Under review as a conference paper at ICLR 2026

HARDCORELOGIC: CHALLENGING LARGE REA-
SONING MODELS WITH LONG-TAIL LOGIC PUZZLE
GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) have demonstrated impressive performance on
complex tasks, including logical puzzle games that require deriving solutions sat-
isfying all constraints. However, whether they can flexibly apply appropriate rules
to varying conditions, particularly when faced with non-canonical game variants,
remains an open question. Existing corpora focus on popular puzzles like 9x9 Su-
doku, risking overfitting to canonical formats and memorization of solution pat-
terns, which can mask deficiencies in understanding novel rules or adapting strate-
gies to new variants. To address this, we introduce HardcoreLogic, a challenging
benchmark of over 5,000 puzzles across 10 games, designed to test the robustness
of LRMs on the “long-tail” of logical games. HardcoreLogic systematically trans-
forms canonical puzzles through three dimensions: Increased Complexity (IC),
Uncommon Elements (UE), and Unsolvable Puzzles (UP), reducing reliance on
shortcut memorization. Evaluations on a diverse set of LRMs reveal significant
performance drops, even for models achieving top scores on existing benchmarks,
indicating heavy reliance on memorized stereotypes. While increased complexity
is the dominant source of difficulty, models also struggle with subtle rule vari-
ations that do not necessarily increase puzzle difficulty. Our systematic error
analysis on solvable and unsolvable puzzles further highlights gaps in genuine
reasoning. Overall, HardcoreLogic exposes the limitations of current LRMs and
establishes a benchmark for advancing high-level logical reasoning.

1 INTRODUCTION

Recent large reasoning models (LRMs) (Lin et al.l |2025b) have demonstrated remarkable perfor-
mance across tasks requiring complex reasoning. Among them, logical puzzle games have emerged
as a particularly prominent benchmark where models need to deduce or search for solutions to
achieve specific goals under logical rules and constraints. Such puzzles probe diverse reasoning
skills, including logical deduction (Lin et al.,|2025a)), pattern recognition (Chollet et al.l 2025)), and
rule induction (Li et al., 2025), while featuring well-defined rules and objectives that enable sys-
tematic difficulty control and straightforward evaluation. These characteristics make logical puzzle
games an ideal testbed for assessing and advancing LRMs.

Despite recent successes on benchmarks such as Enigmata (Chen et al.||2025a) and ZebraLogic (Lin
et al.| [2025a), whether LRMs are genuinely capable of true logical reasoning, i.e., flexibly apply
appropriate rules to relevant conditions to derive correct conclusions, remains an important question.
Take Sudoku as an example: while most real-world puzzles follow the canonical 9x9 format with
nine 3x3 zones, variants with alternative constraints or irregular subgrids often prove challenging
even for humans. Similarly, existing corpora exhibit a severe imbalance between canonical and
non-canonical logic puzzles, making models prone to overfitting to canonical puzzles (Cohen-Inger,
et al.,|2025)), leading to difficulties in solving non-canonical variants that fall into the long-tail of the
distribution. This limitation manifests in two specific ways: (1) Models recognize only the canonical
form of logical puzzles; when given a variant, they either struggle in understanding the new rules or
ignore them, leading to faulty reasoning. (2) Models develop fixed solution strategies and reasoning
patterns to solve canonical puzzles; even when they successfully understand the variant, they still
apply a mismatched solution strategy, eventually producing errors or being confused.

Under review as a conference paper at ICLR 2026

100
e s e B Original
1|2|3|a =3 HardcoreLogic
Irregular Subgrid 80 Long-tail Transformation
3 a 2 1 3
al2|1]3 /—\ g
Y 60
3|12 a 2|1 4 3 g Increase puzzle scale
§ 40 Add challenging constraints
5 Use uncommon form
1,4(3 2 ~ Alter logical rules
23|41 D|A|C 20
~
c|®|p|s 0 |:| =
L *» QD N R A
- p|B|©) A N &S S SES
Letter Encoding an § & & § & &
. . A 8 . 9 & o
Diagonal Constraint Alc|B|D & & & 8 &

Figure 1: Left: Illustrative examples of two long-tail transformed Sudoku. The right top shows
an irregular-subgrid Sudoku, replacing standard 2x2 subgrids with irregular subgrids. The bottom
right shows a letter-encoded Sudoku with diagonal constraints, where each diagonal must contain
all unique symbols. Right: Overview of our long-tail transformation applied to logic puzzle games,
shows that LRMs have consistent and significant degradation on HardcoreLogic.

Existing logic puzzle benchmarks mainly focus on canonical game forms and fail to expose the
aforementioned deficiencies. To address this limitation and provide a detailed inspection of LRMs’
reasoning robustness, we introduce HardcoreLogic, a logic puzzle game benchmark that challenges
models with long-tail variants of puzzles. HardcoreLogic transform common puzzle games along
three dimensions: (1) Increased Complexity (IC) through larger search spaces and more entan-
gled constraints; (2) Uncommon Elements (UE) involving novel rules and altered puzzle forms;
(3) Unsolvable Puzzles (UP) generated from previously solvable puzzles. The left panel of Figure/[T]
illustrates two examples of Sudoku transformations designed to increase puzzle difficulty. These en-
hancements reduce the likelihood that puzzles in HardcoreLogic appear in training corpora, thereby
limiting gains from memorizing canonical forms or fixed reasoning patterns.

HardcoreLogic comprises over 5,000 puzzles spanning 10 logical puzzle games, covering logical
deduction, pattern recognition, and sequence searching. Each game is transformed in multiple ways
among the three aforementioned dimensions. Comparing with existing datasets of the same games,
our puzzles exhibit higher theoretical complexity (for IC puzzles and UE puzzles with novel rules)
and higher model perplexity (for UE puzzles with altered forms). Furthermore, our UP puzzles
address the absence of unsolvable logical reasoning tasks in mainstream benchmarks.

We evaluate HardcoreLogic across multiple popular and state-of-the-art (SOTA) LRMs, ranging
from small distilled models to large open/closed-source models (The right panel of Figure [I] com-
pares the performance of multiple LRMs on the Original and HardcoreLogic). All models, including
SOTA models that achieve top performance on baseline benchmarks (e.g., GPT-5), suffer significant
performance degradation on HardcoreLogic. Models with stronger reasoning abilities generally
exhibit smaller relative drops; however, we also observe large-parameter models that score moder-
ately on the baseline but perform poorly on HardcoreLogic, suggesting the presence of puzzle-game
stereotypes in these models. The primary source of difficulty in HardcoreLogic stems from increased
complexity, yet we also identified cases where puzzles with novel rules (without added complexity
or perplexity) still misled many models. For unsolvable puzzles, models often failed to detect un-
solvability and instead produced “partial solutions” that were clearly incorrect.

We further conduct a systematic error analysis to probe the underlying causes of model failures on
HardcoreLogic. For solvable puzzles, we classify erroneous responses into six categories, and find
that factual errors dominate across models, while more powerful models tend to exhibit brute-force
errors, attempting exhaustive searches rather than strategic reasoning. Besides, models’ misunder-
standing of problem constraints and misapplication of rigid rules lead to significant performance
drops. For unsolvable puzzles, our analysis reveals that models performing well on solvable prob-
lems genuinely recognize unsolvability better. However, weaker models like Minimax-M1 may
output "unsolvable” simply when they fail to find an answer, rather than through true recognition of
logical unsatisfiability. When models fail to recognize unsolvability, we observe that stronger mod-
els mainly fail due to erroneous reasoning or inability to output answers within token budgets, while
weaker models tend to force out solutions even without successfully deriving them. These high-

Under review as a conference paper at ICLR 2026

light the need to improve models’ deep reasoning capabilities and robustness against degenerate
behaviors. Overall, our contributions are threefold:

* We introduce HardcoreLogic, an enhanced benchmark spanning 10 types of logic puzzle games,
designed to challenge LRMs with long-tail variants of common puzzle games, featuring higher
complexity, novel elements, and unsolvable options.

* We evaluate HardcoreLogic on mainstream and SOTA LRMs, uncovering the limitations of their
reasoning abilities. All models, including the latest SOTA models, show substantial performance
degradation on puzzles with increased complexity or unfamiliar forms, and exhibit varying be-
haviors on unsolvable puzzles.

* We conduct a systematic error analysis of LRMs on HardcoreLogic, revealing diverse failure
modes and suggesting directions for improving the model’s deep reasoning abilities and robust-
ness. In addition, our automatic data construction pipeline provides a scalable protocol for build-
ing model training data and environments.

2 HARDCORELOGIC

In this section, we introduce the HardcoreLogic benchmark, describing the covered logic puzzle
types, the long-tail transformation process with statistical analysis, and a detailed complexity anal-
ysis of long-tail transformations.

2.1 PRELIMINARY: LOGICAL PUZZLE GAMES

In HardcoreLogic, we focus on 10 types of logic games spanning 6 puzzle categories, including 8
challenging subtasks sourced from Enigmata (Chen et al.l 2025a), the Zebralogic game from the
Zebralogic dataset (Lin et al.,[2025a), and a classic Hanoi game synthesized by ourselves following
its standard rules. All these three sources constitute the Original data used for comparison with
HardcoreLogic. Specifically, HardcoreLogic covers the following 6 categories: (1) logic puzzle,
(2) grid puzzle, (3) search puzzle, (4) pattern puzzle, (5) graph puzzle and (6) sequential puzzle.
The 10 specific games are Zebralogic, Sudoku, Skyscraper, Kakurasu, Crypto, Navigation,
Binario, Minesweeper, Hanoi and Hitori. See Appendix for a more detailed introduction.

2.2 LONG-TAIL TRANSFORMATION

Standard logic puzzles are constrained in size, form diversity, and rule design, and thus fail to cap-
ture the irregularity and scale of real-world reasoning. To systematically construct more challenging
evaluation data, we introduce a set of long-tail transformations that extend puzzles along three dis-
tinct dimensions: Increased Complexity, Uncommon Element, and Unsolvable Puzzle.

Taxonomy We categorize transformations into five types from three families:

* Increased Complexity (IC) enhances difficulty by expanding the search space and depth of
reasoning. Search space expansion (IC1) enlarges the number of candidate states by reducing
the number of initial givens or scaling the puzzle size. For example, removing as many digits as
possible while ensuring a unique solution in Binario. Constraint strengthening (IC2) increases
entanglement among constraints to demand longer reasoning chains. For example, in Zebralogic,
instead of Pet-dog = Sport-football 4+ 1, we use a looser condition like Pet-dog > Sport-football.

* Uncommon Element (UE) modifies question forms or rules, often inducing out-of-distribution
generalization. Form variation (UE1) introduces new types of question forms, such as applying
constraints onto irregular subgirds and replacing digits with letters in the Sudoku. Rule variation
(UE2) alters or hybridizing the governing principles. For example, in Sudoku, we introduce a
diagonal constraint requiring that digits on both main diagonals must also be distinct.

* Unsolvable Puzzle (UP) deliberately lacks a valid solution, distinguishing them from harder-but-
solvable cases. They are used to examine whether large language models can detect inconsistency
or insufficiency of information, rather than hallucinate plausible but incorrect answers.

Basic statistics The 10 different logic puzzles in HardcoreLogic have different ways of long-tail
transformation types. Table [l details the aspects of long-tail transformation types that each logic

Under review as a conference paper at ICLR 2026

puzzle has. The rules for each logic puzzle and their more specific long-tail transformation details
can be found in the Table[3] and each task may correspond to multiple long-tail transformation types.

Table 1: Statistical details of Original and HardcoreLogic on different games and transformations,
with the second and last column respectively representing the total sample size of Original and Hard-
coreLogic on different games. Note that some puzzles belong to multiple transformation categories,

so row sums may exceed the overall total.

Long-tail Transformation

|
Game | Original | Complexity Element Unsolvable Overall
| | IC1 IC2 UE1 UE2

Zebralogic 100 X v X X v 400
Sudoku 100 v X v v v 550
Skyscraper 200 X v X v v 800
Kakurasu 49 v v v X v 300
Crypto 300 v X X X v 400
Navigation 100 X v X v v 300
Binario 150 v v X X v 450
Hanoi 140 X X v X v 800
Hitori 100 v X v X v 500
Minesweeper 150 v X v v v 750
Overall \ 1389 \ 1350 1150 1400 850 1350 5250

2.3 COMPLEXITY ANALYSIS

To systematically evaluate the hardness introduced by our 50

long-tail transformations, we conceptualize complexity —_ g:g‘::::ewgk

as a four-dimensional construct: Search Space Expan- 3%

sion (IC1), Constraint Strengthening (IC2), Form Mu- #.

tation (UE1), and Rule Mutation (UE2). Each transfor- §

mation is associated with dedicated quantitative metrics, fzo

and we compare all generated puzzles against the orig- &

inal benchmark. In the following, we present quantita- %'

tive analyses of these four transformation types to demon-

strate how each contributes to increased puzzle difficulty.

Search space expansion (IC1) This dimension cap-
tures the growth of candidate assignments induced by
empty cells. Closed-form formulas are derived for each
puzzle family (See Appendix [B.4). For instance, in Bi-

Binario Sudoku Crypto Hitori Minesweeper
Puzzle

Figure 2: Average search space size (in
log, scale) across five puzzle families.
See Appendix [B.4]for detailed results.

nario, N empty cells result in a search space of |S| = 2. Figure [2| shows the average log-scale
search space across five puzzle families, confirming that HardcoreLogic systematically enlarges the

combinatorial space.

Constraint strengthening (IC2) This transformation increases puzzle hardness by introducing

denser logical entanglement.

* For CSP-based puzzles (e.g., Zebralogic, Binario), we encode instances into Z and collect:
(i) Decisions: Explicit branching steps made by the solver; (ii) Conflicts: Backtracking events
where partial assignments lead to contradictions. Larger counts indicate more complex search
spaces and stronger constraint interactions, reflecting higher difficulty.

* For graph-based puzzles (Navigation), we apply Dijkstra’s algorithm and record: (i) Generated
Nodes: the number of candidate states created; (ii) Expanded Nodes: the number of states fully
explored. Increases in both values reflect higher search effort.

*Z3 refers to the Satisfiability Modulo Theories (SMT) solver developed by Microsoft Research. (de Moura

& Bjgrner| [2008)

Under review as a conference paper at ICLR 2026

As shown in Figure [3] (light green background), HardcoreLogic instances consistently show higher
complexity than originals.

Zebra Binario Kakurasu S Navigation
o g 1500 .
15 20
300 H
F z10 8 £ 1000 Z1s
= = = 2 =
g T | g g . e
S S S ° S 5
5 £ 100 500 e g g
3
o original o Originut - o Originat o Originat
ol o HardcoreLogle oS | o HardeoreLogle . o HardeoreLogle HardcoreLogic
Y il ole i
0 1000 2000 0 50 100 0 250 500 750 2000 4000 3 0 15
Decisions Decisions Decisions Decisions Expanded Nodes
Sudoku Kakurasu Hanoi Hitori Sudoku-Add diagonal hints
40 52 7.5 9 o
1500 of
35 5.0 % 7.0 s .
z z z ez 2 e
& Z48 Z6s] i So
H H H F Z 1000
230 - H 27 g
H 546 q’] 560 s S
£ £ £ £ e L
25 T 44 s 6 D 500{
20 " 0 5 o HardeoreLogi
Original _HardcoreLogic Original _HardcoreLogic Original _HardcoreLogic Original _HardcoreLogic 10000 15000
Decisions
Sudoku-Add discon hints Sudoku-Max area indicators Add diagonal hints ion-Add transfer stations Cluster hints
o «© ° o 7
1500 o8 5000 500 30 £,
0 g [56| =
2 . L4 e 3 2 400 2 ol 2o gs °]
s o 3 40 | g z sl 25|
& 1000 ° £ 3000 o] ® L .° 220 g
o 300 o 2 g
s s of s 4 E ofof S 4] sxmmmemo
S S 2000 ooy S 200 ob s N E§§°° 0
500 %% gdes e g1 ko kR
1000 o ® [o Orignal 100 “)95,0 @ S orignal @ﬁ e o Original = o Original
ol & o HardeoreLogic | ot ® s HardeoreLogic o g T o HardcoreLogic | 2| cbw © HardcoreLogic
5000 10000 15000 0 20000 4000 1000 2000 3000 0 20 30 0 00 200
Decisions Decisions Decisions Expanded Nodes Decisions

Figure 3: Quantitative comparison of transformation-induced complexity. Panels with light green,
light orange, and light purple backgrounds correspond to IC2, UE1, and UE2 , respectively. In each
panel, dashed lines indicate the mean value of the corresponding metric.

Form mutation (UE1) Form mutation introduces novel symbols or forms that preserve puzzle
validity but complicate comprehension. Since symbolic solvers cannot capture this representational
difficulty, we measure it using perplexity, the inverse probability assigned by a pretrained LRM,
which quantifies how surprising an instance appears. Higher perplexity values indicate that mutated
forms impose greater representational complexity for LRMs. Figure [3| (light orange background)
presents boxplots comparing the perplexity distributions of Original and HardcoreLogic instances;
form mutation consistently results in higher perplexity and thus greater representational difficulty.

Rule mutation (UE2) Rule mutation modifies or extends the logical rules governing puzzles,
forcing solvers to adapt to new structural constraints.

» For CSP-based puzzles, we again use Z3 to measure decisions and conflicts.
* For graph-based puzzles, we evaluate expanded and generated nodes with Dijkstra’s algorithm.

As shown in Figure [3] (light purple background), mutated-rule puzzles consistently yield higher
solver statistics, indicating rule changes intensify reasoning complexity. A notable exception is the
minesweeper dataset with “landmine clusters”: numerical clues now represent adjacent landmine
clusters, and more clues are added to ensure unique solutions—this reduces the search space, mak-
ing required decisions lower than Original. Yet large models show lower accuracy on this modified
dataset: unlike counting individual mines, models must continuously track landmine cluster connec-
tivity (e.g., judging cluster membership) for reasoning. This exceeds their simple pattern-matching
capabilities, causing performance drops even for powerful models.

3 EXPERIMENT AND RESULTS

3.1 EXPERIMENT SETTINGS

Benchmark models We evaluate HardcoreLogic on multiple open-source and closed-source
LRMs, a full list available in Appendix All models except Kimi-K2-Instruct are native LRMs,
that is, they support generating a separated reasoning part (usually surrounded by special tokens) be-
fore generating the final output. For hybrid reasoning models that can also generate non-reasoning
responses (e.g., Qwen3 and DeepSeek-v3.1), we always enable reasoning. For Kimi-K2-Instruct,

Under review as a conference paper at ICLR 2026

we guide the model to perform a chain-of-thought (CoT) reasoning. Appendix [C.1] also provides
details of various model configurations.

Generation configuration On open-source models, we limit the reasoning budget to 32, 768 to-
kens before generating the final answer, regardless of their actual context window limitation. More
specifically, we first input the prompt to the model to generate the reasoning part. If the model fin-
ishes reasoning within the budget, we then guide the model to generate the final answer that strictly
follows the predefined JSON schema to eliminate presentation errors. A generation run is consid-
ered correct if and only if the model successfully finishes reasoning and produces a correct answer.
We repeat 4 runs on each sample with decoding temperature 7' = 0.6. Closed-source models do not
support hard reasoning budget limits, hence we simply limit their total output budget to 32, 768 to-
kens. Furthermore, we sample 600 cases across all games (5 per transformation type per game) due
to expenditure constraints, while remaining repeating 4 runs on each extracted sample. The prompt
templates, including corresponding JSON schema for each game, are listed in Appendix [C.2}

3.2 MAIN RESULTS

Overall results Figure @] illustrates the overall models performance on HardcoreLogic, compared
with Original. Kimi-K2-Instruct showed the greatest decrease in accuracy compared to Original on
HardcoreLogic. Among open-source models, gpt-oss-120b exhibited the highest accuracy on both
datasets, while GPT-5 performed the best in the closed-source models. Minimax-M1 performs the
worst among all models.

80 ---- Original Mean
---- HardcoreLogic Mean
70 B Original
60 || [0 Hardcorelogic
S
o 50
()
S
S 40
SRR | —
d 30
20
10
06" $ a° o,;o ,DSS° *‘0«\ +§\
. b &S
p"‘) .flf') 6}@ 0‘" \(0
N & N PN
& & &2 €
&

Figure 4: Overall models performance on Original and HardcoreLogic. Dashed lines represent the
average values of each model on the corresponding dataset.

Per-game results Figure [5]shows the comparison of the accuracy of each puzzle on both Original
and the HardcoreLogic across all open-source modelsﬂ The overall performance of all puzzles
and models shows a continuous downward trend. For open source models, Binario has the largest
average performance degradation on the HardcoreLogic and Original. Skyscraper has the smallest
decrease, followed by Navigation. These two puzzles are extremely difficult and extremely simple,
which is why they have the smallest decrease.

4 ANALYSIS AND DISCUSSION

4.1 DIFFERENT LONG-TAIL TRANSFORMATION

"Due to the limited number of subtasks in some puzzles and the small sample size for testing such puzzles
on closed-source models, all analysis of per game mainly focuses on open-source models.

Under review as a conference paper at ICLR 2026

Binario Sudoku Hitori Zebralogic Minesweeper
100{ "= P
N é
g) : ¢ :
z
< 50
B
=
3
<«
0 L)
Original HardcoreLogic Original HardcoreLogic Original HardcoreLogic Original HardcoreLogic Original HardcoreLogic
Crypto Kakurasu Hanoi Navigation Skyscraper
100) [® =
— (1 e
Z)
& 50
B
=
@
<
<
S ——a—

Original HardcoreLogic Original HardcoreLogic Original HardcoreLogic Original HardcoreLogic Original HardcoreLogic

® Original HardcoreLogic ~ ----- Original mean HardcoreLogic mean

Figure 5: Performance of each puzzle on open-source models.

-0
Binario JEZZXICR -2.45 0.00 0.00

In Section we introduce four methods of long-tail Crypto -26.58 0.00 0.00 0.00 ~10
transformation, including Search Space Expansion (IC1), Hanoi 0.00 000 2251 0.00
Constraint Strengthening (IC2), Form Mutation (UEl), Hitori 0.00 439 0.00

and Rule Mutation (UE2). Puzzles may also have two dif- 2 Kakurasu 2590 -11.96 755 000 | =
ferent long-tail transformation attributes at the same time. 2 Minesweeper- -25.46 0.00 -0.09 |-20.60 | -40
To quantify the impact of different long-tail transforma- Navigation- 0.00 -10.00 000 554 | o
tions on puzzle difficulty, we fit a weighted multiple lin- Skyscraper- 0.00 -2.04 0.00 -3.70

ear regression for each puzzle. The dependent variable Sudoku! 000 2311 -1395 7%
represents the accuracy of the puzzle after undergoing Zebralogic- 0.00 -33.58 0.00 0.00 -70
four different long-tail transformations (IC1, IC2, UEI, ICl IC2 UEL Uk2

Basic Long-tail Transformation

UE2). We weight the number of samples in the data, and
for mixed transformations, the predictive performance of pigyre 6: Effects of long-tail transfor-
the model is the sum of its coefficients; the intercept rep- mations on puzzle accuracy.

resents the accuracy without any transformation, which is the average accuracy of €ach LRM on
Original.

Figure [6] shows the coefficients of four long-tail transformations in the regression model, which
is trained on data from open-source models and reflects their impact on puzzle difficulty. We can
observe that IC1 has the greatest comprehensive impact on the models, as the increase in search
space directly requires the improvement of the models’ memory and reasoning ability. UE1 requires
the models to recognize some uncommon elements. It is worth noting that the parameter UE1
reaches its highest value for Sudoku puzzles, mainly due to the need to recognize irregular nine-grid
patterns, indicating that the models struggles in this scenario. The parameters of the minesweeper
puzzle in UE2 also show that the “landmine cluster” rule has a significant impact on the models,
which is consistent with our hypothesis in Section [2]

4.2 ERROR ANALYSIS

To probe the underlying causes of LRM failures on HardcoreLogic, we conduct a systematic error
analysis. Based on the comparison between the puzzle, the correct answer, and the model’s complete
responses, we identify six error categories: (1) Misunderstanding of the Logic Puzzle, (2) Mis-
applied Solution Framework, (3) Brute-Force with Excessive Complexity, (4) Factual Errors,
(5) Over Verfication, and (6) Infinite Repetition. This enables us to move beyond aggregate ac-
curacy in how different models fail. We randomly sample 50 erroneous cases from each of four
representative models: gpt-oss-120b, the best-performing closed-source model on HardcoreLogic;
Qwen3-235B, a representative of the Qwen series that we extensively evaluated; Kimi-K2-Instruct,
which experienced the largest performance drop from Original to HardcoreLogic; and Minimax-M1,
the worst-performing model on HardcoreLogic. We employ GPT-5 (OpenAlL2025b) as a secondary
annotator to classify each case into one of the six categories. Detailed explanation of each category
was shown in Appendix [C.3]

Under review as a conference paper at ICLR 2026

We employ GPT-5 [2025b), Gemini-2.5-Pro(Gemini Team| 2025)), and Claude-Sonnet-
4.5 as secondary annotators to classify each case into one of the six categories.
The final label is determined through a majority-vote scheme. In situations where the three models
produce three distinct labels (i.e., no majority), we conduct manual verification. A detailed consis-
tency analysis of this voting-and-adjudication scheme is provided in the Appendix [D.3]

FigurelZ] shows the error distribution for each model. Overall,

* Misunderstanding and Misapplied errors are particularly prominent in Kimi-K2-Instruct, ac-
counting for roughly 50% of its errors. Notably, Kimi-K2-Instruct also exhibits the largest per-
formance drop from Original to HardcoreLogic, suggesting that this decline is closely associated
with its frequent misunderstanding of puzzles and misapplication of solution frameworks. This
indicates that the model struggles to correctly interpret problem structures and select appropriate
reasoning strategies in more challenging or structurally novel logic problems. Optimization could
involve enhancing problem understanding through structured prompts and step-by-step reason-
ing training, as well as guiding the model to identify problem types and adopt suitable solution
frameworks, combined with symbolic or constraint-based verification.

* Factual errors are the most prevalent, suggesting that during extended reasoning, LRMs often
fabricate facts to fill missing steps, compromising truthfulness and consistency. Mitigation may
involve stronger penalties for factual deviations during fine-tuning or reinforcement learning, and
mechanisms for intermediate reasoning verification. Meanwhile, during manual review, it was
found that the Kimi-K2-Instruct’s significant skipping of steps during reasoning makes it more
prone to introducing information that is not present in the problem or cannot be directly obtained
during the reasoning process, thus making factual type errors more pronounced.

* Brute-Force errors in stronger models (gpt-oss-120b, Qwen3-235B) indicate that their generative
power can lead to inefficient, enumerative strategies. Performance could be improved by training
models to identify problem types and adopt optimal solution frameworks, or by integrating LRM
reasoning with symbolic/constraint solvers to guide search.

16.0% 12.0% 38.0%
2.0%. 2.0%, 0 Error Type
10.0% 012.0% 340% 23.0% ZZ'OQA' Misunderstanding
38.0% y . Misapplied
8.0% 2.0% 2.0% Brute-Force
Factual-Errors
12.0%
32.0% Over-Verficati
Dy 2% Infte Repetion
28.0% 28.0% 70 4.0%
gpt-oss-120b qwen3-235b kimi-k2 minimax-m1

Figure 7: The distribution of error types in HardcoreLogic across the four models.

To compare how model error patterns shift between Original and HardcoreLLogic.we also uniformly
sample 50 erroneous Original cases and classify them using the identical model-voting and human-
verification pipeline. This provides a matched error-type distribution for Baseline errors, enabling a
direct comparison against HardcoreLogic results. Figure [§]shows the percentage distribution of six
error categories across the two benchmarks.

* Rule Perturbation Raises Understanding-Related Failures HardcoreLogic introduces greater
rule diversity, non-canonical puzzle structures, and more complex constraint dependencies. These
perturbations substantially weaken models’ robustness in understanding and applying task rules.
As a result, both Misunderstanding and Misapplied errors increase markedly across models.

* Increased Complexity Reduces Plausible-but-Unfaithful Reasoning Over-Verification errors
decline under HardcoreLogic, indicating that models are less able to generate coherent but in-
correct explanations when faced with more complex logical dependencies. Instead of producing
confident and polished but unfaithfu rationales, models tend to break earlier in the reasoning
process, yielding errors that stem from misunderstanding or rule misapplication.

Under review as a conference paper at ICLR 2026

gpt-0ss-120b qwen3-235b

n
2

IS
5

Percentage (%)
g8 g

60

Figure 8: Comparison of error-type distributions between Original and HardcoreLogic across four
large language models.

4.3 UNSOLVABLE GAMES

Overall results To explore the model’s ability to han- " e
dle contradictory puzzles, we constructed a batch of un-
solvable puzzles based on each puzzle. Figure [9] shows
the performance of each model in a puzzle-free scenario,
where the overall performance of closed-source models is
better than that of open-source models. To investigate this
phenomenon, we take several open-source models as ex-
amples to analyze the possible problems that models may B oo
encounter when encountering unsolvable puzzles. o SIS

Accuracy (%)
o 5 8 3 8
Eer—+—F
e e ——
e —r—
e —_—

Sufficiency analysis To investigate how LRMs han-

dle unsolvable logic puzzles, we analyzed cases where Figure 9: Overall model performance
LRMs correctly labeled puzzles as unsolvable to deter- on unsolvable puzzles.

mine whether the judgment was a genuine understanding

(Justified Unsolvability) or a heuristic claim due to failure to solve (Unjustified Unsolvability).
We sampled 50 responses from four models and classified each accordingly, revealing differences in
their reasoning behavior, as shown in Figure Stronger models (gpt-oss-120b and Qwen3-235B)
typically provide justified explanations, while weaker models (Minimax-M1) more often output un-
justified “unsolvable” claims. This suggests that the ability to maintain deeper and more consistent
reasoning chains is crucial for producing sufficient unsolvability explanations.

Error analysis We further analyzed the LRMs’ incorrect responses to unsolvable logic puzzles,
categorizing the errors into four types: (1) Erroneous Reasoning, (2) Mandatory Response,
(3) Unable to Deduce, and (4) Infinite Repetition. Detailed explanation of each category is given
in Appendix [C.3] Each incorrect response from the four models was classified accordingly, pro-
viding a fine-grained view of how LRMs fail on unsolvable puzzles. As shown in Figure [I0] error
distributions vary significantly across models. Stronger models (gpt-o0ss-120b and Qwen3-235B)
mainly fail through Erroneous Reasoning or being Unable to Deduce, indicating limitations in sus-
taining reasoning depth. By contrast, weaker models (Kimi-K2-Instruct and Minimax-M1) exhibit
higher rates of Mandatory Responses and especially Infinite Repetition, reflecting brittle control over
output structure. These results suggest that future model updates should not only enhance logical
consistency and depth of reasoning but also incorporate stronger mechanisms to prevent degenerate
behaviors such as repetitive loops or forced answers.

Under review as a conference paper at ICLR 2026

UP Sufficient Analysis UP Error Analysis
Type Types
Justified Unsolvability Erroneous
0.8 Unjustified Unsolvability 0.6 B Mandatory
2% Unable to deduce
0.6 & . Z #77 Infinite-Repetition
0. s Z r
E =04 % /// 7
g 2 e ¢ 7
S04 5 2 g z
: - g . B //,
0.2 P
0.2 7/ é //
7 L7 7
0.0 gpt-0ss-120b qwen3-235b kimi-k2 minimax-m1 0.0 gpt-0ss-120b qwen3-235b kimi-k2 minimax-m1

Figure 10: Analysis of LRMs’ responses on unsolvable puzzles: the left panel shows correct re-
sponses , and the right panel shows incorrect responses .

5 RELATED WORK

Reasoning benchmarks Logic puzzles aim to test the logical reasoning ability of a model. Re-
searchers have proposed different benchmarks to test the reasoning ability of models in puzzles, in-
cluding deductive reasoning (Wang et al.| 2022), inductive reasoning, causal reasoning (Yang et al.,
2024), and mixed reasoning (Luo et al.,[2024)). The datasets used include synthetic datasets (Chen
et al., 2025a) and collected datasets.Previously, investigators proposed different benchmarks to test
and evaluate data sets. For example, Logicgame (Gui et al.l [2025)) grades the difficulty of tasks by
evaluating the number of reasoning steps and achieves dual evaluation of the process and the results.
Multi-LogiEval (Patel et al., 2024) systematically evaluated the impact of inference depth on LRM.
However, there are still deficiencies in data diversity, with limited difficulty limits for puzzles and
a lack of high-difficulty reasoning tasks. We introduced various puzzles, increased the difficulty
limit of logical puzzles, performed long-tail transformation on puzzles from multiple aspects, and
evaluated the impact of these changes on model performance.

Long-tail benchmarks Several studies have shown that large language models often excel at
memorization but struggle to generalize to tasks requiring systematic reasoning or complex com-
binatorial problem-solving. For example, |Anil et al.| (2022) and [Wold et al.| (2024)highlight that
Transformers can fail to generalize to longer sequences or novel compositional structures. These
findings suggest that LRMs’ apparent reasoning ability may rely heavily on pattern recognition
from training data rather than true algorithmic generalization. To systematically evaluate these lim-
itations, several benchmarks have been proposed that target “long-tail” or challenging reasoning
instances. For example, JustLogic (Chen et al.| 2025b)), LINT (Li et al.| 2024)), and SATbench (Wei
et al., 2025) enrich traditional tasks with harder problem instances, extended reasoning chains, or
compositional variations, revealing LRMs’ difficulty in tackling out-of-distribution or rare configu-
rations. Furthermore, [Wang et al.|(2025)) dynamically generate adversarial questions against LRMs.
Building upon these insights, we introduce a new benchmark suite that systematically generates
a wide range of logic puzzles under diverse long-tail transformations. Our dataset provides richer
structural variations and increased reasoning complexity, allowing a more comprehensive evaluation
of LRMs’ generalization and problem-solving capacity beyond what prior benchmarks offer.

6 CONCLUSION

In this paper, we introduce HardcoreLogic, a challenging logic puzzle benchmark comprising over
5,000 puzzles spanning 10 different puzzle games. Our experiments show that LRMs exhibit a sub-
stantial performance drop on HardcoreLogic compared to the Original datasets. This highlights that
current models still struggle in less conventional, long-tail scenarios and often rely on pattern recog-
nition or memorized experience rather than genuine reasoning. At the same time, HardcoreLogic
provides a valuable benchmark for future research, offering a platform to systematically evaluate
and improve the reasoning capabilities of LRMs in diverse and challenging logical contexts.

Ethics statement Original contains samples from existing published datasets including Enigmata
and ZebralLogic, of which we strictly follow the corresponding licenses in data use. Meanwhile

10

Under review as a conference paper at ICLR 2026

HardcoreLogic, we only cover the same logic games but have all puzzles generated independently;
we guarantee the transparency and reproducibility of the generation of HardcoreLogic.

Reproduction statement We publish both Original and HardcoreLogic to the public for reproduc-
tion and future research. We also publish the data generation and evaluation code for reproduction
of our datasets and evaluation results. We make our best effort to ensure deterministic outcomes,
and guarantee so on open-source LRMs; however, due to the black-box, stochastic nature of closed-
source LRMs, we cannot guarantee any precise reproduction on these closed-source models.

REFERENCES

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 38546-38556.
Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_fil
es/paper/2022/file/fb7451e43f9clc35b774bcfad7a5714b-Paper—Confe
rence.pdf.

Anthropic. Introducing claude 4 (sonnet 4). https://www.anthropic.com/news/claud
e—4,2025.

ByteDance Seed Team. Seed-oss open-source models. https://github.com/ByteDance
—Seed/seed-oss) 2025.

Jiangjie Chen, Qianyu He, Siyu Yuan, Aili Chen, Zhicheng Cai, Weinan Dai, Hongli Yu, Qiying Yu,
Xuefeng Li, Jiaze Chen, Hao Zhou, and Mingxuan Wang. Enigmata: Scaling logical reasoning

in large language models with synthetic verifiable puzzles. arXiv preprint, May 2025a. doi:
10.48550/ARXIV.2505.19914.

Michael K. Chen, Xikun Zhang, and Dacheng Tao. Justlogic: A comprehensive benchmark for
evaluating deductive reasoning in large language models. arXiv preprint, 2025b. doi: 10.48550
/ARXIV.2501.14851. URL https://arxiv.org/abs/2501.14851,

Francois Chollet, Mike Knoop, Gregory Kamradt, Bryan Landers, and Henry Pinkard. Arc-agi-2:
A new challenge for frontier ai reasoning systems. arXiv preprint, May 2025. doi: 10.48550/A
RXIV.2505.11831.

Nurit Cohen-Inger, Yehonatan Elisha, Bracha Shapira, Lior Rokach, and Seffi Cohen. Forget what
you know about llms evaluations — llms are like a chameleon. arXiv preprint, 2025. doi: 10.485
50/ARXIV.2502.07445. URL https://arxiv.org/abs/2502.07445.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 4963 of Lecture Notes in Computer
Science, pp. 337-340, Budapest, Hungary, March 2008. Springer. doi: 10.1007/978-3-540-788
00-324. URL |https://doi.org/10.1007/978-3-540-78800-3_24,

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/fb7451e43f9c1c35b774bcfad7a5714b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fb7451e43f9c1c35b774bcfad7a5714b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/fb7451e43f9c1c35b774bcfad7a5714b-Paper-Conference.pdf
https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://github.com/ByteDance-Seed/seed-oss
https://github.com/ByteDance-Seed/seed-oss
https://arxiv.org/abs/2501.14851
https://arxiv.org/abs/2502.07445
https://doi.org/10.1007/978-3-540-78800-3_24

Under review as a conference paper at ICLR 2026

An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin,
Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang
Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin
Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong
Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang,
Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao,
Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen
Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma,
Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report. arXiv preprint, December 2024. doi:
10.48550/ARXIV.2412.19437.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqgiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint, January 2025. doi: 10.48550/ARXIV.2501.12948.

Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities, June 2025. URL https://storage.goog
leapis.com/deepmind-media/gemini/gemini_v2_5_report.pdfl

GLM-4.5 Team, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie,
Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu,
Rui Lu, Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin
Niu, Yuanhao Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen,
Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi
Ge, Chenghua Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng Yin,
Daoyan Lin, Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan, Guo
Wang, Hailong Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai, Haoke
Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan Liu,
Huilong Chen, Ji Li, Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi Wang,

12

https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf

Under review as a conference paper at ICLR 2026

Jiayi Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan, Jingxuan
Li, Jingzhao Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang, Liang Xu,
Lin Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan Xu, Mingming
Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu, Shangtong Yang,
Shaoyou Lu, Shijie Li, Shuang Li, Shuang-Li, Shuxun Yang, Sibo Yi, Tianshu Yu, Wei Tian,
Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao Wang, Xiaohan Jia,
Xiaotao Gu, Xiaoying Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan Zhang, Xinze Zhang,
Xiuqging Fu, Xunkai Zhang, Yabo Xu, Yandong Wu, Yida Lu, Yidong Wang, Yilin Zhou, Yiming
Pan, Ying Zhang, Yingli Wang, Yingru Li, Yinpei Su, Yipeng Geng, Yitong Zhu, Yongkun Yang,
Yuhang Li, Yuhao Wu, Yujiang Li, Yunan Liu, Yunqing Wang, Yuntao Li, Yuxuan Zhang, Zezhen
Liu, Zhen Yang, Zhengda Zhou, Zhongpei Qiao, Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zihan
Wang, Zijun Yao, Zikang Wang, Ziqiang Liu, Ziwei Chai, Zixuan Li, Zuodong Zhao, Wenguang
Chen, Jidong Zhai, Bin Xu, Minlie Huang, Hongning Wang, Juanzi Li, Yuxiao Dong, and Jie
Tang. GIm-4.5: Agentic, reasoning, and coding (arc) foundation models. arXiv preprint, August
2025. doi: 10.48550/ARXIV.2508.06471.

Jiayi Gui, Yiming Liu, Jiale Cheng, Xiaotao Gu, Xiao Liu, Hongning Wang, Yuxiao Dong, Jie Tang,
and Minlie Huang. LogicGame: Benchmarking rule-based reasoning abilities of large language
models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 1474-1491,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
5. doi: 10.18653/v1/2025 findings-acl.77. URL https://aclanthology.org/2025.f1
ndings—-acl.77/.

Chunyang Li, Weiqi Wang, Tianshi Zheng, and Yangqiu Song. Patterns over principles: The fragility
of inductive reasoning in LLMs under noisy observations. In Wanxiang Che, Joyce Nabende,
Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Com-
putational Linguistics: ACL 2025, pp. 19608—19626, Vienna, Austria, July 2025. Association for
Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1006.
URLhttps://aclanthology.org/2025.findings—acl.1006/.

Huihan Li, Yuting Ning, Zeyi Liao, Siyuan Wang, Xiang Lorraine Li, Ximing Lu, Wenting Zhao,
Faeze Brahman, Yejin Choi, and Xiang Ren. In search of the long-tail: Systematic generation of
long-tail inferential knowledge via logical rule guided search. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 2348-2370, Miami, Florida, USA, November 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.140. URL https://aclant
hology.org/2024.emnlp-main.140/.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. arXiv
preprint, February 2025a. doi: 10.48550/ARX1V.2502.01100.

Haowei Lin, Xiangyu Wang, Ruilin Yan, Baizhou Huang, Haotian Ye, Jianhua Zhu, Zihao Wang,
James Zou, Jianzhu Ma, and Yitao Liang. Generative evaluation of complex reasoning in large
language models. arXiv preprint, 2025b. doi: 10.48550/ARXIV.2504.02810. URL https:
//arxiv.org/abs/2504.02810.

Man Luo, Shrinidhi Kumbhar, Ming Shen, Mihir Parmar, Neeraj Varshney, Pratyay Banerjee, Somak
Aditya, and Chitta Baral. Towards logiglue: A brief survey and a benchmark for analyzing logical
reasoning capabilities of language models. arXiv preprint, 2024. doi: 10.48550/arXiv.2310.0083
6. URL https://arxiv.org/abs/2310.00836.

MiniMax, Aili Chen, Aonian Li, Bangwei Gong, Binyang Jiang, Bo Fei, Bo Yang, Boji Shan,
Changqing Yu, Chao Wang, Cheng Zhu, Chengjun Xiao, Chengyu Du, Chi Zhang, Chu Qiao,
Chunhao Zhang, Chunhui Du, Congchao Guo, Da Chen, Deming Ding, Dianjun Sun, Dong Li,
Enwei Jiao, Haigang Zhou, Haimo Zhang, Han Ding, Haohai Sun, Haoyu Feng, Huaiguang Cai,
Haichao Zhu, Jian Sun, Jiaqi Zhuang, Jiaren Cai, Jiayuan Song, Jin Zhu, Jingyang Li, Jinhao
Tian, Jinli Liu, Junhao Xu, Junjie Yan, Junteng Liu, Junxian He, Kaiyi Feng, Ke Yang, Kecheng
Xiao, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Li, Lin Zheng, Linge Du, Lingyu
Yang, Lunbin Zeng, Minghui Yu, Mingliang Tao, Mingyuan Chi, Mozhi Zhang, Mujie Lin, Nan

13

https://aclanthology.org/2025.findings-acl.77/
https://aclanthology.org/2025.findings-acl.77/
https://aclanthology.org/2025.findings-acl.1006/
https://aclanthology.org/2024.emnlp-main.140/
https://aclanthology.org/2024.emnlp-main.140/
https://arxiv.org/abs/2504.02810
https://arxiv.org/abs/2504.02810
https://arxiv.org/abs/2310.00836

Under review as a conference paper at ICLR 2026

Hu, Nongyu Di, Peng Gao, Pengfei Li, Pengyu Zhao, Qibing Ren, Qidi Xu, Qile Li, Qin Wang,
Rong Tian, Ruitao Leng, Shaoxiang Chen, Shaoyu Chen, Shengmin Shi, Shitong Weng, Shuchang
Guan, Shuqi Yu, Sichen Li, Songquan Zhu, Tengfei Li, Tianchi Cai, Tianrun Liang, Weiyu Cheng,
Weize Kong, Wenkai Li, Xiancai Chen, Xiangjun Song, Xiao Luo, Xiao Su, Xiaobo Li, Xiaodong
Han, Xinzhu Hou, Xuan Lu, Xun Zou, Xuyang Shen, Yan Gong, Yan Ma, Yang Wang, Yiqi
Shi, Yiran Zhong, Yonghong Duan, Yongxiang Fu, Yongyi Hu, Yu Gao, Yuanxiang Fan, Yufeng
Yang, Yuhao Li, Yulin Hu, Yunan Huang, Yunji Li, Yunzhi Xu, Yuxin Mao, Yuxuan Shi, Yuze
Wenren, Zehan Li, Zelin Li, Zhanxu Tian, Zhengmao Zhu, Zhenhua Fan, Zhenzhen Wu, Zhichao
Xu, Zhihang Yu, Zhiheng Lyu, Zhuo Jiang, Zibo Gao, Zijia Wu, Zijian Song, and Zijun Sun.
Minimax-m1: Scaling test-time compute efficiently with lightning attention. arXiv preprint, June
2025. doi: 10.48550/ARXIV.2506.13585.

Moonshot Al. Kimi-K2-Instruct, 2025. URL https://huggingface.co/moonshotai/
Kimi-K2-Instruct.

OpenAl. gpt-0ss-120b & gpt-0ss-20b model card, 2025a. URL https://arxiv.org/abs/
2508.10925.

OpenAl. Introducing gpt-5. https://openai.com/index/introducing-gpt—-5/}
2025b.

OpenAl Introducing gpt-4.1 in the api, April 2025¢c. URL https://openai.com/index/g
pt—-4-1/.

OpenAl Introducing openai 03 and 04-mini, April 2025d. URL https://openai.com/ind
ex/introducing-o3—-and-o4-mini/.

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna Budhiraja, Mutsumi Nakamura, Neeraj Varsh-
ney, and Chitta Baral. Multi-LogiEval: Towards evaluating multi-step logical reasoning ability
of large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
20856-20879, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.1160. URL https://aclanthology.org/202
4.emnlp-main.1160/.

Siyuan Wang, Zhongkun Liu, Wanjun Zhong, Ming Zhou, Zhongyu Wei, Zhumin Chen, and Nan
Duan. From Isat: The progress and challenges of complex reasoning. I[EEE/ACM Transactions
on Audio, Speech, and Language Processing, 30:2201-2216, 2022. ISSN 2329-9304. doi: 10.1
109/TASLP.2022.3164218.

Siyuan Wang, Zhuohan Long, Zhihao Fan, Xuanjing Huang, and Zhongyu Wei. Benchmark
self-evolving: A multi-agent framework for dynamic LLM evaluation. In Owen Rambow,
Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schock-
aert (eds.), Proceedings of the 31st International Conference on Computational Linguistics, pp.
3310-3328, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL
https://aclanthology.org/2025.coling—main.223/.

Anjiang Wei, Yuheng Wu, Yingjia Wan, Tarun Suresh, Huanmi Tan, Zhanke Zhou, Sanmi Koyejo,
Ke Wang, and Alex Aiken. Satbench: Benchmarking 1lms’ logical reasoning via automated puzzle
generation from sat formulas. arXiv preprint, 2025. doi: 10.48550/ARXIV.2505.14615. URL
https://arxiv.org/abs/2505.14615.

Sondre Wold, Etienne Simon, Lucas Charpentier, Egor Kostylev, Erik Velldal, and Lilja @vrelid.
Compositional generalization with grounded language models. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics: ACL 2024,
pp. 3447-3460, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-acl.205. URL https://aclanthology.org/2024.fi
ndings—-acl.205/.

xAlL Grok 3 beta — the age of reasoning agents, February 2025a. URL https://x.ai/news/
grok-3l

XAl Grok 4. https://x.ai/news/grok—4, 2025b.

14

https://huggingface.co/moonshotai/Kimi-K2-Instruct
https://huggingface.co/moonshotai/Kimi-K2-Instruct
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/gpt-4-1/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://aclanthology.org/2024.emnlp-main.1160/
https://aclanthology.org/2024.emnlp-main.1160/
https://aclanthology.org/2025.coling-main.223/
https://arxiv.org/abs/2505.14615
https://aclanthology.org/2024.findings-acl.205/
https://aclanthology.org/2024.findings-acl.205/
https://x.ai/news/grok-3
https://x.ai/news/grok-3
https://x.ai/news/grok-4

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint, May 2025. doi: 10.48550/ARXIV.2505.09388.

Zonglin Yang, Xinya Du, Rui Mao, Jinjie Ni, and Erik Cambria. Logical reasoning over natural
language as knowledge representation: A survey. arXiv preprint, 2024. doi: 10.48550/ARXIV.2
303.12023. URL https://arxiv.org/abs/2303.12023.

A USE OF LLMs

We use LLMs at several parts of our work: (1) To construct natural-language versions of Zebralogic,
we used GPT-4o0-mini (OpenAl, 2025c¢) for clue translation from formal mathematical expressions,
with GPT-04-mini (OpenAl, [2025¢) verifying semantic consistency between the mathematical and
translated forms. (2) For response annotation, GPT-5 (OpenAll 2025b) served as a secondary an-
notator to categorize model responses. (3) During paper preparation, we leveraged GPT-5 to refine
our writing by compressing redundant descriptions and improving narrative conciseness. (4) LLMs
were also employed to assist in literature search, helping us identify and locate relevant prior work.

B BENCHMARK DETAILS

B.1 CATEGORY DEFINITION

Table 2: Logic game categories in HardcoreLogic.

Category Definition

Logic puzzle This type of puzzle provides us with multiple related logical
clues, requiring us to integrate each clue. Zebralogic belong to
this category.

Grid puzzle This type of puzzle provides a grid of different sizes, where the
cells may be blank cells or cells with numbers. Need to fill in the
numbers in blank cells through puzzle rules. Sudoku, skyscraper,
and Binario belong to this category.

Search puzzle This type of puzzle requires searching for the required cells
through puzzle rules. Minesweeper, Hitori, and Kakurasu belong
to this category.

Pattern puzzle This type of puzzle will provide a specific pattern and require us
to understand, extract, and apply that pattern. Crypto belong to
this category.

Graph puzzle This type of puzzle provides some graphic clues that we need to
understand and model to answer questions. Navigation belongs
to this category.

Sequential puzzle This type of puzzle requires us to solve a multi-step puzzle in a
specific order. Hanoi belongs to this category.

In Section 2] we mention that the HardcoreLogic contains puzzles for 6 different categories. Table 2]
provides an introduction to their specific definitions.

15

https://arxiv.org/abs/2303.12023

Under review as a conference paper at ICLR 2026

B.2 PUZZLE DEFINITION AND TRANSFORMATIONS

To provide a clearer view of how we constructed the HardcoreLogic, we include additional details
on each puzzle type. For every puzzle, we present the original rules alongside the applied transfor-
mations. The original rules specify the standard constraints of the puzzle, while the transformations
describe the modifications we introduced to increase reasoning difficulty or adapt the puzzles to
our evaluation framework. Table [3]summarizes these rules and transformations, offering a compre-
hensive reference for reproducibility and further analysis. Figure [TT] provides examples of some
long-tail transformations for each puzzle

Table 3: Rules and transformations of each game in HardcoreLogic.

Puzzle Rule Description

Sudoku Original (1) Puzzle categories: Grid puzzle
(2) Puzzle rules:
1. The Sudoku board is a 9 x 9 grid, divided into 9 smaller
3 X 3 subgrids, which includes known cells (numbers 1-9)
and unknown cells.
2. Row constraint: Each row must include all numbers from
1 to 9 without duplication.
3. Column constraint: Each column must include all num-
bers from 1 to 9 without duplication.
4. Subgrid constraint: Each 3 x 3 subgrid must include all
numbers from 1 to 9 without duplication.
(3) Puzzle task: Fill in numbers into unknown cells to sat-
isfy row, column, and subgrid constraints.

Transformation (1) More empty cells and larger grid: Increase the number
of unknown cells or use a 16 x 16 grid (subgrid 4 x 4).
(2) Irregular subgrid: Divide the 9 x 9 grid into nine irreg-
ular regions; the three constraints remain unchanged.
(3) Additional constraints:
- Diagonal constraint: Each main and secondary diagonal
must include all numbers from 1 to 9 without repetition.
- Adjacency constraint: The difference between each cell
and its orthogonal neighbors (up, down, left, right) cannot
be 1.
- Maximize box constraint: Divide the 9 x 9 grid into nine
3 x 3 subgrids indexed 1-9. Each puzzle requires one sub-
grid to maximize its score (score = sum of cell index x cell
value).
When generating puzzles with additional constraints, we en-
sure that they have multiple solutions under the original con-
straints and only one solution under these constraints. This
requires more empty cells to ensure this situation. When
comparing the difficulty of such puzzles with the Original
dataset, we compare the difficulty changes between differ-
ent constraints and the entire Original dataset. However,
their search space did not show a significant improvement
compared to the data of IC1 in HardcoreLogic.Therefore,
we categorize it as UE2.
(4) Letter version: Replace numbers 1-9 with letters A-1,
also applied to irregular, diagonal, and adjacency variants.
(5)Unsolvable puzzle:In a Sudoku puzzle, a blank cell en-
ters a ’no valid number can be filled” state, meaning that
the union of its row, column, and range already contains all
numbers from 1 to 9.

16

Under review as a conference paper at ICLR 2026

Puzzle Rule Description

Kakurasu Original (1) Puzzle categories: Search puzzle
(2) Puzzle rules:
1. The Kakurasu board is a 6 x 6 grid. Numbers at the top
(columns) and on the left (rows) are constraints.
2. Row sum = sum of column indices (1-based) of black
cells in that row.
3. Column sum = sum of row indices (1-based) of black
cells in that column.
(3) Puzzle task: Blacken cells in a 6 x 6 grid so that row/-
column sums equal the given constraints.

Transformation (1) Add blocked cells: Some cells cannot be blackened;

grid sizes include 6 x 6 and 7 x 7.
(2) Hide partial clues: Some row/column constraints are
hidden (denoted by -1); grid sizes include 6 x 6 and 7 x 7.
(3) Unsolvable puzzle:First, we generate a solvable puzzle.
Then, we modify some of the clues to make the puzzle un-
solvable—for example, by swapping certain row or column
clues and then verifying that the resulting clues indeed ren-
der the puzzle unsolvable.

Hitori Original (1) Puzzle categories: Search puzzle
(2) Puzzle rules:
1. The Hitori board is a 4x4(5x5) grid. Each cell in the grid
has a number in the range of 1-4(1-5).
2. Connectivity constraint: All cells that have not been
blackened are interconnected(4-connected).
3. Blacked cell constraint: All blackened cells cannot be
adjacent(4-connected).
4. Unique constraint: The numbers in each row and column
cannot be repeated.
(3) Puzzle task: Black some cells in the grid to meet the
connectivity constraint, blacked cell constraint, and unique
constraint mentioned above.

Transformation (1) Larger grid: Upgrade the grid specifications to 6x6 and

7X7.

(2) Encrypted: Encrypt numbers into letters using the fol-
lowing encryption method: In the -th row (from 1 to grid
size), the cell numbered k now becomes “ ‘A’+(i+k-2) %
grid size”.

(3)Unsolvable puzzle:Generate a Hitori puzzle that cannot
satisfy all of the original puzzle constraints simultaneously.

17

Under review as a conference paper at ICLR 2026

Puzzle

Rule

Description

Skyscraper

Original

(1) Puzzle categories: Grid puzzle

(2) Puzzle rules:

1. The puzzle will be provided with an n x n sized grid , with
blank cells inside. We need to use clues (located around the
grid) to fill in the numbers.

2. Definition and constraints for filling in numbers: Each
row and column can only be filled with numbers 1 to n (the
size of the puzzle), the numbers filled in cannot be repeated,
and each number in 1 to n needs to be filled in at least once.
The number filled in represents the building height at that
location.

3. Clues outside the grid: The clues for each puzzle can be
one of the following two ways.

-The count hint: The numbers outside the grid indicate how
many buildings can be seen from that direction. Tall build-
ings will block shorter buildings, and the height of the build-
ing is represented by the number filled in the blank cell. At
this point, the numbers in the clue indicate how many build-
ings can be seen from that direction towards the other end
(the viewing direction is along the row or column).

-The sum hint: The numbers outside the grid indicate the
height of the building visible from that direction. Tall build-
ings will block shorter buildings, and the height of the build-
ing is represented by the number filled in the blank cell. At
this point, the numbers in the clue represent the sum of the
heights of the buildings that can be seen from that direction
towards the other end (the viewing direction is along the row
or column).

(3) Puzzle task: Fill in numbers in the grid to satisfy Clues
outside the grid.

Transformation

(1) Add diagonal constraint: Add Visibility Clues to the
top left, top right, bottom left, and bottom right corners of
the grid. The numbers filled in the table need to satisfy ad-
ditional diagonal constraints in addition to the original four
directions of Visibility Clues. But there is no constraint on
the diagonal that 1-n cannot be repeatedly filled in. (This
constraint only occurs when using the count hint)

(2) Hide partial clues: Hide clues for certain rows and
columns (represented by -1).

(3)Unsolvable puzzle:First, we generate a set of clues that
define a solvable puzzle. Then, we intentionally modify
some of the clues to make the puzzle unsolvable. For
example, consider a contradiction introduced between the
maximum-value clue and the non-minimum clue in a col-
umn: the top clue is set to the maximum value (n), while the
bottom clue is set to a value between 2 and n — 1. This is
inconsistent because a maximum top clue implies the col-
umn must be strictly increasing from 1 to n, in which case
the bottom clue should necessarily be 1.

18

Under review as a conference paper at ICLR 2026

Puzzle

Rule

Description

Minesweeper

Original

(1) Puzzle categories: Search puzzle

(2) Puzzle rules:

1. The Minesweeper board is a 9x9 grid. Each cell may be a
number 0-8 or a hidden cell (represented by “.”, which may
contain landmines or not).

2. The number in a number cell represents the number of
landmines around (8-connected with) it.

(3) Puzzle task: Search for all cells that can be determined
to be landmines through numerical cell clues.

Transformation

(1) More mines and larger grid: Increase the number of
landmines in the answer or use a 12x12 grid.

(2) Cluster hint: Convert the meaning of a number cell to
the number of landmine clusters surrounding (8-connected
with) it. Among the 8 neighbors around a certain grid, any
landmines that can be reached by connecting them in 8 di-
rections (up, down, left, right, or diagonal) belong to the
same landmine cluster.

Since the calculation formula for the original search space
of Minesweeper is derived from the rules of the stan-
dard Minesweeper, we measure the search space of re-
gional Minesweeper Puzzles as 2V, where N denotes the
number of unknown cells. The search space of regional
Minesweeper Puzzles in HardcoreLogic is slightly smaller
than that of the Original. Therefore, we categorize it as
UE2.

(3) Letter version: Use letters A-H to represent numbers
1-8 and Z to represent O.

(4)Unsolvable puzzle:First, we generate a puzzle. We then
randomly select a non-mine tile and modify its displayed
value so that it no longer matches the actual number of sur-
rounding mines. After that, we verify whether this altered
value indeed makes the puzzle unsolvable.

Binario

Original

(1) Puzzle categories: Grid puzzle

(2) Puzzle rules:

1. The Binario board is an n-times-n grid. Each cell may be
a number cell (0 or 1) or an empty cell (represented by “.”).
2. Non-adjacent constraint: Each row or column should
not have more than two adjacent identical numbers (4-
connected).

3. Quantity constraint: The number of 0’s and 1’s in each
row and column is the same.

(3) Puzzle task: Fill in the empty cells with the numbers
0 and 1 to satisfy the non-adjacent constraint and quantity
constraint.

Transformation

(1) More empty cells and larger grid: Increase the number
of empty cells or use a larger grid.

(2) Extra constraint: Each question will add some unique
additional constraints based on the original constraints,
which will be described in the specific question.
(3)Unsolvable puzzle:First, generate a binario puzzle with
only one solution. Then, add a numbered square opposite to
the solution, thus making it unsolvable.

19

Under review as a conference paper at ICLR 2026

Puzzle

Rule

Description

Navigation

Original

(1) Puzzle categories: Graph puzzle

(2) Puzzle rules:

Each question contains some road signs (such as schools,
banks), given some letters, each letter corresponds to a
road sign, and one road sign may correspond to several let-
ters. The description of the question provides some one-way
paths between letters, as well as a starting letter and an end-
ing landmark.

(3) Puzzle task: Find the shortest path from the starting let-
ter to the endpoint landmark.

Transformation

(1) More complex paths: Add more complex paths to make
the path from the starting point to the endpoint longer.

(2) Add multi-hop: Add an intermediate target landmark.
(3)Unsolvable puzzle: Destroy the connectivity of the
graph so that the starting point cannot reach the ending
point.

Hanoi

Original

(1) Puzzle categories: Sequential puzzle

(2) Puzzle rules:

1. Hanoi contains m pegs and n disks. Disks are represented
by numbers (indicating the size of the disk), pegs are rep-
resented by letters, and disks stand above the pegs. Each
puzzle will provide the initial state of the peg and disk, as
well as the target state.

2. Each step moves a disk on top of a peg to another peg
that is either empty or whose current top disk is larger than
the moved disk. Pegs cannot be moved.

(3) Puzzle task: Move the disks on the Pegs from their ini-
tial state to the target state.

Transformation

(1) Random start: Initially, the disks are randomly dis-
tributed on the cylinder under the condition of solvability.
(2) Custom target pegs: The target pillar is not necessarily
the last one, but is randomly assigned.

(3) Custom disk order:The order of the disks is not neces-
sarily from small to large, but a specified order
(4)Unsolvable puzzle:The disks are restricted to moving
only to the right, and the problem is verified using the BFS
algorithm to filter out unsolvable problems.

Crypto

Original

(1) Puzzle categories: Pattern puzzle

(2) Puzzle rules:

1. For the KPA puzzle: Given a set of plaintext and cipher-
text pairs, observe the encryption method to decrypt another
ciphertext.

2. For the KKA puzzle: Given an encryption method, de-
crypt the ciphertext

(3) Puzzle task: Decrypt the ciphertext to get the plaintext

20

Under review as a conference paper at ICLR 2026

Puzzle Rule

Description

Transformation

(1) More random text: Randomly generate more difficult
ciphertext

(2) Two-layer with two samples: For the KPA puzzle,
given two sets of plaintext and ciphertext pairs with the same
encryption rules, decrypt the double-encrypted ciphertext
(3) Multiple layers or Multiple segments: Multi-layer ci-
phertext encryption or the text will be divided into several
parts, and each part will be encrypted using a different en-
cryption method.

(4)Unsolvable Puzzle:Regarding the KPA decryption issue,
two samples are provided, each encrypted using a different
method, leading to an unsolvable problem.

Zebralogic Original

(1) Puzzle categories: Logic Puzzle

(2) Puzzle rules:

1. Problem scenario: Each problem will describe a scenario
that includes a specific number of houses.

2. Characteristics: Specific quantity characteristics (e.g.,
name, pet, etc.), each feature has a unique item equal to the
number of houses.

3. Clues: Each question will provide some clues, including
direct correspondence, positional relationships, and other
clues.

4. Constraints: No repetition in the same dimension; each
house uniquely matches one item from each dimension; rea-
soning only based on clues

(3) Puzzle task: Deduce the complete correspondence be-
tween houses and all dimensional characteristics based on
clues.

Transformation

(1) Create harder rules: For example, instead of Pet-dog =
Sport-football 4+ 1, we use a looser condition like Pet-dog >
Sport-football. We also add more clue types like “1 of 3”
and “imply”.

(2)Unsolvable puzzle:Constructing contradictory con-
straints that render the problem unsolvable.

B.3 TRANSFORMATION TAXONOMY

To systematically characterize the transformations applied in HardcoreLogic, we organize them into
a taxonomy spanning three major categories: increased complexity, uncommon element, and un-
solvable puzzle. Each category is further divided into subcategories, with representative examples
drawn from different puzzle types. This taxonomy (Table) illustrates how diverse transforma-
tions reshape the puzzles, either by enlarging the search space, strengthening or mutating rules, or
deliberately creating contradictions to render puzzles unsolvable.

Table 4: Detailed taxonomy of longtail transformations across puzzles.

Family Type

Examples

Increased IC1. Search Space Sudoku: More empty cells and larger grid

Complexity Expansion

Binario: More empty cells and larger grid
Crypto: More random text

Crypto: Multiple layers and segements
Hitori: Large grid

Minesweeper: More mines and larger grid

21

Under review as a conference paper at ICLR 2026

Family Type Examples
IC2. Constraint Zebralogic: Create harder rules
Strengthening Kakurasu: Partial hint

Binario: Extra constraint
Skyscraper: Partial hint
Navigation: More complex paths

Uncommon UEIl. Form Mutation Sudoku: Letter encoding
Element Sudoku: Irregular subgrid
Kakurasu: Add block cells
Hanoi: Custom target pegs and disk order
Hitori: Encrypted
Minesweeper: Letter encoding

UE2. Rule Mutation Sudoku: Add diagonal constraint
Sudoku: Add Adjacency constraint
Sudoku: Maximize box constraint
Skyscraper: Add diag hint
Minesweeper: Cluster hint
Navigation: Add multi-hop

Unsolvable Unsolvable Zebralogic: Add conflicting constraint

Puzzle Sudoku: Add conflicting hint
Skyscraper: Add conflicting constraint
Kakurasu: Add conflicting constraint
Crypto: Two sample with different encryption
method
Minesweeper: Add conflicting hint
Navigation: Destroy the connectivity of the graph
Binario: Add conflicting hints
Hanoi: Limit the direction of disk movemen
Hitori: Generate an initial solution that does not
satisfy the rules

B.4 COMPLEXITY ANALYSIS DETAILS

In Section [2.3] we quantify the difficulty of logic puzzles by calculating the search space. Table 3]
lists specific expressions for calculating the search space of a logic puzzle, and Table [6] provides
detailed results for Figure 2]

Table 5: Definition and formula of search space in logic games.

Puzzle Key Parameters |S|

Binario N: The number of empty cells 2N

N: The number of empty cells N

Sudoku M: Grid size M

Crypto L: Ciphertext length 267
. v;: Number in digital grid ¢ v;
Minesweeper N;: Number of empty cells around digital grid ¢ I Ni

Hitori M: Grid size oM?

22

Under review as a conference paper at ICLR 2026

43|12
Irregular Subgrid 2 |2 |3 |4
alz2l2 3/—\3 421
sl1l2]a 2(1|a|3
1/a|3|2
23(a1 ®|p|alc
\m’_’ c|®|p|s
Letter Encoding p|B|© A
Diagonal Constraint Alc|B|D
Sudoku
1
Extra constraint g | o
o
011 1/1]0|0
oo
1|10 2 2=
) °
11|00
0 1
More empty cells ° °|°
and larger grid o o
1
Binario
12 10 7
Ola] [a
i Ala
1 2 10 7Hn:leclues()
7 Ala
4 |a A
O I+=
5 Ala
12 10 7
7 Ala
4 |a A
7 Ala
5 Ala|X
Add blocked cells , [ala
7 |x Ala
Kakurasu
Oz 40
2(3(2|1]|a|1
. 2(1(af2]3]|2
Hide clues
2241 1(af2[3]2|O
2(3f2f1faf2 Olz[=]2[2]|O
2 (1faf2(3]2 2 2 1 4
1(af2]a]2]3
2 2 41
3(2(3fafa2]2 @ &
2 (3[2[1]a]1
S~ —
2218 2 (1|af2[3]2
D c
1(af2][a][2]a
3(2(s|afa]2
@22 140
Skyscraper
Blc|c|s
Encrypted D|C|B|A
c|p|B|A
2|3 (3|2 A|lB|A|C
3214
1)2|al3 6[1[3[3[5]a
ale|5[2[3(a
2|3 |2|a
3(2(1[s5]a3
2[1]s[6a|3
Larger grid 3|la4|/2|5(1|6
1(2(a]|6|6[3
Hitori

Original Hanoi

Peg A Peg B Peg C

Random start

HardcoreLogic Hanoi

Custom Target Peg

Peg A Peg B Peg C

Custom Order: 2-1-3-4

Example of Clues in

ic on Original and

House 1 House 2 House 3
Name: Name: Name:
Alice Bob Charlie
Nationality: Nationality:
Japanese German
Pet: Pet:
Dog Bird

Original Clues
* 1. Japanese lives in House 1
+ 2. Alice owns a Dog

Original

J Y
@ /ﬁ
KC) \w

Nearest bank?

Legend
= school

Traditional Minesweeper
(Number = Adjacent Mines)

More complex paths

e 2
(R)] 0/ S)
—_— —_—

, z

i@
e

Nearest Store?

Hardcore Clues.

* 1. Nationality of House 1 = English
+ 2. Name in House 2 < House 1 (lex)
+ 3. Pet in House 1: Dog o Cat

Add multi-hop

/

5

° v o
I3

e -
®

Nearest bank-> store?

@
g

Regional Minesweeper
(Number = Adjacent Mine Clusters)

M M

" ()

IO

[Traditional Grid
1 Regional Grid
O Count Value (Center Cell)

KPA:

YYNSLF —» ?

. |Decryption Example:
KKA: xyz > ABC

XZZYXYY —> ?

Original

—— Connected Mines
— = Diagonal Connection
-©- Single Mine Cluster

ea:

YYNSLF | XZZYXY — ?

KKA:

XzzZYXY — ?

— ?

HardcorelLogic

Figure 11: Examples of some long-tail transformations for each puzzle. Left column: Examples of
Sudoku, Binairo, Kakurasu, Skyscraper, and Hitori. Right column: Examples of Hanoi, Zebralogic,
Navigation, Minesweeper and Crypto.

23

Under review as a conference paper at ICLR 2026

Table 6: Search space sizes of puzzles in Table[5| from Original and HardcoreLogic respectively.

Puzzle Dataset Mean Median
Binario Original 1.18 x 102 6.40 x 10!
HardcoreLogic 5.43 x 10** 1.41 x 104
Sudoku Original 4.08 x 1026 6.46 x 10%*
HardcoreLogic 2.10 x 10*® 3.04 x 10°2
Crvoio Original 4.97 x 10?1 3.29 x 10%°
P HardcoreLogic 1.31 x 1033 1.35 x 103!
Hitori Original 1.48 x 105 1.48 x 10°
HardcoreLogic 6.22 x 102 6.22 x 102
M Original 2.00 x 108 1.30 x 10®
mesweeper

HardcoreLogic 3.03 x 10*® 8.18 x 10°

C EXPERIMENT DETAILS

C.1 MODEL AND CONFIGURATION

We categorize the LLMs that we use into three types: open-source large models, open-source small
models, and closed-source models. Table lists all candidate models with their parameter sizes.

Table 7: Candidate LLMs for experiments. A “closed” size indicates a closed-source model.

Family Model Size
GPT GPT-5 (OpenAlL 2025b) closed
GPT-5 mini (OpenAl, 2025b) closed
04 mini (OpenAl, |2025d) closed
Grok Grok 4 (xAlL 2025b) closed
Grok 3 min1 (xAIL [2025al) closed
Gemini Gemini 2.5 Pro (Gemini Team, [2025)) closed
Gemini 2.5 Flash (Gemini Team), |2025]) closed
Claude Claude Sonnet 4 (Anthropic}, |2025) closed
DeepSeek DeepSeek-V3.1 (DeepSeek-Al et al., [2024)) 671B
DeepSeek-R1-0528 (DeepSeek-Al et al., [2025) 671B
Qwen Qwen3-235B-A22B-Thinking-2507 (Yang et al., [2025) 235B
MiniMax MiniMax-M1-40k (MiniMax et al., 2025) 456B
GLM GLM-4.5 (GLM-4.5 Team et al.,|2025) 358B
Kimi Kimi-K2-Instruct (Moonshot AlL2025) 1T
GPT gpt-0ss-120b (OpenAll 2025a) 120B
DeepSeek DeepSeek-R1-0528-Qwen3-8B (DeepSeek-Al et al., 2025) 8B
Qwen Qwen3-Next-80B-A3B-Thinking (Yang et al., [2025) 80B
Qwen3-32B (Yang et al., [2025)) 32B
Qwen3-30B-A3B-Thinking-2507 (Yang et al., [2025) 30B
Qwen3-8B (Yang et al.,[2025) 8B
Seed Seed-OSS-36B-Instruct (ByteDance Seed Team, 2025) 36B
A few notes:

* We observe in experiments that GPT-5, GPT-5 mini, and 04 mini tend to exceed the 32, 768 token
budget more often when choosing the “high” reasoning level. Therefore, we select the “medium”
reasoning level to encourage generating valid responses within the limit.

* For gpt-o0ss-120b, we keep enabling the “high” reasoning level as this model is not prone to the
above issue. Following OpenAl’s official guidance, we utilize the system prompt to inject this
setting.

24

Under review as a conference paper at ICLR 2026

* Kimi-K2-Instruct is not an LRM, hence we ask the model to perform CoT in the system prompt.
More specifically, we adopt a two-step generation approach: first, generate a reasoning output
wrapped between a pair of special tokens, and then a final answer based on the original prompt
and the generated CoT.

C.2 PROMPT TEMPLATE

To ensure consistency and reproducibility across all puzzle types, we constructed prompt templates
using a structured format. Each template specifies the puzzle description, the task instruction, and
a standardized JSON output schema. We adopted a Jinja2-style template language so that puzzle
instances can be instantiated automatically by substituting parameters such as grid size n and puzzle
content. Below, we present the detailed templates for each puzzle family.

Sudoku Prompt Template

Puzzle to Solve

{% set n = (subs | length) - 1 %}

A {{n }}x{{ n }} sudoku puzzle is a cell grid with {{ n }} rows
and {{ n }} columns.

The grid is divided into {{ n }} zones, each with {{ n }} cells,
outlined with ‘@‘.

Each cell contains exactly one of the {{ n }} candidate elements:
{% for c in subs[1l:] %$}'{{ c }}'{% if not loop.last %}, {% endif

%$}{% endfor %}.

The goal is to fill all empty cells (denoted as ‘.') with one of
these elements.

Each candidate element must appear exactly once in every row.

Each candidate element must appear exactly once in every column.

Each candidate element must appear exactly once in every zone.{%$ if

diag %}

EXTRA: Each candidate element must appear exactly once in the two
diagonals.{% endif %}{% if discon %}

EXTRA: Adjacent cells cannot have adjacent elements, e.g., ‘{{ subs
[2] }}Y and ‘{{ subs[3] }}"' cannot be next to each other.{%
endif %$}{% 1f irzone %}

WARNING: Zones are NOT regular squares! Pay attention to their
outlines!{% elif mc_box >= 0 %}

EXTRA: The score of a zone is the sum of ‘cell indexxcell_value' of

all cells in the =zone,

where cells are indexed as 1 to {{ n }} from left to right, from
top to bottom;

the complete puzzle should satisfy that zone {{ mc_box + 1 }} has
the highest score,

where zones are also indexed from 1 to {{ n }} from left to right,
from top to bottom.{% endif %}

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above sudoku puzzle.
If the puzzle is unsolvable, output ‘null‘' as the solution in the
following json format:

{
"solvable": false,
"solution": null

}

Otherwise, present your solution in the following json format:

25

Under review as a conference paper at ICLR 2026

{

"solvable": true,

"solution": [

{$ for r in range(n) %} [{% for c in range(n) %$}"_"{% if ¢ < n - 1
%}, {% endif %}{% endfor %}]1{% if r < n - 1 %},{% endif %}

% endfor %}]

{
}

\

where each
cell.

Kakurasu Prompt Template

Puzzle to Solve

_ " represents the final element in the corresponding

A {{ n_row }}x{{ n_col }} kakurasu puzzle is a cell grid with {{
n_row }} rows and {{ n_col }} columns.

Rows are numbered 1 to {{ n_row }}, and columns numbered 1 to {{
n_col }}.

The goal is to mark cells to satisfy the following column and row
constraints.

On top of the puzzle,

a row of {{ n_col }} numbers give the xx

column*+* constraints

—-—— the row index sum of

all cells *x*marked as ‘O'xx in each column; a ‘-1' indicates that
the column has no constraint.
At the beginning of each row, a number gives the *xrowxx constraint

——— the column index sum of

all cells **marked as ‘O'xx in the row; a ‘-1 indicates that the
row has no constraint.
The initial grid consists of ‘.‘ and ‘X' cells, and only ‘.‘' cells

can be marked as ‘0Y;

‘X' cells x*cannot**x be marked as ‘0.
Puzzle to Solve
{{ puzzle }}

Instruction
Now please solve the above kakurasu puzzle.

If the puzzle is unsolvable, output ‘null?
following json format:

as the solution in the

{

"solvable": false,

"solution": null

}

Otherwise, present your solution in the following json format:

{

"solvable": true,

"solution": [

{$ for r in range(n_row) %} [{% for c in range(n_col) %}_{% 1if c <
n_col - 1 %}, {% endif %$}{% endfor %}]1{% if r < n_row - 1 %},{%
endif %

% endfor %1}]

{
}

AU

where each
*xmarked as

represents whether the corresponding cell is
‘OYsx*x (‘true') or not (‘false?').

26

Under review as a conference paper at ICLR 2026

Hitori Prompt Template

Puzzle to Solve

A {{n }}x{{ n }} hitori puzzle is a cell grid with {{ n }} rows
and {{ n }} columns.
The goal is to erase certain cells so that the cells left in each
row and in each column are unique.
Erased cells cannot be 4-adjacent, and x*allxx non-—-erased cells
must be 4-connected.
A braced cell (‘{x}') cannot be erased, and no more than 3 of its
8—adjacent cells can be erased.{% if encrypted %}
WARNING: The puzzle is encrypted into letters!
In row i (from 1 to {{ n }}), a cell with number k now becomes ‘’A’
+ (i +k =-2) % {{n }} .
For example, in row 1 ‘1' becomes ‘A‘, but in row 2 ‘1‘' becomes '‘B‘
and Y{{ n }}" becomes ‘A‘.
Decrypt the puzzle back to numbers before solving it.
{% endif %}

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above hitori puzzle.
If the puzzle is unsolvable, output ‘null‘' as the solution in the
following json format:

{
"solvable": false,
"solution": null

}

Otherwise, present your solution in the following json format:

{

"solvable": true,

"solution": [
{% for r in range(n) %} [{% for c in range(n) %}_{% if ¢ < n - 1 %},
{% endif %}{% endfor %}]{% if r < n - 1 %},{% endif %}

% endfor %1}]

{
}

AU

where each represents whether the corresponding cell is *x*
erased** (‘true') or not (‘falsel).

Skyscraper Prompt Template

Puzzle to Solve

A {{ n }}x{{ n }} skyscraper puzzle is a cell grid with {{ n }}
rows and {{ n }} columns.

Each cell contains exactly one of the numbers 1 to {{ n }},
representing the "height" of the cell.

Each number must appear exactly once in every row and every column.

Looking from a side, a cell in the front blocks xxallx* cells *x*
behindxx it that are xxnot tallerxx.

The hint of a row/column/diagonal looking from a side is the {{ vv
}} of cells

in the row/column/diagonal that are not blocked; a number of ‘-1‘
means no constraint.

27

Under review as a conference paper at ICLR 2026

On top of the puzzle, there is a row of {{ n + 2 }} numbers:
the first number is the hint of the main diagonal looking from top

left;

the next {{ n }} numbers are the hints of the columns looking from
the top;

the last number is the hint of the sub diagonal looking from top
right.

Then, at the beginning of each grid row is the hint of that row
looking from the left;

at the end of that row is the hint of that row looking from the
right.

Finally, below the puzzle, there is a row of {{ n + 2 }} numbers:

the first number is the hint of the sub diagonal looking from
bottom left;

the next {{ n }} numbers are the hints of the columns looking from
the bottom;

the last number is the hint of the main diagonal looking from
bottom right.

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above skyscraper puzzle.
If the puzzle is unsolvable, output ‘null‘' as the solution in the
following json format:

{
"solvable": false,
"solution": null

}

Otherwise, present your solution in the following Jjson format:

{

"solvable": true,

"solution": [
{$ for r in range(n) %}[{% for c in range(n) %}_{% if ¢ < n - 1 %},
{% endif %}{% endfor %}]{% if r < n - 1 %},{% endif %}

{% endfor %}1]

}

where each ‘_‘ represents the final number in the corresponding
cell.

Minesweeper Prompt Template

Puzzle to Solve

A {{ row }}x{{ col }} minesweeper puzzle is a cell grid with {{ row
}} rows and {{ col }} columns.
Each cell has either one mine (mine cell) or no mine (safe cell).
Some safe cells are opened beforehand, showing the number of
{% 1f regional %}*x8-connected componentsxx of {% endif %$}mine
cells in their 8-adjacent cells.{% if regional %}
For example, if an opened safe cell has three 8-adjacent mine cells

’
but all three mine cells are 8-connected with each other,
then the opened safe sell will show ‘1' instead of ‘3'.{% endif %}
The goal is to find out all closed cells that must be mine cells.

28

Under review as a conference paper at ICLR 2026

The puzzle is unsolvable if and only if the current numbers lead to
a contradiction.{% if no_adj %}
EXTRA: It is also guaranteed that no mines are 8-adjacent to each
other.{% endif %} {% if letter %}
EXTRA: The puzzle is encrypted into letters, where Z represents 0
and A-H represents 1-8.{% endif %}

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above minesweeper puzzle.
If the puzzle is unsolvable, output ‘null‘' as the solution in the
following json format:

{
"solvable": false,
"solution": null

}
Otherwise, present your solution in the following json format:

{

"solvable": true,

"solution": [

{%$ for r in range(row) %}[{% for c in range(col) %}_{% if c < col
1 %}, {% endif %}{% endfor %}]1{% if r < row -

% endfor %}]

=
ES
o
~
=
o
0]
5
0.
=
h
o
—

{
}

AU Y

where each represents whether the corresponding cell
xmust be a mine cellx (‘true') or safe/undetermined (‘false‘).

Binario Prompt Template

Puzzle to Solve

A {{n }}x{{ n }} binario puzzle is a cell grid with {{ n }} rows
and {{ n }} columns.

Each cell can either be ‘0' or ‘1°‘'.

The goal is to fill all empty cells (denoted as ‘.') with ‘0' or
‘1.

Each row must have the same number of ‘0‘'s and ‘1‘'s.

Each column must have the same number of ‘0's and ‘1‘'s.

Furthermore, no more than two identical digits are adjacent.

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above star battle puzzle.
If the puzzle is unsolvable, output ‘null‘' as the solution in the
following json format:

{
"solvable": false,
"solution": null

}

29

Under review as a conference paper at ICLR 2026

Otherwise, present your solution in the following Jjson format:

{

"solvable": true,

"solution": [
{$ for r in range(n) %}[{% for c¢c in range(n) %}_{% if ¢ < n - 1 %},
{% endif %$}{% endfor %$}]1{% if r < n - 1 %},{% endif %}

{% endfor %}]

}

where each ‘_ ' represents the final element in the corresponding
cell.

Hanoi Prompt Template

Puzzle to Solve

A {{ n_peg }}Ix{{ n_disk }} hanoi puzzle has {{ n_peg }} pegs and {{
n_disk }} disks.

The disks, in the order of size, are: (smallest) {% for ¢ in order
S} {{ c }}'{% if not loop.last %}, {% endif %}{% endfor %} (
largest) .

The goal is to transform the start state to the goal state in
minimum number of steps.

Each step moves a disk on top of a peg to another peg that is
either empty,

or whose current top disk is larger than the moved disk.({% if
right_only %}

Furthermore, the target peg must be to the right of the source peg
.{% endif %}

Puzzle to Solve
{{ puzzle }}

Instruction

Now please solve the above hanoi puzzle.
If the puzzle is unsolvable, output ‘null' as the solution in the
following json format:

{
"solvable": false,
"solution": null

}
Otherwise, present your solution in the following Jjson format:

{

"solvable": true,

"solution": [

[ll_ll , "_ll] , [ll_ll , "_ll] , [ll_ll , "_ll] .

]

}

where each ‘["_", "_"]" pair represents the source peg and the

target peg of a disk-moving step.

30

Under review as a conference paper at ICLR 2026

Crypto Prompt Template

Puzzle to Solve

An uppercase ASCII text is encrypted into a cipher.

The goal is to recover the plain text, which may or may not have
semantic meanings.

A list of candidate encryption methods may be provided, one method
per line,

in which case the encryption is done by applying each method once
sequentially

{$ if ordered %} in the given order{% else %}, but NOT necessarily
in the given order{% endif %}.

Sample plain text-cipher pairs that use the same encryption
procedure may also be given as a hint.

When "|" appears in the cipher, the encryption is segmented,

where each encryption method consist of multiple sub-methods
concatenated with "+" in one line,

each applied to the corresponding cipher segment separated by
"I". {% if prompt_example %}

**IMPORTANT: The encryption method may NOT be the same as in the
examples!xx

**xUse the information below (NOT the examples) to find out the
actual encryption method!*x{% endif %}

Cipher to Solve
{{ puzzle }}
Instruction

Now please recover the above cipher.

If the cipher cannot be recovered, e.g. there is a contradiction in
the clues,

output ‘null‘' as the solution in the following Jjson format:

{
"solvable": false,
"solution": null

}
Otherwise, present your solution in the following json format:

{

"solvable": true,

"solution": "_"

}

where ‘"_"' represents the plain text string in uppercase.

Zebralogic Prompt Template

Puzzle to Solve

{{ puzzle }}

Instruction

Now please solve the above puzzle.

If the puzzle is unsolvable, output ‘null‘' as the solution in the
following json format:

31

Under review as a conference paper at ICLR 2026

{
"solvable": false,
"solution": null

}
Otherwise, present your solution in the following json format:

{

"solvable": true,

"solution": {

{%$ for id in house_ids %}"{{ house_alias }} {{ id }}": {

{% for key in keys $}"{{ key }}": "_"{% if not loop.last %},{%
endif %}

{% endfor %}}{% if not loop.last %}, {% endif %}

{% endfor %}}

}

where each ‘“"_"' represents an attribute in lowercase.

Navigation Prompt Template

Puzzle to Solve
{{ puzzle }}
Instruction

Now please solve the above puzzle.
If there is no path, output ‘null' as the solution in the following
json format:

{
"solvable": false,
"solution": null

}
Otherwise, present your solution in the following json format:

{

"solvable": true,

"solution": ["_", ...]

}

where each ‘"_"' represents a point on the path (an uppercase
letter),

including the start point and the end point.

C.3 ERROR TYPES

In Sections[d.2]and[4.3] we specifically classified the types of errors returned by the model. Tables §]
and 0] give specific definitions of each category.

D ADDITIONAL ANALYSIS

D.1 CORRELATION BETWEEN COMPLEXITY AND MODEL ACCURACY
In Section 2.3, we analyze the complexity of HardcoreLogic from an algorithmic perspective. For

IC1, we quantity difficulty through the expansion of the search space; for IC2 and UE2, we evaluate
solver-level metrics such as conflicts, decisions, generated nodes, and expanded nodes. These indi-

32

Under review as a conference paper at ICLR 2026

Table 8: Error types in error analysis.

Category Definition

Misunderstanding The model does not truly understand the logical puzzle, or there
is a deviation in its understanding.

Misapplied The problem was correctly understood, but an inappropriate and

Brute-Force with
Excessive Complexity

Factual/Hallucinatory

Over Verification

Infinite Repetition

often more common thinking framework was applied when se-
lecting a solution.

Large language models attempt to solve problems through brute
force search, but the search space is too large, making it difficult
to find a solution.

In the intermediate steps of reasoning, large language models fab-
ricate non-existent facts, data, or logical relationships, leading to
erroneous conclusions.

The correct answer appeared during the reasoning process, but
was not ultimately obtained.
The model keeps repeating a certain segment during reasoning,

resulting in the inability to obtain results or output answers in the
specified format.

Table 9: Error types in UP error analysis.

Category

Definition

Erroneous reasoning

Mandatory response

Unable to deduce

Infinite repetition

The model genuinely believes, through reasoning, that there is a
solution to the problem.

The model did not obtain an effective solution through logical
reasoning, but was forced to answer that the problem had a solu-
tion in the end.

The model cannot derive an answer within the maximum token
limit (whether or not it has deduced that the problem is unsolv-
able halfway through).

The model keeps repeating a certain segment during reasoning,
resulting in the inability to obtain results or output answers in the
specified format.

33

Under review as a conference paper at ICLR 2026

cators provide a principled way to assess puzzle hardness under classical algorithmic or constraint-
solving paradigms.

However, whether these transformations indeed increase difficulty for LRMs remains an empirical
question. To align algorithmic hardness with LRM performance, we conduct an additional analysis
in this part

For each puzzle instance, our evaluation adopts an nsqmpiing = 4 protocol, where a model is queried
four times and the instance-level success rate is computed as the proportion of error-free outputs.
To examine how solver-based complexity measures relate to LRM performance, we correlate these
success rates with classical complexity.

Figure [12] Figure [I3} and Figure [T4] summarize how LRM success rates vary with different com-
plexity indicators under IC1, IC2, and UE2. To quantitatively validate these relationships, Table[I0}
[[9] report the corresponding significance tests, showing the statistical strength of these complex-
ity—performance correlations across all models.

—— decpseck-qen —— deepseckv3l —— gptoss —— minimax-ml qwen3-30b-a3b —— qwen3-23sh
—— decpseekerl — gimeds — kimik2 —— qwend-8b —— qwen3-32b —— qwen-next
Binario Sudoku Hitori

=

B s E] 100
Search Space(log10) Search Space(logl0)

Sll%cess Rate
Su?:cess Rate
Sllc:ess §=(e)
Sncices‘ Rate
I
Success Rate

00 _ 00

1

150

LI T)]
Search Space(log10) Search Space(logl0)

Figure 12: Correlation between IC1 complexity indicators and LRM success rates

—— deepseek-qgwen —— deepseck-v3.l —— gptoss —— minimax-ml qwen3-30b-a3b —— qwen3-235h
—— deepseek-r1 — gim4.5 —— kimi-k2 = qwen3-8b —— qwen3-32b ~—— qwen-next
Zebra — conflicts Binario — conflicts Kakurasu — conflicts Skyscraper — conflicts Navigation — expanded_node:
10 10 10 10 10
208 @08 2 @08 208
= 5 508 5 1
& 06 & 0.6 & & 06 &6
Py 2 2 Py P
g g 806 g g
S04 S o4 g o S04 S oa
3 5 ES S 2
L2 L2 @ N2 @
04 0.2 _.,.--»-—-'-""""/_\
0.0 0.0 0.0
0 200 400 600 800 0 50 100 0 200 400 600 800 0 2000 4000 6000 5 10 15
conflicts conflicts conflicts conflicts expanded_nodes
Zebra — decisi Binario — decisi Kakurasu — decisi Skyscraper — decisi Navigation — generated_node
1.0 10 1.0 10 104
208 208 @ 208 @08
= = =08 = 5
& 0.6 & 0.6] & 0.6 & o6
g g g g g
S04 g o4 g o6 g o4 I
3 S ES 3]
L2 L2 i P o2 @
04 02 i~
0.0 0.0 0.0
0 1000 2000 3000 0 500 1000 1500 [500 1000 [10000 20000 0 5 10 15 20
decisions decisions decisions decisions generated_nodes

Figure 13: Correlation between solver-based IC2 complexity indicators and LRM success rates.

Table 10: P-values from significance tests evaluating the relationship between IC1 search space
complexity and LRM success rates (Part 1).

Game deepseck qwen deepseek r1 deepseek v3.1 glm 4.5 gpt-oss-120b kimi-k2
Binario 4.24e-83 2.21e-119 1.35e-114 2.45e-81 1.88e-106 6.73e-96
Crypto 3.20e-15 3.32e-04 2.22e-17 1.16e-37 1.64e-16 1.82e-50
Hitori 6.25¢-29 5.58e-35 1.51e-25 8.19e-24 1.69¢-19 4.81e-29
Minesweeper 3.95e-10 1.79e-35 2.94e-32 3.41e-12 1.05e-36 5.71e-20
Sudoku 2.97e-09 3.64e-22 7.88e-22 5.66e-17 2.46e-54 1.23e-13

Under review as a conference paper at ICLR 2026

k-v3.1 minimax-m1 qwen3-30b-a3b

= qwen3-32b

m— gPt-08S = qwen3-235b

q
deepseek-r1 — glm-4.5 = kimi-k2 = qwen3-8b qwen-next

Sudoku — conflicts Skyscraper — conflicts Navigation — expanded_node

10 107 e T
0.6 g u—
208 @ l @ 08
e £ £
< I | I
& 0.6 & o4 & 0.6
2 2 2
S 04 S | S 04
3 S 02]
@ g2 @ W @02
0.0 0.0 0.0
0 2000 4000 0 2000 4000 0 10 20 30
conflicts conflicts expanded_nodes
Sudoku — decisions Skyscraper — decisions Navigation — generated_node
1.0 B —
208 208 —
X <
& 0.6 & 0.6
» »
g | $
S04 \ S04
<9 <9
& ~ &
0.2 70 0.2
e
0.0 0.0
0 20000 40000 0 10000 20000 0 10 20 30
decisions decisions generated_nodes

Figure 14: Correlation between UE2 complexity indicators and LRM success rates.

Table 11: P-values from significance tests evaluating the relationship between IC1 search space
complexity and LRM success rates (Part 2).

Game minimax-ml gwen3-235b qwen3-30b-a3b qwen3-32b qwen3-8b gwen-next
Binario 3.99e-75 6.76e-111 1.32e-111 4.82e-101 1.02e-91 6.90e-113
Crypto 2.18e-10 2.16e-07 1.63e-31 4.90e-32 1.35e-39 6.58e-35
Hitori 1.39e-27 2.35e-34 7.54e-36 8.29e-37 2.20e-32 1.01e-27
Minesweeper 5.34e-01 1.10e-32 1.12e-34 4.20e-05 4.05e-02 3.45e-31
Sudoku 3.67e-07 7.08e-27 2.77e-27 1.14e-16 4.58e-15 4.52e-27

Table 12: P-values from significance tests evaluating the relationship between IC2 conflicts com-
plexity and LRM success rates (Part 1). For the Navigation task, the solver metric used is expanded
nodes

Game deepseek qwen deepseek r1 deepseek v3.1 glm 4.5 gpt-oss-120b kimi-k2
Binario 5.13e-51 3.84e-50 4.86e-60 2.36e-41 5.29e-49 1.67¢-68
Kakurasu 8.01e-03 1.78e-01 7.90e-01 4.55e-01 5.34e-01 5.01e-01
Skyscraper 2.24e-01 7.67e-07 1.77e-06 2.55e-08 2.43e-16 2.78e-01
Zebra 1.53e-16 1.00e-21 1.41e-14 1.74e-13 6.88e-23 2.15e-08
Navigation 7.38e-20 1.55e-01 7.53e-03 1.82e-06 2.28e-04 5.65e-26

Table 13: P-values from significance tests evaluating the relationship between IC2 conflicts com-
plexity and LRM success rates (Part 2). For the Navigation task, the solver metric used is expanded
nodes

Game minimax-ml gwen3-235b qwen3-30b-a3b qwen3-32b qwen3-8b gwen-next
Binario 1.71e-53 5.88e-47 7.36e-64 8.48e-58 7.98e-59 4.73e-61
Kakurasu 1.66e-01 5.58e-01 7.72e-01 5.38e-05 2.28e-02 1.51e-01
Skyscraper 9.27e-02 6.08e-15 9.09e-07 3.70e-07 2.31e-02 9.18e-14
Zebra 9.80e-09 9.10e-21 1.65e-20 2.71e-17 1.85e-12 2.25e-23
Navigation 1.16e-01 3.56e-01 3.74e-04 2.70e-07 4.37e-23 3.25e-04

35

Under review as a conference paper at ICLR 2026

Table 14: P-values from significance tests evaluating the relationship between IC2 decisions com-
plexity and LRM success rates (Part 1). For the Navigation task, the solver metric used is generated

nodes
Game deepseek qwen deepseek r1 deepseek v3.1 glm4.5 gpt-oss-120b kimi-k2
Binario 2.35e-32 4.02e-63 1.76e-56 6.37e-35 1.03e-64 2.79e-41
Kakurasu 1.29e-03 3.00e-01 8.34e-01 1.55e-01 5.27e-01 1.71e-01
Skyscraper 2.11e-01 1.58e-07 1.49e-07 1.13e-09 6.72e-19 2.12e-01
Zebra 3.62e-22 4.10e-29 9.19e-18 4.51e-18 3.54e-28 7.82e-11
Navigation 6.69¢-22 1.30e-01 3.41e-02 9.42e-07 1.01e-04 2.45e-28

Table 15: P-values from significance tests evaluating the relationship between UE2 decisions com-
plexity and LRM success rates (Part 2). For the Navigation task, the solver metric used is generated
nodes

Game minimax-ml qwen3-235b qwen3-30b-a3b qwen3-32b qwen3-8b qwen-next
Binario 6.33e-34 6.30e-57 2.10e-53 6.56e-47 7.50e-38 3.77e-61
Kakurasu 6.17e-02 4.03e-01 5.57e-01 1.29e-05 1.11e-02 3.27e-02
Skyscraper 6.59¢-02 1.11e-17 1.25e-07 1.63e-08 1.21e-02 7.64e-16
Zebra 3.59%-11 2.03e-27 2.51e-27 2.94e-23 3.67e-16 5.83e-32
Navigation 1.13e-01 1.83e-01 3.38e-05 6.02e-07 6.15e-25 9.91e-04

Table 16: P-values from significance tests evaluating the relationship between UE2 conflicts com-
plexity and LRM success rates (Part 1). For the Navigation task, the solver metric used is expanded
nodes

Game deepseek qwen deepseek r1 deepseek v3.1 glm 4.5 gpt-oss-120b kimi-k2
Skyscraper 3.77e-01 1.20e-03 4.05e-03 3.43e-04 3.33e-10 5.60e-01
Sudoku 5.74e-08 4.48e-27 1.23e-24 1.13e-14 1.60e-38 5.49¢e-12
Navigation 2.60e-15 2.98e-02 1.47e-04 1.51e-06 1.79e-03 3.57e-18

Table 17: P-values from significance tests evaluating the relationship between UE2 conflicts com-
plexity and LRM success rates (Part 2). For the Navigation task, the solver metric used is expanded

nodes
Game minimax-ml qwen3-235b qwen3-30b-a3b qwen3-32b qwen3-8b qwen-next
Skyscraper 2.98e-01 2.99e-07 1.12e-03 7.90e-04 5.36e-02 4.92e-09
Sudoku 2.88e-06 6.85¢e-31 4.06e-33 1.52e-15 1.32e-12 1.56e-29
Navigation 6.89e-09 6.79¢-02 2.56e-03 2.29e-05 1.89e-14 1.78e-04

Table 18: P-values from significance tests evaluating the relationship between UE2 decisions com-
plexity and LRM success rates (Part 1). For the Navigation task, the solver metric used is generated

nodes
Game deepseek qwen deepseek r1 deepseek v3.1 glm 4.5 gpt-oss-120b kimi-k2
Skyscraper 2.60e-01 2.16e-04 7.46e-04 2.96e-05 2.27e-13 4.65e-01
Sudoku 1.61le-10 2.42e-33 4.10e-30 6.54e-19 1.53e-37 2.16e-15
Navigation 7.58e-17 8.82¢-03 1.87e-04 8.31e-07 5.55e-04 4.99e-21

36

Under review as a conference paper at ICLR 2026

Table 19: P-values from significance tests evaluating the relationship between UE2 decisions com-
plexity and LRM success rates (Part 2). For the Navigation task, the solver metric used is generated
nodes

Game minimax-ml qwen3-235b qwen3-30b-a3b qwen3-32b qwen3-8b qwen-next

Skyscraper 2.19e-01 1.31e-09 2.48e-04 3.61e-05 2.11e-02 4.64e-12
Sudoku 3.14e-08 1.47e-37 3.6le-41 1.48e-19 2.83e-16 2.91e-36
Navigation 2.02e-09 3.49¢-02 9.99e-04 5.25e-06 1.13e-18 3.83e-04

D.2 KEY CELLS VS. COMPLEXITY

Among our 10 puzzles, the Search puzzles include Hitori, Minesweeper, and Kakurasu. They all
have one thing in common: searching for (or deleting) certain key cells. However, we observe that
increasing these key cells does not necessarily make the puzzle harder:

* Under the same grid size, increasing the number of cells to be erased in Hitori does not make it
more difficult according to the CSP solver.

* Minesweeper from Original are leveled according to the number of landmines; however, the
search space does not vary much.

* On Kakurasu, increasing the number of marked cells also increases the conflicts of decisions,
which is the sole positive case.

We tested the performance of Hitori when only increasing the number of cells to be searched(results
shown in Table 20, and found that there was no significant difference in performance compared to
the Original data when the model was large, but there was a significant difference when the model
was small. The grading of Minesweeper also indicates this conclusion that increasing the number
of cells to be searched is more difficult for smaller models. For models with insufficient reasoning
ability, it is not possible to think about multiple cells in a mixed manner, and it is necessary to think
about each cell. Whenever they determine whether a cell is the one they need to find, the probability
of errors increases, and increasing the number of cells that need to be found makes it difficult. Due
to the unclear impact of this factor, we did not consider it as an independent long-tail transformation.
HardcoreLogic has an average of more cells to find for on search puzzles of the same size than the
Original dataset.

Table 20: Performance on Hitori of the same size. Compared with the data from Original, the data
from HardcoreLogic requires more cells to be searched.

Data type gpt-oss-120b qwen3-235b qwen3-8b
Original-4 x 4 91.00 88.00 68.00
Original-5 x 5 81.50 55.00 29.50
HardcoreLogic-4 x 4 90.50 85.50 62.50
HardcoreLogic-5 x 5 84.00 47.00 21.50

D.3 ERROR TYPE ANNOTATION CONSISTENCY ANALYSIS

In Sections 4.2 and 4.3, we conducted detailed error analyses for both regular reasoning failures and
UP cases, covering UP-error and UP-sufficient categories. For all sampled instances, the final labels
were obtained through a voting-based annotation scheme involving three annotator LLMs (Gemini-
2.5 Pro, Claude Sonnet 4.5, and GPT-5), followed by manual resolution when no majority vote was
reached. Table 2T]and Table 22 report the consistency analysis of these annotations. We use Fleiss’
Kappa to measure agreement among the three annotator models, and Cohen’s Kappa to quantify the
agreement between each individual annotator and the final (three LLMs-human hybrid) labels. The
results show generally high agreement, especially the consistently strong alignment between GPT-5
and the final annotations, indicating the reliability of the labeling process.

37

Under review as a conference paper at ICLR 2026

Table 21: Inter-annotator agreement for error-type labels across three annotator LLMs (Gemini,
Claude, GPT-5) on both Original and HardcoreLogic datasets. The table reports Fleiss’ Kappa
for multi-rater agreement and pairwise Cohen’s Kappa between each annotator and the final voted
label.

gpt-oss-120b kimi-k2 minimax-m1 qwen3-235b overall

Gemini—Claude-GPT5 0.32 0.51 0.55 0.36 0.50
Original Gemini vs final 0.35 0.75 0.78 0.55 0.64
Claude vs final 0.63 0.54 0.87 0.54 0.68
GPTS5 vs final 0.82 0.87 0.59 0.83 0.81
Gemini—Claude-GPT5 0.37 0.29 0.52 0.34 0.43
Hardcore Gemini vs final 0.50 0.62 0.74 0.66 0.66
Claude vs final 0.51 0.38 0.77 0.34 0.54
GPTS5 vs final 0.92 0.67 0.72 0.87 0.81
Gemini—Claude-GPT5 0.36 0.41 0.55 0.36 0.47
Both Gemini vs final 0.43 0.69 0.76 0.61 0.65
Claude vs final 0.57 0.46 0.82 0.44 0.61
GPTS5 vs final 0.87 0.78 0.67 0.85 0.81

Table 22: Inter-annotator agreement for UP-error and UP-sufficient cases. Similar to Table 21} the
table includes Fleiss’ Kappa across the three annotator LLMs and pairwise Cohen’s Kappa with
the final voted label, reflecting the reliability of annotations in the unsolvable-puzzle setting.

gpt-0ss-120b kimi-k2 minimax-m1 qwen3-235b overall

Gemini—Claude-GPT5 0.55 0.25 0.45 0.35 0.54
error Gemini vs final 0.48 0.58 0.65 0.43 0.62
Claude vs final 0.88 0.21 0.48 0.60 0.69
GPTS5 vs final 1.00 0.91 0.92 0.93 0.96
Gemini—Claude-GPT5 0.51 0.36 0.019 -0.02 0.27
sufficient Gemini vs final 0.54 1.00 0.00 0.00 0.39
Claude vs final 1.00 0.65 0.37 0.00 0.58
GPTS5 vs final 0.67 0.43 0.71 0.85 0.66

38

Under review as a conference paper at ICLR 2026

D.4 SKYSCRAPER SOLUTION COUNT

We found that almost all models performed poorly in solving Skyscraper, due to the difficulty of
the problem itself. We found that the number of solutions to such difficult puzzles may affect the
performance of the model. We performed two different long-tail transformations on Skyscraper: add
diagonal constraints and hide partial clues. These two types of long-tail transformations are referred
to as diag and partial. These two types of long-tail transformations show improvements in both de-
cisions and conflicts compared to the Original dataset at the same size. However, we found that on
some well-performing models, the accuracy of large-sized (6 x 6 and above) partial transformations
(without guaranteed unique solutions) partially increased, while diagonal transformations and 5 x 5
partial transformations (with guaranteed unique solutions) showed a significant downward trend in
model performance(results shown in Table 23). Large-sized partial transformations result in an in-
crease in the number of solutions due to hidden clues, which affects the performance of the model.
The partial transformation and 5 x 5 diagonal transformation ensure that the solution does not in-
crease compared to the Original dataset, and with the increase of decisions and conflicts, even in
some diagonal transformation data that can be solved with the original constraints, the performance
of the model still decreases significantly. So when the puzzle is difficult and the model does not
have enough clues to analyze, it may tend to guess the answer, and the number of solutions becomes
a factor affecting the difficulty of the game.

Table 23: The performance of some models on Skyscraper with sizes of 5 x 5 and 6 x 6, using the
count hint.

Data type gpt-oss-120b deepseek-v3.1 qwen3-235b
Original-5 x 5 41.30 14.13 30.43
Original-6 x 6 1.85 0.00 0.00
HardcoreLogic-diag-5 x 6 19.50 1.50 8.50
HardcoreLogic-diag-6 x 6 0.50 0.00 0.00
HardcoreLogic-partial-5 x 5 24.50 7.00 22.00
HardcoreLogic-partial-6 x 6 5.00 0.00 0.00

D.5 OTHER ANALYSES OF WEIGHTED MULTIPLE LINEAR REGRESSION

In Sectiofd.I} we performed weighted multiple linear regression to examine the effects of four
different long-tail transformations on puzzle difficulty. Concretely, we fit the following model:

y = kic1 - lici + kicz2 - lice + kugr - luer + kugs - luse + b

where y is the observed accuracy for a specific puzzle variant, 11¢ is a binary indicator (1 if transfor-
mation IC1 is applied, O otherwise), k11 quantifies the marginal accuracy change attributable to IC1
under the assumption of additive effects, b is the expected accuracy predicted by the model when all
dummy variables are zero, and weights w;=N; (sample sizes) give greater influence to observations
with larger sample sizes when calculating the loss function.Weighted linear regression isolates the
marginal effect of individual transformations through two mechanisms: (1) the additive linear model
with dummy variables statistically disentangles combined transformation effects by estimating each
factor’s contribution relative to the baseline configuration, (2) sample-size-based weighting assigns
greater influence to high-reliability observations during coefficient estimation, ensuring parameters
reflect dominant patterns in robust data.

To complement the results presented in Sectionff-T]of the main text, this appendix provides additional
details of the weighted multiple linear regression analysis. First, we refitted the model using data
that contained only a factor, excluding all data points that included multiple factors. Second, based
on the original multivariate model, we computed the corresponding 95% confidence intervals (and
corresponding p-values) of the regression coefficients.

The left side of Figure [I3] shows the impact of long-tail transformations on puzzle accuracy when
only considering single factor data. For most puzzles, the coefficients obtained from this simulation
closely match those from the full multiple regression model. The only notable deviation occurs in

39

Under review as a conference paper at ICLR 2026

Binal‘iO 0.00 0.00 0.00 95% CI of Puzzle Transformations (All Variants)
Crypto- -26.58 0.00 0.00 0.00 10 Binario| T e
Hanoi- 0.00 0.00 -22.51 0.00 20 Crypto Hﬁ
Hitori. [0[3 0.00 -7.00 0.00 Hanoi e
2 Kakurasu- 0.00 -9.87 -9.64 0.00 [-30 Hitori e
N -
£ Minesweeper- -25.38 0.00 0.00 -29.67 | -40 K T
. Minesweeper | © —
Navigation- 0.00 -10.00 0.00 0.00 50 I
. _ L
Skyscraper- 0.00 -2.04 0.00 -3.70 ison —
» Skyscraper{ Transformation
Sudoku LN 0.00 [FEED) 60 o -
Zebralogic- 0.00 -33.58 0.00 0.00 IO el o b
IC1 1C2 UE1 UE2 80 60 -40 20

Basic Long-tail Transformation(Single Factor)

Figure 15: Left: Effects of long-tail transformations on puzzle accuracy.(single factor) Right: 95%
confidence intervals for puzzle difficulty coefficients.

Table 24: p-values of the fitted weighted linear regression.

Puzzle IC1 1IC2 UE1l UE2 Puzzle IC1 1IC2 UE1l UE2
Zebral.ogic — .000 — — Minesweeper .000 — .982 .000
Sudoku .000 — .000 .006 Navigation — 132 — 402
Skyscraper — .098 — .010 Binario .000 .661 — —
Kakurasu .000 .188 .403 — Hanoi — — .000 —
Crypto .000 — — — Hitori 000 — 283 —

Sudoku. This is because the UE1 category for Sudoku actually contains two heterogeneous sub-
types—Iletter version and irregular subgrid. The letter version variant has only a minor standalone
effect and appears only in combination with other variants, whereas the irregular subgrid variant
never co-occurs with any other factors. As a result, when simulating Sudoku using single-factor
data, the model’s intercept becomes shifted, which in turn leads to changes in the estimated param-
eters.

The right panel of Figure [T3] presents the 95% confidence intervals of the puzzle-difficulty coeffi-
cients, with the corresponding p-values reported in Table[24]. Most of the confidence interval bounds
are negative, and the overall conclusions are consistent with those in Sectionff.1] The figure further
shows that, even after accounting for estimation uncertainty, IC1 still exhibits the largest effect size
in our data. Moreover, all p-values associated with IC1 are below 0.001, confirming that its influence
on puzzle difficulty is statistically significant.

40

	Introduction
	Dataset
	Preliminary: Logical Puzzle Games
	Long-tail Transformation
	Complexity Analysis

	Experiment and Results
	Experiment Settings
	Main Results

	Analysis and Discussion
	Different Longtail Transformation
	Error Analysis
	Unsolvable Games

	Related Work
	Conclusion
	Use of LLMs
	Benchmark Details
	Category Definition
	Puzzle Definition and Transformations
	Transformation Taxonomy
	Complexity Analysis Details

	Experiment Details
	Model and Configuration
	Prompt Template
	Error Types

	Additional Analysis
	Correlation Between Complexity and Model Accuracy
	Key Cells vs. Complexity
	Error type annotation consistency analysis
	Skyscraper Solution Count
	Other analyses of weighted multiple linear regression

