
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HARDCORELOGIC: CHALLENGING LARGE REA-
SONING MODELS WITH LONG-TAIL LOGIC PUZZLE
GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) have demonstrated impressive performance on
complex tasks, including logical puzzle games that require deriving solutions sat-
isfying all constraints. However, whether they can flexibly apply appropriate rules
to varying conditions, particularly when faced with non-canonical game variants,
remains an open question. Existing corpora focus on popular puzzles like 9x9 Su-
doku, risking overfitting to canonical formats and memorization of solution pat-
terns, which can mask deficiencies in understanding novel rules or adapting strate-
gies to new variants. To address this, we introduce HardcoreLogic, a challenging
benchmark of over 5,000 puzzles across 10 games, designed to test the robustness
of LRMs on the “long-tail” of logical games. HardcoreLogic systematically trans-
forms canonical puzzles through three dimensions: Increased Complexity (IC),
Uncommon Elements (UE), and Unsolvable Puzzles (UP), reducing reliance on
shortcut memorization. Evaluations on a diverse set of LRMs reveal significant
performance drops, even for models achieving top scores on existing benchmarks,
indicating heavy reliance on memorized stereotypes. While increased complexity
is the dominant source of difficulty, models also struggle with subtle rule vari-
ations that do not necessarily increase puzzle difficulty. Our systematic error
analysis on solvable and unsolvable puzzles further highlights gaps in genuine
reasoning. Overall, HardcoreLogic exposes the limitations of current LRMs and
establishes a benchmark for advancing high-level logical reasoning.

1 INTRODUCTION

Recent large reasoning models (LRMs) (Lin et al., 2025b) have demonstrated remarkable perfor-
mance across tasks requiring complex reasoning. Among them, logical puzzle games have emerged
as a particularly prominent benchmark where models need to deduce or search for solutions to
achieve specific goals under logical rules and constraints. Such puzzles probe diverse reasoning
skills, including logical deduction (Lin et al., 2025a), pattern recognition (Chollet et al., 2025), and
rule induction (Li et al., 2025), while featuring well-defined rules and objectives that enable sys-
tematic difficulty control and straightforward evaluation. These characteristics make logical puzzle
games an ideal testbed for assessing and advancing LRMs.

Despite recent successes on benchmarks such as Enigmata (Chen et al., 2025a) and ZebraLogic (Lin
et al., 2025a), whether LRMs are genuinely capable of true logical reasoning, i.e., flexibly apply
appropriate rules to relevant conditions to derive correct conclusions, remains an important question.
Take Sudoku as an example: while most real-world puzzles follow the canonical 9x9 format with
nine 3x3 zones, variants with alternative constraints or irregular subgrids often prove challenging
even for humans. Similarly, existing corpora exhibit a severe imbalance between canonical and
non-canonical logic puzzles, making models prone to overfitting to canonical puzzles (Cohen-Inger
et al., 2025), leading to difficulties in solving non-canonical variants that fall into the long-tail of the
distribution. This limitation manifests in two specific ways: (1) Models recognize only the canonical
form of logical puzzles; when given a variant, they either struggle in understanding the new rules or
ignore them, leading to faulty reasoning. (2) Models develop fixed solution strategies and reasoning
patterns to solve canonical puzzles; even when they successfully understand the variant, they still
apply a mismatched solution strategy, eventually producing errors or being confused.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Irregular Subgrid

Letter Encoding and
Diagonal Constraint gp

t-o
ss-

12
0b

qwen
3-n

ex
t

kim
i-k

2

minim
ax

-m
1

gp
t-o

ss-
12

0b

qwen
3-n

ex
t

kim
i-k

2

minim
ax

-m
1

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Long-tail Transformation

Increase puzzle scale
Add challenging constraints

Use uncommon form
Alter logical rules

Original
HardcoreLogic

Figure 1: Left: Illustrative examples of two long-tail transformed Sudoku. The right top shows
an irregular-subgrid Sudoku, replacing standard 2x2 subgrids with irregular subgrids. The bottom
right shows a letter-encoded Sudoku with diagonal constraints, where each diagonal must contain
all unique symbols. Right: Overview of our long-tail transformation applied to logic puzzle games,
shows that LRMs have consistent and significant degradation on HardcoreLogic.

Existing logic puzzle benchmarks mainly focus on canonical game forms and fail to expose the
aforementioned deficiencies. To address this limitation and provide a detailed inspection of LRMs’
reasoning robustness, we introduce HardcoreLogic, a logic puzzle game benchmark that challenges
models with long-tail variants of puzzles. HardcoreLogic transform common puzzle games along
three dimensions: (1) Increased Complexity (IC) through larger search spaces and more entan-
gled constraints; (2) Uncommon Elements (UE) involving novel rules and altered puzzle forms;
(3) Unsolvable Puzzles (UP) generated from previously solvable puzzles. The left panel of Figure 1
illustrates two examples of Sudoku transformations designed to increase puzzle difficulty. These en-
hancements reduce the likelihood that puzzles in HardcoreLogic appear in training corpora, thereby
limiting gains from memorizing canonical forms or fixed reasoning patterns.

HardcoreLogic comprises over 5, 000 puzzles spanning 10 logical puzzle games, covering logical
deduction, pattern recognition, and sequence searching. Each game is transformed in multiple ways
among the three aforementioned dimensions. Comparing with existing datasets of the same games,
our puzzles exhibit higher theoretical complexity (for IC puzzles and UE puzzles with novel rules)
and higher model perplexity (for UE puzzles with altered forms). Furthermore, our UP puzzles
address the absence of unsolvable logical reasoning tasks in mainstream benchmarks.

We evaluate HardcoreLogic across multiple popular and state-of-the-art (SOTA) LRMs, ranging
from small distilled models to large open/closed-source models (The right panel of Figure 1 com-
pares the performance of multiple LRMs on the Original and HardcoreLogic). All models, including
SOTA models that achieve top performance on baseline benchmarks (e.g., GPT-5), suffer significant
performance degradation on HardcoreLogic. Models with stronger reasoning abilities generally
exhibit smaller relative drops; however, we also observe large-parameter models that score moder-
ately on the baseline but perform poorly on HardcoreLogic, suggesting the presence of puzzle-game
stereotypes in these models. The primary source of difficulty in HardcoreLogic stems from increased
complexity, yet we also identified cases where puzzles with novel rules (without added complexity
or perplexity) still misled many models. For unsolvable puzzles, models often failed to detect un-
solvability and instead produced “partial solutions” that were clearly incorrect.

We further conduct a systematic error analysis to probe the underlying causes of model failures on
HardcoreLogic. For solvable puzzles, we classify erroneous responses into six categories, and find
that factual errors dominate across models, while more powerful models tend to exhibit brute-force
errors, attempting exhaustive searches rather than strategic reasoning. Besides, models’ misunder-
standing of problem constraints and misapplication of rigid rules lead to significant performance
drops. For unsolvable puzzles, our analysis reveals that models performing well on solvable prob-
lems genuinely recognize unsolvability better. However, weaker models like Minimax-M1 may
output ”unsolvable” simply when they fail to find an answer, rather than through true recognition of
logical unsatisfiability. When models fail to recognize unsolvability, we observe that stronger mod-
els mainly fail due to erroneous reasoning or inability to output answers within token budgets, while
weaker models tend to force out solutions even without successfully deriving them. These high-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

light the need to improve models’ deep reasoning capabilities and robustness against degenerate
behaviors. Overall, our contributions are threefold:

• We introduce HardcoreLogic, an enhanced benchmark spanning 10 types of logic puzzle games,
designed to challenge LRMs with long-tail variants of common puzzle games, featuring higher
complexity, novel elements, and unsolvable options.

• We evaluate HardcoreLogic on mainstream and SOTA LRMs, uncovering the limitations of their
reasoning abilities. All models, including the latest SOTA models, show substantial performance
degradation on puzzles with increased complexity or unfamiliar forms, and exhibit varying be-
haviors on unsolvable puzzles.

• We conduct a systematic error analysis of LRMs on HardcoreLogic, revealing diverse failure
modes and suggesting directions for improving the model’s deep reasoning abilities and robust-
ness. In addition, our automatic data construction pipeline provides a scalable protocol for build-
ing model training data and environments.

2 HARDCORELOGIC

In this section, we introduce the HardcoreLogic benchmark, describing the covered logic puzzle
types, the long-tail transformation process with statistical analysis, and a detailed complexity anal-
ysis of long-tail transformations.

2.1 PRELIMINARY: LOGICAL PUZZLE GAMES

In HardcoreLogic, we focus on 10 types of logic games spanning 6 puzzle categories, including 8
challenging subtasks sourced from Enigmata (Chen et al., 2025a), the Zebralogic game from the
ZebraLogic dataset (Lin et al., 2025a), and a classic Hanoi game synthesized by ourselves following
its standard rules. All these three sources constitute the Original data used for comparison with
HardcoreLogic. Specifically, HardcoreLogic covers the following 6 categories: (1) logic puzzle,
(2) grid puzzle, (3) search puzzle, (4) pattern puzzle, (5) graph puzzle and (6) sequential puzzle.
The 10 specific games are Zebralogic, Sudoku, Skyscraper, Kakurasu, Crypto, Navigation,
Binario, Minesweeper, Hanoi and Hitori. See Appendix B.1 for a more detailed introduction.

2.2 LONG-TAIL TRANSFORMATION

Standard logic puzzles are constrained in size, form diversity, and rule design, and thus fail to cap-
ture the irregularity and scale of real-world reasoning. To systematically construct more challenging
evaluation data, we introduce a set of long-tail transformations that extend puzzles along three dis-
tinct dimensions: Increased Complexity, Uncommon Element, and Unsolvable Puzzle.

Taxonomy We categorize transformations into five types from three families:

• Increased Complexity (IC) enhances difficulty by expanding the search space and depth of
reasoning. Search space expansion (IC1) enlarges the number of candidate states by reducing
the number of initial givens or scaling the puzzle size. For example, removing as many digits as
possible while ensuring a unique solution in Binario. Constraint strengthening (IC2) increases
entanglement among constraints to demand longer reasoning chains. For example, in Zebralogic,
instead of Pet-dog = Sport-football+1, we use a looser condition like Pet-dog > Sport-football.

• Uncommon Element (UE) modifies question forms or rules, often inducing out-of-distribution
generalization. Form variation (UE1) introduces new types of question forms, such as applying
constraints onto irregular subgirds and replacing digits with letters in the Sudoku. Rule variation
(UE2) alters or hybridizing the governing principles. For example, in Sudoku, we introduce a
diagonal constraint requiring that digits on both main diagonals must also be distinct.

• Unsolvable Puzzle (UP) deliberately lacks a valid solution, distinguishing them from harder-but-
solvable cases. They are used to examine whether large language models can detect inconsistency
or insufficiency of information, rather than hallucinate plausible but incorrect answers.

Basic statistics The 10 different logic puzzles in HardcoreLogic have different ways of long-tail
transformation types. Table 1 details the aspects of long-tail transformation types that each logic

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

puzzle has. The rules for each logic puzzle and their more specific long-tail transformation details
can be found in the Table 3, and each task may correspond to multiple long-tail transformation types.

Table 1: Statistical details of Original and HardcoreLogic on different games and transformations,
with the second and last column respectively representing the total sample size of Original and Hard-
coreLogic on different games. Note that some puzzles belong to multiple transformation categories,
so row sums may exceed the overall total.

Game Original
Long-tail Transformation

OverallComplexity Element Unsolvable
IC1 IC2 UE1 UE2

Zebralogic 100 × ✓ × × ✓ 400
Sudoku 100 ✓ × ✓ ✓ ✓ 550
Skyscraper 200 × ✓ × ✓ ✓ 800
Kakurasu 49 ✓ ✓ ✓ × ✓ 300
Crypto 300 ✓ × × × ✓ 400
Navigation 100 × ✓ × ✓ ✓ 300
Binario 150 ✓ ✓ × × ✓ 450
Hanoi 140 × × ✓ × ✓ 800
Hitori 100 ✓ × ✓ × ✓ 500
Minesweeper 150 ✓ × ✓ ✓ ✓ 750

Overall 1389 1350 1150 1400 850 1350 5250

2.3 COMPLEXITY ANALYSIS

Binario Sudoku Crypto Hitori Minesweeper
Puzzle

0

10

20

30

40

50

Se
ar

ch
 S

pa
ce

(lo
g

sc
al

e)

Original
HardcoreLogic

Figure 2: Average search space size (in
log10 scale) across five puzzle families.
See Appendix B.4 for detailed results.

To systematically evaluate the hardness introduced by our
long-tail transformations, we conceptualize complexity
as a four-dimensional construct: Search Space Expan-
sion (IC1), Constraint Strengthening (IC2), Form Mu-
tation (UE1), and Rule Mutation (UE2). Each transfor-
mation is associated with dedicated quantitative metrics,
and we compare all generated puzzles against the orig-
inal benchmark. In the following, we present quantita-
tive analyses of these four transformation types to demon-
strate how each contributes to increased puzzle difficulty.

Search space expansion (IC1) This dimension cap-
tures the growth of candidate assignments induced by
empty cells. Closed-form formulas are derived for each
puzzle family (See Appendix B.4). For instance, in Bi-
nario, N empty cells result in a search space of |S| = 2N . Figure 2 shows the average log-scale
search space across five puzzle families, confirming that HardcoreLogic systematically enlarges the
combinatorial space.

Constraint strengthening (IC2) This transformation increases puzzle hardness by introducing
denser logical entanglement.

• For CSP-based puzzles (e.g., Zebralogic, Binario), we encode instances into Z3* and collect:
(i) Decisions: Explicit branching steps made by the solver; (ii) Conflicts: Backtracking events
where partial assignments lead to contradictions. Larger counts indicate more complex search
spaces and stronger constraint interactions, reflecting higher difficulty.

• For graph-based puzzles (Navigation), we apply Dijkstra’s algorithm and record: (i) Generated
Nodes: the number of candidate states created; (ii) Expanded Nodes: the number of states fully
explored. Increases in both values reflect higher search effort.

*Z3 refers to the Satisfiability Modulo Theories (SMT) solver developed by Microsoft Research. (de Moura
& Bjørner, 2008)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

As shown in Figure 3 (light green background), HardcoreLogic instances consistently show higher
complexity than originals.

0 1000 2000
Decisions

0

200

400

600

800

C
on

fli
ct

s

Zebra

Original
HardcoreLogic

0 50 100
Decisions

0

5

10

15

C
on

fli
ct

s

Binario

Original
HardcoreLogic

0 250 500 750
Decisions

0

100

200

300

C
on

fli
ct

s

Kakurasu

Original
HardcoreLogic

2000 4000
Decisions

0

500

1000

1500

C
on

fli
ct

s

Skyscraper

Original
HardcoreLogic

5 10 15
Expanded Nodes

0

5

10

15

20

G
en

er
at

ed
 N

od
es

Navigation

Original
HardcoreLogic

Original HardcoreLogic
2.0

2.5

3.0

3.5

4.0

Pe
rp

le
xi

ty

Sudoku

Original HardcoreLogic
4.2

4.4

4.6

4.8

5.0

5.2

Pe
rp

le
xi

ty

Kakurasu

Original HardcoreLogic
5.0

5.5

6.0

6.5

7.0

7.5

Pe
rp

le
xi

ty

Hanoi

Original HardcoreLogic
5

6

7

8

9

Pe
rp

le
xi

ty

Hitori

5000 10000 15000
Decisions

500

1000

1500

C
on

fli
ct

s

Sudoku-Add diagonal hints

Original
HardcoreLogic

5000 10000 15000
Decisions

500

1000

1500

C
on

fli
ct

s

Sudoku-Add discon hints

Original
HardcoreLogic

0 20000 40000
Decisions

0

1000

2000

3000

4000

5000

C
on

fli
ct

s

Sudoku-Max area indicators

Original
HardcoreLogic

1000 2000 3000
Decisions

100

200

300

400

500

C
on

fli
ct

s

Skyscraper-Add diagonal hints

Original
HardcoreLogic

10 20 30
Expanded Nodes

0

10

20

30

G
en

er
at

ed
 N

od
es

Navigation-Add transfer stations

Original
HardcoreLogic

0 100 200
Decisions

2

3

4

5

6

7

L
og

ic
 C

ha
in

 L
en

gt
h

Minesweeper-Cluster hints

Original
HardcoreLogic

Figure 3: Quantitative comparison of transformation-induced complexity. Panels with light green,
light orange, and light purple backgrounds correspond to IC2, UE1, and UE2 , respectively. In each
panel, dashed lines indicate the mean value of the corresponding metric.

Form mutation (UE1) Form mutation introduces novel symbols or forms that preserve puzzle
validity but complicate comprehension. Since symbolic solvers cannot capture this representational
difficulty, we measure it using perplexity, the inverse probability assigned by a pretrained LRM,
which quantifies how surprising an instance appears. Higher perplexity values indicate that mutated
forms impose greater representational complexity for LRMs. Figure 3 (light orange background)
presents boxplots comparing the perplexity distributions of Original and HardcoreLogic instances;
form mutation consistently results in higher perplexity and thus greater representational difficulty.

Rule mutation (UE2) Rule mutation modifies or extends the logical rules governing puzzles,
forcing solvers to adapt to new structural constraints.

• For CSP-based puzzles, we again use Z3 to measure decisions and conflicts.
• For graph-based puzzles, we evaluate expanded and generated nodes with Dijkstra’s algorithm.

As shown in Figure 3 (light purple background), mutated-rule puzzles consistently yield higher
solver statistics, indicating rule changes intensify reasoning complexity. A notable exception is the
minesweeper dataset with ”landmine clusters”: numerical clues now represent adjacent landmine
clusters, and more clues are added to ensure unique solutions—this reduces the search space, mak-
ing required decisions lower than Original. Yet large models show lower accuracy on this modified
dataset: unlike counting individual mines, models must continuously track landmine cluster connec-
tivity (e.g., judging cluster membership) for reasoning. This exceeds their simple pattern-matching
capabilities, causing performance drops even for powerful models.

3 EXPERIMENT AND RESULTS

3.1 EXPERIMENT SETTINGS

Benchmark models We evaluate HardcoreLogic on multiple open-source and closed-source
LRMs, a full list available in Appendix C.1. All models except Kimi-K2-Instruct are native LRMs,
that is, they support generating a separated reasoning part (usually surrounded by special tokens) be-
fore generating the final output. For hybrid reasoning models that can also generate non-reasoning
responses (e.g., Qwen3 and DeepSeek-v3.1), we always enable reasoning. For Kimi-K2-Instruct,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

we guide the model to perform a chain-of-thought (CoT) reasoning. Appendix C.1 also provides
details of various model configurations.

Generation configuration On open-source models, we limit the reasoning budget to 32, 768 to-
kens before generating the final answer, regardless of their actual context window limitation. More
specifically, we first input the prompt to the model to generate the reasoning part. If the model fin-
ishes reasoning within the budget, we then guide the model to generate the final answer that strictly
follows the predefined JSON schema to eliminate presentation errors. A generation run is consid-
ered correct if and only if the model successfully finishes reasoning and produces a correct answer.
We repeat 4 runs on each sample with decoding temperature T = 0.6. Closed-source models do not
support hard reasoning budget limits, hence we simply limit their total output budget to 32, 768 to-
kens. Furthermore, we sample 600 cases across all games (5 per transformation type per game) due
to expenditure constraints, while remaining repeating 4 runs on each extracted sample. The prompt
templates, including corresponding JSON schema for each game, are listed in Appendix C.2.

3.2 MAIN RESULTS

Overall results Figure 4 illustrates the overall models performance on HardcoreLogic, compared
with Original. Kimi-K2-Instruct showed the greatest decrease in accuracy compared to Original on
HardcoreLogic. Among open-source models, gpt-oss-120b exhibited the highest accuracy on both
datasets, while GPT-5 performed the best in the closed-source models. Minimax-M1 performs the
worst among all models.

gpt-o
ss

-12
0b

gpt-5

qwen
3-2

35
b

dee
pse

ek
-v3

.1

qwen
3-3

0b
-a3

b

gpt-5
-m

ini

qwen
3-n

ex
t

o4-m
ini

se
ed

-oss

dee
pse

ek
-r1

grok-4

gem
ini-2

.5-
pro

grok-3
-m

ini

cla
ude-s

onnet-
4

kim
i-k

2

glm
-4.

5

qwen
3-3

2b

gem
ini-2

.5-
fla

sh

qwen
3-8

b

dee
pse

ek
-qwen

minim
ax

-m
1

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 (%

)

Original Mean
HardcoreLogic Mean
Original
HardcoreLogic

Figure 4: Overall models performance on Original and HardcoreLogic. Dashed lines represent the
average values of each model on the corresponding dataset.

Per-game results Figure 5 shows the comparison of the accuracy of each puzzle on both Original
and the HardcoreLogic across all open-source models.† The overall performance of all puzzles
and models shows a continuous downward trend. For open source models, Binario has the largest
average performance degradation on the HardcoreLogic and Original. Skyscraper has the smallest
decrease, followed by Navigation. These two puzzles are extremely difficult and extremely simple,
which is why they have the smallest decrease.

4 ANALYSIS AND DISCUSSION

4.1 DIFFERENT LONG-TAIL TRANSFORMATION

†Due to the limited number of subtasks in some puzzles and the small sample size for testing such puzzles
on closed-source models, all analysis of per game mainly focuses on open-source models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Original HardcoreLogic
0

50

100

A
cc

ur
ac

y
(%

)

Binario

Original HardcoreLogic

Sudoku

Original HardcoreLogic

Hitori

Original HardcoreLogic

Zebralogic

Original HardcoreLogic

Minesweeper

Original HardcoreLogic
0

50

100

A
cc

ur
ac

y
(%

)

Crypto

Original HardcoreLogic

Kakurasu

Original HardcoreLogic

Hanoi

Original HardcoreLogic

Navigation

Original HardcoreLogic

Skyscraper

Original HardcoreLogic Original mean HardcoreLogic mean

Figure 5: Performance of each puzzle on open-source models.

IC1 IC2 UE1 UE2
Basic Long-tail Transformation

Binario

Crypto

Hanoi

Hitori

Kakurasu

Minesweeper

Navigation

Skyscraper

Sudoku

Zebralogic

Pu
zz

le

-74.09 -2.45 0.00 0.00

-26.58 0.00 0.00 0.00

0.00 0.00 -22.51 0.00

-43.45 0.00 -4.39 0.00

-25.90 -11.96 -7.55 0.00

-25.46 0.00 -0.09 -29.60

0.00 -10.00 0.00 -5.54

0.00 -2.04 0.00 -3.70

-39.06 0.00 -23.11 -13.95

0.00 -33.58 0.00 0.00 -70

-60

-50

-40

-30

-20

-10

0

Figure 6: Effects of long-tail transfor-
mations on puzzle accuracy.

In Section 2, we introduce four methods of long-tail
transformation, including Search Space Expansion (IC1),
Constraint Strengthening (IC2), Form Mutation (UE1),
and Rule Mutation (UE2). Puzzles may also have two dif-
ferent long-tail transformation attributes at the same time.
To quantify the impact of different long-tail transforma-
tions on puzzle difficulty, we fit a weighted multiple lin-
ear regression for each puzzle. The dependent variable
represents the accuracy of the puzzle after undergoing
four different long-tail transformations (IC1, IC2, UE1,
UE2). We weight the number of samples in the data, and
for mixed transformations, the predictive performance of
the model is the sum of its coefficients; the intercept rep-
resents the accuracy without any transformation, which is the average accuracy of each LRM on
Original.

Figure 6 shows the coefficients of four long-tail transformations in the regression model, which
is trained on data from open-source models and reflects their impact on puzzle difficulty. We can
observe that IC1 has the greatest comprehensive impact on the models, as the increase in search
space directly requires the improvement of the models’ memory and reasoning ability. UE1 requires
the models to recognize some uncommon elements. It is worth noting that the parameter UE1
reaches its highest value for Sudoku puzzles, mainly due to the need to recognize irregular nine-grid
patterns, indicating that the models struggles in this scenario. The parameters of the minesweeper
puzzle in UE2 also show that the ”landmine cluster” rule has a significant impact on the models,
which is consistent with our hypothesis in Section 2.

4.2 ERROR ANALYSIS

To probe the underlying causes of LRM failures on HardcoreLogic, we conduct a systematic error
analysis. Based on the comparison between the puzzle, the correct answer, and the model’s complete
responses, we identify six error categories: (1) Misunderstanding of the Logic Puzzle, (2) Mis-
applied Solution Framework, (3) Brute-Force with Excessive Complexity, (4) Factual Errors,
(5) Over Verfication, and (6) Infinite Repetition. This enables us to move beyond aggregate ac-
curacy in how different models fail. We randomly sample 50 erroneous cases from each of four
representative models: gpt-oss-120b, the best-performing closed-source model on HardcoreLogic;
Qwen3-235B, a representative of the Qwen series that we extensively evaluated; Kimi-K2-Instruct,
which experienced the largest performance drop from Original to HardcoreLogic; and Minimax-M1,
the worst-performing model on HardcoreLogic. We employ GPT-5 (OpenAI, 2025b) as a secondary
annotator to classify each case into one of the six categories. Detailed explanation of each category
was shown in Appendix C.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We employ GPT-5 (OpenAI, 2025b), Gemini-2.5-Pro(Gemini Team, 2025), and Claude-Sonnet-
4.5 (Anthropic, 2025) as secondary annotators to classify each case into one of the six categories.
The final label is determined through a majority-vote scheme. In situations where the three models
produce three distinct labels (i.e., no majority), we conduct manual verification. A detailed consis-
tency analysis of this voting-and-adjudication scheme is provided in the Appendix D.3.

Figure 7 shows the error distribution for each model. Overall,

• Misunderstanding and Misapplied errors are particularly prominent in Kimi-K2-Instruct, ac-
counting for roughly 50% of its errors. Notably, Kimi-K2-Instruct also exhibits the largest per-
formance drop from Original to HardcoreLogic, suggesting that this decline is closely associated
with its frequent misunderstanding of puzzles and misapplication of solution frameworks. This
indicates that the model struggles to correctly interpret problem structures and select appropriate
reasoning strategies in more challenging or structurally novel logic problems. Optimization could
involve enhancing problem understanding through structured prompts and step-by-step reason-
ing training, as well as guiding the model to identify problem types and adopt suitable solution
frameworks, combined with symbolic or constraint-based verification.

• Factual errors are the most prevalent, suggesting that during extended reasoning, LRMs often
fabricate facts to fill missing steps, compromising truthfulness and consistency. Mitigation may
involve stronger penalties for factual deviations during fine-tuning or reinforcement learning, and
mechanisms for intermediate reasoning verification. Meanwhile, during manual review, it was
found that the Kimi-K2-Instruct’s significant skipping of steps during reasoning makes it more
prone to introducing information that is not present in the problem or cannot be directly obtained
during the reasoning process, thus making factual type errors more pronounced.

• Brute-Force errors in stronger models (gpt-oss-120b, Qwen3-235B) indicate that their generative
power can lead to inefficient, enumerative strategies. Performance could be improved by training
models to identify problem types and adopt optimal solution frameworks, or by integrating LRM
reasoning with symbolic/constraint solvers to guide search.

gpt-oss-120b

10.0%

8.0%

28.0%

38.0%

16.0%

qwen3-235b

12.0%

12.0%

28.0%

34.0%

12.0%
2.0%

kimi-k2

22.0%

14.0% 4.0%

58.0%
2.0%

minimax-m1

2.0%2.0%

32.0%
24.0%

2.0%

38.0%
Error Type
Misunderstanding
Misapplied
Brute-Force
Factual-Errors
Over-Verfication
Infinite-Repetition

Figure 7: The distribution of error types in HardcoreLogic across the four models.

To compare how model error patterns shift between Original and HardcoreLogic.we also uniformly
sample 50 erroneous Original cases and classify them using the identical model-voting and human-
verification pipeline. This provides a matched error-type distribution for Baseline errors, enabling a
direct comparison against HardcoreLogic results. Figure 8 shows the percentage distribution of six
error categories across the two benchmarks.

• Rule Perturbation Raises Understanding-Related Failures HardcoreLogic introduces greater
rule diversity, non-canonical puzzle structures, and more complex constraint dependencies. These
perturbations substantially weaken models’ robustness in understanding and applying task rules.
As a result, both Misunderstanding and Misapplied errors increase markedly across models.

• Increased Complexity Reduces Plausible-but-Unfaithful Reasoning Over-Verification errors
decline under HardcoreLogic, indicating that models are less able to generate coherent but in-
correct explanations when faced with more complex logical dependencies. Instead of producing
confident and polished but unfaithfu rationales, models tend to break earlier in the reasoning
process, yielding errors that stem from misunderstanding or rule misapplication.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Misu
nders

tanding

Misa
pplied

Brute-
Force

Factu
al-E

rro
rs

Over-
Verf

ica
tio

n

Infin
ite

-R
epeti

tio
n

0

10

20

30

40

50

Pe
rc

en
ta

ge
 (%

)

gpt-oss-120b
Original
HardcoreLogic

Misu
nders

tanding

Misa
pplied

Brute-
Force

Factu
al-E

rro
rs

Over-
Verf

ica
tio

n

Infin
ite

-R
epeti

tio
n

0

10

20

30

Pe
rc

en
ta

ge
 (%

)

qwen3-235b
Original
HardcoreLogic

Misu
nders

tanding

Misa
pplied

Brute-
Force

Factu
al-E

rro
rs

Over-
Verf

ica
tio

n

Infin
ite

-R
epeti

tio
n

0

20

40

60

Pe
rc

en
ta

ge
 (%

)

kimi-k2
Original
HardcoreLogic

Misu
nders

tanding

Misa
pplied

Brute-
Force

Factu
al-E

rro
rs

Over-
Verf

ica
tio

n

Infin
ite

-R
epeti

tio
n

0

10

20

30

40

50

Pe
rc

en
ta

ge
 (%

)

minimax-m1
Original
HardcoreLogic

Figure 8: Comparison of error-type distributions between Original and HardcoreLogic across four
large language models.

4.3 UNSOLVABLE GAMES

gpt-5
-m

ini
gpt-5

grok-4

dee
pse

ek
-qwen

o4-m
ini

grok-3
-m

ini

dee
pse

ek
-r1

gpt-o
ss

-12
0b

glm
-4.

5

gem
ini-2

.5-
pro

dee
pse

ek
-v3

.1

kim
i-k

2

qwen
3-3

0b
-a3

b

se
ed

-oss

qwen
3-2

35
b

qwen
3-n

ex
t

qwen
3-8

b

qwen
3-3

2b

cla
ude-s

onnet-
4

gem
ini-2

.5-
fla

sh

minim
ax

-m
1

Models

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

Figure 9: Overall model performance
on unsolvable puzzles.

Overall results To explore the model’s ability to han-
dle contradictory puzzles, we constructed a batch of un-
solvable puzzles based on each puzzle. Figure 9 shows
the performance of each model in a puzzle-free scenario,
where the overall performance of closed-source models is
better than that of open-source models. To investigate this
phenomenon, we take several open-source models as ex-
amples to analyze the possible problems that models may
encounter when encountering unsolvable puzzles.

Sufficiency analysis To investigate how LRMs han-
dle unsolvable logic puzzles, we analyzed cases where
LRMs correctly labeled puzzles as unsolvable to deter-
mine whether the judgment was a genuine understanding
(Justified Unsolvability) or a heuristic claim due to failure to solve (Unjustified Unsolvability).
We sampled 50 responses from four models and classified each accordingly, revealing differences in
their reasoning behavior, as shown in Figure 10. Stronger models (gpt-oss-120b and Qwen3-235B)
typically provide justified explanations, while weaker models (Minimax-M1) more often output un-
justified “unsolvable” claims. This suggests that the ability to maintain deeper and more consistent
reasoning chains is crucial for producing sufficient unsolvability explanations.

Error analysis We further analyzed the LRMs’ incorrect responses to unsolvable logic puzzles,
categorizing the errors into four types: (1) Erroneous Reasoning, (2) Mandatory Response,
(3) Unable to Deduce, and (4) Infinite Repetition. Detailed explanation of each category is given
in Appendix C.3. Each incorrect response from the four models was classified accordingly, pro-
viding a fine-grained view of how LRMs fail on unsolvable puzzles. As shown in Figure 10, error
distributions vary significantly across models. Stronger models (gpt-oss-120b and Qwen3-235B)
mainly fail through Erroneous Reasoning or being Unable to Deduce, indicating limitations in sus-
taining reasoning depth. By contrast, weaker models (Kimi-K2-Instruct and Minimax-M1) exhibit
higher rates of Mandatory Responses and especially Infinite Repetition, reflecting brittle control over
output structure. These results suggest that future model updates should not only enhance logical
consistency and depth of reasoning but also incorporate stronger mechanisms to prevent degenerate
behaviors such as repetitive loops or forced answers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

gpt-oss-120b qwen3-235b kimi-k2 minimax-m10.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge

UP Sufficient Analysis
Type

Justified Unsolvability
Unjustified Unsolvability

gpt-oss-120b qwen3-235b kimi-k2 minimax-m10.0

0.2

0.4

0.6

Pe
rc

en
ta

ge

UP Error Analysis
Types

Erroneous
Mandatory
Unable to deduce
Infinite-Repetition

Figure 10: Analysis of LRMs’ responses on unsolvable puzzles: the left panel shows correct re-
sponses , and the right panel shows incorrect responses .

5 RELATED WORK

Reasoning benchmarks Logic puzzles aim to test the logical reasoning ability of a model. Re-
searchers have proposed different benchmarks to test the reasoning ability of models in puzzles, in-
cluding deductive reasoning (Wang et al., 2022), inductive reasoning, causal reasoning (Yang et al.,
2024), and mixed reasoning (Luo et al., 2024). The datasets used include synthetic datasets (Chen
et al., 2025a) and collected datasets.Previously, investigators proposed different benchmarks to test
and evaluate data sets. For example, Logicgame (Gui et al., 2025) grades the difficulty of tasks by
evaluating the number of reasoning steps and achieves dual evaluation of the process and the results.
Multi-LogiEval (Patel et al., 2024) systematically evaluated the impact of inference depth on LRM.
However, there are still deficiencies in data diversity, with limited difficulty limits for puzzles and
a lack of high-difficulty reasoning tasks. We introduced various puzzles, increased the difficulty
limit of logical puzzles, performed long-tail transformation on puzzles from multiple aspects, and
evaluated the impact of these changes on model performance.

Long-tail benchmarks Several studies have shown that large language models often excel at
memorization but struggle to generalize to tasks requiring systematic reasoning or complex com-
binatorial problem-solving. For example, Anil et al. (2022) and Wold et al. (2024)highlight that
Transformers can fail to generalize to longer sequences or novel compositional structures. These
findings suggest that LRMs’ apparent reasoning ability may rely heavily on pattern recognition
from training data rather than true algorithmic generalization. To systematically evaluate these lim-
itations, several benchmarks have been proposed that target “long-tail” or challenging reasoning
instances. For example, JustLogic (Chen et al., 2025b), LINT (Li et al., 2024), and SATbench (Wei
et al., 2025) enrich traditional tasks with harder problem instances, extended reasoning chains, or
compositional variations, revealing LRMs’ difficulty in tackling out-of-distribution or rare configu-
rations. Furthermore, Wang et al. (2025) dynamically generate adversarial questions against LRMs.
Building upon these insights, we introduce a new benchmark suite that systematically generates
a wide range of logic puzzles under diverse long-tail transformations. Our dataset provides richer
structural variations and increased reasoning complexity, allowing a more comprehensive evaluation
of LRMs’ generalization and problem-solving capacity beyond what prior benchmarks offer.

6 CONCLUSION

In this paper, we introduce HardcoreLogic, a challenging logic puzzle benchmark comprising over
5,000 puzzles spanning 10 different puzzle games. Our experiments show that LRMs exhibit a sub-
stantial performance drop on HardcoreLogic compared to the Original datasets. This highlights that
current models still struggle in less conventional, long-tail scenarios and often rely on pattern recog-
nition or memorized experience rather than genuine reasoning. At the same time, HardcoreLogic
provides a valuable benchmark for future research, offering a platform to systematically evaluate
and improve the reasoning capabilities of LRMs in diverse and challenging logical contexts.

Ethics statement Original contains samples from existing published datasets including Enigmata
and ZebraLogic, of which we strictly follow the corresponding licenses in data use. Meanwhile

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

HardcoreLogic, we only cover the same logic games but have all puzzles generated independently;
we guarantee the transparency and reproducibility of the generation of HardcoreLogic.

Reproduction statement We publish both Original and HardcoreLogic to the public for reproduc-
tion and future research. We also publish the data generation and evaluation code for reproduction
of our datasets and evaluation results. We make our best effort to ensure deterministic outcomes,
and guarantee so on open-source LRMs; however, due to the black-box, stochastic nature of closed-
source LRMs, we cannot guarantee any precise reproduction on these closed-source models.

REFERENCES

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 38546–38556.
Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_fil
es/paper/2022/file/fb7451e43f9c1c35b774bcfad7a5714b-Paper-Confe
rence.pdf.

Anthropic. Introducing claude 4 (sonnet 4). https://www.anthropic.com/news/claud
e-4, 2025.

ByteDance Seed Team. Seed-oss open-source models. https://github.com/ByteDance
-Seed/seed-oss, 2025.

Jiangjie Chen, Qianyu He, Siyu Yuan, Aili Chen, Zhicheng Cai, Weinan Dai, Hongli Yu, Qiying Yu,
Xuefeng Li, Jiaze Chen, Hao Zhou, and Mingxuan Wang. Enigmata: Scaling logical reasoning
in large language models with synthetic verifiable puzzles. arXiv preprint, May 2025a. doi:
10.48550/ARXIV.2505.19914.

Michael K. Chen, Xikun Zhang, and Dacheng Tao. Justlogic: A comprehensive benchmark for
evaluating deductive reasoning in large language models. arXiv preprint, 2025b. doi: 10.48550
/ARXIV.2501.14851. URL https://arxiv.org/abs/2501.14851.

Francois Chollet, Mike Knoop, Gregory Kamradt, Bryan Landers, and Henry Pinkard. Arc-agi-2:
A new challenge for frontier ai reasoning systems. arXiv preprint, May 2025. doi: 10.48550/A
RXIV.2505.11831.

Nurit Cohen-Inger, Yehonatan Elisha, Bracha Shapira, Lior Rokach, and Seffi Cohen. Forget what
you know about llms evaluations – llms are like a chameleon. arXiv preprint, 2025. doi: 10.485
50/ARXIV.2502.07445. URL https://arxiv.org/abs/2502.07445.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 4963 of Lecture Notes in Computer
Science, pp. 337–340, Budapest, Hungary, March 2008. Springer. doi: 10.1007/978-3-540-788
00-3 24. URL https://doi.org/10.1007/978-3-540-78800-3_24.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/fb7451e43f9c1c35b774bcfad7a5714b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fb7451e43f9c1c35b774bcfad7a5714b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fb7451e43f9c1c35b774bcfad7a5714b-Paper-Conference.pdf
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://github.com/ByteDance-Seed/seed-oss
https://github.com/ByteDance-Seed/seed-oss
https://arxiv.org/abs/2501.14851
https://arxiv.org/abs/2502.07445
https://doi.org/10.1007/978-3-540-78800-3_24

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin,
Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang
Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin
Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong
Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang,
Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao,
Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen
Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma,
Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report. arXiv preprint, December 2024. doi:
10.48550/ARXIV.2412.19437.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint, January 2025. doi: 10.48550/ARXIV.2501.12948.

Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities, June 2025. URL https://storage.goog
leapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf.

GLM-4.5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie,
Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu,
Rui Lu, Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin
Niu, Yuanhao Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen,
Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi
Ge, Chenghua Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng Yin,
Daoyan Lin, Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan, Guo
Wang, Hailong Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai, Haoke
Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan Liu,
Huilong Chen, Ji Li, Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi Wang,

12

https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiayi Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan, Jingxuan
Li, Jingzhao Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang, Liang Xu,
Lin Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan Xu, Mingming
Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu, Shangtong Yang,
Shaoyou Lu, Shijie Li, Shuang Li, Shuang-Li, Shuxun Yang, Sibo Yi, Tianshu Yu, Wei Tian,
Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao Wang, Xiaohan Jia,
Xiaotao Gu, Xiaoying Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan Zhang, Xinze Zhang,
Xiuqing Fu, Xunkai Zhang, Yabo Xu, Yandong Wu, Yida Lu, Yidong Wang, Yilin Zhou, Yiming
Pan, Ying Zhang, Yingli Wang, Yingru Li, Yinpei Su, Yipeng Geng, Yitong Zhu, Yongkun Yang,
Yuhang Li, Yuhao Wu, Yujiang Li, Yunan Liu, Yunqing Wang, Yuntao Li, Yuxuan Zhang, Zezhen
Liu, Zhen Yang, Zhengda Zhou, Zhongpei Qiao, Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zihan
Wang, Zijun Yao, Zikang Wang, Ziqiang Liu, Ziwei Chai, Zixuan Li, Zuodong Zhao, Wenguang
Chen, Jidong Zhai, Bin Xu, Minlie Huang, Hongning Wang, Juanzi Li, Yuxiao Dong, and Jie
Tang. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models. arXiv preprint, August
2025. doi: 10.48550/ARXIV.2508.06471.

Jiayi Gui, Yiming Liu, Jiale Cheng, Xiaotao Gu, Xiao Liu, Hongning Wang, Yuxiao Dong, Jie Tang,
and Minlie Huang. LogicGame: Benchmarking rule-based reasoning abilities of large language
models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 1474–1491,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
5. doi: 10.18653/v1/2025.findings-acl.77. URL https://aclanthology.org/2025.fi
ndings-acl.77/.

Chunyang Li, Weiqi Wang, Tianshi Zheng, and Yangqiu Song. Patterns over principles: The fragility
of inductive reasoning in LLMs under noisy observations. In Wanxiang Che, Joyce Nabende,
Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Com-
putational Linguistics: ACL 2025, pp. 19608–19626, Vienna, Austria, July 2025. Association for
Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1006.
URL https://aclanthology.org/2025.findings-acl.1006/.

Huihan Li, Yuting Ning, Zeyi Liao, Siyuan Wang, Xiang Lorraine Li, Ximing Lu, Wenting Zhao,
Faeze Brahman, Yejin Choi, and Xiang Ren. In search of the long-tail: Systematic generation of
long-tail inferential knowledge via logical rule guided search. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 2348–2370, Miami, Florida, USA, November 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.140. URL https://aclant
hology.org/2024.emnlp-main.140/.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. arXiv
preprint, February 2025a. doi: 10.48550/ARXIV.2502.01100.

Haowei Lin, Xiangyu Wang, Ruilin Yan, Baizhou Huang, Haotian Ye, Jianhua Zhu, Zihao Wang,
James Zou, Jianzhu Ma, and Yitao Liang. Generative evaluation of complex reasoning in large
language models. arXiv preprint, 2025b. doi: 10.48550/ARXIV.2504.02810. URL https:
//arxiv.org/abs/2504.02810.

Man Luo, Shrinidhi Kumbhar, Ming Shen, Mihir Parmar, Neeraj Varshney, Pratyay Banerjee, Somak
Aditya, and Chitta Baral. Towards logiglue: A brief survey and a benchmark for analyzing logical
reasoning capabilities of language models. arXiv preprint, 2024. doi: 10.48550/arXiv.2310.0083
6. URL https://arxiv.org/abs/2310.00836.

MiniMax, Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan,
Changqing Yu, Chao Wang, Cheng Zhu, Chengjun Xiao, Chengyu Du, Chi Zhang, Chu Qiao,
Chunhao Zhang, Chunhui Du, Congchao Guo, Da Chen, Deming Ding, Dianjun Sun, Dong Li,
Enwei Jiao, Haigang Zhou, Haimo Zhang, Han Ding, Haohai Sun, Haoyu Feng, Huaiguang Cai,
Haichao Zhu, Jian Sun, Jiaqi Zhuang, Jiaren Cai, Jiayuan Song, Jin Zhu, Jingyang Li, Jinhao
Tian, Jinli Liu, Junhao Xu, Junjie Yan, Junteng Liu, Junxian He, Kaiyi Feng, Ke Yang, Kecheng
Xiao, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Li, Lin Zheng, Linge Du, Lingyu
Yang, Lunbin Zeng, Minghui Yu, Mingliang Tao, Mingyuan Chi, Mozhi Zhang, Mujie Lin, Nan

13

https://aclanthology.org/2025.findings-acl.77/
https://aclanthology.org/2025.findings-acl.77/
https://aclanthology.org/2025.findings-acl.1006/
https://aclanthology.org/2024.emnlp-main.140/
https://aclanthology.org/2024.emnlp-main.140/
https://arxiv.org/abs/2504.02810
https://arxiv.org/abs/2504.02810
https://arxiv.org/abs/2310.00836

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hu, Nongyu Di, Peng Gao, Pengfei Li, Pengyu Zhao, Qibing Ren, Qidi Xu, Qile Li, Qin Wang,
Rong Tian, Ruitao Leng, Shaoxiang Chen, Shaoyu Chen, Shengmin Shi, Shitong Weng, Shuchang
Guan, Shuqi Yu, Sichen Li, Songquan Zhu, Tengfei Li, Tianchi Cai, Tianrun Liang, Weiyu Cheng,
Weize Kong, Wenkai Li, Xiancai Chen, Xiangjun Song, Xiao Luo, Xiao Su, Xiaobo Li, Xiaodong
Han, Xinzhu Hou, Xuan Lu, Xun Zou, Xuyang Shen, Yan Gong, Yan Ma, Yang Wang, Yiqi
Shi, Yiran Zhong, Yonghong Duan, Yongxiang Fu, Yongyi Hu, Yu Gao, Yuanxiang Fan, Yufeng
Yang, Yuhao Li, Yulin Hu, Yunan Huang, Yunji Li, Yunzhi Xu, Yuxin Mao, Yuxuan Shi, Yuze
Wenren, Zehan Li, Zelin Li, Zhanxu Tian, Zhengmao Zhu, Zhenhua Fan, Zhenzhen Wu, Zhichao
Xu, Zhihang Yu, Zhiheng Lyu, Zhuo Jiang, Zibo Gao, Zijia Wu, Zijian Song, and Zijun Sun.
Minimax-m1: Scaling test-time compute efficiently with lightning attention. arXiv preprint, June
2025. doi: 10.48550/ARXIV.2506.13585.

Moonshot AI. Kimi-K2-Instruct, 2025. URL https://huggingface.co/moonshotai/
Kimi-K2-Instruct.

OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025a. URL https://arxiv.org/abs/
2508.10925.

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/,
2025b.

OpenAI. Introducing gpt-4.1 in the api, April 2025c. URL https://openai.com/index/g
pt-4-1/.

OpenAI. Introducing openai o3 and o4-mini, April 2025d. URL https://openai.com/ind
ex/introducing-o3-and-o4-mini/.

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna Budhiraja, Mutsumi Nakamura, Neeraj Varsh-
ney, and Chitta Baral. Multi-LogiEval: Towards evaluating multi-step logical reasoning ability
of large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
20856–20879, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.1160. URL https://aclanthology.org/202
4.emnlp-main.1160/.

Siyuan Wang, Zhongkun Liu, Wanjun Zhong, Ming Zhou, Zhongyu Wei, Zhumin Chen, and Nan
Duan. From lsat: The progress and challenges of complex reasoning. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 30:2201–2216, 2022. ISSN 2329-9304. doi: 10.1
109/TASLP.2022.3164218.

Siyuan Wang, Zhuohan Long, Zhihao Fan, Xuanjing Huang, and Zhongyu Wei. Benchmark
self-evolving: A multi-agent framework for dynamic LLM evaluation. In Owen Rambow,
Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schock-
aert (eds.), Proceedings of the 31st International Conference on Computational Linguistics, pp.
3310–3328, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL
https://aclanthology.org/2025.coling-main.223/.

Anjiang Wei, Yuheng Wu, Yingjia Wan, Tarun Suresh, Huanmi Tan, Zhanke Zhou, Sanmi Koyejo,
Ke Wang, and Alex Aiken. Satbench: Benchmarking llms’ logical reasoning via automated puzzle
generation from sat formulas. arXiv preprint, 2025. doi: 10.48550/ARXIV.2505.14615. URL
https://arxiv.org/abs/2505.14615.

Sondre Wold, Étienne Simon, Lucas Charpentier, Egor Kostylev, Erik Velldal, and Lilja Øvrelid.
Compositional generalization with grounded language models. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics: ACL 2024,
pp. 3447–3460, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-acl.205. URL https://aclanthology.org/2024.fi
ndings-acl.205/.

xAI. Grok 3 beta — the age of reasoning agents, February 2025a. URL https://x.ai/news/
grok-3.

xAI. Grok 4. https://x.ai/news/grok-4, 2025b.

14

https://huggingface.co/moonshotai/Kimi-K2-Instruct
https://huggingface.co/moonshotai/Kimi-K2-Instruct
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://aclanthology.org/2024.emnlp-main.1160/
https://aclanthology.org/2024.emnlp-main.1160/
https://aclanthology.org/2025.coling-main.223/
https://arxiv.org/abs/2505.14615
https://aclanthology.org/2024.findings-acl.205/
https://aclanthology.org/2024.findings-acl.205/
https://x.ai/news/grok-3
https://x.ai/news/grok-3
https://x.ai/news/grok-4

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint, May 2025. doi: 10.48550/ARXIV.2505.09388.

Zonglin Yang, Xinya Du, Rui Mao, Jinjie Ni, and Erik Cambria. Logical reasoning over natural
language as knowledge representation: A survey. arXiv preprint, 2024. doi: 10.48550/ARXIV.2
303.12023. URL https://arxiv.org/abs/2303.12023.

A USE OF LLMS

We use LLMs at several parts of our work: (1) To construct natural-language versions of Zebralogic,
we used GPT-4o-mini (OpenAI, 2025c) for clue translation from formal mathematical expressions,
with GPT-o4-mini (OpenAI, 2025c) verifying semantic consistency between the mathematical and
translated forms. (2) For response annotation, GPT-5 (OpenAI, 2025b) served as a secondary an-
notator to categorize model responses. (3) During paper preparation, we leveraged GPT-5 to refine
our writing by compressing redundant descriptions and improving narrative conciseness. (4) LLMs
were also employed to assist in literature search, helping us identify and locate relevant prior work.

B BENCHMARK DETAILS

B.1 CATEGORY DEFINITION

Table 2: Logic game categories in HardcoreLogic.

Category Definition

Logic puzzle This type of puzzle provides us with multiple related logical
clues, requiring us to integrate each clue. Zebralogic belong to
this category.

Grid puzzle This type of puzzle provides a grid of different sizes, where the
cells may be blank cells or cells with numbers. Need to fill in the
numbers in blank cells through puzzle rules. Sudoku, skyscraper,
and Binario belong to this category.

Search puzzle This type of puzzle requires searching for the required cells
through puzzle rules. Minesweeper, Hitori, and Kakurasu belong
to this category.

Pattern puzzle This type of puzzle will provide a specific pattern and require us
to understand, extract, and apply that pattern. Crypto belong to
this category.

Graph puzzle This type of puzzle provides some graphic clues that we need to
understand and model to answer questions. Navigation belongs
to this category.

Sequential puzzle This type of puzzle requires us to solve a multi-step puzzle in a
specific order. Hanoi belongs to this category.

In Section 2, we mention that the HardcoreLogic contains puzzles for 6 different categories. Table 2
provides an introduction to their specific definitions.

15

https://arxiv.org/abs/2303.12023

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 PUZZLE DEFINITION AND TRANSFORMATIONS

To provide a clearer view of how we constructed the HardcoreLogic, we include additional details
on each puzzle type. For every puzzle, we present the original rules alongside the applied transfor-
mations. The original rules specify the standard constraints of the puzzle, while the transformations
describe the modifications we introduced to increase reasoning difficulty or adapt the puzzles to
our evaluation framework. Table 3 summarizes these rules and transformations, offering a compre-
hensive reference for reproducibility and further analysis. Figure 11 provides examples of some
long-tail transformations for each puzzle

Table 3: Rules and transformations of each game in HardcoreLogic.

Puzzle Rule Description
Sudoku Original (1) Puzzle categories: Grid puzzle

(2) Puzzle rules:
1. The Sudoku board is a 9 × 9 grid, divided into 9 smaller
3 × 3 subgrids, which includes known cells (numbers 1–9)
and unknown cells.
2. Row constraint: Each row must include all numbers from
1 to 9 without duplication.
3. Column constraint: Each column must include all num-
bers from 1 to 9 without duplication.
4. Subgrid constraint: Each 3 × 3 subgrid must include all
numbers from 1 to 9 without duplication.
(3) Puzzle task: Fill in numbers into unknown cells to sat-
isfy row, column, and subgrid constraints.

Transformation (1) More empty cells and larger grid: Increase the number
of unknown cells or use a 16× 16 grid (subgrid 4× 4).
(2) Irregular subgrid: Divide the 9×9 grid into nine irreg-
ular regions; the three constraints remain unchanged.
(3) Additional constraints:
- Diagonal constraint: Each main and secondary diagonal
must include all numbers from 1 to 9 without repetition.
- Adjacency constraint: The difference between each cell
and its orthogonal neighbors (up, down, left, right) cannot
be 1.
- Maximize box constraint: Divide the 9 × 9 grid into nine
3 × 3 subgrids indexed 1–9. Each puzzle requires one sub-
grid to maximize its score (score = sum of cell index × cell
value).
When generating puzzles with additional constraints, we en-
sure that they have multiple solutions under the original con-
straints and only one solution under these constraints. This
requires more empty cells to ensure this situation. When
comparing the difficulty of such puzzles with the Original
dataset, we compare the difficulty changes between differ-
ent constraints and the entire Original dataset. However,
their search space did not show a significant improvement
compared to the data of IC1 in HardcoreLogic.Therefore,
we categorize it as UE2.
(4) Letter version: Replace numbers 1–9 with letters A–I,
also applied to irregular, diagonal, and adjacency variants.
(5)Unsolvable puzzle:In a Sudoku puzzle, a blank cell en-
ters a ”no valid number can be filled” state, meaning that
the union of its row, column, and range already contains all
numbers from 1 to 9.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Puzzle Rule Description

Kakurasu Original (1) Puzzle categories: Search puzzle
(2) Puzzle rules:
1. The Kakurasu board is a 6 × 6 grid. Numbers at the top
(columns) and on the left (rows) are constraints.
2. Row sum = sum of column indices (1-based) of black
cells in that row.
3. Column sum = sum of row indices (1-based) of black
cells in that column.
(3) Puzzle task: Blacken cells in a 6 × 6 grid so that row/-
column sums equal the given constraints.

Transformation (1) Add blocked cells: Some cells cannot be blackened;
grid sizes include 6× 6 and 7× 7.
(2) Hide partial clues: Some row/column constraints are
hidden (denoted by -1); grid sizes include 6× 6 and 7× 7.
(3) Unsolvable puzzle:First, we generate a solvable puzzle.
Then, we modify some of the clues to make the puzzle un-
solvable—for example, by swapping certain row or column
clues and then verifying that the resulting clues indeed ren-
der the puzzle unsolvable.

Hitori Original (1) Puzzle categories: Search puzzle
(2) Puzzle rules:
1. The Hitori board is a 4x4(5x5) grid. Each cell in the grid
has a number in the range of 1-4(1-5).
2. Connectivity constraint: All cells that have not been
blackened are interconnected(4-connected).
3. Blacked cell constraint: All blackened cells cannot be
adjacent(4-connected).
4. Unique constraint: The numbers in each row and column
cannot be repeated.
(3) Puzzle task: Black some cells in the grid to meet the
connectivity constraint, blacked cell constraint, and unique
constraint mentioned above.

Transformation (1) Larger grid: Upgrade the grid specifications to 6x6 and
7x7.
(2) Encrypted: Encrypt numbers into letters using the fol-
lowing encryption method: In the i-th row (from 1 to grid
size), the cell numbered k now becomes “ ‘A’+(i+k-2) %
grid size”.
(3)Unsolvable puzzle:Generate a Hitori puzzle that cannot
satisfy all of the original puzzle constraints simultaneously.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Puzzle Rule Description

Skyscraper Original (1) Puzzle categories: Grid puzzle
(2) Puzzle rules:
1. The puzzle will be provided with an n×n sized grid , with
blank cells inside. We need to use clues (located around the
grid) to fill in the numbers.
2. Definition and constraints for filling in numbers: Each
row and column can only be filled with numbers 1 to n (the
size of the puzzle), the numbers filled in cannot be repeated,
and each number in 1 to n needs to be filled in at least once.
The number filled in represents the building height at that
location.
3. Clues outside the grid: The clues for each puzzle can be
one of the following two ways.
-The count hint: The numbers outside the grid indicate how
many buildings can be seen from that direction. Tall build-
ings will block shorter buildings, and the height of the build-
ing is represented by the number filled in the blank cell. At
this point, the numbers in the clue indicate how many build-
ings can be seen from that direction towards the other end
(the viewing direction is along the row or column).
-The sum hint: The numbers outside the grid indicate the
height of the building visible from that direction. Tall build-
ings will block shorter buildings, and the height of the build-
ing is represented by the number filled in the blank cell. At
this point, the numbers in the clue represent the sum of the
heights of the buildings that can be seen from that direction
towards the other end (the viewing direction is along the row
or column).
(3) Puzzle task: Fill in numbers in the grid to satisfy Clues
outside the grid.

Transformation (1) Add diagonal constraint: Add Visibility Clues to the
top left, top right, bottom left, and bottom right corners of
the grid. The numbers filled in the table need to satisfy ad-
ditional diagonal constraints in addition to the original four
directions of Visibility Clues. But there is no constraint on
the diagonal that 1-n cannot be repeatedly filled in. (This
constraint only occurs when using the count hint)
(2) Hide partial clues: Hide clues for certain rows and
columns (represented by -1).
(3)Unsolvable puzzle:First, we generate a set of clues that
define a solvable puzzle. Then, we intentionally modify
some of the clues to make the puzzle unsolvable. For
example, consider a contradiction introduced between the
maximum-value clue and the non-minimum clue in a col-
umn: the top clue is set to the maximum value (n), while the
bottom clue is set to a value between 2 and n − 1. This is
inconsistent because a maximum top clue implies the col-
umn must be strictly increasing from 1 to n, in which case
the bottom clue should necessarily be 1.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Puzzle Rule Description

Minesweeper Original (1) Puzzle categories: Search puzzle
(2) Puzzle rules:
1. The Minesweeper board is a 9x9 grid. Each cell may be a
number 0-8 or a hidden cell (represented by “.”, which may
contain landmines or not).
2. The number in a number cell represents the number of
landmines around (8-connected with) it.
(3) Puzzle task: Search for all cells that can be determined
to be landmines through numerical cell clues.

Transformation (1) More mines and larger grid: Increase the number of
landmines in the answer or use a 12x12 grid.
(2) Cluster hint: Convert the meaning of a number cell to
the number of landmine clusters surrounding (8-connected
with) it. Among the 8 neighbors around a certain grid, any
landmines that can be reached by connecting them in 8 di-
rections (up, down, left, right, or diagonal) belong to the
same landmine cluster.
Since the calculation formula for the original search space
of Minesweeper is derived from the rules of the stan-
dard Minesweeper, we measure the search space of re-
gional Minesweeper Puzzles as 2N , where N denotes the
number of unknown cells. The search space of regional
Minesweeper Puzzles in HardcoreLogic is slightly smaller
than that of the Original. Therefore, we categorize it as
UE2.
(3) Letter version: Use letters A-H to represent numbers
1-8 and Z to represent 0.
(4)Unsolvable puzzle:First, we generate a puzzle. We then
randomly select a non-mine tile and modify its displayed
value so that it no longer matches the actual number of sur-
rounding mines. After that, we verify whether this altered
value indeed makes the puzzle unsolvable.

Binario Original (1) Puzzle categories: Grid puzzle
(2) Puzzle rules:
1. The Binario board is an n-times-n grid. Each cell may be
a number cell (0 or 1) or an empty cell (represented by “.”).
2. Non-adjacent constraint: Each row or column should
not have more than two adjacent identical numbers (4-
connected).
3. Quantity constraint: The number of 0’s and 1’s in each
row and column is the same.
(3) Puzzle task: Fill in the empty cells with the numbers
0 and 1 to satisfy the non-adjacent constraint and quantity
constraint.

Transformation (1) More empty cells and larger grid: Increase the number
of empty cells or use a larger grid.
(2) Extra constraint: Each question will add some unique
additional constraints based on the original constraints,
which will be described in the specific question.
(3)Unsolvable puzzle:First, generate a binario puzzle with
only one solution. Then, add a numbered square opposite to
the solution, thus making it unsolvable.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Puzzle Rule Description

Navigation Original (1) Puzzle categories: Graph puzzle
(2) Puzzle rules:
Each question contains some road signs (such as schools,
banks), given some letters, each letter corresponds to a
road sign, and one road sign may correspond to several let-
ters. The description of the question provides some one-way
paths between letters, as well as a starting letter and an end-
ing landmark.
(3) Puzzle task: Find the shortest path from the starting let-
ter to the endpoint landmark.

Transformation (1) More complex paths: Add more complex paths to make
the path from the starting point to the endpoint longer.
(2) Add multi-hop: Add an intermediate target landmark.
(3)Unsolvable puzzle: Destroy the connectivity of the
graph so that the starting point cannot reach the ending
point.

Hanoi Original (1) Puzzle categories: Sequential puzzle
(2) Puzzle rules:
1. Hanoi contains m pegs and n disks. Disks are represented
by numbers (indicating the size of the disk), pegs are rep-
resented by letters, and disks stand above the pegs. Each
puzzle will provide the initial state of the peg and disk, as
well as the target state.
2. Each step moves a disk on top of a peg to another peg
that is either empty or whose current top disk is larger than
the moved disk. Pegs cannot be moved.
(3) Puzzle task: Move the disks on the Pegs from their ini-
tial state to the target state.

Transformation (1) Random start: Initially, the disks are randomly dis-
tributed on the cylinder under the condition of solvability.
(2) Custom target pegs: The target pillar is not necessarily
the last one, but is randomly assigned.
(3) Custom disk order:The order of the disks is not neces-
sarily from small to large, but a specified order
(4)Unsolvable puzzle:The disks are restricted to moving
only to the right, and the problem is verified using the BFS
algorithm to filter out unsolvable problems.

Crypto Original (1) Puzzle categories: Pattern puzzle
(2) Puzzle rules:
1. For the KPA puzzle: Given a set of plaintext and cipher-
text pairs, observe the encryption method to decrypt another
ciphertext.
2. For the KKA puzzle: Given an encryption method, de-
crypt the ciphertext
(3) Puzzle task: Decrypt the ciphertext to get the plaintext

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Puzzle Rule Description

Transformation (1) More random text: Randomly generate more difficult
ciphertext
(2) Two-layer with two samples: For the KPA puzzle,
given two sets of plaintext and ciphertext pairs with the same
encryption rules, decrypt the double-encrypted ciphertext
(3) Multiple layers or Multiple segments: Multi-layer ci-
phertext encryption or the text will be divided into several
parts, and each part will be encrypted using a different en-
cryption method.
(4)Unsolvable Puzzle:Regarding the KPA decryption issue,
two samples are provided, each encrypted using a different
method, leading to an unsolvable problem.

Zebralogic Original (1) Puzzle categories: Logic Puzzle
(2) Puzzle rules:
1. Problem scenario: Each problem will describe a scenario
that includes a specific number of houses.
2. Characteristics: Specific quantity characteristics (e.g.,
name, pet, etc.), each feature has a unique item equal to the
number of houses.
3. Clues: Each question will provide some clues, including
direct correspondence, positional relationships, and other
clues.
4. Constraints: No repetition in the same dimension; each
house uniquely matches one item from each dimension; rea-
soning only based on clues
(3) Puzzle task: Deduce the complete correspondence be-
tween houses and all dimensional characteristics based on
clues.

Transformation (1) Create harder rules: For example, instead of Pet-dog =
Sport-football+1, we use a looser condition like Pet-dog >
Sport-football. We also add more clue types like “1 of 3”
and “imply”.
(2)Unsolvable puzzle:Constructing contradictory con-
straints that render the problem unsolvable.

B.3 TRANSFORMATION TAXONOMY

To systematically characterize the transformations applied in HardcoreLogic, we organize them into
a taxonomy spanning three major categories: increased complexity, uncommon element, and un-
solvable puzzle. Each category is further divided into subcategories, with representative examples
drawn from different puzzle types. This taxonomy (Table 4) illustrates how diverse transforma-
tions reshape the puzzles, either by enlarging the search space, strengthening or mutating rules, or
deliberately creating contradictions to render puzzles unsolvable.

Table 4: Detailed taxonomy of longtail transformations across puzzles.

Family Type Examples
Increased
Complexity

IC1. Search Space
Expansion

Sudoku: More empty cells and larger grid
Binario: More empty cells and larger grid
Crypto: More random text
Crypto: Multiple layers and segements
Hitori: Large grid
Minesweeper: More mines and larger grid

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Family Type Examples

IC2. Constraint
Strengthening

Zebralogic: Create harder rules
Kakurasu: Partial hint
Binario: Extra constraint
Skyscraper: Partial hint
Navigation: More complex paths

Uncommon
Element

UE1. Form Mutation Sudoku: Letter encoding
Sudoku: Irregular subgrid
Kakurasu: Add block cells
Hanoi: Custom target pegs and disk order
Hitori: Encrypted
Minesweeper: Letter encoding

UE2. Rule Mutation Sudoku: Add diagonal constraint
Sudoku: Add Adjacency constraint
Sudoku: Maximize box constraint
Skyscraper: Add diag hint
Minesweeper: Cluster hint
Navigation: Add multi-hop

Unsolvable
Puzzle

Unsolvable Zebralogic: Add conflicting constraint
Sudoku: Add conflicting hint
Skyscraper: Add conflicting constraint
Kakurasu: Add conflicting constraint
Crypto: Two sample with different encryption
method
Minesweeper: Add conflicting hint
Navigation: Destroy the connectivity of the graph
Binario: Add conflicting hints
Hanoi: Limit the direction of disk movemen
Hitori: Generate an initial solution that does not
satisfy the rules

B.4 COMPLEXITY ANALYSIS DETAILS

In Section 2.3, we quantify the difficulty of logic puzzles by calculating the search space. Table 5
lists specific expressions for calculating the search space of a logic puzzle, and Table 6 provides
detailed results for Figure 2.

Table 5: Definition and formula of search space in logic games.
Puzzle Key Parameters |S|

Binario N : The number of empty cells 2N

Sudoku N : The number of empty cells
MN

M : Grid size

Crypto L: Ciphertext length 26L

Minesweeper vi: Number in digital grid i ∏
i C

vi
NiNi: Number of empty cells around digital grid i

Hitori M : Grid size 2M
2

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Irregular Subgrid

Letter Encoding and
Diagonal Constraint

Sudoku

Peg A Peg B Peg C

4
3
2
1

Original Hanoi

Peg A Peg B Peg C

2 1
3

4

Random start

Custom Order: 2-1-3-4

Custom Target Peg

HardcoreLogic Hanoi

=

Extra constraint

More empty cells
 and larger grid

Binario

Example of Clues in Zebralogic on Original and HardcoreLogic

House 1

Name:
Alice

Nationality:
Japanese

Pet:
Dog

House 2

Name:
Bob

Nationality:
English

Pet:
Cat

House 3

Name:
Charlie

Nationality:
German

Pet:
Bird

Original Clues
 1. Japanese lives in House 1
 2. Alice owns a Dog

Hardcore Clues
 1. Nationality of House 1 English
 2. Name in House 2 < House 1 (lex)
 3. Pet in House 1: Dog or Cat

Hide clues

Add blocked cells

Kakurasu

Nearest bank?

Original

Legend
school
bank
store
A is the starting point

Nearest Store?

More complex paths

Nearest bank-> store?

Add multi-hop

2 1

2 3

Hide clues

Diagonal constraint

Skyscraper

M M

M 4

M

Traditional Minesweeper
(Number = Adjacent Mines)

M M

M 2

M

Regional Minesweeper
(Number = Adjacent Mine Clusters)

Traditional Grid
Regional Grid
Count Value (Center Cell)

Connected Mines
Diagonal Connection
Single Mine Cluster

Encrypted

Larger grid

Hitori

KPA: Caesar cipher

YYNSLF ?

KKA: Decryption Example:
XYZ ABC

XZZYXY ?

KPA: Reverse + Caesar

YYNSLF | XZZYXY ?

KKA:
Decryption Example:
1. XYZ ABC
2. ABC EFG

XZZYXY ? ?

Original HardcoreLogic

Figure 11: Examples of some long-tail transformations for each puzzle. Left column: Examples of
Sudoku, Binairo, Kakurasu, Skyscraper, and Hitori. Right column: Examples of Hanoi, Zebralogic,
Navigation, Minesweeper and Crypto.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: Search space sizes of puzzles in Table 5 from Original and HardcoreLogic respectively.
Puzzle Dataset Mean Median

Binario Original 1.18× 102 6.40× 101

HardcoreLogic 5.43× 1014 1.41× 1014

Sudoku Original 4.08× 1026 6.46× 1024

HardcoreLogic 2.10× 1048 3.04× 1052

Crypto Original 4.97× 1021 3.29× 1020

HardcoreLogic 1.31× 1033 1.35× 1031

Hitori Original 1.48× 106 1.48× 106

HardcoreLogic 6.22× 1012 6.22× 1012

Minesweeper Original 2.00× 108 1.30× 108

HardcoreLogic 3.03× 1018 8.18× 106

C EXPERIMENT DETAILS

C.1 MODEL AND CONFIGURATION

We categorize the LLMs that we use into three types: open-source large models, open-source small
models, and closed-source models. Table 7 lists all candidate models with their parameter sizes.

Table 7: Candidate LLMs for experiments. A “closed” size indicates a closed-source model.
Family Model Size
GPT GPT-5 (OpenAI, 2025b) closed

GPT-5 mini (OpenAI, 2025b) closed
o4 mini (OpenAI, 2025d) closed

Grok Grok 4 (xAI, 2025b) closed
Grok 3 mini (xAI, 2025a) closed

Gemini Gemini 2.5 Pro (Gemini Team, 2025) closed
Gemini 2.5 Flash (Gemini Team, 2025) closed

Claude Claude Sonnet 4 (Anthropic, 2025) closed

DeepSeek DeepSeek-V3.1 (DeepSeek-AI et al., 2024) 671B
DeepSeek-R1-0528 (DeepSeek-AI et al., 2025) 671B

Qwen Qwen3-235B-A22B-Thinking-2507 (Yang et al., 2025) 235B
MiniMax MiniMax-M1-40k (MiniMax et al., 2025) 456B
GLM GLM-4.5 (GLM-4.5 Team et al., 2025) 358B
Kimi Kimi-K2-Instruct (Moonshot AI, 2025) 1T

GPT gpt-oss-120b (OpenAI, 2025a) 120B
DeepSeek DeepSeek-R1-0528-Qwen3-8B (DeepSeek-AI et al., 2025) 8B
Qwen Qwen3-Next-80B-A3B-Thinking (Yang et al., 2025) 80B

Qwen3-32B (Yang et al., 2025) 32B
Qwen3-30B-A3B-Thinking-2507 (Yang et al., 2025) 30B
Qwen3-8B (Yang et al., 2025) 8B

Seed Seed-OSS-36B-Instruct (ByteDance Seed Team, 2025) 36B

A few notes:

• We observe in experiments that GPT-5, GPT-5 mini, and o4 mini tend to exceed the 32, 768 token
budget more often when choosing the “high” reasoning level. Therefore, we select the “medium”
reasoning level to encourage generating valid responses within the limit.

• For gpt-oss-120b, we keep enabling the “high” reasoning level as this model is not prone to the
above issue. Following OpenAI’s official guidance, we utilize the system prompt to inject this
setting.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

• Kimi-K2-Instruct is not an LRM, hence we ask the model to perform CoT in the system prompt.
More specifically, we adopt a two-step generation approach: first, generate a reasoning output
wrapped between a pair of special tokens, and then a final answer based on the original prompt
and the generated CoT.

C.2 PROMPT TEMPLATE

To ensure consistency and reproducibility across all puzzle types, we constructed prompt templates
using a structured format. Each template specifies the puzzle description, the task instruction, and
a standardized JSON output schema. We adopted a Jinja2-style template language so that puzzle
instances can be instantiated automatically by substituting parameters such as grid size n and puzzle
content. Below, we present the detailed templates for each puzzle family.

Sudoku Prompt Template

Puzzle to Solve
{% set n = (subs | length) - 1 %}
A {{ n }}x{{ n }} sudoku puzzle is a cell grid with {{ n }} rows

and {{ n }} columns.
The grid is divided into {{ n }} zones, each with {{ n }} cells,

outlined with ‘@‘.
Each cell contains exactly one of the {{ n }} candidate elements:

{% for c in subs[1:] %}‘{{ c }}‘{% if not loop.last %}, {% endif
%}{% endfor %}.

The goal is to fill all empty cells (denoted as ‘.‘) with one of
these elements.

Each candidate element must appear exactly once in every row.
Each candidate element must appear exactly once in every column.
Each candidate element must appear exactly once in every zone.{% if

diag %}
EXTRA: Each candidate element must appear exactly once in the two

diagonals.{% endif %}{% if discon %}
EXTRA: Adjacent cells cannot have adjacent elements, e.g., ‘{{ subs

[2] }}‘ and ‘{{ subs[3] }}‘ cannot be next to each other.{%
endif %}{% if irzone %}

WARNING: Zones are NOT regular squares! Pay attention to their
outlines!{% elif mc_box >= 0 %}

EXTRA: The score of a zone is the sum of ‘cell_index*cell_value‘ of
all cells in the zone,

where cells are indexed as 1 to {{ n }} from left to right, from
top to bottom;

the complete puzzle should satisfy that zone {{ mc_box + 1 }} has
the highest score,

where zones are also indexed from 1 to {{ n }} from left to right,
from top to bottom.{% endif %}

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above sudoku puzzle.
If the puzzle is unsolvable, output ‘null‘ as the solution in the

following json format:

{
"solvable": false,
"solution": null
}

Otherwise, present your solution in the following json format:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

{
"solvable": true,
"solution": [
{% for r in range(n) %}[{% for c in range(n) %}"_"{% if c < n - 1

%}, {% endif %}{% endfor %}]{% if r < n - 1 %},{% endif %}
{% endfor %}]
}

where each ‘_‘ represents the final element in the corresponding
cell.

Kakurasu Prompt Template

Puzzle to Solve

A {{ n_row }}x{{ n_col }} kakurasu puzzle is a cell grid with {{
n_row }} rows and {{ n_col }} columns.

Rows are numbered 1 to {{ n_row }}, and columns numbered 1 to {{
n_col }}.

The goal is to mark cells to satisfy the following column and row
constraints.

On top of the puzzle, a row of {{ n_col }} numbers give the **
column** constraints --- the row index sum of

all cells **marked as ‘O‘** in each column; a ‘-1‘ indicates that
the column has no constraint.

At the beginning of each row, a number gives the **row** constraint
--- the column index sum of

all cells **marked as ‘O‘** in the row; a ‘-1‘ indicates that the
row has no constraint.

The initial grid consists of ‘.‘ and ‘X‘ cells, and only ‘.‘ cells
can be marked as ‘O‘;

‘X‘ cells **cannot** be marked as ‘O‘.

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above kakurasu puzzle.
If the puzzle is unsolvable, output ‘null‘ as the solution in the

following json format:

{
"solvable": false,
"solution": null
}

Otherwise, present your solution in the following json format:

{
"solvable": true,
"solution": [
{% for r in range(n_row) %}[{% for c in range(n_col) %}_{% if c <

n_col - 1 %}, {% endif %}{% endfor %}]{% if r < n_row - 1 %},{%
endif %}

{% endfor %}]
}

where each ‘_‘ represents whether the corresponding cell is
marked as ‘O‘ (‘true‘) or not (‘false‘).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Hitori Prompt Template

Puzzle to Solve

A {{ n }}x{{ n }} hitori puzzle is a cell grid with {{ n }} rows
and {{ n }} columns.

The goal is to erase certain cells so that the cells left in each
row and in each column are unique.

Erased cells cannot be 4-adjacent, and **all** non-erased cells
must be 4-connected.

A braced cell (‘{x}‘) cannot be erased, and no more than 3 of its
8-adjacent cells can be erased.{% if encrypted %}

WARNING: The puzzle is encrypted into letters!
In row i (from 1 to {{ n }}), a cell with number k now becomes ‘’A’

+ (i + k - 2) % {{ n }}‘.
For example, in row 1 ‘1‘ becomes ‘A‘, but in row 2 ‘1‘ becomes ‘B‘

and ‘{{ n }}‘ becomes ‘A‘.
Decrypt the puzzle back to numbers before solving it.
{% endif %}

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above hitori puzzle.
If the puzzle is unsolvable, output ‘null‘ as the solution in the

following json format:

{
"solvable": false,
"solution": null
}

Otherwise, present your solution in the following json format:

{
"solvable": true,
"solution": [
{% for r in range(n) %}[{% for c in range(n) %}_{% if c < n - 1 %},

{% endif %}{% endfor %}]{% if r < n - 1 %},{% endif %}
{% endfor %}]
}

where each ‘_‘ represents whether the corresponding cell is **
erased** (‘true‘) or not (‘false‘).

Skyscraper Prompt Template

Puzzle to Solve

A {{ n }}x{{ n }} skyscraper puzzle is a cell grid with {{ n }}
rows and {{ n }} columns.

Each cell contains exactly one of the numbers 1 to {{ n }},
representing the "height" of the cell.

Each number must appear exactly once in every row and every column.
Looking from a side, a cell in the front blocks **all** cells **

behind** it that are **not taller**.
The hint of a row/column/diagonal looking from a side is the {{ vv

}} of cells
in the row/column/diagonal that are not blocked; a number of ‘-1‘

means no constraint.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

On top of the puzzle, there is a row of {{ n + 2 }} numbers:
the first number is the hint of the main diagonal looking from top

left;
the next {{ n }} numbers are the hints of the columns looking from

the top;
the last number is the hint of the sub diagonal looking from top

right.
Then, at the beginning of each grid row is the hint of that row

looking from the left;
at the end of that row is the hint of that row looking from the

right.
Finally, below the puzzle, there is a row of {{ n + 2 }} numbers:
the first number is the hint of the sub diagonal looking from

bottom left;
the next {{ n }} numbers are the hints of the columns looking from

the bottom;
the last number is the hint of the main diagonal looking from

bottom right.

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above skyscraper puzzle.
If the puzzle is unsolvable, output ‘null‘ as the solution in the

following json format:

{
"solvable": false,
"solution": null
}

Otherwise, present your solution in the following json format:

{
"solvable": true,
"solution": [
{% for r in range(n) %}[{% for c in range(n) %}_{% if c < n - 1 %},

{% endif %}{% endfor %}]{% if r < n - 1 %},{% endif %}
{% endfor %}]
}

where each ‘_‘ represents the final number in the corresponding
cell.

Minesweeper Prompt Template

Puzzle to Solve

A {{ row }}x{{ col }} minesweeper puzzle is a cell grid with {{ row
}} rows and {{ col }} columns.

Each cell has either one mine (mine cell) or no mine (safe cell).
Some safe cells are opened beforehand, showing the number of
{% if regional %}**8-connected components** of {% endif %}mine

cells in their 8-adjacent cells.{% if regional %}
For example, if an opened safe cell has three 8-adjacent mine cells

,
but all three mine cells are 8-connected with each other,
then the opened safe sell will show ‘1‘ instead of ‘3‘.{% endif %}
The goal is to find out all closed cells that must be mine cells.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The puzzle is unsolvable if and only if the current numbers lead to
a contradiction.{% if no_adj %}

EXTRA: It is also guaranteed that no mines are 8-adjacent to each
other.{% endif %}{% if letter %}

EXTRA: The puzzle is encrypted into letters, where Z represents 0
and A-H represents 1-8.{% endif %}

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above minesweeper puzzle.
If the puzzle is unsolvable, output ‘null‘ as the solution in the

following json format:

{
"solvable": false,
"solution": null
}

Otherwise, present your solution in the following json format:

{
"solvable": true,
"solution": [
{% for r in range(row) %}[{% for c in range(col) %}_{% if c < col -

1 %}, {% endif %}{% endfor %}]{% if r < row - 1 %},{% endif %}
{% endfor %}]
}

where each ‘_‘ represents whether the corresponding cell
must be a mine cell (‘true‘) or safe/undetermined (‘false‘).

Binario Prompt Template

Puzzle to Solve

A {{ n }}x{{ n }} binario puzzle is a cell grid with {{ n }} rows
and {{ n }} columns.

Each cell can either be ‘0‘ or ‘1‘.
The goal is to fill all empty cells (denoted as ‘.‘) with ‘0‘ or

‘1‘.
Each row must have the same number of ‘0‘s and ‘1‘s.
Each column must have the same number of ‘0‘s and ‘1‘s.
Furthermore, no more than two identical digits are adjacent.

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above star battle puzzle.
If the puzzle is unsolvable, output ‘null‘ as the solution in the

following json format:

{
"solvable": false,
"solution": null
}

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Otherwise, present your solution in the following json format:

{
"solvable": true,
"solution": [
{% for r in range(n) %}[{% for c in range(n) %}_{% if c < n - 1 %},

{% endif %}{% endfor %}]{% if r < n - 1 %},{% endif %}
{% endfor %}]
}

where each ‘_‘ represents the final element in the corresponding
cell.

Hanoi Prompt Template

Puzzle to Solve

A {{ n_peg }}x{{ n_disk }} hanoi puzzle has {{ n_peg }} pegs and {{
n_disk }} disks.

The disks, in the order of size, are: (smallest) {% for c in order
%}‘{{ c }}‘{% if not loop.last %}, {% endif %}{% endfor %} (
largest).

The goal is to transform the start state to the goal state in
minimum number of steps.

Each step moves a disk on top of a peg to another peg that is
either empty,

or whose current top disk is larger than the moved disk.{% if
right_only %}

Furthermore, the target peg must be to the right of the source peg
.{% endif %}

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above hanoi puzzle.
If the puzzle is unsolvable, output ‘null‘ as the solution in the

following json format:

{
"solvable": false,
"solution": null
}

Otherwise, present your solution in the following json format:

{
"solvable": true,
"solution": [
["_", "_"], ["_", "_"], ["_", "_"]...
]
}

where each ‘["_", "_"]‘ pair represents the source peg and the
target peg of a disk-moving step.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Crypto Prompt Template

Puzzle to Solve

An uppercase ASCII text is encrypted into a cipher.
The goal is to recover the plain text, which may or may not have

semantic meanings.
A list of candidate encryption methods may be provided, one method

per line,
in which case the encryption is done by applying each method once

sequentially
{% if ordered %} in the given order{% else %}, but NOT necessarily

in the given order{% endif %}.
Sample plain text-cipher pairs that use the same encryption

procedure may also be given as a hint.
When "|" appears in the cipher, the encryption is segmented,
where each encryption method consist of multiple sub-methods

concatenated with "+" in one line,
each applied to the corresponding cipher segment separated by

"|".{% if prompt_example %}
**IMPORTANT: The encryption method may NOT be the same as in the

examples!**
**Use the information below (NOT the examples) to find out the

actual encryption method!**{% endif %}

Cipher to Solve

{{ puzzle }}

Instruction

Now please recover the above cipher.
If the cipher cannot be recovered, e.g. there is a contradiction in

the clues,
output ‘null‘ as the solution in the following json format:

{
"solvable": false,
"solution": null
}

Otherwise, present your solution in the following json format:

{
"solvable": true,
"solution": "_"
}

where ‘"_"‘ represents the plain text string in uppercase.

Zebralogic Prompt Template

Puzzle to Solve

{{ puzzle }}

Instruction

Now please solve the above puzzle.
If the puzzle is unsolvable, output ‘null‘ as the solution in the

following json format:

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

{
"solvable": false,
"solution": null
}

Otherwise, present your solution in the following json format:

{
"solvable": true,
"solution": {
{% for id in house_ids %}"{{ house_alias }} {{ id }}": {
{% for key in keys %}"{{ key }}": "_"{% if not loop.last %},{%

endif %}
{% endfor %}}{% if not loop.last %},{% endif %}
{% endfor %}}
}

where each ‘"_"‘ represents an attribute in lowercase.

Navigation Prompt Template

Puzzle to Solve

{{ puzzle }}

Instruction

Now please solve the above puzzle.
If there is no path, output ‘null‘ as the solution in the following

json format:

{
"solvable": false,
"solution": null
}

Otherwise, present your solution in the following json format:

{
"solvable": true,
"solution": ["_", ...]
}

where each ‘"_"‘ represents a point on the path (an uppercase
letter),

including the start point and the end point.

C.3 ERROR TYPES

In Sections 4.2 and 4.3, we specifically classified the types of errors returned by the model. Tables 8
and 9 give specific definitions of each category.

D ADDITIONAL ANALYSIS

D.1 CORRELATION BETWEEN COMPLEXITY AND MODEL ACCURACY

In Section 2.3, we analyze the complexity of HardcoreLogic from an algorithmic perspective. For
IC1, we quantify difficulty through the expansion of the search space; for IC2 and UE2, we evaluate
solver-level metrics such as conflicts, decisions, generated nodes, and expanded nodes. These indi-

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 8: Error types in error analysis.

Category Definition

Misunderstanding The model does not truly understand the logical puzzle, or there
is a deviation in its understanding.

Misapplied The problem was correctly understood, but an inappropriate and
often more common thinking framework was applied when se-
lecting a solution.

Brute-Force with
Excessive Complexity

Large language models attempt to solve problems through brute
force search, but the search space is too large, making it difficult
to find a solution.

Factual/Hallucinatory In the intermediate steps of reasoning, large language models fab-
ricate non-existent facts, data, or logical relationships, leading to
erroneous conclusions.

Over Verification The correct answer appeared during the reasoning process, but
was not ultimately obtained.

Infinite Repetition The model keeps repeating a certain segment during reasoning,
resulting in the inability to obtain results or output answers in the
specified format.

Table 9: Error types in UP error analysis.

Category Definition

Erroneous reasoning The model genuinely believes, through reasoning, that there is a
solution to the problem.

Mandatory response The model did not obtain an effective solution through logical
reasoning, but was forced to answer that the problem had a solu-
tion in the end.

Unable to deduce The model cannot derive an answer within the maximum token
limit (whether or not it has deduced that the problem is unsolv-
able halfway through).

Infinite repetition The model keeps repeating a certain segment during reasoning,
resulting in the inability to obtain results or output answers in the
specified format.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

cators provide a principled way to assess puzzle hardness under classical algorithmic or constraint-
solving paradigms.

However, whether these transformations indeed increase difficulty for LRMs remains an empirical
question. To align algorithmic hardness with LRM performance, we conduct an additional analysis
in this part

For each puzzle instance, our evaluation adopts an nsampling = 4 protocol, where a model is queried
four times and the instance-level success rate is computed as the proportion of error-free outputs.
To examine how solver-based complexity measures relate to LRM performance, we correlate these
success rates with classical complexity.

Figure 12, Figure 13, and Figure 14 summarize how LRM success rates vary with different com-
plexity indicators under IC1, IC2, and UE2. To quantitatively validate these relationships, Table 10-
19 report the corresponding significance tests, showing the statistical strength of these complex-
ity–performance correlations across all models.

0 5 10 15 20
Search Space(log10)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Binario

50 100 150
Search Space(log10)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Sudoku

10 20 30 40 50
Search Space(log10)

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e
Crypto

6 8 10 12 14
Search Space(log10)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Hitori

10 20 30
Search Space(log10)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Minesweeper

deepseek-qwen
deepseek-r1

deepseek-v3.1
glm-4.5

gpt-oss
kimi-k2

minimax-m1
qwen3-8b

qwen3-30b-a3b
qwen3-32b

qwen3-235b
qwen-next

Figure 12: Correlation between IC1 complexity indicators and LRM success rates

0 200 400 600 800
conflicts

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Zebra conflicts

0 50 100
conflicts

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Binario conflicts

0 200 400 600 800
conflicts

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Kakurasu conflicts

0 2000 4000 6000
conflicts

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Skyscraper conflicts

5 10 15
expanded_nodes

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Navigation expanded_nodes

0 1000 2000 3000
decisions

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Zebra decisions

0 500 1000 1500
decisions

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Binario decisions

0 500 1000
decisions

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Kakurasu decisions

0 10000 20000
decisions

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Skyscraper decisions

0 5 10 15 20
generated_nodes

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Navigation generated_nodes

deepseek-qwen
deepseek-r1

deepseek-v3.1
glm-4.5

gpt-oss
kimi-k2

minimax-m1
qwen3-8b

qwen3-30b-a3b
qwen3-32b

qwen3-235b
qwen-next

Figure 13: Correlation between solver-based IC2 complexity indicators and LRM success rates.

Table 10: P-values from significance tests evaluating the relationship between IC1 search space
complexity and LRM success rates (Part 1).

Game deepseek qwen deepseek r1 deepseek v3.1 glm 4.5 gpt-oss-120b kimi-k2

Binario 4.24e-83 2.21e-119 1.35e-114 2.45e-81 1.88e-106 6.73e-96
Crypto 3.20e-15 3.32e-04 2.22e-17 1.16e-37 1.64e-16 1.82e-50
Hitori 6.25e-29 5.58e-35 1.51e-25 8.19e-24 1.69e-19 4.81e-29
Minesweeper 3.95e-10 1.79e-35 2.94e-32 3.41e-12 1.05e-36 5.71e-20
Sudoku 2.97e-09 3.64e-22 7.88e-22 5.66e-17 2.46e-54 1.23e-13

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

0 2000 4000
conflicts

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Sudoku conflicts

0 2000 4000
conflicts

0.0

0.2

0.4

0.6

Su
cc

es
s R

at
e

Skyscraper conflicts

0 10 20 30
expanded_nodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Navigation expanded_nodes

0 20000 40000
decisions

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Sudoku decisions

0 10000 20000
decisions

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Skyscraper decisions

0 10 20 30
generated_nodes

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Navigation generated_nodes

deepseek-qwen
deepseek-r1

deepseek-v3.1
glm-4.5

gpt-oss
kimi-k2

minimax-m1
qwen3-8b

qwen3-30b-a3b
qwen3-32b

qwen3-235b
qwen-next

Figure 14: Correlation between UE2 complexity indicators and LRM success rates.

Table 11: P-values from significance tests evaluating the relationship between IC1 search space
complexity and LRM success rates (Part 2).

Game minimax-m1 qwen3-235b qwen3-30b-a3b qwen3-32b qwen3-8b qwen-next

Binario 3.99e-75 6.76e-111 1.32e-111 4.82e-101 1.02e-91 6.90e-113
Crypto 2.18e-10 2.16e-07 1.63e-31 4.90e-32 1.35e-39 6.58e-35
Hitori 1.39e-27 2.35e-34 7.54e-36 8.29e-37 2.20e-32 1.01e-27
Minesweeper 5.34e-01 1.10e-32 1.12e-34 4.20e-05 4.05e-02 3.45e-31
Sudoku 3.67e-07 7.08e-27 2.77e-27 1.14e-16 4.58e-15 4.52e-27

Table 12: P-values from significance tests evaluating the relationship between IC2 conflicts com-
plexity and LRM success rates (Part 1). For the Navigation task, the solver metric used is expanded
nodes

Game deepseek qwen deepseek r1 deepseek v3.1 glm 4.5 gpt-oss-120b kimi-k2

Binario 5.13e-51 3.84e-50 4.86e-60 2.36e-41 5.29e-49 1.67e-68
Kakurasu 8.01e-03 1.78e-01 7.90e-01 4.55e-01 5.34e-01 5.01e-01
Skyscraper 2.24e-01 7.67e-07 1.77e-06 2.55e-08 2.43e-16 2.78e-01
Zebra 1.53e-16 1.00e-21 1.41e-14 1.74e-13 6.88e-23 2.15e-08
Navigation 7.38e-20 1.55e-01 7.53e-03 1.82e-06 2.28e-04 5.65e-26

Table 13: P-values from significance tests evaluating the relationship between IC2 conflicts com-
plexity and LRM success rates (Part 2). For the Navigation task, the solver metric used is expanded
nodes

Game minimax-m1 qwen3-235b qwen3-30b-a3b qwen3-32b qwen3-8b qwen-next

Binario 1.71e-53 5.88e-47 7.36e-64 8.48e-58 7.98e-59 4.73e-61
Kakurasu 1.66e-01 5.58e-01 7.72e-01 5.38e-05 2.28e-02 1.51e-01
Skyscraper 9.27e-02 6.08e-15 9.09e-07 3.70e-07 2.31e-02 9.18e-14
Zebra 9.80e-09 9.10e-21 1.65e-20 2.71e-17 1.85e-12 2.25e-23
Navigation 1.16e-01 3.56e-01 3.74e-04 2.70e-07 4.37e-23 3.25e-04

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 14: P-values from significance tests evaluating the relationship between IC2 decisions com-
plexity and LRM success rates (Part 1). For the Navigation task, the solver metric used is generated
nodes

Game deepseek qwen deepseek r1 deepseek v3.1 glm 4.5 gpt-oss-120b kimi-k2

Binario 2.35e-32 4.02e-63 1.76e-56 6.37e-35 1.03e-64 2.79e-41
Kakurasu 1.29e-03 3.00e-01 8.34e-01 1.55e-01 5.27e-01 1.71e-01
Skyscraper 2.11e-01 1.58e-07 1.49e-07 1.13e-09 6.72e-19 2.12e-01
Zebra 3.62e-22 4.10e-29 9.19e-18 4.51e-18 3.54e-28 7.82e-11
Navigation 6.69e-22 1.30e-01 3.41e-02 9.42e-07 1.01e-04 2.45e-28

Table 15: P-values from significance tests evaluating the relationship between UE2 decisions com-
plexity and LRM success rates (Part 2). For the Navigation task, the solver metric used is generated
nodes

Game minimax-m1 qwen3-235b qwen3-30b-a3b qwen3-32b qwen3-8b qwen-next

Binario 6.33e-34 6.30e-57 2.10e-53 6.56e-47 7.50e-38 3.77e-61
Kakurasu 6.17e-02 4.03e-01 5.57e-01 1.29e-05 1.11e-02 3.27e-02
Skyscraper 6.59e-02 1.11e-17 1.25e-07 1.63e-08 1.21e-02 7.64e-16
Zebra 3.59e-11 2.03e-27 2.51e-27 2.94e-23 3.67e-16 5.83e-32
Navigation 1.13e-01 1.83e-01 3.38e-05 6.02e-07 6.15e-25 9.91e-04

Table 16: P-values from significance tests evaluating the relationship between UE2 conflicts com-
plexity and LRM success rates (Part 1). For the Navigation task, the solver metric used is expanded
nodes

Game deepseek qwen deepseek r1 deepseek v3.1 glm 4.5 gpt-oss-120b kimi-k2

Skyscraper 3.77e-01 1.20e-03 4.05e-03 3.43e-04 3.33e-10 5.60e-01
Sudoku 5.74e-08 4.48e-27 1.23e-24 1.13e-14 1.60e-38 5.49e-12
Navigation 2.60e-15 2.98e-02 1.47e-04 1.51e-06 1.79e-03 3.57e-18

Table 17: P-values from significance tests evaluating the relationship between UE2 conflicts com-
plexity and LRM success rates (Part 2). For the Navigation task, the solver metric used is expanded
nodes

Game minimax-m1 qwen3-235b qwen3-30b-a3b qwen3-32b qwen3-8b qwen-next

Skyscraper 2.98e-01 2.99e-07 1.12e-03 7.90e-04 5.36e-02 4.92e-09
Sudoku 2.88e-06 6.85e-31 4.06e-33 1.52e-15 1.32e-12 1.56e-29
Navigation 6.89e-09 6.79e-02 2.56e-03 2.29e-05 1.89e-14 1.78e-04

Table 18: P-values from significance tests evaluating the relationship between UE2 decisions com-
plexity and LRM success rates (Part 1). For the Navigation task, the solver metric used is generated
nodes

Game deepseek qwen deepseek r1 deepseek v3.1 glm 4.5 gpt-oss-120b kimi-k2

Skyscraper 2.60e-01 2.16e-04 7.46e-04 2.96e-05 2.27e-13 4.65e-01
Sudoku 1.61e-10 2.42e-33 4.10e-30 6.54e-19 1.53e-37 2.16e-15
Navigation 7.58e-17 8.82e-03 1.87e-04 8.31e-07 5.55e-04 4.99e-21

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 19: P-values from significance tests evaluating the relationship between UE2 decisions com-
plexity and LRM success rates (Part 2). For the Navigation task, the solver metric used is generated
nodes

Game minimax-m1 qwen3-235b qwen3-30b-a3b qwen3-32b qwen3-8b qwen-next

Skyscraper 2.19e-01 1.31e-09 2.48e-04 3.61e-05 2.11e-02 4.64e-12
Sudoku 3.14e-08 1.47e-37 3.61e-41 1.48e-19 2.83e-16 2.91e-36
Navigation 2.02e-09 3.49e-02 9.99e-04 5.25e-06 1.13e-18 3.83e-04

D.2 KEY CELLS VS. COMPLEXITY

Among our 10 puzzles, the Search puzzles include Hitori, Minesweeper, and Kakurasu. They all
have one thing in common: searching for (or deleting) certain key cells. However, we observe that
increasing these key cells does not necessarily make the puzzle harder:

• Under the same grid size, increasing the number of cells to be erased in Hitori does not make it
more difficult according to the CSP solver.

• Minesweeper from Original are leveled according to the number of landmines; however, the
search space does not vary much.

• On Kakurasu, increasing the number of marked cells also increases the conflicts of decisions,
which is the sole positive case.

We tested the performance of Hitori when only increasing the number of cells to be searched(results
shown in Table 20), and found that there was no significant difference in performance compared to
the Original data when the model was large, but there was a significant difference when the model
was small. The grading of Minesweeper also indicates this conclusion that increasing the number
of cells to be searched is more difficult for smaller models. For models with insufficient reasoning
ability, it is not possible to think about multiple cells in a mixed manner, and it is necessary to think
about each cell. Whenever they determine whether a cell is the one they need to find, the probability
of errors increases, and increasing the number of cells that need to be found makes it difficult. Due
to the unclear impact of this factor, we did not consider it as an independent long-tail transformation.
HardcoreLogic has an average of more cells to find for on search puzzles of the same size than the
Original dataset.

Table 20: Performance on Hitori of the same size. Compared with the data from Original, the data
from HardcoreLogic requires more cells to be searched.

Data type gpt-oss-120b qwen3-235b qwen3-8b
Original-4× 4 91.00 88.00 68.00
Original-5× 5 81.50 55.00 29.50
HardcoreLogic-4× 4 90.50 85.50 62.50
HardcoreLogic-5× 5 84.00 47.00 21.50

D.3 ERROR TYPE ANNOTATION CONSISTENCY ANALYSIS

In Sections 4.2 and 4.3, we conducted detailed error analyses for both regular reasoning failures and
UP cases, covering UP-error and UP-sufficient categories. For all sampled instances, the final labels
were obtained through a voting-based annotation scheme involving three annotator LLMs (Gemini-
2.5 Pro, Claude Sonnet 4.5, and GPT-5), followed by manual resolution when no majority vote was
reached. Table 21 and Table 22 report the consistency analysis of these annotations. We use Fleiss’
Kappa to measure agreement among the three annotator models, and Cohen’s Kappa to quantify the
agreement between each individual annotator and the final (three LLMs-human hybrid) labels. The
results show generally high agreement, especially the consistently strong alignment between GPT-5
and the final annotations, indicating the reliability of the labeling process.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 21: Inter-annotator agreement for error-type labels across three annotator LLMs (Gemini,
Claude, GPT-5) on both Original and HardcoreLogic datasets. The table reports Fleiss’ Kappa
for multi-rater agreement and pairwise Cohen’s Kappa between each annotator and the final voted
label.

gpt-oss-120b kimi-k2 minimax-m1 qwen3-235b overall

Original

Gemini–Claude–GPT5 0.32 0.51 0.55 0.36 0.50
Gemini vs final 0.35 0.75 0.78 0.55 0.64
Claude vs final 0.63 0.54 0.87 0.54 0.68
GPT5 vs final 0.82 0.87 0.59 0.83 0.81

Hardcore

Gemini–Claude–GPT5 0.37 0.29 0.52 0.34 0.43
Gemini vs final 0.50 0.62 0.74 0.66 0.66
Claude vs final 0.51 0.38 0.77 0.34 0.54
GPT5 vs final 0.92 0.67 0.72 0.87 0.81

Both

Gemini–Claude–GPT5 0.36 0.41 0.55 0.36 0.47
Gemini vs final 0.43 0.69 0.76 0.61 0.65
Claude vs final 0.57 0.46 0.82 0.44 0.61
GPT5 vs final 0.87 0.78 0.67 0.85 0.81

Table 22: Inter-annotator agreement for UP-error and UP-sufficient cases. Similar to Table 21, the
table includes Fleiss’ Kappa across the three annotator LLMs and pairwise Cohen’s Kappa with
the final voted label, reflecting the reliability of annotations in the unsolvable-puzzle setting.

gpt-oss-120b kimi-k2 minimax-m1 qwen3-235b overall

error

Gemini–Claude–GPT5 0.55 0.25 0.45 0.35 0.54
Gemini vs final 0.48 0.58 0.65 0.43 0.62
Claude vs final 0.88 0.21 0.48 0.60 0.69
GPT5 vs final 1.00 0.91 0.92 0.93 0.96

sufficient

Gemini–Claude–GPT5 0.51 0.36 0.019 -0.02 0.27
Gemini vs final 0.54 1.00 0.00 0.00 0.39
Claude vs final 1.00 0.65 0.37 0.00 0.58
GPT5 vs final 0.67 0.43 0.71 0.85 0.66

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

D.4 SKYSCRAPER SOLUTION COUNT

We found that almost all models performed poorly in solving Skyscraper, due to the difficulty of
the problem itself. We found that the number of solutions to such difficult puzzles may affect the
performance of the model. We performed two different long-tail transformations on Skyscraper: add
diagonal constraints and hide partial clues. These two types of long-tail transformations are referred
to as diag and partial. These two types of long-tail transformations show improvements in both de-
cisions and conflicts compared to the Original dataset at the same size. However, we found that on
some well-performing models, the accuracy of large-sized (6× 6 and above) partial transformations
(without guaranteed unique solutions) partially increased, while diagonal transformations and 5× 5
partial transformations (with guaranteed unique solutions) showed a significant downward trend in
model performance(results shown in Table 23). Large-sized partial transformations result in an in-
crease in the number of solutions due to hidden clues, which affects the performance of the model.
The partial transformation and 5 × 5 diagonal transformation ensure that the solution does not in-
crease compared to the Original dataset, and with the increase of decisions and conflicts, even in
some diagonal transformation data that can be solved with the original constraints, the performance
of the model still decreases significantly. So when the puzzle is difficult and the model does not
have enough clues to analyze, it may tend to guess the answer, and the number of solutions becomes
a factor affecting the difficulty of the game.

Table 23: The performance of some models on Skyscraper with sizes of 5× 5 and 6× 6, using the
count hint.

Data type gpt-oss-120b deepseek-v3.1 qwen3-235b
Original-5× 5 41.30 14.13 30.43
Original-6× 6 1.85 0.00 0.00
HardcoreLogic-diag-5× 6 19.50 1.50 8.50
HardcoreLogic-diag-6× 6 0.50 0.00 0.00
HardcoreLogic-partial-5× 5 24.50 7.00 22.00
HardcoreLogic-partial-6× 6 5.00 0.00 0.00

D.5 OTHER ANALYSES OF WEIGHTED MULTIPLE LINEAR REGRESSION

In Section4.1, we performed weighted multiple linear regression to examine the effects of four
different long-tail transformations on puzzle difficulty. Concretely, we fit the following model:

y = kIC1 · 1IC1 + kIC2 · 1IC2 + kUE1 · 1UE1 + kUE2 · 1UE2 + b

where y is the observed accuracy for a specific puzzle variant, 1IC1 is a binary indicator (1 if transfor-
mation IC1 is applied, 0 otherwise), kIC1 quantifies the marginal accuracy change attributable to IC1
under the assumption of additive effects, b is the expected accuracy predicted by the model when all
dummy variables are zero, and weights wi=Ni (sample sizes) give greater influence to observations
with larger sample sizes when calculating the loss function.Weighted linear regression isolates the
marginal effect of individual transformations through two mechanisms: (1) the additive linear model
with dummy variables statistically disentangles combined transformation effects by estimating each
factor’s contribution relative to the baseline configuration, (2) sample-size-based weighting assigns
greater influence to high-reliability observations during coefficient estimation, ensuring parameters
reflect dominant patterns in robust data.

To complement the results presented in Section4.1 of the main text, this appendix provides additional
details of the weighted multiple linear regression analysis. First, we refitted the model using data
that contained only a factor, excluding all data points that included multiple factors. Second, based
on the original multivariate model, we computed the corresponding 95% confidence intervals (and
corresponding p-values) of the regression coefficients.

The left side of Figure 15 shows the impact of long-tail transformations on puzzle accuracy when
only considering single factor data. For most puzzles, the coefficients obtained from this simulation
closely match those from the full multiple regression model. The only notable deviation occurs in

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

IC1 IC2 UE1 UE2
Basic Long-tail Transformation(Single Factor)

Binario

Crypto

Hanoi

Hitori

Kakurasu

Minesweeper

Navigation

Skyscraper

Sudoku

Zebralogic

Pu
zz

le

-74.09 0.00 0.00 0.00

-26.58 0.00 0.00 0.00

0.00 0.00 -22.51 0.00

-46.06 0.00 -7.00 0.00

0.00 -9.87 -9.64 0.00

-25.38 0.00 0.00 -29.67

0.00 -10.00 0.00 0.00

0.00 -2.04 0.00 -3.70

-53.40 0.00 -51.79 -37.85

0.00 -33.58 0.00 0.00 -70

-60

-50

-40

-30

-20

-10

0

-80 -60 -40 -20 0

Binario

Crypto

Hanoi

Hitori

Kakurasu

Minesweeper

Navigation

Skyscraper

Sudoku

Zebralogic

95% CI of Puzzle Transformations (All Variants)

Transformation
IC1
IC2
UE1
UE2

Figure 15: Left: Effects of long-tail transformations on puzzle accuracy.(single factor) Right: 95%
confidence intervals for puzzle difficulty coefficients.

Table 24: p-values of the fitted weighted linear regression.
Puzzle IC1 IC2 UE1 UE2 Puzzle IC1 IC2 UE1 UE2
ZebraLogic — .000 — — Minesweeper .000 — .982 .000
Sudoku .000 — .000 .006 Navigation — .132 — .402
Skyscraper — .098 — .010 Binario .000 .661 — —
Kakurasu .000 .188 .403 — Hanoi — — .000 —
Crypto .000 — — — Hitori .000 — .283 —

Sudoku. This is because the UE1 category for Sudoku actually contains two heterogeneous sub-
types—letter version and irregular subgrid. The letter version variant has only a minor standalone
effect and appears only in combination with other variants, whereas the irregular subgrid variant
never co-occurs with any other factors. As a result, when simulating Sudoku using single-factor
data, the model’s intercept becomes shifted, which in turn leads to changes in the estimated param-
eters.

The right panel of Figure 15 presents the 95% confidence intervals of the puzzle-difficulty coeffi-
cients, with the corresponding p-values reported in Table 24 . Most of the confidence interval bounds
are negative, and the overall conclusions are consistent with those in Section4.1. The figure further
shows that, even after accounting for estimation uncertainty, IC1 still exhibits the largest effect size
in our data. Moreover, all p-values associated with IC1 are below 0.001, confirming that its influence
on puzzle difficulty is statistically significant.

40

	Introduction
	Dataset
	Preliminary: Logical Puzzle Games
	Long-tail Transformation
	Complexity Analysis

	Experiment and Results
	Experiment Settings
	Main Results

	Analysis and Discussion
	Different Longtail Transformation
	Error Analysis
	Unsolvable Games

	Related Work
	Conclusion
	Use of LLMs
	Benchmark Details
	Category Definition
	Puzzle Definition and Transformations
	Transformation Taxonomy
	Complexity Analysis Details

	Experiment Details
	Model and Configuration
	Prompt Template
	Error Types

	Additional Analysis
	Correlation Between Complexity and Model Accuracy
	Key Cells vs. Complexity
	Error type annotation consistency analysis
	Skyscraper Solution Count
	Other analyses of weighted multiple linear regression

