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ABSTRACT

Recently, a few self-supervised representation learning (SSL) methods have out-
performed the ImageNet classification pre-training for vision tasks such as object
detection. However, its effects on 3D human body pose and shape estimation
(3DHPSE) are open to question, whose target is fixed to a unique class, the hu-
man, and has an inherent task gap with SSL. We empirically study and analyze the
effects of SSL and further compare it with other pre-training alternatives for 3DH-
PSE. The alternatives are 2D annotation-based pre-training and synthetic data pre-
training, which share the motivation of SSL that aims to reduce the labeling cost.
They have been widely utilized as a source of weak-supervision or fine-tuning,
but have not been remarked as a pre-training source. SSL methods underperform
the conventional ImageNet classification pre-training on multiple 3DHPSE bench-
marks by 7.7% on average. In contrast, despite a much less amount of pre-training
data, the 2D annotation-based pre-training improves accuracy on all benchmarks
and shows faster convergence during fine-tuning. Our observations challenge the
naive application of the current SSL pre-training to 3DHPSE and relight the value
of other data types in the pre-training aspect.

1 INTRODUCTION

Transferring the knowledge contained in one task and dataset to solve other downstream tasks (i.e.,
transfer learning) has proven very successful in a range of computer vision tasks (Girshick et al.,
2014; Carreira & Zisserman, 2017; He et al., 2017). In practice, transfer learning is done by pre-
training a backbone (He et al., 2016) on source data to learn better visual representations for the
target task. The ImageNet classification has been the de facto pre-training paradigm in computer
vision, and the 3D human body pose and shape estimation (3DHPSE) literature has followed this.

Recently, self-supervised representation learning (SSL) has gained popularity in the interest of re-
ducing labeling costs (Chen et al., 2020a; Grill et al., 2020; He et al., 2020; Caron et al., 2020; Hénaff
et al., 2021). SSL pre-trains a backbone using unlabeled arbitrary object images and fine-tunes the
backbone on target tasks. MoCo (He et al., 2020) and DetCon (Hénaff et al., 2021) surpassed the
ImageNet classification pre-training for downstream tasks like object detection and instance segmen-
tation on arbitrary class objects. Motivated by them, PeCLR (Spurr et al., 2021) and HanCo (Zim-
mermann et al., 2021) targeted a human hand and pre-trained a backbone on hand data without 3D
labels. They showed the accuracy improvement for 3D hand pose and shape estimation from the
controlled setting (Zimmermann et al., 2019), compared with random initialization (no pre-training)
and the ImageNet classification pre-training. While the results of PeCLR and HanCo are promis-
ing for 3DHPSE, they have limited practical lessons. For example, the amounts of labeled hand
data, which is fine-tuning data, are significantly smaller (∼64K) than that of the commonly used
labeled body data (∼480K). Also, the total training (pre-training&fine-tuning) time of the different
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Figure 1: (Left) We pre-train a backbone (ResNet-50 (He et al., 2016)) with different data types:
unlabeled arbitrary objects (Russakovsky et al., 2015), labeled arbitrary objects (Russakovsky et al.,
2015), synthetic 3D human data (Varol et al., 2017), and real 2D human data (Lin et al., 2014).
(Right) 3DHPSE errors when initializing its backbone with differently pre-trained weights. We fine-
tune PARE (Kocabas et al., 2021) on Human3.6M (Ionescu et al., 2014) and MSCOCO (Lin et al.,
2014) and evaluate it on 3DPW (von Marcard et al., 2018).

approaches is not matched, which is critical to the final accuracy (He et al., 2019). Last, they require
labeled data with bounding boxes of a hand.

This paper questions the effectiveness of SSL pre-training for 3DHPSE by thoroughly comparing
with alternatives in multiple aspects (i.e. final accuracy, convergence speed, and cost-effectiveness).
We perform experiments by fixing the fine-tuning task to 3DHPSE and changing the pre-training
approach. The experiments are organized in three steps. First, we compare state-of-the-art SSL
methods, pre-trained on ImageNet, with the ImageNet classification pre-training. Different object
detection and instance segmentation, the SSL methods are outperformed by the classification pre-
training in three 3DHPSE benchmarks with 7.7% margin on average. Interestingly, the accuracy
of SSL is comparable to or even worse than the random initialization baseline. The results imply
general visual representations learned by SSL could be detrimental to 3DHPSE.

Second, we explore the reasons behind the current SSL methods’ disappointing performance in
depth by contriving a new pre-training approach. Modern SSL pre-training methods (Chen et al.,
2020a; He et al., 2020) have two unfavorable factors on 3DHPSE; 1) they learn inconsistent repre-
sentations for the same class instances as argued by (Khosla et al., 2020), which hinders learning
high-level priors about a specific class, and 2) SSL pre-training has an instance-level learning char-
acteristic (i.e., a single attribute per image), which has an inherent task gap with 3DHPSE that
requires understanding of the fine-level semantic information (i.e., multiple attributes per image),
the human joints. We combine an SSL approach with 2D joint labels, which we call JointCon, to
experimentally validate the two factors’ effects. JointCon contrasts local image features of human
joints instead of global image features of images.

Third, we compare SSL methods with 2D annotation-based pre-training and synthetic data pre-
training on human data following PeCLR (Spurr et al., 2021) and HanCo (Zimmermann et al., 2021),
and discuss cost-effectiveness in Section 5 and B. 2D annotation-based pre-training and synthetic
data pre-training are worth investigating in that they share the motivation of SSL, which is to benefit
from data1 with less collection cost (Rong et al., 2019; Patel et al., 2021). In our experiments on
human data, 2D annotation-based pre-training shows the highest accuracy and the fastest conver-
gence speed among different pre-training approaches. Compared with the classification baseline,
its final accuracy is increased by 3.1% on 3DPW (von Marcard et al., 2018) and 1.9% on Hu-
man3.6M (Ionescu et al., 2014). In 3DPW, the convergence speed is approximately 2× faster. In
the semi-supervised setting, the accuracy improvement increases to 9.9% on 3DPW and 7.1% on
Human3.6M. We assume rich pose and appearance information learned from the 2D pose data is
the key to these improvements as expected. Synthetic data pre-training produces higher errors than
the classification baseline. We conjecture that a domain gap between real and synthetic data inter-

1Unless otherwise noted, ‘data’ indicates labeled images
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rupts efficient transfer learning. Finally, SSL on human data also underperforms the classification
pre-training. The overall results of SSL suggest that the current stage of SSL may not be enough to
benefit 3DHPSE, which essentially requires high-level understanding of human kinematic structure.

Our main empirical results are summarized in Figure 1. The current SSL that pre-trains on unlabeled
arbitrary object images is not effective for 3DHPSE. Despite the least amount of pre-training data,
2D annotation-based pre-training provides the best result. This paper has two significant empirical
contributions; 1) we provide novel experimental evidence and discussion points for people to rethink
the naive application of SSL pre-training paradigm in 3DHPSE, and 2) we relight the value of other
data types that have received relatively less attention in the pre-training aspect.

2 RELATED WORK

3D human pose and shape estimation. We focus on reviewing the body, not hand literature,
where extensive works have been addressed for 3D pose and shape estimation from in-the-wild im-
ages. HMR (Kanazawa et al., 2018) proposed an end-to-end trainable human mesh recovery system
that introduced adversarial loss to leverage MoCap data without images. GraphCMR (Kolotouros
et al., 2019b) designed a graph convolutional network that takes the rest pose human mesh and
image features as input and predicts mesh vertex coordinates. SPIN (Kolotouros et al., 2019a) com-
bined a neural network regressor (Kanazawa et al., 2018) and an iterative fitting framework (Bogo
et al., 2016). I2L-MeshNet (Moon & Lee, 2020) introduced a lixel-based 1D heatmap to estimate
mesh vertex coordinates.Pose2Mesh (Choi et al., 2020) proposed a graph convolutional network
that recovers 3D human pose and mesh from a 2D human pose. VIBE (Kocabas et al., 2020) and
TCMR (Choi et al., 2021) extended HMR to video input. METRO (Lin et al., 2021) improved
GraphCMR (Kolotouros et al., 2019b) with a transformer architecture. PARE (Kocabas et al., 2021)
introduced a part-guided attention mechanism for mesh parameter regression. PyMAF (Zhang et al.,
2021a) used mesh-aligned image features to iteratively refine prediction. 3DCrowdNet (Choi et al.,
2022) resolved the inter-person occlusion issue in crowded scenes with 2D pose guidance for image
features and a joint-based regressor (Moon et al., 2022a).

Human dataset. Human datasets for 3DHPSE can be broadly categorized into three types; Motion
capture (MoCap) dataset, in-the-wild 2D dataset, and synthetic dataset. MoCap datasets (Ionescu
et al., 2014; Mehta et al., 2017) provide accurate 3D joint labels with images captured from a con-
trolled multi-view studio. In-the-wild 2D datasets (Andriluka et al., 2014; Johnson & Everingham,
2010) contain manually annotated 2D labels, which are usually 2D joints. MSCOCO (Lin et al.,
2014) is the most widely used dataset that has rich 2D annotations, including part segmentation and
DensePose (Güler et al., 2018). Synthetic datasets (Varol et al., 2017; Patel et al., 2021) render 3D
human avatars on synthetic background images. Human poses from MoCap data and appearances
from real scan data are exploited. Recent works (Patel et al., 2021; Baradel et al., 2021; Cai et al.,
2021) have shown that fine-tuning on synthetic human data can improve accuracy on real-world
benchmarks. 3DPW (von Marcard et al., 2018) is an in-the-wild human benchmark with 3D body
pose and mesh annotations. Since few in-the-wild 3D human datasets exist, evaluation on 3DPW is
the current best way to evaluate 3DHPSE methods on in-the-wild images.

The concurrent work of (Pang et al., 2022) provides experimental results on pre-training on three
datasets (classification on ImageNet, 2D pose estimation on MPII (Andriluka et al., 2014) and
MSCOCO). However, the effects of SSL and synthetic data are still unexplored. Considering that
SSL has shown a powerful impact on other vision tasks, the extensive experiments and analysis on
the current SSL methods distinguish our work from (Pang et al., 2022).

Self-supervised representation learning. Recently, contrastive learning-based methods are show-
ing state-of-the-art performance among self-supervised approaches. The contrastive learning’s fun-
damental idea is to pull together an anchor and a “positive” sample in embedding space, and to push
apart the anchor from many “negative” samples (Khosla et al., 2020). Since this strategy can be
applied to unlabeled training data, assuming a positive pair from data augmentations of the same
sample, the research community has endeavored to use the learned representation for downstream
transfer tasks. In practice, a backbone is pre-trained on a large-scale classification dataset (Rus-
sakovsky et al., 2015; Mahajan et al., 2018) without using labels, and fine-tuned for classification,
object detection, or instance segmentation.
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Figure 2: Overview of the training procedure for 3DHPSE. We pre-train a backbone with each
different data type (e.g., labeled arbitrary object, synthetic 3D human data, and real 2D human
data). From the pre-trained backbone, we fine-tune both the backbone and a human mesh regressor
in an end-to-end manner.

MoCo (He et al., 2020; Chen et al., 2020c) interpreted the contrastive learning as building a dy-
namic and large dictionary of embeddings with a queue and a moving-averaged key encoder. Sim-
CLR (Chen et al., 2020a;b) introduced a nonlinear projection layer and proved that augmentation
during pre-training should be stronger than supervised learning. SwAV (Caron et al., 2020), Siam-
Siam (Chen & He, 2020), and BYOL (Grill et al., 2020) eliminated the requirements for negative
samples, while maintaining the Siamese architecture. DetCon (Hénaff et al., 2021) proposed a new
contrastive objective that is based on unsupervised mask generation.

PeCLR (Spurr et al., 2021) and HanCo (Zimmermann et al., 2021) are the recent works that adapted
SSL to 3D hand pose and shape estimation. PeCLR proposed a contrastive objective equivari-
ant to geometric transformations (e.g., rotation and translation), which models the transforma-
tions in a latent vector level similar to (Rhodin et al., 2018) and NSD (Rhodin et al., 2019). It
showed accuracy improvements over the random initialization baseline, but trained on a small-scale
dataset (∼32K) (Zimmermann et al., 2019) during fine-tuning, although more hand data, for ex-
ample, MSCOCO (150K) and YT3D (47K), exists. HanCo applied MoCo (He et al., 2020) on a
background-augmented unlabeled hand dataset, but the improvement was marginal and like PeCLR,
experiments were done in the controlled setting, not the in-the-wild environment.

3 CONVENTION OF 3D HUMAN POSE AND SHAPE ESTIMATION

Architecture. A 3DHPSE network consists of a backbone and a human mesh regressor, as depicted
in Figure 2. A backbone (He et al., 2016; Sun et al., 2019) extracts image features from a given
human-centered image. The features are fed to a human mesh regressor that estimates a mesh
defined by human models, such as SMPL (Loper et al., 2015).

Pre-training. Almost all 3DHPSE methods pre-train their backbones by ImageNet (Russakovsky
et al., 2015) classification. They take pre-trained weights from the open source (e.g., torchvi-
sion (Paszke et al., 2017)) and initialize their backbones with them in practice. Initializing a back-
bone’s weights with the ImageNet classification-pre-trained weights is known to expedite training
convergence and to bring better accuracy than random initialization.

Fine-tuning. During fine-tuning, a pre-trained backbone and a human mesh regressor are trained
in an end-to-end manner by mix-using MoCap and in-the-wild 2D datasets. 2D annotations of in-
the-wild 2D datasets weakly supervise the 3D mesh prediction (Kanazawa et al., 2018), and the
3D pseudo-mesh labels generated from 2D joints (Pavlakos et al., 2019; Joo et al., 2021; Moon
et al., 2022b) directly supervise the 3D output. The mixed use of the MoCap and the in-the-wild 2D
datasets has enabled reasonable performance on in-the-wild 3DHPSE, despite the scarce in-the-wild
3D training data.
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4 EXPERIMENT

4.1 SETTING

We adopt ResNet-50 (He et al., 2016) as a backbone and a SMPL (Loper et al., 2015) mesh as an
estimation target. During fine-tuning on 3DHPSE, we mainly use PARE (Kocabas et al., 2021) as
a human mesh regressor and Human3.6M (Ionescu et al., 2014) and MSCOCO (Lin et al., 2014)
as training datasets. For the semi-supervised setting, we exploit 10% of Human3.6M and 10%
of MSCOCO data. 3DPW (von Marcard et al., 2018), Human36M (Ionescu et al., 2014), and
MuPoTS-3D (Mehta et al., 2018) are used as evaluation benchmarks. We report PA-MPJPE for
3DPW, Human36M, and 3DPCK for MuPoTS-3D following the convention. PA-MPJPE stands for
the Procrustes-aligned mean per-joint position error in millimeters. 3DPCK indicates the percentage
of correct 3D keypoints.

Pre-training. For the SSL pre-training on ImageNet (Chen et al., 2020b; Chen & He, 2020; Caron
et al., 2020; Chen et al., 2020c; Hénaff et al., 2021), we use the publicly released pre-trained ResNet-
50 weights. SSL pre-training on ImageNet typically requires much larger computational costs to be
effective than the classification baseline. For pre-training on human datasets, we fix the pre-training
length (total number of training epochs) at 140 epochs regardless of methods, which is longer than
those of 3DHPSE adapted SSL papers (100 epochs) (Spurr et al., 2021; Zimmermann et al., 2021)
and the same as that of (Xiao et al., 2018). To pre-train the proposed 2D pose-driven alternatives,
we decay the learning rate by 10× at 90 and 120 epochs, starting from the initial value of 10−3

following (Xiao et al., 2018).

Fine-tuning. For fine-tuning, we train a 3DHPSE network for 120 epochs and decay the learning
rate by 10× at 90 epochs, which is originally 10−4. This schedule empirically showed full conver-
gence for various networks initialized with different pre-trained weights. For the case of training
from scratch (i.e., random initialization), following the spirit of (He et al., 2019), we extend the
total training length to 240 epochs and decay the learning rate by 10× at 180 epochs from 10−4. It
roughly matches the total training length of the pre-training counterparts (140 epochs + 120 epochs)
and empirically showed full convergence.

4.2 PRE-TRAINING ON IMAGENET

We first examine the effects of the current state-of-the-art SSL methods (Chen et al., 2020b; Chen
& He, 2020; Caron et al., 2020; Chen et al., 2020c; Hénaff et al., 2021) that pre-train a backbone
on ImageNet. As summarized in Table 1 and Figure 3, when full fine-tuning data is used, they
show approximately 2× slower convergence and 7.7% higher errors (PA-MPJPE) than the ImageNet
classification pre-training (He et al., 2016). Interestingly, the final accuracy is even worse than the
random initialization baseline, though the convergence is faster. In the semi-supervised setting,
SSL methods outperform the random initialization baseline by 2.5%, but still the classification pre-
training provides the best overall accuracy.

We analyze the results that seemingly oppose the fact that SSL surpasses the random initialization
and classification baselines in object detection and instance segmentation (Grill et al., 2020; Hénaff
et al., 2021) by answering three questions. (i) Why SSL is worse than the random initialization
baseline, when full fine-tuning data is used? We conjecture that a data domain gap is one of the
reasons for the different results. While both object detection and instance segmentation target lo-
calization of arbitrary class objects, 3DHPSE only targets a single class, the human. For inference
on arbitrary class objects, learning a wide range of general features unlimited to labels of a dataset
could be advantageous in the generalization aspect (Tendle & Hasan, 2021). However, for 3DHPSE,
a backbone network is preferred to learn more about human features rather than features of arbitrary
objects, given the limited learning capacity. Transferring knowledge about arbitrary objects could
distract a network from learning necessary human features for 3DHPSE. (ii) Why the classification
pre-training outperforms the random initialization baseline, while SSL does not, when full fine-
tuning data is used? The classification pre-training makes a backbone to learn high-level semantic
representations, such as the global structure of objects, that could be beneficially transferred to infer-
ence on humans. For example, (Yosinski et al., 2015) showed that AlexNet (Krizhevsky et al., 2017)
trained on ImageNet can recognize important features of human faces, although ImageNet has no
labels of human faces. On the contrary, visual representations learned by SSL are likely to lack high-
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Table 1: Effects of self-supervised pre-training on ImageNet. The red and blue colors indicate the
first and second best scores, respectively.

fine-tuning
data

pre-training
data pre-training method

3DPW
PA-MPJPE↓

H36M
PA-MPJPE↓

MuPoTS
3DPCK↑

H36M+
MSCOCO

(100%)

- random init. 56.37 52.72 67.12
ImageNet
(labeled) classification 55.65 48.36 67.76

ImageNet
(unlabeled)

SimCLR (Chen et al., 2020a;b) 59.56 56.93 65.67
SimSiam (Chen & He, 2020) 56.42 51.82 66.34
SwAV (Caron et al., 2020) 56.85 52.18 66.19

MoCo v2 (Chen et al., 2020c) 58.34 55.43 66.68
DetCon (Hénaff et al., 2021) 64.54 58.83 63.83

H36M+
MSCOCO

(10%)

- random init. 73.37 67.59 57.32
ImageNet
(labeled) classification 63.29 58.79 62.75

ImageNet
(unlabeled)

SimCLR (Chen et al., 2020a;b) 73.97 72.02 59.80
SimSiam (Chen & He, 2020) 66.94 62.45 63.34
SwAV (Caron et al., 2020) 68.96 63.26 60.79

MoCo v2 (Chen et al., 2020c) 64.76 60.70 63.47
DetCon (Hénaff et al., 2021) 81.63 82.60 55.03

Figure 3: Learning curves of PA-MPJPE on 3DPW in the fine-tuning stage when using full fine-
tuning data (Left) and 10% of fine-tuning data (Right). The backbone is initialized with different
weights pre-trained on ImageNet by different pre-training methods.

level information that can be found in objects with the same class. Instead, SSL focuses on learning
representations that are invariant to data augmentations, which are performed on a single object
sample. These representations can be inconsistent over instances of the same class (Khosla et al.,
2020). Considering that 3DHPSE essentially requires high-level priors that are shared across differ-
ent human samples, inconsistent representations learned by SSL could be detrimental to 3DHPSE.
(iii) Why SSL is effective in the semi-supervised setting, compared with the random initialization?
Inconsistent representations learned by SSL could be a problem for 3DHPSE, but it does not indicate
their representations are obsolete. A convolutional neural network requires sufficient training data
to extract meaningful low-level features (e.g., textures) from images. In this perspective, insufficient
training images deprive a network of learning high-level representations, which in turn harms 3DH-
PSE. In such a circumstance, SSL can step in to provide a sufficient amount of training images to a
network and to make it learn necessary features.

4.3 ANALYSIS OF SSL FOR 3DHPSE.

We further investigate the reasons for the SSL’s disappointing performance discussed in Section 4.2,
with experimental evidence. We devise a new pre-training approach, JointCon, that combines the
SSL approach with the 2D annotation-based approach. JointCon extracts joint-level features (Moon
et al., 2022a) by sampling image features based on GT 2D joint locations. It applies contrastive
learning in the joint-level features to pull together an anchor with “positive samples” and push
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Table 2: Effects of different representation-level in pre-training via ablation study on JointCon. We
use MSCOCO for pre-training. The red and blue colors indicate the first and second best scores,
respectively.

fine-tuning
data variations of JointCon

3DPW
PA-MPJPE↓

H36M
PA-MPJPE↓

MuPoTS
3DPCK↑

H36M+
MSCOCO

(100%)

JointCon(I): instance-level 58.29 53.17 67.06
JointCon(J): joint-level 54.25 45.52 68.87

JointCon(I+J): instance-level + joint-level 56.71 47.99 67.85

H36M+
MSCOCO

(10%)

JointCon(I): instance-level 67.71 62.04 62.64
JointCon(J): joint-level 57.19 54.97 67.98

JointCon(I+J): instance-level + joint-level 59.59 56.55 67.38

apart the anchor from “negative samples”. We design three variations of JointCon as below: 1)
JointCon(I) defines “positive samples” as joint-level features extracted from the same image and
“negative samples” as those from different images. 2) JointCon(J) defines “positive samples” as
joint-level features extracted from the same joint label and “negative samples” as those from dif-
ferent labels. Note that it treats joint-level features of the same joint class from different images as
“positive samples”. 3) JointCon(I+J) defines “positive samples” as joint-level features extracted
from the same image and the same joint label, and “negative samples” otherwise.

Table 2 shows that JointCon(J) outperforms the other variations in all three benchmarks. The ac-
curacy gap between JointCon(J) and JointCon(I+J) proves that it is important to learn consistent
representations across instances of the same class. Contrasting representations of the instances in
the same class (i.e., objects or joints in the same class) hinders a backbone from learning useful
high-level priors and degrades the performance of 3DHPSE. As a result, the ImageNet classifi-
cation pre-training rather learns consistent representations of the instances in the same class and
achieves better accuracy than SSL, as shown in Table 1 The other important observation is that both
JointCon(J) and JointCon(I+J) outperform JointCon(I). The accuracy boost by simply adding joint
information to the SSL system demonstrates that the current SSL’s low performance is due to the
instance-level learning characteristic rather than network architecture, data augmentation, or losses.

4.4 PRE-TRAINING ON A HUMAN DATASET

We investigate three pre-training approaches, SSL, 2D annotation-based pre-training, and synthetic
data pre-training. First of all, given the results of Section 4.2, we apply SSL on a human dataset
following (Spurr et al., 2021; Zimmermann et al., 2021). PeCLR (Spurr et al., 2021) that adapted
SimCLR (Chen et al., 2020a;b) to a 3D hand pose and shape estimation, MoCo v2 (Chen et al.,
2020c), the method used by HanCo (Zimmermann et al., 2021), and Swav (Caron et al., 2020),
which is not based on contrastive learning, are experimented. MSCOCO (Lin et al., 2014) is used
as a pre-training dataset. For synthetic data pre-training, we pre-train PARE (Kocabas et al., 2021)
on AGORA (Patel et al., 2021) and SURREAL (Varol et al., 2017). For 2D annotation-based pre-
training, we experiment with part segmentation estimation, DensePose (Güler et al., 2018) estima-
tion, and 2D pose estimation on MSCOCO.

As shown in Table 3 and Figure 4, the SSL methods bring faster convergence, but the final accu-
racy becomes on par with the random initialization baseline. It is also lower than the traditional
classification pre-training. SSL appears to be effective only when significantly less fine-tuning data
(10% Human3.6M + 10% MSCOCO, < 50K) is used. The results coincide with the experimental
results of PeCLR and HanCo; PeCLR was fine-tuned on ∼32K labeled data (Zimmermann et al.,
2019), and HanCo was fine-tuned on ∼64K labeled data (Zimmermann et al., 2021). Synthetic data
pre-training shows a similar tendency with SSL, though it outperforms SSL. On the contrary, 2D
annotation-based pre-training improves accuracy against the random initialization and classification
baselines on all benchmarks. In the semi-supervised setting, the improvement increases up to 12.4%
compared with the random initialization. The convergence speed is much faster than both random
initialization and classification, especially in the semi-supervised setting.
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Table 3: Effects of different pre-training schemes on a human dataset. The red and blue colors
indicate the first and second best scores, respectively.

fine-tuning
data

pre-training
data pre-training method

3DPW
PA-MPJPE↓

H36M
PA-MPJPE↓

MuPoTS
3DPCK↑

H36M+
MSCOCO

(100%)

- random init. 56.37 52.72 67.12
ImageNet
(labeled) classification 55.65 48.36 67.76

MSCOCO
(unlabeled)

PeCLR (Spurr et al., 2021) 57.27 49.84 66.88
MoCo v2 (Chen et al., 2020c) 56.35 50.06 66.95

SwAV (Caron et al., 2020) 58.20 56.50 66.77
AGORA

3DHPSE
56.77 51.96 67.80

SURREAL 56.45 52.51 67.65

MSCOCO
part segmenetation est. 54.37 48.25 68.55

DensePose est. 54.16 49.18 68.43
2D pose est. 53.34 44.89 69.04

H36M+
MSCOCO

(10%)

- random init. 73.37 67.59 57.32
ImageNet
(labeled) classification 63.29 58.79 62.75

MSCOCO
(unlabeled)

PeCLR (Spurr et al., 2021) 71.24 66.58 60.16
MoCo v2 (Chen et al., 2020c) 66.93 62.06 61.36

SwAV (Caron et al., 2020) 75.98 73.83 58.40
AGORA

3DHPSE
64.71 63.17 65.73

SURREAL 62.51 59.10 64.50

MSCOCO
part segmenetation est. 56.80 54.10 67.69

DensePose est. 57.33 54.46 68.02
2D pose est. 56.92 55.31 67.12

Figure 4: Learning curves of PA-MPJPE on 3DPW in the fine-tuning stage when using full fine-
tuning data (Left) and 10% of fine-tuning data (Right). The backbone is initialized with different
weights pre-trained on a human dataset by different pre-training methods.

We think the results of SSL on human data support the statement in Section 4.2 that representa-
tions learned by SSL are hard to embed high-level information related to humans. Synthetic data
pre-training has potential to benefit from rich pose and appearance diversity, but a domain gap prob-
lem from highly different image appearances between synthetic and real images seems to remain.
Compared with SSL and synthetic data pre-training, 2D annotation-based pre-training appears to ef-
fectively transfer high-level priors of humans, such as body articulation, to 3DHPSE. Well-aligned
3D body pose and robustness to occlusion in Figure 5 verify the effectiveness of 2D annotation-
based pre-training. Figure 6 visualizes each human part’s feature activation of PARE (Kocabas
et al., 2021) to further inspect how representations learned by each pre-training approach affect the
human mesh regressor’s understanding of human geometry.

5 DISCUSSION

Our empirical observations propose that we should explore 2D annotation-based pre-training instead
of SSL for 3DHPSE. However, SSL may still have an advantage over 2D annotation-based pre-
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< unlabeled > < synthetic 3D > < real 2D >
image MoCo v2 3DHPSE 2D pose est. MoCo v2 3DHPSE 2D pose est.image

< unlabeled > < synthetic 3D > < real 2D >

Figure 5: Qualitative comparison among different pre-training schemes. We highlighted their repre-
sentative failure cases with red circles.

< unlabeled > < synthetic 3D > < real 2D >
image MoCo v2 3DHPSE 2D pose est. MoCo v2 3DHPSE 2D pose est.image

< unlabeled > < synthetic 3D > < real 2D >
“attention on head” “attention on left elbow”

Figure 6: Feature attention visualization of PARE (Kocabas et al., 2021) for different human parts.

training in the aspect of labeling costs. In this regard, we answer two questions that could help
future 3DHPSE researchers to choose their pre-training strategies.

(i) Does SSL entail a zero cost? No. It is not true in the aspect of data collection. Collecting,
cleaning, and curating data for SSL demand resources (Russakovsky et al., 2015; He et al., 2019;
Kotar et al., 2021). More importantly, the current SSL methods for 3DHPSE (Spurr et al., 2021;
Zimmermann et al., 2021) assume a human to be centered in an input image, which is an unrealistic
setting for in-the-wild images without bounding box labels. Thus, we should consider the labeling
cost of bounding boxes when using SSL (Purushwalkam & Gupta, 2020; Goyal et al., 2021; El-
Nouby et al., 2021). Further discussion is provided in Section B of Appendix.

(ii) Is SSL efficient than 2D annotation-based pre-training? No. SSL pre-trains on massive un-
labeled data, which involves high computational costs. It often results in order of magnitude more
computation than the supervised counterparts (Hénaff et al., 2021). In addition, due to double fea-
ture encoders and complex feature contrasting mechanism, SSL takes more time than 2D annotation-
based pre-training to pre-train on the same amount of pre-training data. Pre-training ResNet-50 (He
et al., 2016) with PeCLR (Spurr et al., 2021), MoCo v2 (Chen et al., 2020c), and the 2D pose
estimator on MSCOCO took 110, 226, and 14 hours respectively, with the four RTX 2080Ti GPUs.

6 CONCLUSION

We have investigated different approaches for pre-training a 3DHPSE backbone. SSL, which has
recently become the major trend in the community, has been thoroughly inspected. 2D annotation-
based pre-training and synthetic data pre-training have also been experimented, since they share the
similar motivation of reducing labeling costs and transferring useful representations to 3DHPSE.
We experimented with multiple methods of each approach on multiple benchmarks to not draw a
conclusion valid in a limited setting. Please also refer to Section D to confirm that our observations
on the three pre-training approaches are preserved regardless of a 3DHPSE mesh regressor. Our
empirical results show that 1) SSL is yet to replace the de facto paradigm of the ImageNet classifi-
cation pre-training, and 2) 2D annotation-based pre-training can effectively transfer the knowledge
to 3DHPSE, despite the least amount of pre-training data. We believe our findings, analysis, and
discussion will significantly influence future research on pre-training for 3DHPSE.
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APPENDIX

In this supplementary material, we provide more experiments and discussions that could not be
included in the main text due to the lack of pages. The contents are summarized below:

A - Effects of SSL and 2D annotation-based pre-training on different amounts of data; InstaVa-
riety(246K) (Kanazawa et al., 2019) and MPII(25K) (Andriluka et al., 2014) are experimented in
addition to MSCOCO(150K) (Lin et al., 2014).

B - Discussion about labeling costs of SSL and 2D annotation-based pre-training

C - Effects of different pre-training approaches, when fine-tuned on different sizes of human data
(30% and 60% of (Human3.6M (Ionescu et al., 2014) + MSCOCO (Lin et al., 2014)))

D - Effects of different human mesh regressors.

A EFFECTS OF PRE-TRAINING ON DIFFERENT AMOUNTS OF DATA

SSL is known to require large-scale pre-training data to be effective (He et al., 2020). In this
regard, we apply PeCLR (Spurr et al., 2021) and MoCo v2 (Chen et al., 2020c) on InstaVari-
ety(246K) (Kanazawa et al., 2019), which is 1.64× bigger than MSCOCO(150K) (Lin et al., 2014).
Interestingly, pre-training on InstaVariety consistently shows worse accuracy in all benchmarks as
shown in Table 4. If we use less fine-tuning data, the accuracy gap is increased, except PeCLR on
Human3.6M. We think the seemingly contradictory results come from the noisy bounding box used
to crop a human from an image. The bounding box of a human in InstaVariety is calculated by mea-
suring minimum and maximum x, y locations of OpenPose (Cao et al., 2017)’s 2D pose estimation.
Since the estimated values inevitably have errors, the bounding box obtained from them may not
produce a human-centered image. Thus, the input distribution could be severely different during
pre-training and fine-tuning, which could lead to counter-intuitive results.

We also provide the results of 2D pose estimation pre-training on MPII(25K) (Andriluka et al.,
2014). Despite much less pre-training data, 2D pose estimation pre-training achieves comparable
accuracy to that of pre-training MSCOCO. This shows the cost-effectiveness of 2D pose estimation
pre-training, which is further discussed in the next section.

Table 4: Effects of pre-training on different amounts of data. InstaVariety(246K) (Kanazawa et al.,
2019), MSCOCO(150K) (Lin et al., 2014), and MPII(25K) (Andriluka et al., 2014) are used for
pre-training. The red and blue colors indicate the first and second best scores, respectively.

fine-tuning
data

pre-training
data pre-training method

3DPW
PA-MPJPE↓

H36M
PA-MPJPE↓

MuPoTS
3DPCK↑

H36M+
MSCOCO

(100%)

InstaVariety
(unlabeled)

PeCLR (Spurr et al., 2021) 57.45 51.17 66.77
MoCo v2 (Chen et al., 2020c) 57.28 51.14 67.53

MSCOCO
(unlabeled)

PeCLR (Spurr et al., 2021) 57.27 49.84 66.88
MoCo v2 (Chen et al., 2020c) 56.35 50.06 66.95

MSCOCO 2D pose est. 53.34 44.89 69.04
MPII 2D pose est. 54.71 46.12 67.61

H36M+
MSCOCO

(10%)

InstaVariety
(unlabeled)

PeCLR (Spurr et al., 2021) 74.65 64.77 56.51
MoCo v2 (Chen et al., 2020c) 76.49 70.42 58.72

MSCOCO
(unlabeled)

PeCLR (Spurr et al., 2021) 71.24 66.58 60.16
MoCo v2 (Chen et al., 2020c) 66.93 62.06 61.36

MSCOCO 2D pose est. 56.92 55.31 67.12
MPII 2D pose est. 62.71 58.39 62.57
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B DISCUSSION ABOUT LABELING COSTS OF SSL AND 2D
ANNOTATION-BASED PRE-TRAINING

Some could value SSL on bounding box-labeled human data more than 2D annotation-based pre-
training, despite the experimental results of the main text. For example, assuming less fine-tuning
data like the main text’s Table 6, MoCo v2 (Chen et al., 2020c) may be a more attractive option
than the 2D pose estimation pre-training, considering that bounding box annotations take less cost
than 2D pose annotations. In this context, we analyze the cost-effectiveness of different pre-training
approaches by comparing the annotation cost in terms of annotation time.

Table 5 supports that the 2D pose estimation pre-training is much more cost-effective, given the
similar annotation time. The state-of-the-art object annotation paper (Papadopoulos et al., 2017)
reported 7 seconds per one bounding box annotation. We assume that the same time would take for
a human bounding box. Liu et al. (Liu & Ferrari, 2017) reported 1.5 seconds per one human key
point. Since a person in MPII (Andriluka et al., 2014) images have 14 key points, we can assume
that the annotation time is 21 seconds per person. Cormier et al. (Cormier et al., 2021) reported 42.8
seconds per bounding box and pose of one person. We take the number of Cormier et al. (Cormier
et al., 2021) in Table 5.

Table 5: Comparison between cost-effectiveness of SSL on bounding box-labeled data and 2D pose
estimation pre-training.

pre-training
method

pre-training
data annotation time

3DPW
PA-MPJPE↓

H36M
PA-MPJPE↓

MuPoTS
3DPCK↑

MoCo v2
(Chen et al., 2020c)

MSCOCO (150K)
(unlabeled) 150K×7s=1050Ks 56.35 50.06 66.95

2D pose est. MPII (25K) 25K×42.8s=1070Ks 53.34 44.89 69.04

C FINE-TUNING ON DIFFERENT SIZES OF HUMAN DATA

We explore the effects of different pre-training approaches in different semi-supervised settings by
varying sizes of fine-tuning data. Experimental results of using 10%, 30%, 60%, and 100% fine-
tuning data of (Human3.6M (Ionescu et al., 2014) + MSCOCO (Lin et al., 2014)) are shown in
Table 6 and Figure 7. SSL starts to surpass the random initialization baseline when fine-tuning data
is reduced to 30%. Synthetic data pre-training also shows a similar tendency. Only 2D annotation-
based pre-training consistently outperforms the random initialization baseline, and the accuracy
margin is enlarged as the fine-tuning data reduces.
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Table 6: 3DHPSE evaluation results on pre-training schemes with different sizes of human data.
We report the best accuracy of each scheme on 3DPW, Human3.6M, and MuPoTS-3D dataset. The
red and blue colors indicate the first and second best scores, respectively.

fine-tuning
data

pre-training
data pre-training method

3DPW
PA-MPJPE↓

H36M
PA-MPJPE↓

MuPoTS
3DPCK↑

H36M+
MSCOCO

(100%)

- random init. 56.37 52.72 67.12
ImageNet
(labeled) classification 55.65 48.36 67.76

MSCOCO
(unlabeled)

PeCLR (Spurr et al., 2021) 57.27 49.84 66.88
MoCo v2 (Chen et al., 2020c) 56.35 50.06 66.95

AGORA
3DHPSE

56.77 51.96 67.80
SURREAL 56.45 52.51 67.65

MSCOCO
DensePose est. 54.16 49.18 68.43

2D pose est. 53.34 44.89 69.04

H36M+
MSCOCO

(60%)

- random init. 57.31 50.61 67.30
ImageNet
(labeled) classification 55.63 51.87 67.34

MSCOCO
(unlabeled)

PeCLR (Spurr et al., 2021) 59.17 52.14 65.80
MoCo v2 (Chen et al., 2020c) 58.57 52.34 66.63

AGORA
3DHPSE

57.23 53.99 68.87
SURREAL 57.69 53.10 66.47

MSCOCO
DensePose est. 54.80 49.38 68.44

2D pose est. 54.41 52.03 67.91

H36M+
MSCOCO

(30%)

- random init. 62.40 56.49 63.20
ImageNet
(labeled) classification 57.85 53.02 65.74

MSCOCO
(unlabeled)

PeCLR (Spurr et al., 2021) 63.43 55.90 63.66
MoCo v2 (Chen et al., 2020c) 60.95 55.09 64.96

AGORA
3DHPSE

60.50 56.05 67.43
SURREAL 57.92 53.93 68.74

MSCOCO
DensePose est. 55.44 52.37 68.40

2D pose est. 53.94 47.39 68.56

H36M+
MSCOCO

(10%)

- random init. 73.37 67.59 57.32
ImageNet
(labeled) classification 63.29 58.79 62.75

MSCOCO
(unlabeled)

PeCLR (Spurr et al., 2021) 71.24 66.58 60.16
MoCo v2 (Chen et al., 2020c) 66.93 62.06 61.36

AGORA
3DHPSE

64.71 63.17 65.73
SURREAL 62.51 59.10 64.50

MSCOCO
DensePose est. 57.33 54.46 68.02

2D pose est. 56.92 55.31 67.12
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< 10% > < 30% >

< 60% > < 100% >

Figure 7: Learning curves of PA-MPJPE on 3DPW in the fine-tuning stage with different weights
pre-trained on different sizes of human data by different pre-training methods.

D EFFECTS OF DIFFERENT HUMAN MESH REGRESSORS

In Table 7 and Table 8, we experiment with different human mesh regressors (Kolotouros et al.,
2019a; Zhang et al., 2021a; Moon et al., 2022a; Moon & Lee, 2020) that have distinct architectures
and achieved state-of-the-art accuracy recently. The best-performing methods of SSL, synthetic
data pre-training, and 2D annotation-based pre-training are used to compare. Overall, the same
tendency is observed. SSL and synthetic data pre-training underperform the classification baseline,
while 2D annotation-based pre-training outperforms it in multiple 3DHPSE benchmarks. This shows
that our observations are not limited to a single 3DHPSE method but can generalize to different
methods. The notable result is that I2L-MeshNet (Moon & Lee, 2020) produces overall the same
accuracy regardless of the pre-training approaches. We conjecture that the different tendency of I2L-
MeshNet comes from its architecture and target representation. While other human mesh regressors
estimate the SMPL (Loper et al., 2015) parameters with MLP layers at the end of their networks,
I2L-MeshNet directly regresses 2.5D locations of mesh vertices in a fully convolutional manner.
The 2.5D representation expresses the xy locations of mesh vertices in the image pixel space and
the z location as root joint-relative depth. As a result, the accuracy of I2L-MeshNet depends on the
segmentation of a human from a cropped human-centric image. This partially posits the problem of
3DHPSE to the foreground estimation, which may less demand on learning complex priors about
humans, such as 3D human body articulation.
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Table 7: Effects of different human mesh regressors. We utilize SPIN (Kolotouros et al., 2019a),
PyMAF (Zhang et al., 2021b), Pose2Pose (Moon et al., 2022a), and I2L-MeshNet (Moon & Lee,
2020) as regressors. We use full data (Human3.6M and MSCOCO) data for fine-tuning. The red
and blue colors indicate the first and second best scores, respectively.

regressor pre-training
data pre-training method 3DPW

PA-MPJPE↓
H36M

PA-MPJPE↓
MuPoTS
3DPCK↑

SPIN

ImageNet classification 64.73 51.21 66.32
MSCOCO MoCo v2 (Chen et al., 2020c) 64.98 57.04 63.98
AGORA 3DHPSE 66.00 55.51 64.99

MSCOCO 2D pose est. 59.78 51.29 66.75

PyMAF

ImageNet classification 60.37 67.23 68.19
MSCOCO MoCo v2 (Chen et al., 2020c) 64.09 69.49 65.49
AGORA 3DHPSE 65.60 71.63 66.72

MSCOCO 2D pose est. 59.04 69.53 70.46

Pose2Pose

ImageNet classification 57.07 44.32 67.80
MSCOCO MoCo v2 (Chen et al., 2020c) 62.11 53.91 65.33
AGORA 3DHPSE 61.00 51.28 66.51

MSCOCO 2D pose est. 56.78 41.79 68.54

I2L-MeshNet
(lixel stage)

ImageNet classification 60.74 39.42 70.76
MSCOCO MoCo v2 (Chen et al., 2020c) 61.11 38.34 71.50
AGORA 3DHPSE 60.48 39.62 71.73

MSCOCO 2D pose est. 60.49 38.99 71.88

Table 8: Effects of different human mesh regressors in semi-supervised setting. We utilize
SPIN (Kolotouros et al., 2019a), PyMAF (Zhang et al., 2021b), Pose2Pose (Moon et al., 2022a),
and I2L-MeshNet (Moon & Lee, 2020) as regressors. We use 10% of (Human3.6M and MSCOCO)
data for fine-tuning. The red and blue colors indicate the first and second best scores, respectively.

regressor pre-training
data pre-training method 3DPW

PA-MPJPE↓
H36M

PA-MPJPE↓
MuPoTS
3DPCK↑

SPIN

ImageNet classification 78.99 75.97 55.00
MSCOCO MoCo v2 (Chen et al., 2020c) 86.85 81.63 48.47
AGORA 3DHPSE 83.73 82.76 54.04

MSCOCO 2D pose est. 64.57 64.96 65.51

PyMAF

ImageNet classification 67.64 73.62 63.76
MSCOCO MoCo v2 (Chen et al., 2020c) 71.90 80.43 58.69
AGORA 3DHPSE 69.65 81.71 62.04

MSCOCO 2D pose est. 59.41 73.84 68.91

Pose2Pose

ImageNet classification 66.85 61.06 64.79
MSCOCO MoCo v2 (Chen et al., 2020c) 74.25 73.33 59.61
AGORA 3DHPSE 69.66 67.04 63.02

MSCOCO 2D pose est. 57.97 54.91 68.45

I2L-MeshNet
(lixel stage)

ImageNet classification 61.47 50.74 71.97
MSCOCO MoCo v2 (Chen et al., 2020c) 62.38 51.88 72.28
AGORA 3DHPSE 61.43 51.72 72.15

MSCOCO 2D pose est. 62.05 51.21 71.50
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