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ABSTRACT

Medical image segmentation remains a challenging problem due to the presence
of hard positive samples that deviate from class centers and are frequently for-
gotten during training. These moderately forgettable samples often reside near
decision boundaries and exhibit inconsistent learning behavior, contributing to
elevated false negative rates and suboptimal boundary delineation. Existing meth-
ods lack effective mechanisms to identify and reinforce such samples, especially
under patch-wise training constraints imposed by large-volume medical data. We
propose an end-to-end online learning framework that systematically mines these
moderately forgettable samples. Our method comprises three complementary
modules: (1) Text-Guided Fusion, which incorporates CLIP-based text embed-
dings to guide semantic prototype learning and enhance feature representation;
(2) Prototype-Based Scoring, which evaluates sample difficulty across intra-class
consistency, inter-class distinction, prediction deviation, and model confidence;
and (3) an Online Forgettable Sample Bank, which adaptively retains and replays
informative samples through curriculum learning. Experiments on multiple pub-
lic datasets demonstrate that our approach consistently reduces false negative rates
and improves boundary accuracy in clinically challenging scenarios.

1 INTRODUCTION

Medical image segmentation is fundamental to computer-aided diagnosis. However, despite ad-
vancements in deep learning architectures Isensee et al. (2021); Hatamizadeh et al. (2022), models
still struggle with complex anatomical structures near decision boundaries, particularly in ambigu-
ous or low-contrast regions that are crucial for distinguishing anatomical boundaries Wang et al.
(2019). Accurately identifying these challenging positive samples is critical for reducing false-
negative rates in clinical practice Tang et al. (2024).

To understand sample difficulty, the concept of forgetting events was introduced Toneva et al. (2019),
which tracks learning dynamics by monitoring when individual training examples transition from
correct to incorrect classification during training, to categorize samples by their learning patterns
Jagielski et al. (2022); Swayamdipta et al. (2020). Unforgettable samples are always correctly clas-
sified, while highly forgettable samples are frequently misclassified and typically correspond to
noisy or extremely hard cases. Moderately forgettable samples, which repeatedly transition between
being learned and forgotten (i.e., correctly and incorrectly classified) during training, represent cases
of intermediate difficulty. These samples typically reside near decision boundaries and contain sub-
tle yet informative features crucial for model generalization Mindermann et al. (2022); Benkert et al.
(2022). Hard positive samples, which are essential for accurate boundary delineation, frequently fall
into this category. Therefore, a principled approach to systematically identify and replay these mod-
erately forgettable samples is essential for forcing the model to learn more robust representations,
thereby enhancing segmentation accuracy Brignac et al. (2023).

Numerous hard sample mining approaches have been proposed, such as network modifications and
loss optimizations Liu et al. (2024a); Li et al. (2023); Lin et al. (2017); Yeung et al. (2022); Salehi
et al. (2017); Taghanaki et al. (2019). However, these often fail to address the intrinsic limitations of
visual analysis for complex structures. As shown in Fig. 1, hard positive samples typically exhibit
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Figure 1: Examples of hard positive samples in medical images. (a) Low-contrast boundary between
kidney and spleen in FLARE2021 dataset Ma et al. (2022). (b) Volume ratio between cyst (blue)
and kidney (red) is approximately 1:100 in KiTS2023 dataset Heller et al. (2023). (c) Glioblastoma
with high shape deviation in BraTS2020 dataset Menze et al. (2014), visualized from a coronal 3D
perspective.

low-contrast boundaries, extreme size variation, or high shape deviation, making them difficult to
distinguish. Multimodal semantic guidance provides a promising direction by incorporating textual
knowledge to enhance visual understanding. In particular, pre-trained Contrastive Language-Image
Pre-training (CLIP) Radford et al. (2021) aligns images and texts within a shared semantic space,
facilitating effective representation learning. By leveraging CLIP text embeddings, models can cap-
ture subtle semantic distinctions often missed by visual features alone, demonstrating effectiveness
in medical imaging applications and improving recognition of challenging cases Liu et al. (2023);
Wang et al. (2022); Zhao et al. (2024).

Additionally, existing strategies developed for natural images Bengio et al. (2009); Kumar et al.
(2010); Fan et al. (2017) often encounter computational bottlenecks when applied to three-
dimensional medical volumes Zhu et al. (2019). To alleviate this, patch-based mining techniques
He et al. (2021); Chen et al. (2024a); Isensee et al. (2021) divide large medical volumes into smaller
patches for localized training. However, such local training overlooks global anatomical structures,
limiting contextual consistency across patients and reducing sensitivity to critical boundary regions.
Prototype learning has emerged as a promising alternative, enabling the learning of class-specific
representative features Liu et al. (2024c); Zhu et al. (2024). However, existing works have yet to
investigate its capacity to identify moderately difficult samples, which are also critical for improving
model robustness.

Therefore, we propose an end-to-end online learning framework that systematically identifies and
reinforces moderately forgettable samples during training. Our main contributions are as follows:

• We introduce Text-Guided Fusion, which leverages frozen CLIP text embeddings to guide
visual-semantic prototype learning. This approach facilitates the generation of representa-
tive class centers, enabling improved identification of challenging positive samples near
class decision boundaries.

• We develop Prototype-Based Scoring, which evaluates sample difficulty using four met-
rics: intra-class consistency, inter-class distinction, prediction deviation, and prediction
confidence. These semantically-enhanced class prototypes robustly identify moderately
forgettable samples.

• We propose an Online Forgettable Sample Bank, which dynamically maintains and re-
plays informative samples through curriculum learning principles. This mechanism en-
hances model attention to critical features and mitigates repeated forgetting.

2 RELATED WORK

This section reviews methods for hard example mining. We first survey established approaches,
categorized into loss- and model-based methods and sampling-based strategies. We then discuss
recent advances in vision-language and foundation models to situate our work within the broader
landscape of medical image segmentation.
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2.1 LOSS FUNCTION AND MODEL-BASED METHODS

This category includes loss modifications and architectural improvements to emphasize hard positive
samples. Online Hard Example Mining (OHEM) Shrivastava et al. (2016) and Focal Loss Lin et al.
(2017) prioritize samples with high training loss, while SegLossBias Liu et al. (2024a) and Region-
related Focal Loss (RFL) Li et al. (2023) leverage anatomical priors and region size. Dice-based
losses Fidon et al. (2018); Salehi et al. (2017), Combo Loss Taghanaki et al. (2019), and Unified
Focal Loss Yeung et al. (2022) address class imbalance and boundary sensitivity through adaptive
weighting. Metric learning frameworks, such as triplet and contrastive losses Wu et al. (2017);
Simo-Serra et al. (2015), further enhance sample separability. Architectural modifications, including
MDNet-Vb Chen et al. (2021) and I2I-3D Merkow et al. (2016), improve fine structure perception
but increase computational complexity. Despite these advances, existing methods often rely on
short-term feedback, struggle with dynamic anatomical variation, and lack scalability for complex
cases.

2.2 SAMPLING-BASED METHODS

Sampling-based methods aim to efficiently select informative or hard samples. Random sampling
Wang et al. (2021) is prevalent but suboptimal. Active strategies Liu et al. (2021); Sun et al. (2022),
Monte Carlo tree search Canévet & Fleuret (2016), dual-branch filtering Cho et al. (2019), and
block-cyclic decomposition Henriques et al. (2013) improve selection but introduce computational
overhead and instability. Curriculum learning Bengio et al. (2009); Fan et al. (2017) and impor-
tance sampling Katharopoulos & Fleuret (2018); Richtárik & Takáč (2016) adapt sample difficulty
over time but offer limited representation in high-dimensional medical data. Patch-based online
mining He et al. (2021); Chen et al. (2024a) integrates shape priors and bandit algorithms but is
constrained by static templates and local context. In summary, sampling strategies lack global se-
mantic understanding and struggle with identifying samples near decision boundaries, motivating
our prototype-aware scoring and text-guided fusion framework.

2.3 VISION-LANGUAGE AND FOUNDATION MODELS

VLMs in Medical Imaging. Large-scale pre-trained VLMs, particularly CLIP Radford et al.
(2021), have been adapted for medical tasks to leverage their rich semantic understanding. Prior
works adapt VLMs for medical imaging, using text prompts as inference-time queries for zero-shot
or referring segmentation Chen et al. (2024b); Liu et al. (2023); Wu et al. (2023); Zeng et al. (2024).
In these methods, the primary objective is to solve a direct visual-textual alignment task for a given
image. In contrast, we employ language as a training-time semantic guidance. Our goal is not to
segment based on a text query, but to inject semantic priors into the feature space itself, creating
robust class-level visual prototypes. This process constructs a semantically structured feature space
where visually diverse instances of the same class are compactly clustered. A well-structured space
is a prerequisite for our core contribution: reliably identifying hard-positive samples based on their
feature-space distance to these semantic anchors.

Foundation Models. While foundation models like the Segment Anything Model (SAM) Kir-
illov et al. (2023) and its medical variants (e.g., MedSAM Ma et al. (2024), SAM-Med3D Wang
et al. (2024a)) excel at class-agnostic, promptable segmentation, they operate as powerful interactive
tools. They address the challenge of delineating an object specified by a user. Our work, however,
targets fully automated semantic segmentation, a non-interactive task where the model must learn
and differentiate intrinsic anatomical semantics across a cohort. The inspiration from foundation
models lies in their use of a powerful internal feature representation. Similarly, our work focuses
on learning a robust feature space, but one that is optimized for automated semantic differentiation
and the identification of hard samples, a critical need for advancing automated diagnostic pipelines
where user-in-the-loop interaction is not feasible.

3 METHOD

We propose an end-to-end framework for medical image segmentation that explicitly mines moder-
ately forgettable hard positive samples (see Fig. 2). The framework integrates three synergistic mod-
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Figure 2: Overview of our proposed framework, which integrates a UNet encoder-decoder architec-
ture with Text-Guided Fusion, Prototype-Based Scoring, and a Forgettable Sample Bank.

ules: (1) Text-Guided Fusion employs frozen CLIP text embeddings to enhance visual-semantic
prototype learning that facilitates subsequent generation of representative class centers for improved
challenging sample identification; (2) Prototype-Based Scoring conducts multi-dimensional sam-
ple difficulty assessment through four metrics with semantically-enhanced prototypes, thereby iden-
tifying informative samples that balance learning difficulty and informativeness; (3) an Online For-
gettable Sample Bank retains and replays informative samples with semantic enhancement to re-
inforce attention to critical features and mitigate repeated forgetting. The following sections detail
each component.

3.1 TEXT-GUIDED FUSION

Hard positive samples in medical image segmentation commonly emerge from complex anatomical
structures, including lesions and organs that exhibit high intra-class variability, ambiguous bound-
aries, or morphologically similar yet semantically distinct regions, as illustrated in Fig. 1 and Fig. 2.
These challenging cases often reside near decision boundaries where visual features alone provide
insufficient discriminative information. Given that vision-only models struggle to capture the rich
semantic relationships essential for robust medical segmentation Liu et al. (2023), we leverage the
CLIP text encoder Radford et al. (2021) to incorporate external semantic knowledge. This enhance-
ment is crucial for forming semantically robust visual features, which serve as the foundation for the
class prototypes used in our subsequent difficulty scoring.

For each foreground class, text embeddings are generated using imaging-modality-specific prompt
templates, such as “A magnetic resonance imaging of a [object]” or “A computerized tomography
of a [object]”, inspired by biomedical language models like BioLinkBERT Yasunaga et al. (2022).
These anatomical-focused prompts leverage CLIP’s pre-trained knowledge of normal anatomical
structures, providing stable semantic cues that generalize across different pathological variations
within each class. The resulting embeddings, fCLIP ∈ R(C−1)×L, where C is the total number of
classes and L is the embedding dimension, represent the text features for all foreground classes
(excluding background). The use of such generic and anatomy-focused prompts is motivated by
their ability to elicit more representative and robust class features from CLIP, reducing bias from
dataset-specific terminology and improving generalization across diverse clinical scenarios. These
text features guide prototype learning, which constructs representative features for each semantic
region and improves segmentation discrimination Liu et al. (2024b); He (2024).

These embeddings then undergo a linear transformation and layer normalization (LN):

f new
CLIP = Reshape(LN(Linear(Reshape(fCLIP)))) (1)
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Visual features fvisual ∈ RB×d×H′×W ′
, where B is the batch size, d is the feature channel dimension,

and H ′,W ′ denotes the spatial resolution after encoding, are processed similarly:

Q = Reshape(f new
CLIP) ∈ R(H′×W ′)×B×d (2)

K,V = Reshape(LN(fvisual)) ∈ R(H′×W ′)×B×d (3)

The transformed text features are then spatially broadcast to match the visual feature dimensions,
forming the query tensor Q. Here, Q denotes the query (text-derived), while K and V are the
key and value matrices (visual-derived), all reshaped for multi-head attention. We adopt multi-head
attention Vaswani et al. (2017) to enable the model to jointly attend to information from multiple
representation subspaces and capture complex cross-modal interactions between semantic and visual
cues:

f ′ = Reshape(MultiHead(Q,K,V)) ∈ RB×d×H′×W ′
(4)

This semantic fusion enriches visual features with anatomical knowledge. These semantically-
informed features are then propagated through the UNet decoder, ensuring that the final output
features, foutput, inherit this enhanced context. The resulting prototypes, computed from foutput, there-
fore capture both visual and semantic information, improving hard positive identification near class
decision boundaries and providing a more stable basis for difficulty assessment.

3.2 PROTOTYPE-BASED SCORING

Building on semantically-enhanced features from Text-Guided Fusion, we develop a Prototype-
Based Scoring mechanism to identify moderately forgettable samples. Traditional gradient- or loss-
based approaches often rely on short-term feedback and suffer from computational overhead Shri-
vastava et al. (2016). While patch-based methods He et al. (2021) provide computational efficiency
for medical images, they lack global semantic context for accurate difficulty assessment. Our ap-
proach addresses these limitations by leveraging semantically-enhanced prototypes to provide both
computational efficiency and semantic-aware patch-level scoring.

Specifically, the UNet decoder output foutput ∈ RB×C×H×W and ground truth y ∈
{0, 1, ..., C−1}B×H×W are used to construct class prototypes:

µcurrent
c =

∑
foutput ·mc∑

mc
(5)

where mb,c,h,w = I[yb,h,w = c] is the class mask and I[·] denotes the indicator function.

To alleviate the instability of prototypes caused by noisy predictions in individual mini-batches and
to better capture temporal dynamics during optimization, we update prototypes using an Exponential
Moving Average (EMA):

µc ← βµc + (1− β)µcurrent
c (6)

We set the EMA coefficient β = 0.99 to ensure stable yet responsive adaptation of prototypes during
training He et al. (2020). Masked features f and masked probabilities p are defined as f = foutput ·m
and p = softmax(foutput) ·m, respectively. This masking ensures that the subsequent scoring metrics
focus exclusively on pixels belonging to their ground-truth class, linking the sample’s score directly
to its positive-class representation.

To comprehensively capture sample difficulty near class decision boundaries, we evaluate samples
across four normalized dimensions: (1) intra-class consistency (T b

1 ), (2) inter-class distinction (T b
2 ),

(3) prediction deviation (T b
3 ), and (4) prediction confidence (T b

4 ). T b
1 measures the dispersion be-

tween pixel features and their class prototype; T b
2 quantifies proximity to other class prototypes;

T b
3 assesses mismatch between prediction and ground truth; T b

4 assesses the model’s lack of confi-
dence for the ground-truth class. While each metric captures a unique aspect of sample difficulty,
they are not mutually exclusive. For instance, T3 directly quantifies the prediction error, which is
often correlated with the other terms. However, their combination provides a more holistic assess-
ment. Together, these metrics prioritize moderately difficult samples situated near class decision
boundaries, which correspond to moderately forgettable cases that play a critical role in enhancing
representation robustness. These metrics are computed as:

T b
1 =

1

CHW

∑
c,h,w

∥fb,c,h,w − µc∥22 (7)
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T b
2 =

1

C(C−1)HW

∑
c̸=c′,h,w

1

∥fb,c,h,w − µc′∥22 + ϵ
(8)

T b
3 =

1

CHW

∑
c,h,w

∥pb,c,h,w −mb,c,h,w∥22 (9)

T b
4 = 1− 1

CHW

∑
c,h,w

pb,c,h,w (10)

where ϵ is a small positive constant to ensure numerical stability. The four terms are normalized
by the number of pixels to bring them to a comparable scale. The unified difficulty score is an
unweighted sum, reflecting a balanced consideration of these complementary aspects:

Scoreb = T b
1 + T b

2 + T b
3 + T b

4 (11)

This scoring strategy reliably identifies moderately forgettable samples that are clinically informa-
tive. By integrating feature geometry (T1, T2) with prediction-based analysis (T3, T4), it provides
a more comprehensive difficulty measure than confidence scores alone, enabling efficient and con-
trollable hard positive mining.

3.3 FORGETTABLE SAMPLE BANK

Building on the difficulty scores derived from Prototype-Based Scoring, we maintain an Online
Forgettable Sample Bank to mitigate repeated forgetting and enable curriculum-inspired continual
learning. Curriculum learning Bengio et al. (2009); Fan et al. (2017) progressively focuses on sam-
ples of varying difficulty to improve model robustness and generalization. By targeting moderately
forgettable samples, which reside near decision boundaries and capture key variations, the bank
ensures that challenging cases are revisited systematically while maintaining training stability.

Focusing on these samples enables the model to better distinguish clinically relevant hard positives,
leading to improved robustness and reduced false negative rates. For each batch of size B, we
identify the top nhard = ⌊B · ρ⌋ hardest samples using:

Ihard = top-k(Scoreb, nhard) (12)

These samples are stored in a memory bank Mbank of size P × B, which is updated by replacing
nhard randomly chosen entries with new hard samples:

Mbank ← RS(Mbank, nhard) ∪ Ihard (13)

Here, RS(Mbank, nhard) denotes randomly sampling nhard entries from the memory bank for re-
placement. Random replacement avoids temporal bias and maintains diversity, while the multi-
dimensional screening via Prototype-Based Scoring ensures that stored samples are both informa-
tive and representative. This design prevents the accumulation of redundant or uninformative data
and strategically focuses on hard positives that contribute most to robust representation learning.

To further enhance learning, every P main batch, a mini-batch is sampled from the memory bank
for replay:

batchmini = RS(Mbank, B) (14)
The replay mechanism samples mini-batches from the memory bank for repeated training, increas-
ing exposure to ambiguous and abnormal regions. By integrating semantic cues from Text-Guided
Fusion, the model can better utilize replayed samples to distinguish subtle lesion features from back-
ground noise, especially in visually challenging areas.

In summary, the Online Forgettable Sample Bank leverages semantic guidance and difficulty-aware
replay to enhance the model’s discrimination of difficult regions and reduce false negatives in chal-
lenging segmentation tasks.

4 EXPERIMENTS AND RESULTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

We evaluate our method on five public medical imaging datasets spanning diverse anatomical struc-
tures and imaging modalities. The Kidney and Kidney Tumor Segmentation (KiTS) 2023 dataset

6
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Heller et al. (2023) includes 489 CT scans. The Brain Tumor Segmentation (BraTS) 2020 dataset
Menze et al. (2014) contains 369 multimodal MRI cases. The Automated Cardiac Diagnosis Chal-
lenge (ACDC) dataset Bernard et al. (2018) provides 100 cardiac MRI cases. The Fast and Low
GPU Memory Abdominal Organ Segmentation (FLARE) 2021 dataset Ma et al. (2022) consists
of 361 abdominal CT scans. The Prostate MRI Image Segmentation (PROMISE) 2012 dataset
Litjens et al. (2014) contains 50 MRI cases.

All datasets are split into training, validation, and test sets in a 4:1:1 ratio. To standardize the
training protocol, models are trained on 2D patches with a batch size of 32 and a patch size of
256 × 256, using stochastic gradient descent (initial learning rate: 0.01) on an NVIDIA RTX 4090
GPU. The loss function is cross-entropy loss, and performance is evaluated using the Dice similarity
coefficient (DSC), 95% Hausdorff distance (HD95), and sensitivity (Sen). Our approach adopts a
2D UNet Ronneberger et al. (2015) as the backbone. To ensure a fair comparison of the proposed
sample mining strategy, all baseline models, including those originally designed for 3D data (e.g.,
UNETR, nnU-Net), were adapted to the same 2D patch-based framework. This ensures performance
differences reflect the core mining mechanism rather than architectural or implementation variations.

4.2 RESULTS AND ANALYSIS

Table 1: Comparison of DSC↑ and Sensitivity (Sens↑) results across different datasets. Bold indi-
cates the best results, italic indicates the second-best results.

Dataset Target UNETR MambaUNet AttentionUNet nnUNet nnUNet+TL nnUNet+BL nnUNet+BDL nnUNet+FL Ours

DSC↑ Sens↑ DSC↑ Sens↑ DSC↑ Sens↑ DSC↑ Sens↑ DSC↑ Sens↑ DSC↑ Sens↑ DSC↑ Sens↑ DSC↑ Sens↑ DSC↑ Sens↑

KiTS2023

Kidney and Masses 0.908 0.889 0.908 0.897 0.888 0.878 0.912 0.899 0.908 0.888 0.912 0.898 0.913 0.900 0.909 0.897 0.917 0.906
Kidney Mass 0.663 0.708 0.699 0.707 0.625 0.611 0.703 0.702 0.700 0.674 0.707 0.699 0.709 0.700 0.705 0.709 0.715 0.707

Tumor 0.626 0.690 0.681 0.692 0.618 0.658 0.687 0.695 0.680 0.666 0.683 0.689 0.689 0.697 0.683 0.699 0.693 0.696
Avg. 0.733 0.763 0.762 0.765 0.710 0.716 0.768 0.766 0.763 0.742 0.767 0.762 0.771 0.766 0.765 0.768 0.775 0.769

BraTS2020

Whole Tumor 0.912 0.903 0.916 0.897 0.910 0.913 0.919 0.901 0.875 0.875 0.910 0.905 0.910 0.905 0.915 0.892 0.918 0.905
Tumor Core 0.846 0.814 0.823 0.812 0.843 0.811 0.836 0.812 0.832 0.809 0.837 0.831 0.832 0.834 0.833 0.813 0.839 0.840

Enhancing Tumor 0.796 0.819 0.781 0.795 0.789 0.815 0.794 0.803 0.785 0.784 0.797 0.812 0.791 0.810 0.781 0.798 0.800 0.805
Avg. 0.851 0.846 0.840 0.835 0.847 0.847 0.850 0.839 0.831 0.823 0.848 0.850 0.844 0.850 0.843 0.835 0.852 0.850

ACDC

Right Ventricle 0.909 0.891 0.901 0.895 0.898 0.891 0.911 0.889 0.908 0.888 0.908 0.890 0.915 0.896 0.901 0.892 0.909 0.903
Myocardium 0.907 0.920 0.911 0.927 0.911 0.927 0.906 0.921 0.907 0.915 0.908 0.919 0.907 0.918 0.906 0.911 0.912 0.924
Left Ventricle 0.946 0.961 0.947 0.955 0.945 0.957 0.947 0.959 0.947 0.962 0.949 0.962 0.947 0.962 0.945 0.959 0.952 0.962

Avg. 0.921 0.924 0.920 0.926 0.918 0.925 0.921 0.923 0.921 0.922 0.922 0.924 0.923 0.925 0.918 0.921 0.925 0.930
PROMISE2012 Prostate 0.851 0.831 0.860 0.833 0.860 0.845 0.872 0.853 0.852 0.815 0.853 0.827 0.862 0.823 0.863 0.842 0.883 0.869

FLARE2021

Liver 0.969 0.968 0.975 0.972 0.968 0.968 0.976 0.971 0.975 0.970 0.977 0.972 0.978 0.972 0.975 0.973 0.982 0.982
Kidney 0.958 0.967 0.962 0.971 0.956 0.965 0.964 0.969 0.963 0.968 0.965 0.969 0.966 0.970 0.962 0.970 0.965 0.974
Spleen 0.948 0.949 0.952 0.953 0.946 0.947 0.954 0.950 0.953 0.950 0.955 0.951 0.963 0.951 0.953 0.952 0.975 0.976

Pancreas 0.768 0.783 0.775 0.791 0.766 0.780 0.782 0.795 0.780 0.789 0.785 0.794 0.796 0.798 0.776 0.802 0.808 0.807
Avg. 0.911 0.917 0.916 0.922 0.909 0.915 0.919 0.921 0.918 0.919 0.920 0.922 0.926 0.923 0.916 0.924 0.932 0.935

Table 2: Comparison of HD95↓ results across different datasets. Bold indicates the best results,
italic indicates the second-best results.

Dataset Target UNETR MambaUNet AttentionUNet nnUNet nnUNet+TL nnUNet+BL nnUNet+BDL nnUNet+FL Ours

KiTS2023

Kidney and Masses 18.6792 15.5281 16.0463 15.8870 16.3882 15.4733 14.8362 15.3346 14.9658
Kidney Mass 63.5917 43.5350 53.5642 45.1208 43.7024 44.8564 46.1955 44.9539 43.2246

Tumor 67.9381 54.6875 73.1334 55.4069 56.0211 55.7482 53.6599 53.8435 55.1206
Avg. 50.0697 37.9168 47.5813 38.8049 38.7039 38.6926 38.2305 38.0440 37.7703

BraTS2020

Whole Tumor 1.9825 1.8586 2.3947 1.9208 1.9301 1.7999 1.8025 1.8238 1.9473
Tumor Core 3.9111 4.4228 4.5787 4.0340 3.5134 3.4437 3.5286 3.2747 3.2612

Enhancing Tumor 3.8810 3.5274 3.8636 3.2727 3.3639 3.4003 3.3654 4.3936 3.3840
Avg. 3.2582 3.2696 3.6123 3.0758 2.9358 2.8813 2.8988 3.1640 2.8642

ACDC

Right Ventricle 0.6783 0.7398 0.9652 0.7086 0.7357 0.7111 0.6751 0.7746 0.5676
Myocardium 0.9235 0.8921 0.9085 0.8853 0.8765 0.8648 0.8527 0.8974 0.8432
Left Ventricle 0.4671 0.3636 0.4545 0.3606 0.4890 0.3939 0.4368 0.4368 0.4242

Avg. 0.6896 0.6652 0.7761 0.6515 0.7004 0.6566 0.6549 0.7029 0.6117
PROMISE2012 Prostate 1.9650 1.8018 1.9231 1.6342 1.7165 1.9079 1.6339 1.7500 1.5000

FLARE2021

Liver 2.2436 2.0065 2.1657 1.9877 1.9532 1.9325 1.8746 2.1118 1.6667
Kidney 0.9877 0.8936 0.9425 0.8824 0.9125 0.8943 0.8722 0.9581 0.5793
Spleen 11.5674 10.9649 11.3246 10.8526 10.7365 10.6258 10.5388 10.4413 3.1437

Pancreas 8.8965 8.4376 8.6543 8.2466 8.1254 8.0246 7.8873 7.4739 3.7504
Avg. 5.9238 5.5756 5.7718 5.4923 5.4319 5.3693 5.2932 5.2463 2.2850

Quantitative Results. To validate our method, we conduct comparisons against two categories of
baselines. First, we benchmark against leading architectures including Transformer-based UNETR
Hatamizadeh et al. (2022), Mamba-based MambaUNet Wang et al. (2024b), and Attention U-Net
Oktay et al. (2018) to demonstrate competitive performance. Second, to directly evaluate our hard-
sample mining contribution, we compare against established difficulty-measuring strategies using
nnU-Net Isensee et al. (2021) as a strong baseline. The baselines include hard-sample-oriented
losses: Tversky Loss (TL) Salehi et al. (2017), Boundary Loss (BL) Kervadec et al. (2019), Bound-
aryDoULoss (BDL) Sun et al. (2023), and Focal Loss (FL) Lin et al. (2017), representing alternative
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Figure 3: Segmentation results comparison on KiTS2023 dataset. First row: predictions for Kidney
(green), Tumor (purple), and Cyst (orange). Second row: error maps with false negatives (FN, red)
and false positives (FP, blue). Input CT images and ground truth are shown on the right.

Figure 4: Class activation maps (CAM) comparison on KiTS2023 and BraTS2020 datasets, high-
lighting regions most influential to model decisions (blue: low activation, red: high activation).

paradigms for measuring sample difficulty. All hard-sample mining methods are implemented on
a unified nnU-Net backbone to ensure fair comparison. The core question is not architectural but
strategic: how to define sample difficulty. Baseline methods leverage implicit difficulty heuristics
from low-level cues (prediction confidence, geometric location), while our method introduces ex-
plicit semantic priors to define difficulty based on feature-space coherence. CLIP serves exclusively
as a tool to instantiate this semantic criterion without providing additional features to the segmenta-
tion backbone. This setup enables direct comparison of a fundamental question: is sample difficulty
better defined by implicit, output-based heuristics or explicit, external semantic priors?

As shown in Table 1, our method consistently achieves superior DSC and sensitivity across diverse
datasets and anatomical targets. Table 2 further demonstrates that our model yields favorable bound-
ary accuracy (HD95), indicating strong performance in both overlap and positive region detection.
Notably, our DSC is slightly lower than that of nnU-Net and certain variants on the Whole Tumor
region. This occurs because Whole Tumor segmentation includes large, well-defined tumor areas
where overlap-based optimization (as in nnU-Net) is highly effective. Methods like nnU-Net+BL
and nnU-Net+BDL, which explicitly optimize for boundary localization, naturally excel in such
scenarios with clear volumetric boundaries. In contrast, our approach leverages semantic priors to
guide hard positive identification over simple volumetric overlap, making it particularly effective
for challenging targets like Tumor Core and Enhancing Tumor where boundary ambiguity is more
pronounced and purely visual cues are insufficient. This is further evidenced by our leading perfor-
mance on Tumor Core, Enhancing Tumor, and other challenging targets. Across most scenarios, the
balance between sensitivity and HD95 achieved by our method underscores its strong generalizabil-
ity.

Qualitative Results. Fig. 3 shows our method delivers precise delineation of complex boundaries
on KiTS2023. Comparison methods incorrectly classify kidney and tumor regions as cysts where
no cysts exist in the ground truth, indicating class confusion between visually similar structures.
Error maps show reduced false negatives and false positives, with greatest gains at organ-tumor
boundaries. This occurs because comparison methods rely on visual features alone, causing mis-
classification of low-contrast regions. Our CLIP semantic guidance provides discriminative infor-
mation beyond visual appearance, while hard positive mining targets ambiguous boundary regions,
preventing kidney-to-cyst and tumor-to-cyst misclassifications.

CAM visualizations in Fig. 4 show that the baseline UNet exhibits weak, scattered activations in
hard positive regions, whereas our method generates concentrated activations within target bound-
aries. Our Forgettable Sample Bank repeatedly trains on specific hard regions, and Text-Guided
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Figure 5: Dynamic evolution of the Online Forgettable Sample Bank on KiTS2023. As training
progresses, the bank shifts from storing large, well-defined anatomical structures to focusing on
moderately forgettable samples like irregularly shaped, low-contrast, or small fragmented regions.

Table 3: Ablation study results on BraTS2020 and FLARE2021 showing contribution of each mod-
ule. Text-Guided Fusion (TGF), Prototype-Based Scoring (PBS), Forgettable Sample Bank (FSB).

Module BraTS2020 FLARE2021

TGF PBS FSB DSC↑ HD95↓ Sens↑ DSC↑ HD95↓ Sens↑

× × × 0.8471 3.3438 0.8391 0.9196 5.6755 0.9201
× ✓ ✓ 0.8511 2.8974 0.8463 0.9228 4.1802 0.9244
✓ × × 0.8472 2.9538 0.8420 0.9218 4.8727 0.9221
✓ ✓ ✓ 0.8520 2.8642 0.8502 0.9321 2.2850 0.9352

Fusion provides semantic constraints focusing on class-relevant features, enabling confident activa-
tion on true positives while suppressing background noise. This is further supported by the dynamic
evolution of our sample bank, which adaptively focuses on such challenging regions as training
progresses, as shown in Fig. 5.

Ablation Analysis. Ablation results (Table 3) on multiple datasets (e.g., FLARE2021) demonstrate
the consistent contribution of each module. The baseline UNet provides the reference. Adding Text-
Guided Fusion improves class discrimination and boundary accuracy, as CLIP semantic embeddings
offer complementary semantic cues. Prototype-Based Scoring and Forgettable Sample Bank are
evaluated jointly, as difficulty-based sample selection must operate on a dynamically updated sam-
ple pool to be effective. Adding Prototype-Based Scoring enhances sample selection, enabling the
model to focus on optimal training difficulty. The Forgettable Sample Bank increases sensitivity by
providing a more consistent supply of informative hard positives. The full combination yields the
best overall performance. More detailed ablation studies and hyperparameter settings are provided
in the Appendix.

5 CONCLUSION

We present an end-to-end framework that addresses the critical challenge of distinguishing visu-
ally similar anatomical structures in medical image segmentation by mining moderately forgettable
samples through CLIP semantic guidance, prototype scoring, and a forgettable sample bank to pre-
vent misclassification and reduce false negatives at organ boundaries. Experiments demonstrate
consistent improvements, with ablation studies confirming each module’s effectiveness in mining
moderately forgettable samples for addressing visual confusion.
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A APPENDIX

This appendix provides supplementary materials, including detailed ablation analyses of key model
components such as prompt templates, sample selection mechanisms, memory bank management
strategies, individual scoring metrics, and hyperparameters. A statement on the use of Large Lan-
guage Models (LLMs) in preparing this manuscript is included in Section A.1.

A.1 STATEMENT ON LLM USAGE

In accordance with conference guidelines, we report the use of a Large Language Model (LLM)
during the preparation of this manuscript. The LLM’s role was strictly limited to improving the
clarity, conciseness, and grammatical correctness of the text. All scientific contributions—including
research ideation, experimental design, and data analysis—were performed by the human authors,
who have reviewed, edited, and take full responsibility for the content of this paper.

A.2 DATA PREPROCESSING

We applied a standard preprocessing pipeline to all datasets to ensure consistency and stable model
training. This pipeline was used for all methods to guarantee a fair comparison.

Image Resampling and Spacing Normalization: All images were resampled to a unified isotropic
voxel spacing. This spacing was set to the median voxel spacing of the dataset. Trilinear interpola-
tion was used for intensity images, while nearest-neighbor interpolation was applied to correspond-
ing segmentation masks to preserve discrete label integrity.

Intensity Normalization: For CT images, Hounsfield Unit (HU) values were first clipped to a clini-
cally relevant range of -1000 to 400 HU. Subsequently, Z-score normalization (subtracting the mean
and dividing by the standard deviation) was applied. For MRI data, we applied Z-score standard-
ization exclusively to foreground voxels (i.e., non-zero pixels) to prevent background regions from
skewing normalization statistics.

Data Augmentation Strategies: During training, a suite of data augmentation techniques was em-
ployed to enhance model robustness and generalization. These techniques included gamma trans-
formation, additive Gaussian noise, Gaussian blurring, and brightness adjustment.

A.3 THEORETICAL MOTIVATION

Our proposed hard-sample mining framework is theoretically grounded in metric learning and prob-
abilistic principles. The objective is to identify samples that are ambiguous or poorly represented
within the learned embedding space.

Prototypes as Estimators of Class-Conditional Distributions. We model the semantically-
enhanced visual features, foutput, as samples drawn from a mixture of class-conditional distribu-
tions. Specifically, for a pixel belonging to class c, its feature vector is a sample from a distribution
p(f |y = c). The class prototypes, µc, which are computed as the running average of features for
class c, serve as online estimators of the distribution means:

µc ≈ E[f |y = c] (15)

The Exponential Moving Average (EMA) update, µc ← βµc + (1 − β)µcurrent
c , acts as a low-pass

filter, providing a stable, noise-reduced estimate of the true class centroids over the non-stationary
training trajectory.
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Difficulty Score as a Proxy for Semantic Uncertainty. A sample is considered ”hard” if its feature
representations are inconsistent with this learned probabilistic structure. Our multi-metric score,
Scoreb, is designed to approximate this feature inconsistency, termed semantic uncertainty. A high
score identifies samples where: (a) The intra-class feature variance is high, indicating that the sam-
ple’s features are far from their own class prototype µc. This corresponds to low likelihood under
the estimated class-conditional distribution p(f |y = c). (b) The inter-class feature distance is low,
meaning the sample’s features are close to one or more incorrect class prototypes µc′ ̸=c. This signi-
fies high ambiguity and potential for misclassification in the embedding space. Therefore, the score
serves as a principled measure of a sample’s deviation from an ideally separated class manifold,
rather than an ad-hoc heuristic.

Memory Bank as Online Importance Sampling. Standard mini-batch SGD assumes that samples
are drawn i.i.d. from the training distribution, an assumption that often fails for rare and correlated
hard samples. The Forgettable Sample Bank, Mbank, combined with periodic replay, can be viewed
as a form of online importance sampling that addresses this issue. The bank constructs an empirical
approximation of the true distribution of hard samples, phard(x,y). By replaying samples from this
bank, we correct the uniform sampling assumption of SGD and dedicate additional gradient updates
to the most informative, high-uncertainty regions of the data distribution. This process is intended
to accelerate convergence and enhance generalization.

A.4 ALGORITHM PSEUDOCODE

Algorithm 1 details the training procedure of our hard positive mining framework, which consists of
three main steps for each training batch:

1. Scoring and Bank Management: Following a forward pass that fuses visual features with
CLIP-based semantic guidance, we compute and update class prototypes using an EMA
for temporal stability. A multi-metric difficulty score is then calculated for each sample
based on these prototypes. The hardest samples identified in the batch are used to update
an online memory bank via random replacement.

2. Standard Optimization: A standard segmentation loss (e.g., Cross-Entropy and Dice) is
computed on the current batch. This loss constitutes the primary component of the total
optimization objective.

3. Replay-Based Reinforcement: Periodically (every F iterations), a mini-batch of hard
samples is drawn from the memory bank. A separate forward pass computes a replay loss
for this batch, which is added to the main loss. The model parameters are then updated
based on the gradients from this combined objective, ensuring that the model reinforces its
learning on the most informative and challenging examples identified over time.

A.5 ANALYSIS OF PROMPT TEMPLATES

Table 4: Impact of different CLIP prompt templates on BraTS2020 and FLARE2021 segmentation
performance.

Prompt Template BraTS2020 FLARE2021

DSC↑ HD95↓ Sens↑ DSC↑ HD95↓ Sens↑
A photo of a [object]. 0.8502 3.0536 0.8452 0.9290 3.2505 0.9280

There is [object] in this magnetic resonance imaging. 0.8477 2.9513 0.8428 0.9270 3.0101 0.9260
A magnetic resonance imaging of a [object]. 0.8520 2.8642 0.8502 0.9324 2.2850 0.9353

To effectively leverage CLIP’s semantic knowledge, text prompts must be aligned with the medical
imaging domain. We tested three templates, with results presented in Table 4. The generic prompt
“A photo of a [object]” yielded strong but suboptimal results. A more descriptive yet complex
prompt, “There is [object] in this magnetic resonance imaging,” slightly degraded performance. In
contrast, the best-performing template, “A magnetic resonance imaging of a [object],” achieved the
highest DSC (0.8520), highest sensitivity (0.8502), and lowest HD95 (2.8642) on BraTS2020, with
similarly superior results on FLARE2021 (DSC: 0.9324, HD95: 2.2850, Sens: 0.9353). This finding
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Algorithm 1 Training Procedure with Prototype-Based Hard Positive Mining
Require: Segmentation model fθ, frozen CLIP text encoder ΦCLIP, training data loader D.
Require: Hyperparameters: learning rate η, EMA coefficient β, mining ratio ρ, bank capacity P ,

replay frequency F .
Ensure: Trained model parameters θ.

1: Initialize model parameters θ, class prototypes µc ← 0, Forgettable Sample Bank Mbank ← ∅.
2: Pre-compute text embeddings fCLIP for all classes using ΦCLIP.
3: iter count← 0.
4: for each batch {x,y} in D do
5: iter count← iter count + 1
6: // Forward Pass with Text-Guided Fusion
7: fvisual ← Encoderθ(x)
8: f ′ ← MultiHeadAttention(fvisual, fCLIP)
9: foutput ← Decoderθ(f ′) ▷ Obtain semantically-enhanced features

10: // Prototype-Based Difficulty Scoring
11: µcurrent

c ←
∑

foutput·I[y=c]∑
I[y=c] ▷ Compute current batch prototypes

12: µc ← βµc + (1− β)µcurrent
c ▷ Update global prototypes via EMA

13: for b = 1, . . . , B do ▷ Iterate over each sample in the batch
14: Compute metrics T b

1 , T b
2 , T b

3 , T b
4 using f boutput,y

b,µc.
15: Scoreb ← T b

1 + T b
2 + T b

3 + T b
4 .

16: end for
17: // Online Forgettable Sample Bank Update
18: nhard ← ⌊B · ρ⌋.
19: Ihard ← top-k({Scoreb}Bb=1, nhard) ▷ Identify indices of hardest samples
20: (xhard,yhard)← (x[Ihard],y[Ihard]).
21: Update Mbank by replacing nhard random entries with (xhard,yhard).
22: // Model Optimization and Replay
23: Lmain ← SegmentationLoss(foutput,y).
24: Ltotal ← Lmain.
25: if iter count mod F = 0 AND |Mbank| ≥ B then
26: (xreplay,yreplay)← RandomSample(Mbank, B).
27: f replay

output ← fθ(xreplay) ▷ Forward pass on replayed samples
28: Lreplay ← SegmentationLoss(f replay

output ,yreplay).
29: Ltotal ← Ltotal + Lreplay.
30: end if
31: Update θ based on gradients from Ltotal.
32: end for

demonstrates that a prompt that is both domain-specific and structurally concise provides the most
effective semantic embeddings for guiding our difficulty scoring.

A.6 ANALYSIS OF MEMORY BANK MANAGEMENT

Table 5: Comparison of Forgettable Sample Bank management strategies on BraTS2020 and
FLARE2021.

Strategy BraTS2020 FLARE2021

DSC↑ HD95↓ Sens↑ DSC↑ HD95↓ Sens↑
FIFO 0.8510 2.9128 0.8487 0.9290 3.1502 0.9280

Score-based Sampling 0.8515 2.9057 0.8579 0.9300 2.4505 0.9310
Random Sampling 0.8520 2.8642 0.8502 0.9324 2.2850 0.9353

The bank update strategy is critical for maintaining sample diversity. As shown in Table 5, we
compare three strategies. First-In-First-Out (FIFO) serves as a simple baseline, while score-based
replacement offers marginal improvements. However, our proposed random sampling strategy con-
sistently yields the best results. We hypothesize that deterministic methods like FIFO and score-
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based replacement can introduce sampling bias, causing the bank to be dominated by common types
of hard samples. In contrast, random sampling avoids this issue by maintaining a more diverse col-
lection of historical hard samples, thereby promoting more robust and generalizable model training.

A.7 ANALYSIS OF SAMPLE SELECTION STRATEGY

Table 6: Comparison of sample selection strategies for Prototype-Based Scoring on BraTS2020 and
FLARE2021.

Selection Strategy BraTS2020 FLARE2021

DSC↑ HD95↓ Sens↑ DSC↑ HD95↓ Sens↑
Loss-based 0.8493 2.9529 0.8485 0.9280 3.3001 0.9270

Random 0.8481 3.0188 0.8443 0.9260 3.5506 0.9250
Our Score 0.8520 2.8642 0.8502 0.9324 2.2850 0.9353

To validate our multi-dimensional scoring mechanism, we compared it against two common base-
lines: random selection and selection based on segmentation loss. As shown in Table 6, random
selection is the least effective, as it fails to target difficult samples. Loss-based selection offers im-
provement but is consistently surpassed by our multi-dimensional scoring. Our method achieves
the highest performance on both datasets, confirming the superiority of a holistic difficulty measure.
While loss primarily reflects prediction error, our feature-space metrics (intra-class consistency and
inter-class distinction) identify challenges related to boundary ambiguity and semantic confusion.
This combination provides a more holistic assessment of sample difficulty.

A.8 ANALYSIS OF INDIVIDUAL SCORING COMPONENTS

Table 7: Ablation study of individual scoring metrics in Prototype-Based Scoring on BraTS2020
and FLARE2021.

T1 T2 T3 T4
BraTS2020 FLARE2021

DSC↑ HD95↓ Sens↑ DSC↑ HD95↓ Sens↑
✓ × × × 0.8481 2.9855 0.8458 0.9270 3.6509 0.9260
× ✓ × × 0.8468 3.0522 0.8416 0.9260 3.9008 0.9250
× × ✓ × 0.8514 2.8972 0.8489 0.9310 2.3503 0.9300
× × × ✓ 0.8456 3.0746 0.8419 0.9250 4.0506 0.9250
✓ ✓ ✓ ✓ 0.8520 2.8642 0.8502 0.9324 2.2850 0.9353

We conducted an ablation study to evaluate the contribution of each of the four scoring components
(T1–T4). Table 7 presents the performance of each metric individually versus their combination.
While T3 (prediction deviation) shows strong individual performance, the synergistic combination of
all four metrics yields superior results. This outcome validates our hypothesis that a comprehensive
difficulty measure requires integrating multiple perspectives. Specifically, T3 and T4 assess difficulty
in the prediction space (error and uncertainty), whereas T1 and T2 evaluate difficulty in the feature
space (intra-class dispersion and inter-class ambiguity). The feature-space metrics are crucial for
identifying samples that are semantically confusing, even if their prediction error is not maximal.
By integrating these distinct views, our framework achieves a more robust identification of hard
samples.

A.9 HYPERPARAMETER SENSITIVITY ANALYSIS

We analyzed the model’s sensitivity to two key hyperparameters: the mining ratio (ρ) and the mem-
ory bank capacity (P ). As shown in Table 8, performance is consistently optimal with ρ = 0.1
and P = 10. For the mining ratio ρ, a value that is too low provides insufficient exposure to
hard samples, while a value that is too high can destabilize training. For the bank capacity P , a
small capacity limits sample diversity, whereas a large one increases computational overhead with-
out commensurate performance gains. These results demonstrate that our method is robust within a
reasonable range of hyperparameter values and highlight the importance of balancing the frequency
and diversity of hard sample replay.
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Table 8: Impact of memory bank capacity (P ) and mining ratio (ρ) on BraTS2020 and FLARE2021
performance.

Mining Ratio (ρ) BraTS2020 FLARE2021

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

DSC↑ 0.8520 0.8513 0.8512 0.8507 0.8511 0.9324 0.9311 0.9302 0.9290 0.9281

Bank Capacity (P ) BraTS2020 FLARE2021

4 6 8 10 12 4 6 8 10 12

DSC↑ 0.8501 0.8512 0.8513 0.8520 0.8515 0.9302 0.9311 0.9316 0.9324 0.9310
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