
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PLHF: PROMPT LEARNING FROM FEW-SHOT HUMAN
FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances explore prompt tuning for large language models (LLMs) and
develop automatic optimization frameworks to obtain suitable prompts with re-
spect to desired output quality metrics. Although existing approaches can handle
conventional tasks such as fixed-solution question answering, defining the met-
ric becomes complicated when the output quality cannot be easily assessed by
comparisons with standard golden samples, especially for those natural language
applications that multiple outputs are equally valid. Consequently, optimizing the
prompts effectively and efficiently without a clear metric becomes a critical chal-
lenge. To address this issue, we present PLHF, a few-shot prompt optimization
framework inspired by the well-known RLHF technique. Different from näive
strategies involving human experts, PLHF employs a specific evaluator module
acting as the metric to estimate the output quality. PLHF requires only a single
round of human feedback to complete the entire prompt optimization process. Em-
pirical results on both public and industrial datasets show that PLHF significantly
outperforms existing output scoring strategies for LLM prompt optimizations.

1 INTRODUCTION

General-purpose large language models (LLMs) have demonstrated substantial capabilities across
various fields in recent years. However, solving complex tasks with LLMs often requires appropriate
customizations on LLMs to fit the task requirements. While fine-tuning pre-trained LLMs is a
common approach, it may be infeasible when there is limited training data, restricted computational
resource, or when working with a black-box LLM. Alternatively, previous studies (Wang et al., 2022;
Shin et al., 2020) have shown that the potential of LLMs can also be fully leveraged with suitable
prompts. Recent literature develops automatic few-shot prompt optimization for LLM usages, such
as DSPy (Khattab et al., 2024) and TextGrad (Yuksekgonul et al., 2024). To determine an effective
prompt for the LLM, existing methods often employ gradient descent or other algorithms (Yang
et al., 2024; Zhou et al., 2023; Guo et al., 2023) to optimize the performance with respect to desired
metrics (i.e., definition of output quality). Overall, the key to success heavily relies on the output
quality evaluations which shall precisely reveal the model performance to the optimizer.

Although such output quality metrics are often well-defined for the tasks which can be modeled as
the traditional discriminative tasks (e.g., classifications and regressions) where the performance can
be directly evaluated given ground-truths, scoring the outputs often becomes non-trivial for most
generation-type of tasks. An example comes from the essay writing task where the LLM needs
to output an essay given specific requirements. To perform prompt optimizations, the evaluator
needs to score an essay written by an LLM. This could be extremely challenging without human’s
involvement. Another typical scenario is the dialogue systems (e.g., chat-bots), as automatically
rating the outputs is difficult. In this case, the output quality could be affected by numerous factors
such as the context, the circumstances of the environment, as well as specific user preferences.
Therefore, a generalized evaluation metric is difficult to formulate.

The absence of a precise metric would hinder the effectiveness of the prompt optimization process
for a generative task. Most prompt optimization systems adopt two types of mechanisms to score the
generated outputs. The first is employing simple evaluators, such as exact matching or soft matching
(based on certain similarity measurement) to compare the generated outputs with the observed sam-
ples. The second common strategy is to utilize existing LLMs for the output scoring. For instance,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Why did the scarecrow become a

successful neurosurgeon?

Because he was outstanding in his

field... and great at brain picking!

Say a joke with novelty

Sarah has 7 apples and her friend

John gives her 3 more apples.

How many apples does Sarah

have in total?

Provide an easy math problem

for students
User

GPT-3.5: 7/10 GPT-4o: 7/10 Target Users: 5/10

* User Feedback: “Not so funny; no obvious

connections between scarecrow and neurosurgeon.”

ChatBot

Scoring
GPT-3.5: 8/10 GPT-4o: 9/10 Target Users : 5/10

* User Feedback: “Indeed an easy problem, but way

too easy; in common sense, we don’t need AI for this.”

Figure 1: Demonstrations of the actual failure cases that the evaluations from pre-trained LLMs have
different preference from specific humans. The first (left) example is the task of joke generation,
where the scoring is according to funniness and novelty. The second scenario is a math problem
generation bot, where the response quality is evaluated based on helpfulness and problem quality. As
shown above, the verdicts of state-of-the-art LLMs could still differ from real human’s preferences.

(a) Prompt optimizations for Responder R. (b) Prompt optimizations for Evaluator E with metric L.

LLM MR, init prompt PR
Positive Samples

Pairs: (input, output)
Output O0

LLM MR, prompt P’R Output O1

LLM MR, prompt P’R Output O2

…

Score E(O0) Evaluator E POIteration 1

Score E(O0) Evaluator E POIteration 2

Labeled Samples
Triplets: (input, output, score)

…

LLM ME, init prompt PE Scores S0

Loss L(S0, Slabel)POIteration 1

Iteration 2

LLM ME, prompt P’E Scores S1

Loss L(S1, Slabel)PO

LLM ME, prompt P’E Scores S2

Figure 2: Workflow framework of PLHF. The entire LLM program contains two modules, Respon-
der R and Evaluator E, where PO can be PO arbitrary prompt optimization method.

several studies (Wang et al., 2023; Fu et al., 2024) leverage advanced OpenAI GPT models (Achiam
et al., 2023) as an external judge to score the generated outputs. Nevertheless, such scorers suffer
from a critical drawback as generic pre-trained LLMs might not have enough contextual or back-
ground knowledge to behave as accurate scoring functions. (See Figure 1 for the examples of failure
cases.) Ultimately, the purpose of prompt optimization is to tackle complex tasks that the original
LLM, when provided with a simple prompt, fails to handle effectively. Consequently, employing
such a sub-optimal LLM as the scoring mechanism is likely to diminish the effectiveness of the
prompt optimization framework. As a result, for applications related to response generation, it is
highly demanded to involve real human experts to evaluate the results generated by LLMs, yet such
scheme suffers from a frequently occurring issue — constrained budget to employ human experts.

For most of the automatic prompt optimization frameworks (Khattab et al., 2024; Yuksekgonul et al.,
2024; Pryzant et al., 2023; Deng et al., 2022; Wen et al., 2024), multiple iterations of optimizations
are performed, with the quality estimated based on the given metric. With querying human experts
acting as the metric, once the prompt is updated with any modifications, we have to ask human ex-
perts for their judgement again for each of the training inputs, which might cause serious efficiency
bottleneck. To address the aforementioned issues, we present PLHF (which stands for Prompt
Learning with Human Feedback), a few-shot prompt optimization framework. Inspired by the fa-
mous Reinforcement Learning from Human Feedback (RLHF) technique (Ouyang et al., 2022; Li
et al., 2023), PLHF introduces a particular evaluator module E which requires human scoring no
greater than linear (with respect to the number of training samples) times during the optimization
process. To leverage human feedback in few shots, we consider utilizing a prompt-optimized LLM
as E to evaluate the output of the main responder R. The overall framework is depicted in Fig-
ure 2. Specifically speaking, first, we employ human experts to provide judgements as scores on a
set of training samples D, containing pairs of the inputs and sample text-outputs. Then, we perform

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

prompt optimization on another LLM to mimic the human experts’ preference pattern based on D.
Since the prompting task on the evaluator module is relatively typical (e.g., binary classifications
or regressions), we can leverage any existing automatic few-shot prompt optimization frameworks
(e.g., DSPy (Khattab et al., 2024)) with trivial metrics (e.g., Accuracy or Mean Absolute Error) to
obtain the evaluator module. Finally, we can perform prompt optimizations for both E and R to
establish the entire framework.

To verify the actual effectiveness of PLHF, experiments are conducted not only on multiple bench-
mark datasets but also on a real-world industrial data collected from an online customer support
chat-bot product of an AI company. The experimental results shown in Section 4 demonstrate that
PLHF can boost the output quality of existing automatic few-shot prompt optimization frameworks
with our duo-module design. Moreover, to verify the effectiveness of each module, we also pro-
vide an analysis towards the relations in performance curves between the number of training sam-
ples and the output scores for each subtask. The source codes for the experiments are available at
https://(keeping secret for the double-blind paper review).

In summary, our contributions are as follows:

• We study automatic few-shot prompt optimization for LLMs with limited number of human
feedback calls, which is a more reasonable and feasible setting in real-world applications,
especially for those have specific user preferences or multiple acceptable outputs.

• We introduce PLHF, a novel prompt optimization framework that does not directly rely on
well-defined metrics for the text output. Instead, we design an evaluator module to provide
an automatic mechanism that evaluates text outputs for LLM program prompting.

• We conduct extensive experiments on publicly accessible benchmark datasets as well as a
test on industrial data to validate the effectiveness of PLHF. The results show that PLHF
has superiority in terms of output quality, compared with the approaches employing string
matching or adopting the state-of-the-art LLM (GPT-4o) as the evaluator.

2 RELATED WORK

Recent research has investigated various strategies to obtain suitable prompts for LLMs. Earlier
studies have introduced techniques of automating the search process for data samples (Gao et al.,
2021), learning prompts through gradient-based searching methods (Shin et al., 2020; Wen et al.,
2024; Pryzant et al., 2023), refining prompts using evolutionary algorithms (Guo et al., 2023; Fer-
nando et al., 2023) and utilizing other LLMs for prompt generation (Yang et al., 2024; Zhou et al.,
2023). Several studies have also attempted to optimize prompts using reinforcement learning, ex-
ploring prompt editing at different granular levels such as word-level (Deng et al., 2022), phrase-
level (Zhang et al., 2023), and within text-to-image generation tasks (Hao et al., 2024).

As LLMs are increasingly applied in real-world scenarios, in-context learning (McCann et al., 2018;
Radford et al., 2018; Brown et al., 2020) is becoming an emerging trend for effective LLM program-
ming. Instruction tuning (Ouyang et al., 2022) further enhances this process by enabling complex
behaviors through the use of structured prompts (Press et al., 2023; Yao et al., 2023; Khot et al.,
2023; Madaan et al., 2024).

For automatic few-shot prompt optimization, Khattab et al. (2024) introduced DSPy, a state-of-
the-art prompt optimization framework, which considers LLM usages in a programmatic fashion.
DSPy parameterizes each module to learn the data pattern and the desired behaviors by iteratively
bootstrapping useful demonstrations. On the other hand, Yuksekgonul et al. (2024) inspired by LLM
fine-tuning procedures and proposed TextGrad, a framework refining the prompt with the back-
propagation algorithm. Instead of deriving numeral-valued gradients, TextGrad regards LLMs’ text
feedback as the ‘gradient’ in texts.

All these techniques rely on well-defined metrics to set their objectives. While advanced general-
purpose LLMs like GPT-4 can be adopted for text-output evaluations (Zimbres, 2024; Zheng et al.,
2023; Tan et al., 2024), they may lack the contextual or background knowledge needed for accurate
evaluation in specific tasks. Hence, involving human feedback becomes inevitable for the prompt
optimizations in such tasks. To address the issue, Lin et al. (2024) inspired by dueling bandits and
designed a strategy to choose pairs of prompts to query for human feedback during the prompt

3

https://

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Input: “Why did the jellyfish refuse the job offer?”

Output: “Because it couldn't handle the pressure!”

Labeled Score: 6

Input: “Why did the peacock sit on the fence all day?”

Output: “It had some serious trust issues with its own reflection!”

Labeled Score: 5

Input: “Why did the vegetarian vampire only drink tomato juice?”

Output: “Because he couldn't stand steaks through the heart!”

Labeled Score: 7

Training Samples D (Labeled Samples)

…

Optimized Prompt P’E

Predict the Labeled Score for the given Input-Output pair.

Input is the “setup” and Output is the “punchline” of a joke.

Follow the following format.

Input: ${input}

Output: ${output}

Labeled Score: ${score}

Input: “Why did the shoe store owner become a detective?”

Output: “Because he was always good at solving sneaker cases!”

Labeled Score: 9

Input: “Why did the jellyfish refuse the job offer?”

Output: “Because it couldn't handle the pressure!”

Labeled Score: 6

Initial Prompt PE (Instruction)

Optimized Prompt P’R

Generate the Output for the given Input, where Input is the

“setup” and Output is the “punchline” of a joke.

Follow the following format.

Input: ${input}

Output: ${output}

Input: “Why did the shoe store owner become a detective?”

Output: “Because he was always good at solving sneaker cases!”

Input: “Why don't astronauts throw parties in space?”

Output: “Because there's no atmosphere for a good vibe!”

Input: “Why did the smartphone go to therapy?”

Output: “It had too many hang-ups!”

Initial Prompt PR (Instruction)

…

…

Input: “Why did the shoe store owner become a detective?”

Output: “Because he was good at solving sneaker cases!”

Labeled Score: 9

Input: “Why don't astronauts throw parties in space?”

Output: “Because there's no atmosphere for a good vibe!”

Labeled Score: 8

Input: “Why did the smartphone go to therapy?”

Output: “It had too many hang-ups!”

Labeled Score: 8
Positive Samples

…

Figure 3: A toy example to illustrate the subtask designs of PLHF. The targeted generative AI task
for this example is “generate the punchline for a joke setup.” The training samples D are triplets
(Input, Output, Labeled Score), where Input is the joke setup, Output is a sample output of the
punchline for the corresponding Input, and Labeled Score is the rating judged by human experts.
For this example, we consider Labeled Score ≥ 8 as the condition of positive samples. Examples of
optimized prompts P ′

E and P ′
R (for the evaluator E and the responder R, respectively) are shown.

optimizations to reduce the number of needed calls of human feedback. In this paper, we consider a
different approach to tackle the issue — we focus on the metric in the prompt learning process. We
developed a duo-module framework to obtain an evaluator module acting as the metric of the main
task to perform the desired LLM prompt optimizations, requiring minimal human feedback.

3 PLHF: PROMPT LEARNING FROM FEW-SHOT HUMAN FEEDBACK

As shown in Figure 2, our entire framework, PLHF, is designed to perform prompt optimizations
for typical language model program usages — output a proper response based on the given input.
The whole process is guided by the principal intuition of taking advantages from few-shot in-context
learning Brown et al. (2020) to capture the contextual patterns from limited number of labeled sam-
ples. Since there is no explicit metric available, a scoring function is needed for existing prompt
optimization frameworks. Hence, we introduce an evaluator module E, acting as the scoring func-
tion for the main responder module R. The two modules correspond to two respective subtasks.

3.1 RESPONDER TASK

The responder task for R is tasked with performing the original assignment. The core of this com-
ponent is based on a base LLM, denoted as MR, which generates outputs based on the input query.
LLM MR is starting from pairing with an initial prompt PR describing the roles of input and out-
put, as well as the relationship between input and output (i.e., how the input determines the output).
See Figure 3 for an example. The training samples for R include input-output pairs with positive

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1 PLHF: Duo-module Framework for Few-shot LLM Prompt Optimizations
Input: Training data samples D = {d1, d2, . . . , dn} (each di is a triplet containing input/query qi,

output oi and score/verdict ri), Base LLMs MR, ME , Initial prompts PR, PE , Trivial metric L
for evaluator E.

Output: Optimized prompts P ′
R and P ′

E .
1: Set P ′

R := PR and P ′
E := PE .

2: while there are new training samples in D do
3: while P ′

E is not yet optimized (converged) for D do
4: for each training sample di = (qi, oi, ri) ∈ D do
5: Input (qi, oi) pair to generate the score (or verdict) r̃i by ME with prompt P ′

E .
6: end for
7: Compute conventional metric score SE = L({r̃1, . . . , r̃n}, {r1, . . . , rn}).
8: Consider the D, P ′

E and SE to update the prompt P ′
E .

9: end while
10: while P ′

R is not yet optimized (converged) for D do
11: for each training sample di = (qi, oi, ri) ∈ D with positive rating ri do
12: Input qi to generate the output õi by MR with prompt P ′

R.
13: end for
14: Evaluate the outputs by evaluator E. Obtain the score SR = ME({õ1, . . . , õn};P ′

E).
15: Consider the D, P ′

R and SR to update the prompt P ′
R.

16: end while
17: if (optional) having new inputs/queries {t1, . . . , tm} to augment D then
18: Test the current responder R = (MR;P

′
R) with inputs/queries {t1, . . . , tm}.

19: Collect human feedback fi for the output MR(ti;P
′
R), for i = 1, . . . ,m.

20: Append (ti,MR(ti;P
′
R), fi), for i = 1, . . . ,m, as new training samples into D.

21: end if
22: end while
23: return P ′

R, P
′
E

score/verdict labeled by human experts. The data positivity can be specifically defined to align with
the requirements of the assigned AI task. For instance, the example described in Figure 3 considers
a score threshold as the condition of the positive samples. The generated responses by the LLM MR

with prompt PR are then judged by the evaluator module E. To enhance the quality and adaptability
of the responses, with respect to human experts’ preference patterns, we perform prompt optimiza-
tions on LLM MR to obtain a prompt-optimized prompt P ′

R for MR. Finally, we consider MR with
prompt P ′

R as the finalized responder module R in our framework to produce desired outputs that
solve the original assigned AI task.

3.2 EVALUATOR TASK

The evaluator task for E is an auxiliary task designed to verify and score the output generated by
the responder R. Similar to the responder R, the evaluator E is also built with a base LLM, denoted
as ME . The evaluator task considers training samples in the triplet form of input, output, and the
corresponding score (e.g., verdict, rating) labeled by human experts. Note that, different from the
training samples for R, this time we consider all training data samples (regardless of the positivity)
as the references for E. To provide a nuanced verdict, we also optimize the prompt PE for ME

with a trivial metric L (such as the conventional Accuracy or Mean Absolute Error) to evaluate the
quality of the response. The metric L is specifically defined as the loss to estimate the difference
between the predicted scores and the actual labeled scores in D. Overall speaking, The evaluator
module E leverages LLM ME with the finalized prompt P ′

E to provide a score rating toward any
responses for the original AI task.

With the evaluator E, PLHF ensures that the outputs from the responder R are not only technically
accurate but also contextually appropriate for the task. The feedback loop between the evaluator E
and the responder R helps refine the overall model performance, as the scores determined by E are
used to inform future responses generated by R.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3.3 INTEGRATION AND FEEDBACK LOOPS

With the integration of responder R and evaluator E, the entire system operates in a feedback-loop
structure, as described in pseudo codes stated in Algorithm 1. At the beginning, we initialize prompts
as P ′

R := PR and P ′
E := PE for modules R and E, respectively. In each iteration of PLHF, first,

training data samples D are used to optimize the evaluator E (i.e., to update P ′
E). Then, we optimize

the responder R (i.e., update P ′
R) regarding the evaluator E with prompt P ′

E as the metric. After an
iteration of prompt optimizations for P ′

R and P ′
E , we obtain a version of optimized prompts for the

responder R and the evaluator E. Figure 3 provides an example of a toy generative AI problem to
demonstrate the optimized prompts P ′

R and P ′
E .

For batch tests, the whole optimization process is ended by Line 16 in Algorithm 1 and the finalized
prompt PR are used for the LLM MR to generate the outputs for upcoming test inputs/queries. On
the other hand, if the scenario has incrementing data samples, starting from Line 17 in Algorithm 1,
we can augment the training sample set D with the user feedback on new samples, then repeat the
optimization processes for E and R.

Overall, the proposed PLHF framework is capable of performing prompt optimizations for LLMs
even when occurring challenges of (a) no available well-defined metrics to evaluate the LLM output
quality for the specific task, (b) limited number (few-shot) of labeled samples for LLM prompting,
and (c) multiple valid outputs for a single input.

4 EXPERIMENTS

To evaluate the performance and robustness of our proposed model framework, PLHF, we conducted
a series of experiments across various tasks. The tasks were selected to test the model ability to
generate accurate and contextually relevant outputs, while also assessing the effectiveness of the
auxiliary evaluator task in refining responses. In the following subsections, we detail the dataset
selection, experimental setup, and the results obtained from these experiments.

4.1 DATASETS

We conduct the experiments on three public datasets with various tasks, and one industrial dataset
from a real-world product of question answering chat-bot generating practical SQL commands.

4.1.1 SCHEMA GUIDED DIALOGUE (SGD) DATASET

The Schema Guided Dialogue (SGD) dataset Sun et al. (2021) is a large-scale dataset designed for
task-oriented dialogue systems. It comprises dialogues collected in English, specifically designed
to encompass a wide range of dialogue scenarios, schema-based actions, and services. The dataset
contains 1,000 dialogues, contributing to a total of 13,833 utterances. Each user utterance in the
dataset is labeled with a satisfaction score on a 5-point Likert scale (Likert, 1932). Rating 1 indicates
the lowest level of satisfaction, while rating 5 denotes the highest satisfaction. The distribution of
satisfaction ratings {1, 2, 3, 4, 5} is {120, 769, 11151, 1494, 50}. These human-assigned satisfaction
scores are valuable for assessing chat-bot responses with respect to user satisfaction.

4.1.2 AUTOMATED ESSAY SCORING (AES) DATASETS

The dataset is originally provided by Ben et al. (2012) for the Automated Student Assessment Prize
(ASAP). The dataset, named as AES-ASAP, consists of eight essay sets varying in length, ranging
from an average of 150 to 550 words per response. The responses were written by students in grades
seven through ten, and all essays were hand-graded by human experts. Each essay was double-
scored, with a resolved score provided to harmonize the differences between raters. We use the
training set (with the scores in domain 1) of the first set of essays in our experiments. The actual
text of the student’s response is included. We consider the average score as aggregated result from
these raters. The scores are distributed from 1 to 30. In our experiments, we discard the essays with
transcription errors (marked as “illegible” or containing placeholder text such as “???”) from the
training data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Apart from AES-ASAP, our experiments also include a newer essay scoring dataset of from an
online competition hosted by Kaggle (2024). The dataset, named as AES-2.0, contains 24,000
student-written argumentative essays. Each essay was scored on a scale of 1 to 6 as the holistic
rating 1 judged by human experts. Similar to our settings for AES-ASAP, we consider the provided
training split for prompt optimizations in our the experiments.

4.1.3 INDUSTRIAL SQL COMMAND QUESTION ANSWERING DATASET

In addition to the previously mentioned public datasets, we have also deployed PLHF on a real-
world question-answering system, which is currently an actual product of a commercial AI company.
This test, named as SQL-QA, comprises 100 real-world queries involving various database inquiry
requests from the clients. The database entries contains daily transaction records and other logs
sourced from multiple banks in China. As the training data for prompt optimizations, human experts
from the company labeled 10 positive samples and 20 negative samples for the prompt optimizations.
Table 1 provides examples of queries used in this test.

Table 1: Examples of the queries in our industrial SQL-QA test.
User Query (English translation) SQL Statement (Output)

Please list the top 3
clients by total deposits
at the Beijing branch
as of January 31, 2024.

SELECT CUST_ID, CUST_NAME, DEPO_BAL
FROM acct
WHERE DATA_DT=’20240131’ AND ORG_NAME=’Beijing’
ORDER BY DEPO_BAL DESC
LIMIT 3

Please inquire about the
top 5 banks with the
highest asset balances,
grouped by institution,
as of March 31, 2024.

SELECT ORG_NAME, ASSET_BAL
FROM acct
WHERE DATA_DT=’20240331’
ORDER BY ASSET_BAL DESC
LIMIT 5

4.2 EXPERIMENT SETUPS

To perform prompt optimizations (denoted as PO) in each subtask, we consider two state-of-the-art
automatic prompting frameworks, DSPy and TextGrad. Same experiments are conducted for both
frameworks, and respective results are shown.

For the experiments, first, we estimate the effectiveness of the evaluator E, which solves the task
of predicting the labeled scores based on each input-output pair. The comparisons include several
baseline methods:

• Base LLM (GPT-3.5): the grounding baseline — simply employing raw gpt-3.5-turbo-
0125 model to predict the labeled score each input-output pair. We utilize OpenAI APIs
for the model implementation. The prompt is set to be the same as the initial prompt PE in
PLHF for the comparisons. See Figure 3 for an example.

• MLP with Text Embedding: DNN-based predictor — leveraging a Multi-layer Perception
(MLP) model, based on the algorithm presented by Popescu et al. (2009), to predict the
score of each input-output pair. Since the input and the output are texts, we transform the
texts into embeddings by the powerful text-embedding-ada-002 model (OpenAI, 2024)
to obtain the respective numerical vectors. The number of layers is set to 3.

• SVM with Text Embedding: conventional ML predictor — similar to the MLP one, but
this time considering Support Vector Machines (SVMs) as the score predictor. We adopt
the SVM implementation provided by Chang & Lin (2011) with the default configuration.

1https://storage.googleapis.com/kaggle-forum-message-attachments/2733927/20538/Rubric
HolisticEssayScoring.pdf

7

https://storage.googleapis.com/kaggle-forum-message-attachments/2733927/20538/Rubric_ Holistic Essay Scoring.pdf
https://storage.googleapis.com/kaggle-forum-message-attachments/2733927/20538/Rubric_ Holistic Essay Scoring.pdf

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Summary of experimental results for the evaluator subtask across each dataset. For the
public datasets, the presented values are RMSE losses (lower is better) of the output scores from E;
for the industrial dataset SQL-QA, the values indicate Accuracy scores (higher is better). The best
ones are marked in bold font.

Method SGD AES-ASAP AES-2.0 SQL-QA
Base LLM (GPT-3.5) 1.02 4.75 0.46 0.53

MLP with Text Embedding 1.17 7.22 1.08 0.33
SVM with Text Embedding 1.25 6.43 1.10 0.40
Base LLM PO via DSPy 0.43 2.36 0.33 0.80

Base LLM PO via TextGrad 0.40 2.42 0.38 0.73

• GPT-3.5 PO via DSPy: LLM with demonstration-based PO — performing prompt op-
timizations with DSPy framework (Khattab et al., 2024), based on the aforementioned
setting of Base LLM (GPT-3.5).

• GPT-3.5 PO via TextGrad: LLM with text instruction-based PO — performing prompt
optimizations with TextGrad framework (Yuksekgonul et al., 2024), based on the afore-
mentioned setting of Base LLM (GPT-3.5).

Then, for the main responder task R, output quality of the LLM with optimized prompts are judged
by test queries. We consider various types of evaluators for the prompt optimizations.

• Base LLM (GPT-3.5): the grounding baseline — simply utilizing raw gpt-3.5-turbo-
0125 model via OpenAI APIs to generate the output based on the given input. The prompt
is set to be the same as the initial prompt PR in PLHF for the experiments. See Figure 3
for an example.

• PO with GPT-4o: using a state-of-the-art LLM as the evaluator — performing PO on the
Base LLM (GPT-3.5). Adopting GPT-4o (gpt-4o-2024-05-13) model as the judge to
score the outputs during PO. We employ OpenAI APIs in the implementation.

• PO with Exact Matching: scoring by hard-matching —- Base LLM (GPT-3.5) with PO
regarding the given reference outputs as the ground-truth (i.e., the golden prediction). Let
score = 1 if the output of R is exactly the same as the ground-truth; otherwise, score = 0.

• PO with Embedding Similarity: scoring by soft-matching — Base LLM (GPT-3.5) with
PO considering the cosine similarity score between the embedding vectors of the output and
the ground-truth. The outputs are embedded by the powerful text-embedding-ada-002
model (OpenAI, 2024) via OpenAI APIs.

• PLHF: our proposed framework — the base LLMs MR and ME are both set to be raw
GPT-3.5 (gpt-3.5-turbo-0125) models.

4.3 EVALUATIONS

For the model output, we employ multiple human experts as the judges to provide professional
scores with respect to the score scales of the original data. However, for the public datasets, the
original people who labeled the data are unavailable to give their judgement for our new generated
outputs for the data inputs. In our experiments, we introduce a concept of pseudo-human judge to
execute output evaluations. Specifically, we use GPT-4o with prompt optimizations via DSPy as
the pseudo-human judge. Since we consider GPT-3.5 for the base LLMs in all the methods for
experiments, the pseudo-human judge (i.e., GPT-4o with DSPy PO based on training samples) is a
more powerful model that can provide fair evaluations toward output quality.

4.4 EXPERIMENTAL RESULTS

Table 2 lists the experimental results of the evaluator task. As shown in the table, we can observe
that the conventional methods (MLP/SVM with Text Embedding) seem struggled in predicting the
labeled scores from the given embedded inputs. In contrast, the LLM-based methods performed
significantly better on both public datasets and the industrial tests. A possible reason is that LLMs

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 3: Summary of experimental results for the responder subtask across each dataset. For the
industrial dataset SQL-QA, the overall Accuracy score are given by actual human experts in the
company; for the public datasets, the scores from the pseudo-human judge are shown. The values
for Base LLM are the actual scores, whereas for the other methods, relative improvements are shown
in percentages. The best ones are marked in bold font.

PO Method SGD AES-ASAP AES-2.0 SQL-QA
Base LLM (GPT-3.5) 4.25 26.50 5.35 0.74

PO with GPT-4o +1.18% +3.70% +0.75% +5.41%
DSPy PO with Exact Matching - 4.00% -10.87% - 5.61% 0.00%

PO with Embedding Similarity +1.65% - 4.27% +0.56% +10.81%
PLHF +6.59% +8.45% +2.62% +18.92%

PO with GPT-4o +4.71% +3.28% +1.31% +2.70%
PO with Exact Matching -10.59% -15.92% -10.84% -18.92%

TextGrad PO with Embedding Similarity +3.53% - 0.64% +0.93% +2.70%
PLHF +8.71% +8.68% +4.30% +18.92%

might have superior fitting and understanding capabilities to handle text inputs. With prompt opti-
mizations, both DSPy and TextGrad provided more effective prompt for more accurate evaluators.

As for the experimental results of the responder task, shown in Table 3, we consider both DSPy
and TextGrad as the prompt optimization (PO) tool for each method in the comparisons. Overall,
the results are relatively similar in same directions for each pair of the scores between the two
PO selections. In summary, for all the four datasets, the proposed PLHF framework achieved the
best performance in output quality, in terms of the metric for each task. Moreover, PLHF used
GPT-3.5 as the evaluator’s base LLM ME to achieve superior performance than ‘PO with GPT-
4o’, which conducted prompting with a more powerful GPT-4o as the evaluator. For the other
baselines, ‘PO with GPT-4o’ consistently outperformed ‘Base LLM (raw GPT-3.5)’. Regarding
the conventional matching-based scoring functions, both hard-matching (Exact Matching) and soft-
matching (Embedding Similarity) produced outputs with worse quality.

4.5 PERFORMANCE ANALYSIS

In addition to the overall performance, we also analyze the robustness and the relationship between
model effectiveness and the number of training samples involved in the prompt optimization process.
As examples, Figure 4 demonstrates the performance curves for datasets SGD and AES-ASAP.
Note that, to analyze the performance of a responder with n data samples, we also use the evaluator
optimized with the same n samples. For the curves of evaluator E, we can observe that the RMSE
loss raised for initial samples, then the RMSE value dropped significantly after few shots of data.
For the curves toward responder R, the pattern is similar to the curves of E (but in opposite way), the
output quality score dropped for initial samples, while the score then bouncing back and achieving
new highs with greater number of samples. Last but not least, as expected, the standard deviations
lower along with the increasing number of training samples.

5 CONCLUSION

In this paper, we focused on prompt optimizations for LLMs with a limited amount of human feed-
back — a more practical and achievable approach for real-world applications. To address the chal-
lenges of no well-defined metrics and the scarce human resources, we introduced PLHF, a few-shot
prompt learning with an evaluator module design to automatically score the outputs generated by
LLMs. We performed extensive experiments with public datasets and a real industrial dataset to
verify the effectiveness of PLHF. The experimental results demonstrated that PLHF outperforms
existing methods across from simple string matching functions to even the latest publicly available
LLMs as output evaluators in terms of the output quality. Overall, our proposed framework is practi-
cally effective especially for the scenarios when directly applying pre-trained general-purpose LLMs
are not the best option. Our future work involves enhancing and deploying the proposed framework
across diverse applications, particularly for tasks that utilize multi-modal data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Evaluator E (SGD) Responder R (SGD)

Evaluator E (AES-ASAP) Responder R (AES-ASAP)

0

1

2

3

4

5

6

7

0 5 10 20 40 70 100

R
M

S
E

samples

0

0.3

0.6

0.9

1.2

1.5

1.8

0 5 10 20 40 70 100

R
M

S
E

samples

3.6

3.8

4

4.2

4.4

4.6

4.8

5

0 5 10 20 40 70 100

S
c
o

re

samples

16

18

20

22

24

26

28

30

0 5 10 20 40 70 100

S
c
o

re

samples

Figure 4: Performance curves of PLHF on the datasets SGD and AES-ASAP. For the plots, we
consider DSPy as the PO method for PLHF. The x-values are the number of (randomly selected)
training samples. The y-values are mean values of the RMSE losses for E and the output scores for
R, respectively. The vertical bar of each point indicates the standard deviations estimated in 30 runs.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Hamner Ben, Morgan Jaison, lynnvandev, Shermis Mark, and Ark Tom Vander. The hewlett foun-
dation: Automated essay scoring, 2012. URL https://kaggle.com/competitions/asap-aes.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM trans-
actions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 3369–3391, 2022.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Jinlan Fu, See Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you desire.
In Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 6556–
6576, 2024.

10

https://kaggle.com/competitions/asap-aes

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 3816–3830, 2021.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. Optimizing prompts for text-to-image generation.
Advances in Neural Information Processing Systems, 36, 2024.

Kaggle. Automated essay scoring 2.0, 2024. URL https://www.kaggle.com/competitions/
learning-agency-lab-automated-essay-scoring-2/.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Saiful
Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, Heather Miller, et al. Dspy: Compil-
ing declarative language model calls into state-of-the-art pipelines. In The Twelfth International
Conference on Learning Representations, 2024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In The
Eleventh International Conference on Learning Representations, 2023.

Zihao Li, Zhuoran Yang, and Mengdi Wang. Reinforcement learning with human feedback: Learn-
ing dynamic choices via pessimism. arXiv preprint arXiv:2305.18438, 2023.

Rensis Likert. A technique for the measurement of attitudes. Archives of psychology, 1932.

Xiaoqiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, and Bryan Kian Hsiang
Low. Prompt optimization with human feedback. arXiv preprint arXiv:2405.17346, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018.

OpenAI. Openai platform: Embeddings — embedding models, 2024. URL https://platform.openai.
com/docs/guides/embeddings/embedding-models.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Marius-Constantin Popescu, Valentina E Balas, Liliana Perescu-Popescu, and Nikos Mastorakis.
Multilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8(7):
579–588, 2009.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 5687–5711, 2023.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 7957–7968, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. 2018. URL https://openai.com/index/
language-unsupervised/.

11

https://www.kaggle.com/competitions/learning-agency-lab-automated-essay-scoring-2/
https://www.kaggle.com/competitions/learning-agency-lab-automated-essay-scoring-2/
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://openai.com/index/language-unsupervised/
https://openai.com/index/language-unsupervised/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
4222–4235, 2020.

Weiwei Sun, Shuo Zhang, Krisztian Balog, Zhaochun Ren, Pengjie Ren, Zhumin Chen, and Maarten
de Rijke. Simulating user satisfaction for the evaluation of task-oriented dialogue systems. In
Proceedings of the 44rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’21. ACM, 2021.

Ting Fang Tan, Kabilan Elangovan, Liyuan Jin, Yao Jie, Li Yong, Joshua Lim, Stanley Poh, Wei Yan
Ng, Daniel Lim, Yuhe Ke, et al. Fine-tuning large language model (llm) artificial intelligence chat-
bots in ophthalmology and llm-based evaluation using gpt-4. arXiv preprint arXiv:2402.10083,
2024.

Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang, and Michael R Lyu.
No more fine-tuning? an experimental evaluation of prompt tuning in code intelligence. In Pro-
ceedings of the 30th ACM joint European software engineering conference and symposium on the
foundations of software engineering, pp. 382–394, 2022.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui Sun, Haoxiang Shi, Zhixu Li, Jinan Xu,
Jianfeng Qu, and Jie Zhou. Is chatgpt a good nlg evaluator? a preliminary study. arXiv preprint
arXiv:2303.04048, 2023.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Hard prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery.
Advances in Neural Information Processing Systems, 36, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic ”differentiation” via text. 2024.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, and Joseph E. Gonzalez. TEM-
PERA: Test-time prompt editing via reinforcement learning. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
gSHyqBijPFO.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers, 2023. URL https://arxiv.
org/abs/2211.01910.

Rubens Zimbres. Evaluating llms with langchain: Using gpt-4 to evaluate
google’s open model gemma-2b-it, 2024. URL https://medium.com/google-cloud/
evaluating-llms-with-langchain-using-gpt-4-to-evaluate-googles-open-model-gemma-2b-it-eb7555e3bdeb.

12

https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=gSHyqBijPFO
https://openreview.net/forum?id=gSHyqBijPFO
https://arxiv.org/abs/2211.01910
https://arxiv.org/abs/2211.01910
https://medium.com/google-cloud/evaluating-llms-with-langchain-using-gpt-4-to-evaluate-googles-open-model-gemma-2b-it-eb7555e3bdeb
https://medium.com/google-cloud/evaluating-llms-with-langchain-using-gpt-4-to-evaluate-googles-open-model-gemma-2b-it-eb7555e3bdeb

	Introduction
	Related Work
	PLHF: Prompt Learning from Few-shot Human Feedback
	Responder Task
	Evaluator Task
	Integration and Feedback Loops

	Experiments
	Datasets
	Schema Guided Dialogue (SGD) Dataset
	Automated Essay Scoring (AES) Datasets
	Industrial SQL Command Question Answering Dataset

	Experiment Setups
	Evaluations
	Experimental Results
	Performance Analysis

	Conclusion

