding Translate Avg Math Coding Translate Avg

Fine-tuned Model 38.41 86.09 62.25 57.01 38.41 86.09 60.50

Task Arithmetic 37.80 86.06 61.93 50.72 40.85 85.54 59.04
DARE 37.80 86.12 61.96 48.29 40.85 85.63 58.26

Submodule Linearity 39.26 86.04 62.65 50.52 42.68 84.90 59.37

NeuronMerge1 39.75 86.04 62.89 50.99 42.57 86.27 59.94
NeuronMerge2 40.00 86.01 63.00 50.93 42.88 85.84 59.88

Table 6: Detailed experimental results on Llama3.1-8B.

Method
Qwen2.5-14B Llama2-13B

Math Coding Avg Math Coding Avg

Fine-tuned Model 77.71 67.07 72.39 47.91 20.12 34.02

Task Arithmetic 83.55 65.24 74.40 45.41 23.78 34.60
DARE 84.15 64.63 74.39 41.55 24.39 32.97

Submodule Linearity 83.52 65.65 74.59 46.85 23.37 35.11

NeuronMerge1 84.99 65.65 75.32 43.05 26.95 35.00
NeuronMerge2 83.67 67.07 75.37 45.17 25.12 35.15

Table 7: Detailed experimental results on Qwen2.5-14B and Llama2-13B for Math and Coding tasks.

Hyper-parameters Math
& Code

Math
& Translate

Coding
& Translate

Math & Coding
& Translate

Qwen2.5-7B
Task Arithmetic 0.4 0.6 0.6 0.5

DARE 0.6 0.7 0.6 0.8
Llama3.1-8B

Task Arithmetic 0.5 0.6 0.6 0.5
DARE 0.6 0.6 0.6 0.7

Table 8: The optimal hyperparameters corresponding to the best results obtained in practice for baslines.

Top k 10 20 30 40
Avg 70.80 70.79 70.87 70.70

Table 9: Ablation result of Top-k sentences used to classify the neruon functionalities. The numbers in the table are
the average scores on GSM8K and HumanEval.
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m 1 2 3 4 5 6 7 8
Math 78.80 77.85 77.15 77.56 77.05 76.67 76.56 76.66

Coding 62.80 62.32 62.68 63.29 63.41 63.29 64.26 63.65
Avg 70.80 70.08 69.92 70.42 70.23 69.98 70.41 70.16

Table 10: Impact of different thresholds m on model performance across Math and Coding tasks. The numbers in
the table are the average scores of GSM8K and HumanEval.

Prompt for LLM based Neuron Classification

Evaluation Instructions:
# Role
You are an AI researcher specializing in analyzing specific neurons within neural networks and their responses to certain text fragments.

Your primary task is to identify which domain the neuron is most related to based on its activation patterns.

# Skills
1. **Neuron Analysis**: Meticulously examine each neuron’s information, to determine its strongest association with a particular domain.
2. **Contextual Assessment**: Evaluate the neuron’s response based on activation patterns, such as trigger keywords (e.g., {{

highly_activated_token}}).
3. **Domain Identification**: Select the most relevant domain from the following options:

- A. Mathematics: Concepts, terminology, and operations related to mathematics.
- B. Programming: Code snippets, programming languages, and computational algorithms.
- C. Translation: Activate on cross-linguistic tokens with the same semantics and on translation instructions.
- D. Others: Domains not covered by the above categories, such as general knowledge, pronouns and other common words, etc.

# Constraints
1. **Sequential Dependency**: Neuron activations are influenced solely by the sequence of words preceding the activation point. Your judgment

must only consider words before the activation and disregard any subsequent words.
2. **Token-Based Analysis**: The analysis must focus on the activation patterns of individual tokens and their impact on the neuron’s

functionality, rather than analyzing the overall semantics of entire sentences.
3. **Activation Pattern Interpretation**: Infer the neuron’s characteristics based on activation patterns to determine its associated domain.
4. **Scoring Mechanism**: For each neuron, provide:

- **Selected Domain**: [Choose from A-D]
- **Relevance Score**: [1-5] based on the following guidelines:
- **1**: Minimal relevance
- **2**: Low relevance
- **3**: Moderate relevance
- **4**: High relevance
- **5**: Very high relevance

- **Explanation**: Brief reasoning supporting the score.
5. **Reply Requirements**: Only output ’Selected Domain’, ’Relevance Score’, and ’Explanation’. Do **NOT** reply with any other information

or copy any examples text in Prompt.

Use these insights to discern pattern strongly associated with particular domains.
## Neuron Analysis
**Excerpt and Activation Example**:
- Excerpt 1: " boto", ".Session", "=tf", "_letters", "igits", "added", ".valid", "added", "added", "import", "from time import time", "import

", ".pyplot", " =", "(sys", " =", "for i", " range", "Num", "Num", " i", " range", "Num", "’", " i", " range", ".pyplot", ".pyplot", ".
pyplot"

**Conclusion**:

Figure 12: his is the prompt we used in the LLM based classification.
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