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Abstract

Regardless of the particular task we want them to perform in an environment, there
are often shared safety constraints we want our agents to respect. For example,
regardless of whether it is making a sandwich or clearing the table, a kitchen
robot should not break a plate. Manually specifying such a constraint can be both
time-consuming and error-prone. We show how to learn constraints from expert
demonstrations of safe task completion by extending inverse reinforcement learning
(IRL) techniques to the space of constraints. Intuitively, we learn constraints that
forbid highly rewarding behavior that the expert could have taken but chose not
to. Unfortunately, the constraint learning problem is rather ill-posed and typically
leads to overly conservative constraints that forbid all behavior that the expert did
not take. We counter this by leveraging diverse demonstrations that naturally occur
in multi-task settings to learn a tighter set of constraints. We validate our method
with simulation experiments on high-dimensional continuous control tasks.

1 Introduction

If a friend was in your kitchen and you told them to “make toast" or “clean the dishes," you would
probably be rather surprised if they broke some of your plates during this process. The underlying
safety constraint that forbids these kinds of behavior is both a) implicit and b) agnostic to the
particular task they were asked to perform. Now, let’s bring a household robot into the equation,
operating within your kitchen. How can we ensure that it adheres to these implicit safety constraints,
regardless of its assigned tasks?

One approach might be to write down specific constraints (e.g. joint torque limits) and pass them to
the decision-making system of the robot. Unfortunately, more complex constraints like the ones we
consider above are both difficult to formalize mathematically and easy for an end-user to forget to
specify (as they would be inherently understood by a human helper). This problem is paralleled in the
field of reinforcement learning (RL), where defining reward functions that lead to desirable behaviors
for the learning agent is a recurring challenge [Hadfield-Menell et al., 2017]. For example, it is rather
challenging to handcraft the exact function one should be optimized to be a good driver. The standard
solution to this sort of “reward design" problem is to instead demonstrate the desired behavior of
the agent and then extract a reward function that would incentivize such behavior. Such inverse
reinforcement learning (IRL) techniques have found application in fields as diverse as robotics [Silver
et al., 2010, Ratliff et al., 2009, Kolter et al., 2008, Ng et al., 2006, Zucker et al., 2011], computer
vision [Kitani et al., 2012], and human-computer interaction [Ziebart et al., 2008b, 2012]. Given
the success of IRL techniques and the similarity between reward and constraint design, we propose
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extending IRL techniques to the space of constraints. We term such techniques inverse constraint
learning, or ICL for short.

More formally, we consider a setting in which we have access to demonstrations of an expert policy
for a task, along with knowledge about the task’s reward. This allows us to look at the difference
between the expert and reward-optimal policies for a task. Our first key insight is that the actions
taken by the reward-optimal but not the expert policy are likely to be forbidden, allowing us to
extract a constraint.

Unfortunately, the ICL problem is still rather ill-posed. Indeed, prior work in ICL will often
learn overly conservative constraints that forbid all behavior the expert did not take [Scobee and
Sastry, 2019, Vazquez-Chanlatte et al., 2018, McPherson et al., 2021]. However, for tasks in a
shared environment with different rewards, there are often safety constraints that should be satisfied
regardless of the task (e.g. a plate shouldn’t be broken regardless of whether you’re serving food on
it or cleaning up after a meal). Our second crucial insight is that we can leverage multi-task data
to provide more comprehensive demonstration coverage over the state space, helping our method
avoid degenerate solutions.

More explicitly, the contributions of our work are three-fold.

1. We formalize the inverse constraint learning problem. We frame ICL as a zero-sum game
between a policy player and a constraint player. The policy player attempts to maximize reward
while satisfying a potential constraint, while the constraint player picks constraints that maximally
penalize the learner relative to the expert. Intuitively, such a procedure recovers constraints that forbid
high-reward behavior the expert did not take.

2. We develop a multi-task extension of inverse constraint learning. We derive a zero-sum game
between a set of policy players, each attempting to maximize a task-specific reward, and a constraint
player that chooses a constraint that all policy players must satisfy. Because the constraint player
looks at aggregate learner and expert data, it is less likely to select a degenerate solution.

3. We demonstrate the efficacy of our approach on various continuous control tasks. We show
that with restricted function classes, we are able to recover ground-truth constraints on certain tasks.
Even when using less interpretable function classes like deep networks, we can still ensure a match
with expert safety and task performance. In the multi-task setting, we are able to identify constraints
that a single-task learner would struggle to learn.

We begin with a discussion of related work.

2 Related Work

Our work exists at the confluence of various research thrusts. We discuss each independently.

Inverse Reinforcement Learning. IRL [Ziebart et al., 2008a,b, 2012, Ho and Ermon, 2016] can be
framed as a two-player zero-sum game between a policy player and a reward player [Swamy et al.,
2021]. In most formulations of IRL, a potential reward function is chosen in an outer loop, and the
policy player optimizes it via RL in an inner loop. Similar to IRL, the constraint in our formulation
of ICL is chosen adversarially in an outer loop. However, in contrast to IRL, the inner loop of ICL is
constrained reinforcement learning: the policy player tries to find the optimal policy that respects the
constraint chosen in the outer loop.

Constrained Reinforcement Learning. Our approach involves repeated calls to a constrained
reinforcement learning (CRL) oracle [Garcıa and Fernández, 2015, Gu et al., 2022]. CRL aims to
find a reward-maximizing policy over a constrained set, often formulated as a constrained policy
optimization problem [Altman, 1999, Xu et al., 2022]. Solving this problem via Frank-Wolfe methods
is often unstable [Ray et al., 2019, Liang et al., 2018]. Various methods have been proposed to
mitigate this instability, including variational techniques [Liu et al., 2022], imposing trust-region
regularization [Achiam et al., 2017, Yang et al., 2020, Kim and Oh, 2022], optimistic game-solving
algorithms [Moskovitz et al., 2023], and PID controller-based methods [Stooke et al., 2020]. In our
practical implementations, we use PID-based methods for their relative simplicity.

Multi-task Inverse Reinforcement Learning. Prior work in IRL has considered incorporating
multi-task data [Xu et al., 2019, Yu et al., 2019, Gleave and Habryka, 2018]. We instead consider a
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setting in which we know task-specific rewards and are attempting to recover a shared component of
the demonstrator’s objective. Amin et al. [2017] consider a similar setting but require the agent to be
able to actively choose tasks or interactively query the expert, while our approach requires neither.

Inverse Constraint Learning. We are far from the first to consider the ICL problem. Scobee and
Sastry [2019], McPherson et al. [2021] extend the MaxEnt IRL algorithm of Ziebart et al. [2008a] to
the ICL setting. We instead build upon the moment-matching framework of Swamy et al. [2021],
allowing our theory to handle general reward functions instead of the linear reward functions MaxEnt
IRL assumes. We are also able to provide performance and constraint satisfaction guarantees on the
learned policy, unlike the aforementioned work. Furthermore, we consider the multi-task setting,
addressing a key shortcoming of the prior work.

Perhaps the most similar paper to ours is the excellent work of Chou et al. [2020], who also consider
the multi-task ICL setting but propose a solution that requires several special solvers that depend
on knowledge of the parametric family that a constraint falls into. In contrast, we provide a general
algorithmic template that allows one to apply whatever flexible function approximators (e.g. deep
networks) and reinforcement learning algorithms (e.g. PPO) they desire. Chou et al.’s method also
requires sampling uniformly over the set of trajectories that achieve a higher reward than the expert,
a task which is rather challenging to do on high-dimensional problems. In contrast, our method
only requires the ability to solve a standard RL problem. Theoretically, Chou et al. [2020] focus on
constraint recovery, which we argue below is a goal that requires strong assumptions and is therefore
a red herring on realistic problems. This focus also prevents their theory from handling suboptimal
experts. In contrast, we are able to provide rigorous guarantees on learned policy performance and
safety, even when the expert is suboptimal. We include results in Appendix C that show that our
approach is far more performant.

In concurrent work, Lindner et al. [2023] propose an elegant solution approach to ICL: rather than
learning a constraint function, assume that any unseen behavior is unsafe and enforce constraints on
the learner to play a convex combination of the demonstrated safe trajectories. The key benefit of this
approach is that it doesn’t require knowing the reward function the expert was optimizing. However,
by forcing the learner to simply replay previous expert behavior, the learner cannot meaningfully
generalize, and might therefore be extremely suboptimal on any new task. In contrast, we use the side
information of a reasonable set of constraints to provide rigorous policy performance guarantees.2

We now turn our attention to formalizing inverse constraint learning.

3 Formalizing Inverse Constraint Learning

We build up to our full method in several steps. We first describe the foundational algorithmic
structures we build upon (inverse reinforcement learning and constrained reinforcement learning).
We then describe the single-task formulation before generalizing it to the multi-task setup.

We consider a finite-horizon Markov Decision Process (MDP) [Puterman, 2014] parameterized by
⟨S,A, T , r, T ⟩ where S, A are the state and action spaces, T : S × A → ∆(S) is the transition
operator, r : S ×A → [−1, 1] is the reward function, and T is the horizon.

3.1 Prior Work: Inverse RL as Game Solving

In the inverse RL setup, we are given access trajectories generated by an expert policy πE : S →
∆(A), but do not know the reward function of the MDP. Our goal is to nevertheless learn a policy
that performs as well as the expert’s, no matter the true reward function.

We solve the IRL problem via equilibrium computation between a policy player and an adversary
that tries to pick out differences between expert and learner policies under potential reward functions
Swamy et al. [2021]. More formally, we optimize over polices π : S → ∆(A) ∈ Π and reward
functions f : S ×A → [−1, 1] ∈ Fr. For simplicity, we assume that our strategy spaces (Π and Fr)
are convex and compact and that r ∈ Fr, πE ∈ Π. We solve (i.e. compute an approximate Nash

2We also note that, because we scale the learned constraint differently for each task, Lindner et al. [2023]’s
impossibility result (Prop. 2) does not apply to our method, thereby elucidating why a naive application of
inverse RL on the aggregate data isn’t sufficient for the problem we consider.
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Algorithm 1 CRL (Constrained Reinforcement Learning)
Input: Reward r, constraint c, learning rates η1:N , tolerance δ
Output: Trained policy π
Initialize λ1 = 0
for i in 1 . . . N do
πi ← RL(r = r − λic)
λi ← [λi + ηi(J(πi, c)− δ)]+

end for
Return Unif(π1:N ).

Algorithm 2 ICL (Inverse Constraint Learning)
Input: Reward r, constraint class Fc, trajectories from πE

Output: Learned constraint c
Initialize c1 ∈ Fc

for i in 1 . . . N do
πi, λi ← CRL(r, ci, δ = J(πE , ci))
// use any no-regret algo. to pick c, e.g. FTRL:
ci+1 ← argmaxc∈Fc

1
T

∑i
j(J(πj , c)− J(πE , c))−R(c).

end for
Return best of c1:N on validation data.

equilibrium) of the two-player zero-sum game

min
π∈Π

max
f∈Fr

J(π, f)− J(πE , f), (1)

where J(π, f) = Eξ∼π[
∑T

t=0 f(st, at)] denotes the value of policy π under reward function f .

3.2 Prior Work: Constrained Reinforcement Learning as Game Solving

In CRL, we are given access to both the reward function and a constraint c : S ×A → [−1, 1]. Our
goal is to learn the highest reward policy that, over the horizon, has a low expected value under the
constraint. More formally, we seek a solution to the optimization problem:

min
π∈Π
−J(π, r) s.t. J(π, c) ≤ δ, (2)

where δ is some error tolerance. We can also formulate CRL as a game via forming the Lagrangian
of the above optimization problem [Altman, 1999]:

min
π∈Π

max
λ>0
−J(π, r) + λ(J(π, c)− δ). (3)

Intuitively, the adversary updates the weight of the constraint term in the policy player’s reward
function based on how in violation the learner is.

3.3 Single-Task Inverse Constraint Learning

We are finally ready to formalize ICL. In ICL, we are given access to the reward function, trajectories
from the solution to a CRL problem, and a class of potential constraints Fc in which we assume the
ground-truth constraint c∗ lies. We assume that Fc is convex and compact.

In the IRL setup, without strong assumptions on the dynamics of the underlying MDP and expert, it
is impossible to guarantee recovery of the ground-truth reward. Often, the only reward function that
actually makes the expert optimal is zero everywhere [Abbeel and Ng, 2004]. Instead, we attempt to
find the reward function that maximally distinguishes the expert from an arbitrary other policy in
our policy class via game-solving [Ziebart et al., 2008a, Ho and Ermon, 2016, Swamy et al., 2021].
Similarly, for ICL, exact constraint recovery can be challenging. For example, if two constraints
differ only on states the expert never visits, it is not clear how to break ties. We instead try to find
a constraint that best separates the safe (but not necessarily optimal) πE from policies that achieve
higher rewards.
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ICL

minimize
over c

Figure 1: A visual depiction of the optimization
problem we’re trying to solve in ICL. We attempt
to pick a constraint that minimizes the value dif-
ference over the expert policy a safe policy could
have. The star corresponds to the output of CRL.

More formally, we seek to solve the following constrained optimization problem.

min
π∈Π

J(πE , r)− J(π, r) (4)

s.t.max
c∈Fc

J(π, c)− J(πE , c) ≤ 0. (5)

Note that in contrast to the moment-matching problem we solve in imitation learning [Swamy et al.,
2021], we instead want to be at least as safe as the expert. This means that rather than having equality
constraints, we have inequality constraints. Continuing, we can form the Lagrangian:

min
π∈Π

max
λ>0

J(πE , r)− J(π, r) + λ(max
c∈Fc

J(π, c)− J(πE , c)) (6)

= max
c∈Fc

max
λ>0

min
π∈Π

J(πE , r − λc)− J(π, r − λc). (7)

Notice that the form of the ICL game resembles a combination of the IRL and CRL games. We
describe the full game-solving procedure in Algorithm 2, where R(c) is an arbitrary strongly convex
regularizer [McMahan, 2011]. Effectively, we pick a constraint function in the same way we pick a
reward function in IRL but run a CRL inner loop instead of an RL step. Instead of a fixed constraint
threshold, we set tolerance δ to the expert’s constraint violation. Define

ℓi(c) =
1

T
(J(πi, c)− J(πE , c)) ∈ [−1, 1] (8)

as the per-round loss that the constraint player suffers in their online decision problem. The best-in-
hindsight comparator constraint is defined as

ĉ = argmax
c∈Fc

T∑
i

ℓi(c). (9)

We can then define the cumulative regret the learner suffers as

Reg(T ) =
T∑
i

ℓi(ĉ)−
T∑
i

ℓi(ci), (10)

and let ϵi = ℓi(ĉ)− ℓi(ci). We prove the following theorem via standard machinery.

Theorem 3.1. Let c1:N be the iterates produced by Algorithm 2 and let ϵ̄ = 1
N

∑N
i ϵi denote their

time-averaged regret. Then, there exists a c ∈ c1:N such that π = CRL(r, c, δ = J(πE , c)) satisfies

J(π, c∗)− J(πE , c
∗) ≤ ϵ̄T and J(π, r) ≥ J(πE , r). (11)

In words, by optimizing under the recovered constraint, we can learn a policy that (weakly) Pareto-
dominates the expert policy under c∗. We conclude by noting that because FTRL (Follow the
Regularized Leader, McMahan [2011]) is a no-regret algorithm for linear losses like (8), we have
that limT→∞

Reg(T )
T = 0. This means that with enough iterations, the RHS of the above bound on

ground-truth constraint violation will go to 0.
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Algorithm 3 MT-ICL (Multi-task Inverse Constraint Learning)
Input: Rewards r1:K , constraint class Fc, trajectories from π1:K

E
Output: Learned constraint c
Set F̃c = {c ∈ Fc|∀k ∈ [K], J(πk

E , c) ≤ 0}
Initialize c1 ∈ F̃c

for i in 1 . . . N do
for k in 1 . . .K do

πk
i , λ

k
i ← CRL(rk, ci, δ = 0)

end for
// use any no-regret algo. to pick c, e.g. FTRL:
ci+1 ← argmaxc∈F̃c

1
TK

∑i
j

∑K
k (J(πk

j , c)− J(πk
E , c))−R(c).

end for
Return best of c1:N on validation data.

Figure 2: If we have a sufficient diversity of expert policies,
none of which are optimal along the reward vector, we can
identify the hyperplane that separates the safe policies from
the unsafe policies. The constraint (red, dashed) will be
orthogonal to this hyperplane. For this example, because
ρπ ∈ R2, we need two expert policies.

3.4 Multi-task Inverse Constraint Learning

One of the potential failure modes of the single-task approach we outline above is that we could learn
an overly conservative constraint, leading to poor task performance [Liu et al., 2023]. For example,
imagine that we entropy-regularize our policy optimization [Ziebart et al., 2008a, Haarnoja et al.,
2018], as is common practice. Assuming a full policy class, the learner puts nonzero probability mass
on all reachable states in the MDP. The constraint player is therefore incentivized to forbid all states
the expert did not visit [Scobee and Sastry, 2019, McPherson et al., 2021]. Such a constraint would
likely generalize poorly when combined with a new reward function (r̃ ̸= r) as it forbids all untaken
rather than just unsafe behavior.

At heart, the issue with the single-task formulation lies in the potential for insufficient coverage of the
state space within expert demonstrations. Therefore, it is natural to explore a multi-task extension to
counteract this limitation. Let each task be defined by a unique reward. We assume the dynamics and
safety constraints are consistent across tasks. We observe K samples of the form (rk, {ξ ∼ πk

E}).
This data allows us to define the multi-task variant of our previously described ICL game:

max
c∈Fc

min
π1:K∈Π

max
λ1:K>0

K∑
i

J(πi
E , r

i − λic)− J(πi, ri − λic). (12)

We describe how we solve this game in Algorithm 3, where R(c) is an arbitrary strongly convex
regularizer [McMahan, 2011]. In short, we alternate between solving K CRL problems and updating
the constraint based on the data from all policies.

We now give two conditions under which generalization to new reward functions is possible.

3.5 A (Strong) Geometric Condition for Identifiability

Consider for a moment the linear programming (LP) formulation of reinforcement learning. We
search over the space of occupancy measures (ρπ ∈ ∆(S × A)) that satisfy the set of Bellman
flow constraints [Sutton and Barto, 2018] and try to maximize the inner product with reward vector
r ∈ R|S||A|. We can write the CRL optimization problem (assuming δ = 0 for simplicity) as an LP
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as well. Using ρΠ to denote the occupancy measures of all π ∈ Π,

max
ρπ∈ρΠ

⟨ρπ, r⟩ s.t. ⟨ρπ, c∗⟩ ≤ 0.

We observe a (for simplicity, optimal) solution to such a problem for K rewards, begging the question
of when that is enough to uniquely identify c∗. Recall that to uniquely determine the equation of a
hyperplane in Rd, we need d linearly independent points. c∗ ∈ R|S||A|, so we need |S||A| expert
policies. Furthermore, we need each of these points to lie on the constraint line and not on the
boundary of the full polytope. Put differently, we need each distinct expert policy to saturate the
underlying constraint (i.e. ∃π ∈ Π s.t. J(πk

E , r
k) < J(πk, rk)). Under these conditions, we can

uniquely determine the hyperplane that separates safe from unsafe policies, to which the constraint
vector is orthogonal. More formally,

Lemma 3.2. Let π1:|S||A|
E be distinct optimal expert policies such that a) ∀i ∈ [|S||A|], πi

E ∈
relint(ρΠ) and b) no ρπi

E
can be generated by a mixture of the other visitation distributions. Then, c∗

is the unique (up to scaling) nonzero vector in

Nul


 ρπ1

E
− ρπ2

E

...
ρ
π
|S||A|−1
E

− ρ
π
|S||A|
E


 . (13)

We visualize this process for the |S||A| = 2 case in Fig. 2. Assuming we are able to recover c∗, we
can guarantee that our learners will be able to act safely, regardless of the task they are asked to do.
However, the assumptions required to do so are quite strong: we are effectively asking for our expert
policies to form a basis for the space of occupancy measures, which means we must see expert data
for a large set of diverse tasks. Furthermore, we need the experts to be reward-optimal.

Identifiability (the goal of prior works like Chou et al. [2020], Amin et al. [2017]) is too strong a
goal as it requires us to estimate the value of the constraint everywhere in the state-action space. If
we know the learner will only be incentivized to go to a certain subset of states (as is often true in
practice), we can guarantee safety without fully identifying c∗. Therefore, we now consider how, by
making distributional assumptions on how tasks are generated, we can generalize to novel tasks.

3.6 A Statistical Condition for Generalization

Assume that tasks τ are drawn i.i.d. from some P (τ). Then, even if we do not see a wide enough
diversity of expert policies to guarantee identifiability of the ground-truth constraint function, with
enough samples, we can ensure we do well in expectation over tasks. For some constraint c, let us
define

V (c) = Eτ∼P (τ)[J(π
τ , c)− J(πτ

E , c)], (14)

where λτ , πτ = CRL(rτ , c) denote the solutions to the inner optimization problem. We begin by
proving the following lemma.
Lemma 3.3. With

K ≥ O

(
log

( |Fc|
δ

)
(2T )2

ϵ2

)
(15)

samples, we have that with probability ≥ 1 − δ, we will be able to estimate all |Fc| population
estimates of V (c) within ϵ absolute error.

Note that we perform the above analysis for finite classes but one could easily extend it [Sriperumbudur
et al., 2009]. The takeaway from the above lemma is that if we observe a sufficient number of tasks,
we can guarantee that we can estimate the population loss of all constraints, up to some tolerance.

Consider the learner being faced with a new task they have never seen before at test time. Unlike in
the single task case, where it is clear how to set the cost limit passed to CRL, it is not clear how to do
so for a novel task. Hence, we make the following assumption.
Assumption 3.4. We assume that Eτ [J(π

τ
E , c

∗)] ≤ 0, and that ∀c ∈ Fc,∃π ∈ Π s.t. J(π, c) ≤ 0.

This (weak) assumption allows us to a) use a cost limit of 0 for our CRL step and b) search over a
subset of Fc that the expert is safe under. Under this assumption, we are able to prove the following:
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Theorem 3.5. Let c1:N be the iterates produced by Algorithm 3 with K(ϵ, δ) chosen as in Lemma 3.3
and let ϵ̄ = 1

N

∑N
i ϵi denote their time-averaged regret. Then, w.p. ≥ 1− δ, there exists a c ∈ c1:N

such that π(r) = CRL(r, c, δ = 0) satisfies

Eτ∼P (τ)[J(π(r
τ ), c∗)−J(πτ

E , c
∗)] ≤ ϵ̄T +3ϵT and Eτ∼P (τ)[J(π(r

τ ), rτ )−J(πτ
E , r

τ )] ≥ −2ϵT.

In short, if we observe enough tasks, we are able to learn a constraint that, when optimized under,
leads to policies that approximately Pareto-dominate those of the experts on average.

We now turn our attention to the practical implementation of these algorithms.

4 Practical Algorithm

We provide practical implementations of constrained reinforcement learning and inverse constraint
learning and benchmark their performance on several continuous control tasks. We first describe
the environments we test our algorithms on. Then, we provide results showing that our algorithms
learn policies that match expert performance and constraint violation. While it is hard to guarantee
constraint recovery in theory, we show that we can recover the ground-truth constraint empirically if
we search over a restricted enough function class.

4.1 Tasks

We focus on the ant environment from the PyBullet [Coumans and Bai, 2016] and MuJoCo [Todorov
et al., 2012] benchmarks. The default reward function incentivizes progress along the positive x
direction. For our single-task experiments, we consider a velocity and position constraint on top of
this reward function.

1. Velocity Constraint: ∥qt+1−qt∥2

dt ≤ 0.75 where qt is the ant’s position
2. Position Constraint: 0.5xt − yt ≤ 0 where xt, yt are the ant’s coordinates

For our multi-task experiments, we build upon the D4RL [Fu et al., 2020] AntMaze benchmark. The
default reward function incentivizes the agent to navigate a fixed maze to a random goal position:
exp(−∥qgoal − qt∥2). We modify this environment such that the walls of the maze are permeable, but
the agent incurs a unit step-wise cost for passing through the maze walls.

Our expert policies are generated by running CRL with the ground-truth constraint. We use the
Tianshou [Weng et al., 2022] implementation of PPO [Schulman et al., 2017] as our baseline policy
optimizer. Classical Lagrangian methods exactly follow the gradient update shown in Algorithm 1,
but they are susceptible to oscillating learning dynamics and constraint-violating behavior during
training. The PID Lagrangian method [Stooke et al., 2020] extends the naive gradient update of λi

with a proportional and derivative term to dampen oscillations and prevent cost overshooting. To
reduce the amount of interaction required to solve the inner optimization problem, we warm-start our
policy in each iteration by behavior cloning against the given expert demonstrations. We used a single
NVIDIA 3090 GPU for all experiments. Due to space constraints, we defer all other implementation
details to Appendix B.

4.2 ICL Results

We begin with results for the single-task problem, before continuing on to the multi-task setup.

4.3 Single-Task Continuous Control Results

As argued above, we expect a proper ICL implementation to learn policies that perform as well and
are as safe as the expert. However, by restricting the class of constraints we consider, we can also
investigate whether recovery of the ground-truth constraint is possible. To this end, we consider a
reduced-state version of our algorithm where the learned constraint takes a subset of the agent state
as input. For the velocity constraint, the learned constraint is a linear function of the velocity, while
for the position and maze constraints, the learned constraint is a linear function of the ant’s position.

Using this constraint representation allows us to visualize the learned constraint over the course of
training, as shown in Figure 3. We find that our ICL implementation is able to recover the constraint,
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Figure 3: Over the course of training, the learned ICL constraint recovers the ground-truth constraints
for the velocity and position tasks. The learned policy matches expert performance and constraint
violation. Standard errors are computed across 3 seeds.

Figure 4: As ICL training progresses, the learned position constraint (red line) converges to the
ground-truth constraint (blue line) and the policy learns to escape unsafe regions (red region).

as the learned constraint for both the velocity and position tasks converges to the ground-truth
value. Our results further show that over the course of ICL training, the learned policies match and
exceed expert performance as their violations of the ground-truth constraint converge towards the
expert’s. Figure 4 provides a direct depiction of the evolution of the learned constraint and policy.
The convergence of the red and blue lines shows that the learned position constraint approaches the
ground truth, and the policy’s behavior approaches that of the expert in response to this.
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Figure 5: We re-conduct our position velocity constraint experiments using suboptimal experts to
generate demonstrations. While, because of the ill-posedness of the problem, we do not exactly
recover the ground truth constraint, we are able to use it to learn a policy that is higher performance
than the expert while being just as safe. Standard errors are computed across 3 seeds.

To measure the robustness of our method to sub-optimal experts, we repeat the above experiments
using demonstrations from an expert with i.i.d. Gaussian noise added to their actions at each timestep.
We are still able to learn a safe and performant policy, which matches what our theory predicts.

4.4 Multi-Task Continuous Control Results

We next consider an environment where, even with an appropriate constraint class, recovering
the ground-truth constraint with a single task isn’t feasible due to the ill-posedness of the inverse
constraint learning problem. Specifically, we use the umaze AntMaze environment from D4RL [Fu
et al., 2020], modified to have a more complex maze structure. As seen in Figure 7, the goal of each
task is to navigate through the maze from one of the starting positions (top/bottom left) to one of the
grid cells in the rightmost column. We provide expert data for all 10 tasks to the learner.

As we can see in Figure 6, multi-task ICL is, within a single iteration, able to learn policies that
match expert performance and constraint violation across all tasks, all without ever interacting with
the ground-truth maze. Over time, we are able to approximately recover the entire maze structure.

We visually compare several alternative strategies for using the multi-task demonstration data in
the bottom row of Figure 7. The 0/1 values in the cells correspond to querying the deep constraint
network from the last iteration of ICL on points from each of the grid cells and thresholding at some
confidence. We see that a single-task network (d) learns spurious walls that would prevent the learner
from completing more than half of the tasks. Furthermore, learning 10 separate classifiers and then
aggregating their outputs (e) / (f) also fails to produce reasonable outputs. However, when we use
data from all 10 tasks to train our multi-task constraint network (g) / (h), we are able to approximately
recover the walls of the maze. These results echo our preceding theoretical argument about the
importance of multi-task data for learning constraints that generalize to future tasks.
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Figure 6: We see that over ICL iterations, we are able to recover the ground-truth walls of the
ant-maze, enabling the learner to match expert performance and constraint violations. Results for the
second two plots are averaged across all 10 tasks. Standard errors are computed across 3 seeds.
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Figure 7: We consider the problem of trying to learn the walls of a custom maze (a) based on the
AntMaze environment from D4RL [Fu et al., 2020]. We consider both a single-task (b) and multi-task
(c) setup. We see that the single-task data is insufficient to learn an accurate constraint (d). Averaging
or taking the max over the constraints learned from the data for each of the ten goals (e)-(f) also
doesn’t work. However, if we use the data from all 10 tasks to learn the constraint (g)-(h), we are
able to approximately recover the ground-truth constraint with enough constraint learning iterations.

We release the code we used for all of our experiments at https://github.com/konwook/mticl.

5 Discussion

In this work, we derive an algorithm for learning safety constraints from multi-task demonstrations.
We show that by replacing the inner loop of inverse reinforcement learning with a constrained policy
optimization subroutine, we can learn constraints that guarantee learner safety on a single task. We
then give statistical and geometric conditions under which we can guarantee safety on unseen tasks
by planning under a learned constraint. We validate our approach on several control tasks.

Limitations. In the future, we would be interested in applying our approach to real-world problems
(e.g. offroad driving). Algorithmically, the CRL inner loop can be more computationally expensive
than an RL loop – we would be interested in speeding up CRL using expert demonstrations, perhaps
by adopting the approach of Swamy et al. [2023]. We also ignore all finite-sample issues, which
could potentially be addressed via data-augmentation approaches like that of Swamy et al. [2022].
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A Proofs

A.1 Proof of Theorem 3.1

Proof. Let Π(c) denote the set of policies such that

J(π, c)− J(πE , c) ≤ 0. (16)

First, note that ∀c ∈ Fc, πE ∈ Π(c). CRL is therefore trying to maximize reward over a set of
policies that contains πE . Thus, the reward condition is trivially true. We therefore focus on the
safety condition. First, we note that by the definition of regret,

1

N

N∑
i

[(J(πi, ĉ)− J(πE , ĉ))− (J(πi, ci)− J(πE , ci))] =
T

N

N∑
i

ℓi(ĉ)− ℓi(ci) ≤ ϵ̄T. (17)

This implies that

1

N

N∑
i

[(J(πi, c
∗)− J(πE , c

∗))− (J(πi, ci)− J(πE , ci))] ≤ ϵ̄T, (18)

as ĉ is the best-in-hindsight constraint. We then note that J(πi, ci)− J(πE , ci) ≤ 0 by the fact that
πi is produced via a CRL procedure, which means we can drop the former term from the above sum,
giving us

1

N

N∑
i

(J(πE , c
∗)− J(πi, c

∗)) ≤ ϵ̄T. (19)

Because this equation holds on average, there must be at least one π ∈ π1:N for which it holds. Now,
we recall that πi = CRL(r, ci) to complete the proof.

A.2 Proof of Lemma 3.3

Proof. For a single c, a standard Hoeffding bound tells us that

P (| 1
K

K∑
i=0

Vk(c)− E[V (c)]| ≥ ϵ) ≤ 2 exp

(−2Kϵ2

(2T )2

)
, (20)

where Vk(c) denotes the value of the payoff using data from the kth task. We have |Fc| constraints
and want to be within ϵ of the population mean uniformly. We can apply a union bound to tell us that
w.p. at least

1− 2|Fc| exp(
−2Kϵ2

(2T )2
), (21)

we will do so. If we want to satisfy this condition with probability at least 1− δ, simple algebra tells
us that we must draw

K ≥ O

(
log

( |Fc|
δ

)
(2T )2

ϵ2

)
(22)

samples.

A.3 Proof of Theorem 3.5

Proof. For each c ∈ Fc, define the set of safe policies as Π(c) = {π ∈ Π|J(π, c) ≤ 0}. This set is
non-empty by assumption. Define

u(τ, c) = 1{πτ
E ∈ Π(c)}. (23)

We prove each of the desired conditions independently.

Reward Condition. Let ĉ ∈ c1:N . Recall that we want to prove that

Eτ∼P (τ)[J(π(r
τ ), rτ )− J(πτ

E , r
τ )] ≥ −2ϵT, (24)
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where πτ = CRL(rτ , ĉ, δ = 0). Observe that

πτ
E ∈ Π(ĉ)⇒ J(πτ , rτ ) = max

π∈Π(ĉ)
J(π, rτ ) ≥ J(πτ

E , r
τ ). (25)

Thus, if
Eτ [u(τ, ĉ)] ≥ 1− ϵ, (26)

we have that

Eτ [J(π
τ , rτ )− J(πτ

E , r
τ )] (27)
≤ Eτ [(1− u(τ, ĉ))(J(πτ , rτ )− J(πτ

E , r
τ ))] (28)

≤ Eτ [(1− u(τ, ĉ))](sup
τ

J(πτ , rτ )− J(πτ
E , r

τ )) (29)

≤ Eτ [(1− u(τ, ĉ))]2T (30)
≤ −2ϵT (31)

We now prove that with K large enough, we can guarantee Eq. 26 holds true w.h.p. Define

F̃c = {c ∈ Fc|∀k ∈ [K], πK
E ∈ Π(ĉ)}. (32)

We now argue that if

K ≥ O

(
log
|Fc|
δ

1

ϵ2

)
, (33)

w.p. ≥ 1− δ, Eq. 26 holds true ∀c ∈ F̃c. This means that as long as we pick c1:N ∈ F̃c, our desired
condition will be true. Note that this is fewer than the number of samples we assumed in the theorem
statement.

For a single constraint, a Hoeffding bound tells us that

P (| 1
K

K∑
k

1{πk
E ∈ Π(c)} − Eτ [u(τ, c)]| ≥ ϵ) ≤ 2 exp (−2Kϵ2). (34)

Union bounding across Fc ⊇ F̃c, we get that the probability that ∃c ∈ F̃c s.t. Eq. 26 does not hold is
upper bounded by

1− 2|Fc| exp (−2Kϵ2). (35)
To have this quantity be ≥ 1− δ, we need

K ≥ O

(
log
|Fc|
δ

1

ϵ2

)
. (36)

Safety Condition. We begin by considering the infinite sample setting. We therefore desire to prove
that

Eτ [J(π
τ , c∗)− J(πτ

E , c
∗)] ≤ ϵ̄T. (37)

Define the per-round loss of the constraint player as

ℓi(c) =
1

T
Eτ [J(π

τ
i , c)− J(πτ

E , c)] ∈ [−1, 1], (38)

the best-in-hindsight comparator as ĉ = argmaxc∈Fc

∑N
i ℓi(c), instantaneous regret as ϵi = ℓi(ĉ)−

ℓi(ci), and average regret as ϵ̄ = 1
N

∑N
i ϵi. Proceeding similarly to the single-task case,

ϵ̄T =
1

N

N∑
i

Eτ [J(π
τ
i , ĉ)− J(πτ

E , ĉ)]− Eτ [J(π
τ
i , ci)− J(πτ

E , ci)] (39)

≥ 1

N

N∑
i

Eτ [J(π
τ
i , c

∗)− J(πτ
E , c

∗)]− Eτ [J(π
τ
i , ci)− J(πτ

E , ci)] (40)

We now argue that the second term in the above sum must be non-positive. Consider an arbitrary task
τ . Then, because πτ

E ∈ Π(ci) and CRL is optimizing over Π(ci), this term must be negative. As it is
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negative per-task, it must be negative in expectation. Thus, we are free to drop the second term in the
above expression which tells us that

ϵ̄T ≥ 1

N

N∑
i

Eτ [J(π
τ
i , c

∗)− J(πτ
E , c

∗)] (41)

Because this equation holds on average, there must be at least one π ∈ π1:N for which it holds. Now,
we recall that πτ

i = CRL(rτ , ci) to complete the infinite-sample proof.

We now consider the error induced by only observing a finite set of tasks. There are two places
finite-sample error enters: in estimating the value of ℓi(c) and in estimating F̃c.

By Lemma 3.3, the maximum error we can induce by estimating ℓi from finite samples is upper
bounded w.h.p by ϵ. Thus, the extra error induced on the average regret is also bounded by ϵ. Observe
that our losses are scaled by 1

T in comparison to difference of Js. Therefore, we need to add an ϵT to
our bound for the infinite-sample setting.

By our argument in the reward section, πτ
E /∈ Π(ci) w.p. ≤ ϵ. When this is true, J(πτ

i , ci)−J(πτ
E , ci)

can be as big as 2T . Thus, the term we dropped in Eq. 40 (V (ci)) can be as big as 2ϵT instead of 0.
In the worst case, this adds an additional 2ϵT to our bound.

Combining both of the above, when we transition from the infinite sample setting to the finite sample
setting, our bound degrades by 3ϵT .
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B Experimental Details

An overview of the key experimental details is presented below. The exact code for reproducing our
experiments is available at https://github.com/konwook/mticl.

B.1 CRL

We use the Tianshou [Weng et al., 2022] implementation of PPO [Schulman et al., 2017] as our
baseline policy optimizer. Classical Lagrangian methods exactly follow the gradient update shown
in Algorithm 1, but they are susceptible to oscillating learning dynamics and constraint-violating
behavior during training. The PID Lagrangian method [Stooke et al., 2020] extends the naive
gradient update of λi with a proportional and derivative term to dampen oscillations and prevent cost
overshooting.

We find that augmenting the policy state with the raw value of the constraint function to be crucial for
successful policy training. For CRL, this corresponds to the violation of the ground-truth constraint.

B.2 Expert Demonstrations

For all of our experiments, our experts are CRL policies trained to satisfy a ground truth constraint.
The expert demonstrations we use in ICL are generated by rolling out these policies and collecting
20 trajectories. To simulate suboptimal experts, we generate noisy trajectories by adding zero-mean
Gaussian noise (with standard deviation 0.7 / 0.5 for velocity / position) to the policy’s action at every
timestep.

B.3 Single-Task ICL

Similar to CRL, we augment the policy state with the raw value of the constraint function. For ICL,
this corresponds to the violation of the learned constraint.

To reduce the amount of interaction required to solve the inner optimization problem, we warm-start
our policy in each iteration by behavior cloning against the given expert demonstrations. We zero-out
the augmented portion of the state when behavior cloning to avoid leaking constraint violation
information from the expert.

When using CRL as part of ICL, we set the constraint threshold used in the Lagrangian update to
be the expert’s constraint violation. However, when starting with degenerate constraints, this can
prevent policy optimization from learning at all as the expert’s violation under the constraint can
be arbitrarily low. To circumvent this issue, we set the Lagrangian constraint threshold to use the
expert’s violation plus a cost limit buffer, which we anneal over the course of training to 0. This
ensures that our learned policy satisfies the learned constraint as much as the expert does as desired.

Because ICL requires learning a constraint, we represent our constraints as neural networks, mapping
from the state space of our agent to a bounded scalar in the range [0, 1]. To update this constraint,
we solve the optimization problem using a regression objective. Learner and expert constraint
values are labeled with 1 and -1 respectively, and we optimize a mean squared error loss. We found
that weighting data equally (instead of via returned Lagrange multipliers) was sufficient for good
performance and therefore utilize this simpler strategy.

For both CRL and ICL, we find that using a log-activation on top of the raw value of the constraint is
an important detail for stable training.

B.4 Multi-Task ICL

For the multi-task maze setting, we consider 10 distinct tasks corresponding to unique goal locations,
each with 2 starting locations.

Our solver combines a waypoint planner with a low-level controller. Waypoints are calculated by
discretizing the maze into a 10 by 10 grid and running Q-value iteration, while low-level actions are
computed using CRL experts trained to move in a single cardinal direction. To generate a trajectory,
we follow a sequence of waypoints from the planner using the controller.
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For ICL, we visualize our learned constraints by uniformly sampling 100,000 points from every grid
cell, averaging the constraint predictions, and thresholding at a limit of 0.5.

B.5 Hyperparameters

The key experimental hyperparameters are shown in Table 1. The exact configuration we use for our
experiments is available at https://github.com/konwook/mticl/blob/main/mticl/utils/
config.py.

Hyperparameter Value

PPO Learning Rate 0.0003
PPO Value Loss Weight 0.25
PPO Epsilon Clip 0.2
PPO GAE Lambda 0.97
PPO Discount Factor 0.99
PPO Batch Size 512
PPO Hidden Sizes [128, 128]
P-update Learning Rate 0.05
I-update Learning Rate 0.0005
D-update Learning Rate 0.1
Constraint Batch Size 4096
Constraint Learning Rate 0.05
Constraint Update Steps 250
Steps per Epoch 20000
CRL Velocity Epochs 50
CRL Position Epochs 100
ICL Expert Demonstrations 20
ICL Velocity Cost Limit 20
ICL Position Cost Limit 100
ICL Anneal Rate 10
ICL Velocity Outer Epochs 20
ICL Position Outer Epochs 10
ICL Velocity Epochs 10
ICL Position Epochs 50

Table 1: Experiment hyperparameters.

C Comparison to Chou et al. [2020]

C.1 Experimental Setup

We attempt to faithfully implement the method of Chou et al. on the problems we consider as a
baseline for single-task ICL. At a high level, their method requires 2 steps:

1. For each expert trajectory, perform a random search in trajectory space starting from the
demo to try and compute the set of trajectories that are higher reward than the demo.

2. Solve a constrained optimization problem over a known parametric family that labels each
expert trajectory with +1 and each learner trajectory with 0.

Note that in contrast to our method, Chou et al. perform a single constraint estimation, rather than an
iterative procedure.

For Step 1), Chou et al. [2020] use hit-and-run sampling that ensures good coverage over this set
of trajectories in the limit of infinite sampling. However, for tasks of the horizon (1000+) and
state-space dimension (30) we consider, one would need a rather large number of samples to ensure
good coverage (i.e. an ϵ-net would require 301000

ϵ samples).
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As search in the space of trajectories is infeasible, we instead search in the space of policies, as is
much more standard on long-horizon problems. We therefore initialize the policy with behavioral
cloning (similar to starting from the expert trajectories), performing maximum entropy RL (a search
procedure with good coverage properties), and return the set of trajectories from the replay buffer
that are of a higher reward than that of the expert.

For Step 2), Chou et al. [2020] use a variety of mixed-integer LP solvers. In essence however, they
are trying to solve a classification problem. Of course, with their assumption of an optimal expert
(or a "boundedly suboptimal" expert with a known sub-optimality gap), they can solve the strict
feasibility problem. Because we assume that the expert is safe in expectation (rather than uniformly),
it is natural to consider a relaxation of this problem (i.e. a convex relaxation of the 0/1 loss).

We experimented with several such relaxations when developing our method and found the ℓ2
relaxation (i.e. treating the problem as a regression problem with different targets for learner and
expert demos) to work the best in practice. We therefore use the same relaxation for their method.
For our single-task experiments, it is clear how to specify the "parametric family" the constraint fits
in (e.g. a linear threshold), so we believe the above is a faithful implementation.

So, in short, we perform the same constraint learning procedure over a different source of learner
data.

C.2 Baseline Comparison Results

We implemented the above method on our velocity and position tasks and display the results (averaged
over 3 seeds) below.

Algo. |c∗ − c| (↓) J(πE , r)− J(π, r) (↓) J(πE , c
∗)− J(π, c∗) (↑)

ICL (iter 1) 0.052 569.277 270.111
ICL (iter 10) 0.000 -72.149 133.59
Chou et al. 0.311 384.772 -1958.372

Table 2: Baseline Comparison (Position Constraint)

Algo. |c∗ − c| (↓) J(πE , r)− J(π, r) (↓) J(πE , c
∗)− J(π, c∗) (↑)

ICL (iter 1) 0.249 12.267 -244.25
ICL (iter 10) 0.006 -46.771 -21.602
Chou et al. 0.246 -28.315 -134.58

Table 3: Baseline Comparison (Velocity Constraint)

We see that our method performs better in terms of all 3 performance criteria we evaluate under.
As implemented, Chou et al.’s method appears to produce an inaccurate constraint that leads to a
significant safety violation (the bottom right cell in both tables).
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