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Figure 1: Our Astra enables interactive and versatile world modeling across exploration, robotics,
and autonomous driving. With our enhanced design spanning framework architecture to training and
inference, it delivers precise responsiveness to user instructions and strong long-term consistency,
achieving coherent high-fidelity videos that faithfully follow instructions.

ABSTRACT

Recent advances in diffusion transformers have empowered video generation
models to generate high-quality video clips from texts or images. However, world
models with the ability to predict long-horizon futures from past observations
and actions remain underexplored, especially for general-purpose scenarios and
various forms of actions. To bridge this gap, we introduce Astra, an interactive
general world model that generates real-world futures for diverse scenarios (e.g.,
autonomous driving, robot grasping) with precise action interactions (e.g., camera
motion, robot action). We propose an autoregressive denoising architecture and
use temporal causal attention to aggregate past observations and support stream-
ing outputs. We use a noise-augmented history memory to avoid over-reliance
on past frames to balance responsiveness with temporal coherence. For precise
action control, we introduce an action-aware adapter that directly injects action
signals into the denoising process. We further develop a mixture of action ex-
perts that dynamically route heterogeneous action modalities, enhancing versatil-
ity across diverse real-world tasks such as exploration, manipulation, and camera
control. Astra achieves interactive, consistent, and general long-term video pre-
diction and supports various forms of interactions. Experiments across multiple
datasets demonstrate the improvements of Astra in fidelity, long-range prediction,
and action alignment over existing state-of-the-art world models.

1 INTRODUCTION

Building generative world models is an emerging field where the ability to synthesize realistic and
coherent video trajectories serves as a proxy for understanding and simulating the underlying dy-
namics of the world. With the rapid advances in visual generation (Rombach et al., 2022; Blattmann
et al., 2023; Yang et al., 2025; Brooks et al., 2024; Wan et al., 2025), numerous video genera-
tion models have emerged and can perceive contextual cues and synthesize high-fidelity videos of
open-world scenarios. These advances serve as the foundation for broader world simulation tasks,
including game engines, autonomous driving, and spatial intelligence.

1
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Figure 2: Overview of the proposed Astra. Our autoregressive denoising world model generates
future video chunk by chunk from an initial image, actions, and optional prompts. Chunk-wise
causal conditioning enforces temporal coherence and faithful action response.

Standard text-to-video (T2V) or image-to-video (I2V) models typically produce only short, self-
contained video clips conditioned on prompts or reference images. They lack the ability to generate
coherent long-horizon rollouts that respond adaptively to external stimuli such as agent movements,
viewpoint changes, or control signals. Without this responsiveness, these models fall short of simu-
lating the interactive and causal dynamics of the real world. Furthermore, existing video generators
are constrained by the finite temporal window of diffusion models, which prevents them from pro-
ducing extended video sequences. Although recent works (Mao et al., 2025; He et al., 2025; Song
et al., 2025; Teng et al., 2025) have explored video continuation techniques or hybrid frameworks
that combine autoregression with diffusion, they often struggle to strike a balance between main-
taining consistency with historical frames and remaining responsive to new inputs. In addition, the
autoregressive generation process introduces error accumulation, leading to degraded quality and
coherence in long-term predictions. As a result, despite impressive progress in generative fidelity,
existing approaches remain largely passive—capable of rendering visually compelling content yet
lacking the interactivity, adaptability, and robustness required for true world simulation.

To address these challenges, we present Astra, a simple yet powerful framework for building highly
interactive world models. At its core, our method adopts an autoregressive denoising paradigm,
where we augment a pre-trained video diffusion backbone with an action-aware adapter, as shown
in Figure 2. This design preserves the high generative quality of diffusion models while enabling
precise conditioning on agent actions, thereby allowing the model to produce coherent futures that
respond instantly to user inputs. A central difficulty in world modeling is balancing long-term tem-
poral consistency with action responsiveness. To mitigate this, we propose a noise-as-mask strategy
that softly corrupts historical frames during training. This reduces the dominance of visual context,
forcing the model to integrate both history and action cues when predicting the next video chunk.
Moreover, real-world interactive environments involve heterogeneous action modalities—from cam-
era controls and body pose to robot manipulations. To enhance versatility across such settings, we
design a Mixture of Action Experts (MoAE), where modality-specific experts specialize in different
action types under a learnable routing mechanism. This enables our model to unify diverse inter-
action signals within a single framework, making it broadly applicable across scenarios spanning
embodied robotics, immersive video simulation, and long-horizon world exploration.

We conduct extensive experiments on diverse open-source benchmarks, including Sekai (Li et al.,
2025a), SpatialVID (Wang et al., 2025), RT-1 (Brohan et al., 2022), nuScenes (Caesar et al., 2020)
and Multi-Cam Video (Bai et al., 2025). As illustrated in Figure 1, Astra achieves state-of-the-
art performance in action-driven video prediction, generating sequences that are highly interactive
while maintaining visual coherence and dynamic consistency. Furthermore, our framework also
demonstrates strong generalization across tasks and environments, underscoring its potential as a
foundation for next-generation visual world models.

2 RELATED WORK

Video generation models. In recent years, denoising diffusion models (Ho et al., 2020; Song et al.,
2020) have become the dominant paradigm in generative modeling, celebrated for their high fidelity
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and controllability. Following their success in text-to-image (T2I) synthesis (Rombach et al., 2022;
Dhariwal & Nichol, 2021), early video generation methods (Blattmann et al., 2023; Ho et al., 2022)
extended diffusion models to the temporal domain, typically by inflating image-based UNets (Ron-
neberger et al., 2015) with additional temporal layers. More recently, Sora (Brooks et al., 2024)
and following studies (Zheng et al., 2024; Yang et al., 2025; Ma et al., 2024) pioneer high-quality,
high-resolution text-to-video (T2V) diffusion models. These models commonly use the diffusion
transformer (DiT) architecture (Peebles & Xie, 2023) to capture complex spatial and temporal co-
herence. More recent models, including (Song et al., 2025) and (Zhang & Agrawala, 2025), further
improve long-horizon consistency. Beyond pure diffusion, hybrid frameworks have been proposed
to reconcile long-range prediction with high-quality synthesis. By combining autoregression for
temporal modeling and diffusion for local realism, approaches such as StreamingT2V (Henschel
et al., 2025) and MAGI (Teng et al., 2025) achieve extended video rollouts. However, these meth-
ods still struggle with error accumulation across long sequences and offer limited responsiveness to
external actions, leaving a gap between video generation and true interactive world simulation.

Visual world models. Beyond video generation, visual world models aim to capture the causal
dynamics of the environment, enabling agents to simulate future trajectories and interact with the
world. Unlike text-to-video or image-to-video models that generate short clips conditioned on static
inputs, visual world models explicitly incorporate history and actions, making them essential for
tasks such as planning, control, and embodied intelligence. Several recent works demonstrate this
trend. (Wu et al., 2024) extends autoregressive video transformers to integrate actions and rewards,
allowing agents to predict how future observations evolve in interactive environments. (Wang et al.,
2024) formulates world modeling as masked-token prediction in discrete latent space, supporting
multimodal conditioning and open-ended environment simulation. (Huang et al., 2025; He et al.,
2025) adapts pretrained video diffusion models into an autoregressive framework with causal action
guidance, making them capable of controllable video prediction. In navigation contexts, (Bar et al.,
2025) employs conditional diffusion-transformers to generate plausible future agent observations,
facilitating planning in unfamiliar scenes. Meanwhile, (Cen et al., 2025) introduces a joint vision-
language-action (VLA) framework that learns to model both world states and agent behaviors in an
autoregressive manner. At larger scales, frameworks such as (Bruce et al., 2024; Agarwal et al.,
2025; Liu et al., 2024) demonstrate that scaling up transformer architectures and extending context
windows significantly improve rollout fidelity and generalization across domains. Recently, (Mao
et al., 2025) uses a Masked Video Diffusion Transformer (MVDT) to selectively mask input features
to improve video generation quality. In contrast, Astra employs a noise-as-mask strategy to partially
degrade historical visual context, encouraging the model to integrate action signals more effectively
and respond accurately to user commands. These methods highlight the growing potential of world
models for simulating interactive, versatile, and controllable environments. Nonetheless, they of-
ten suffer from issues such as error accumulation, temporal inconsistency in long-horizon rollouts,
and limited responsiveness to arbitrary actions. Addressing these challenges remains crucial for
developing reliable and scalable visual world models.

3 PROPOSED APPROACH

In this section, we present Astra, an autoregressive denoising framework that achieves real-world
video prediction and enjoys high interactivity, versatility, and consistency. Our key idea is to harness
the visual generation power within a pre-trained text-to-video diffusion model and incorporate the
chunk-wise autoregressive prediction by using previously generated clips as conditions. We will
start by reviewing the background of autoregressive denoising models, and then describe our designs
of Astra, including an action-aware adapter for precise conditioning and a noise-augmented history
memory for long-term consistency, and a mixture of action experts (MoAE) for unifying diverse
action inputs. The overall framework of our Astra is illustrated in Figure 3.

3.1 PRELIMINARY: AUTOREGRESSIVE DENOISING MODEL

We adopt an autoregressive denoising framework, which integrates the long-horizon modeling of
autoregression with the high-fidelity synthesis of diffusion. Given a video sequence discretized into

3
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Figure 3: The overall framework of Astra. The Action-Aware Flow Transformer (AFT) injects
action signals into the latent space via an ACT-Adapter (right), which aligns action features through
an encoder and adds them to each transformer block. During training (left top), the model learns
next-chunk prediction with flow matching. During inference (left bottom), it autoregressively gen-
erates video chunks conditioned on history and action streams, producing interactive videos.

chunks z1:N , the generation objective is:

p(z1:N ) =

N∏
i=1

p(zi | z<i). (1)

For each step, the next chunk zt+1 is predicted through a denoising process, trained using flow
matching. Specifically, we first sample a noisy interpolation of the target chunk:

zi
t = (1− t)zi

0 + t ϵ, ϵ ∼ N (0, I), t ∈ [0, 1], (2)

and train the flow model vθ to estimate the clean direction:

L(θ) = Ei,t,ϵ

[
∥vθ(z

i
t, t | z<i)− v∗(zi

t, t | z<i)∥22
]
, (3)

where v∗ is the ground-truth velocity. In inference, autoregressive generation proceeds by denoising
from noise to obtain zi+1, which is then appended to history for predicting future chunks. This
iterative AR–denoising loop enables long-range, consistent, and high-quality video prediction.

3.2 INTERACTIVE WORLD MODELING VIA AUTOREGRESSIVE DENOISING

Modern video generation models (Brooks et al., 2024; Wan et al., 2025) have demonstrated re-
markable progress in simulating realistic visual dynamics. These models benefit from large-scale
pretraining, which enables them to implicitly acquire partial knowledge of 3D spatial perception,
temporal dependencies, and even simple physical patterns such as motion and force. However, de-
spite their impressive fidelity, these models still fall short in constructing real-world scenes that can
be preserved, interacted and explored. This raises a key question: Are T2V models really world mod-
els? In our view, the defining property of a world model is interactivity—the ability to adapt genera-
tion dynamically in response to arbitrary action inputs at arbitrary moments. While diffusion-based
models can be conditioned on global prompts or scene attributes, such conditioning mechanisms
do not enable fine-grained, online interaction. To address this limitation, we turn to the autoregres-
sive framework, which naturally supports stepwise prediction conditioned on both past observations
and current actions. Unlike diffusion models that generate video in a single pass, autoregression
allows for instantaneous responses to action inputs, enabling controllable and adaptive rollouts. By
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integrating this property with the generative power of denoising models, we design an autoregres-
sive denoising framework that achieves both high-quality synthesis and interactive controllability.
Although prior works have explored combining autoregression and denoising, reconstructing this
hybrid paradigm for world modeling remains non-trivial. Beyond simply chaining autoregression
and denoising, we must carefully define the observation–action interface and design mechanisms to
balance the trade-off between long-term consistency and immediate responsiveness

Given the previous video chunks z1:i−1, we aim to model the conditional distribution of the next
chunk p(zi|z1:i−1). In principle, this prediction can be realized by a variety of generative models.
To ensure high visual fidelity, we choose to leverage a pre-trained video flow matching model vθ as
the predictor, leveraging its strong video synthesis capability. However, integrating such a model into
an interactive world framework introduces two central challenges: (1) How to represent actions and
quantify their impact on future visual dynamics; (2) How to effectively incorporate action signals
into a pre-trained diffusion backbone while preserving its generative quality.

Since our goal is to enable instantaneous responses to action inputs ai (e.g., an instruction such
as “turn right”), the effect of an action should manifest as a direct transformation on the predicted
video chunk. Inspired by the formulation of optical flow, we interpret this transformation as a shift
in video features, which, in diffusion models, correspond to latent representations within the de-
noiser. Accordingly, we treat the action as an additional conditioning signal for the diffusion model,
applied directly to its latent feature space. This requirement poses a challenge for existing video
diffusion architectures, which are typically composed of stacked Transformer blocks (DiT) and rely
on cross-attention layers to align video latents with textual embeddings. Such mechanisms are not
naturally suited for modeling fine-grained action-induced shifts. To overcome this, we introduce the
action-aware flow transformer adapter (ACT-Adapter) that augments a pre-trained video DiT into an
autoregressive denoising model capable of integrating action signals as latent-space transformations,
preserving the generative power of the backbone while modeling the action’s influence.

As shown in Figure 3, we introduce an action encoder to project actions into a feature space aligned
with the video latents. The resulting action features are injected into the denoising model through
element-wise addition at every block, ensuring that action signals directly modulate the latent rep-
resentation. To maximize reuse of pre-trained knowledge, we freeze all parameters of the flow
transformer except for the self-attention layers. In addition, we insert a lightweight adapter mod-
ule—a single linear layer initialized as the identity matrix—after each self-attention block. This
enables the model to gradually learn action-aware transformations while maintaining the stability
of the pre-trained backbone. For the history condition zc = z1:i−1, we adopt the frame-dimension
conditioning strategy that concatenates the previous chunks with the predicted chunk along the tem-
poral dimension before being processed by the flow transformer. Together with the action ai and
prompt c, the full condition set for the denoising model vθ is C = {z1:i−1,a1:i, c}.

To enhance the effect of actions, we propose an action-free guidance mechanism (AFG), inspired
by class-free guidance (CFG). During training, action conditions are randomly dropped, forcing the
model to predict without action inputs. At inference, we compute a guided velocity field:

vguided = vθ(zt, t, ∅) + s · (vθ(zt, t,a)− vθ(zt, t, ∅)) , (4)

where s is the guidance scale, zt is the combined latent and ∅ denotes the null-action condition. This
technique sharpens the action effect, yielding more precise responses to user inputs.

3.3 HISTORY CONDITION WITH NOISY MEMORY

After addressing the challenge of action control, we turn to another open problem: balancing the
long-term temporal consistency with responsiveness to actions. Prior works have shown that gen-
erating coherent long videos requires conditioning on an extended history. However, we observe
a trade-off: increasing the length of history improves temporal consistency but weakens action re-
sponsiveness. We refer to this phenomenon as visual inertia—the tendency of the model to rely
heavily on past visual information while overlooking user actions. This arises because real-world
datasets contain predominantly smooth motions, leading the model to prioritize continuity over
abrupt, action-driven changes. To mitigate this inherent contradiction, we avoid naively shorten-
ing the conditioning horizon and instead seek a more elegant solution. Considering the asymmetry
between dense visual inputs and sparse action signals, we propose to reduce the dominance of vi-
sual conditioning by introducing controlled corruption. Unlike (Mao et al., 2025), which randomly
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Figure 4: Mixture of Action Experts (MoAE). Action signals from diverse modalities are projected
into a shared space, augmented with a history mask, and routed to modality-specialized experts. A
dynamic router selects top-k experts, whose outputs are aggregated into unified embeddings and fed
into the Flow Transformer, enabling versatile and precise action-conditioned generation.

masks visual tokens, we adopt a noise-as-mask strategy: injecting random noise into the condition-
ing video to degrade and blur its information content (Figure 3). This design offers two advantages.
First, it requires no architectural modifications or additional learnable parameters in the denoising
model. Second, by corrupting the visual context, it prevents the model from directly copying clean
frames and forces it to integrate action cues into generation. The corruption noise is independent
of diffusion noise, so inference can use clean historical frames. Through this training strategy, the
model learns to balance reliance on action and history, thereby overcoming visual inertia. To further
extend the effective history horizon, we adopt the compression approach of (Zhang & Agrawala,
2025), which retains the first frame while compressing the intermediate history into compact visual
tokens, preserving long-range temporal information without overwhelming the action signal.

3.4 MIXURE OF ACTION EXPERTS FOR DIVERSE SCENARIOS

Interactive world modeling often involves multi-modal inputs, including camera observations, body
pose, and discrete action commands. These heterogeneous signals differ in structure and scale,
making it challenging for a single model to capture their characteristics. To address this, we propose
the Mixture of Action Experts (MoAE), a modular framework that routes different modalities to
specialized experts, producing a unified action representation for the denoising model.

As shown in Figure 4, each action modality—continuous camera pose acam, robot pose arob,
and discrete keyboard/mouse commands acmd—is first mapped into a shared action space via a
modality-specific projector Rm as ãi = Rm(ai

m), where m ∈ {cam, rob, cmd} denotes the
specific modality and i is the sequence index. A router network then computes gating scores
gi = Router(ãi) to select the top-K relevant experts. Each chosen expert Ek, implemented as
independent MLPs, transforms the aligned features into task-relevant representations. The expert
outputs are then aggregated according to the router’s gating scores to produce the final action em-
bedding ei =

∑K
k=1 g

i
kEk(ã

i). The embedding sequence e1:i is then fed into the flow transformer.
To account for both historical and current actions, we augment the action space of ãi with an addi-
tional binary indicator specifying whether the input corresponds to a past or current action.

Combining MoAE with history-conditioned latent inputs allows the model to generate video chunks
that are temporally coherent and responsive across modalities. This design improves modality spe-
cialization, scalability to new signals, efficiency by activating only relevant experts, and overall
versatility, enabling high-fidelity predictions in complex interactive scenarios.

4 EXPERIMENT

4.1 EXPERIMENT SETUPS

Datasets. To train our model, we leverage a diverse set of datasets covering autonomous driv-
ing, egocentric exploration, multi-camera rendering, and robot control. Specifically, we use
nuScenes (Caesar et al., 2020) for vehicle pose prediction, Sekai (Li et al., 2025a) and Spa-
tialVID (Wang et al., 2025) for large-scale in-the-wild videos with rich camera annotations, Multi-
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Figure 5: Qualitative results on action-driven real-world exploration. Starting from a single
initial frame, our model generates long-term exploration videos with high visual fidelity, smooth
and coherent dynamics, and precise responsiveness to action inputs.

Cam Video (Bai et al., 2025) for synthetic multi-view sequences, and RT-1 (Brohan et al., 2022)
(via Open X-Embodiment (O’Neill et al., 2024)) for robot action trajectories. All videos are re-
sized and cropped to 480p, and action annotations are temporally aligned by interpolating to every
4 frames, matching the temporal compression of the video VAE. Together, these datasets provide
complementary action signals (vehicle, camera, and robot pose) that support unified action-aware
world modeling. For evaluation, we construct Astra-Bench, a benchmark comprising 20 held-out
samples from each dataset, designed to cover a diverse range of real-world scenarios.

Training details. We initialize our model from the pre-trained video diffusion model (Wan et al.,
2025) and train on 8× H800 (80G) GPUs with a per-GPU batch size of 1. Optimization is performed
with AdamW (Loshchilov & Hutter, 2017) using a learning rate of 1e − 5 for 30 epochs, requiring
about 24 hours to converge. The training is conducted in the latent space of a 3D VAE. In pixel
space, the number of condition frames is randomly sampled from [1, 128], while the number of
target frames is fixed to 33. Additional implementation details are provided in Section A.

Metrics. Astra-Bench evaluates two key aspects of world models: visual quality and instruction
following (camera motion tracking), using six fine-grained metrics. For instruction following, we
assess whether generated videos accurately reflect intended walking directions and camera move-
ments. While pose estimation tools such as MegaSaM (Li et al., 2025b) can automate this process,
inaccuracies in camera motion prediction and quantization errors limit their reliability. We there-
fore adopt human evaluation to ensure accurate assessment. For the remaining dimensions—subject
consistency, background consistency, motion smoothness, aesthetic quality, and image fidelity—we
adopt metrics from VBench (Huang et al., 2024). All test videos are generated at 480×832 resolu-
tion, 20 FPS, and 96 frames, using 50 inference steps for every model.

4.2 MAIN RESULTS

We evaluate our method on Astra-Bench and compare it against recent state-of-the-art video gen-
eration and world modeling approaches, including Wan-2.1 (Wan et al., 2025), Matrix-Game (He
et al., 2025) and YUME (Mao et al., 2025). As shown in Table 1, our method consistently out-
performs baselines across all metrics, demonstrating strong advantages in both visual quality and
action-conditioned responsiveness. Astra achieves consistently superior results, surpassing existing
video generation and world modeling approaches in both fidelity and controllability. Our model
produces videos with sharper details, smoother motion, and stronger temporal coherence (Figure 5),
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Figure 6: Qualitative comparisons on action-driven real-world exploration. Given the initial im-
age and action sequence, Astra generates exploration sequences that maintain strong visual fidelity,
coherent dynamics, and accurate responsiveness to user-specified actions.

Table 1: Quantitative comparison of different models. Astra demonstrates superior visual quality
and instruction-following performance across a variety of real-world scenarios.

Method Instruction
Following ↑

Subject
Consistency ↑

Background
Consistency ↑

Motion
Smoothness ↑

Aesthetic
Quality ↑

Imaging
Quality ↑

Wan-2.1 (Wan et al., 2025) 0.061 0.854 0.903 0.958 0.489 0.691
MatrixGame (He et al., 2025) 0.268 0.916 0.928 0.981 0.441 0.748
Yume (Mao et al., 2025) 0.652 0.936 0.938 0.985 0.523 0.741

Astra (Ours) 0.669 0.939 0.945 0.989 0.531 0.747

leading to higher scores on visual quality metrics such as subject and background consistency, mo-
tion smoothness, and overall aesthetic appeal. More importantly, it demonstrates a clear advantage
in instruction following: human evaluations confirm that the generated trajectories more faithfully
follow intended camera movements and action directions compared to prior methods. Importantly,
while competing approaches often suffer from error accumulation and drift during long rollouts,
Astra maintains stability across extended horizons (Figure 6), making it particularly suitable for
real-world interactive scenarios where both high fidelity and reliable action following are critical.

4.3 ANALYSIS

Action integration via ACT-Adapter. Our lightweight ACT-Adapter provides an efficient way to
inject action features into the pre-trained flow transformer. Freezing most parameters while tun-
ing only the adapter and attention layers ensures maximum reuse of generative knowledge. Abla-
tion results (Table 2, cross attn. adapter) demonstrate that ACT-Adapter achieves stronger action-
conditioned performance than the cross-attention adapter used in He et al. (2025), confirming its
effectiveness as a simple yet powerful extension for enhancing interactivity.

Action-free guidance enhances action responsiveness. We find that action-free guidance effec-
tively amplifies the influence of action signals during inference. By learning to predict both with and
without actions, the model gains stronger controllability, achieving sharper responses to commands
while preserving stability. As shown in Table 2 (w/o AFG), this mechanism proves particularly
useful for improving action responsiveness in long video rollouts.

Noisy memory mitigates visual inertia. The proposed noise-as-mask strategy alleviates the issue of
visual inertia by weakening the dominance of historical context over action inputs. This encourages
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Table 2: Ablation studies. We assess the contribution of each component in Astra, ensuring all
experiments are conducted using the same random seed for fair comparison.

Method Instruction
Following ↑

Subject
Consistency ↑

Background
Consistency ↑

Motion
Smoothness ↑

Aesthetic
Quality ↑

Imaging
Quality ↑

w/o AFG 0.545 0.841 0.892 0.957 0.492 0.703
w/o noise 0.359 0.903 0.927 0.979 0.523 0.739
cross attn. adapter 0.642 0.926 0.903 0.948 0.512 0.694
w/o MoAE 0.651 0.930 0.941 0.975 0.520 0.727

Astra (Ours) 0.669 0.939 0.945 0.989 0.531 0.747

the model to rely on external controls rather than simply extrapolating from past frames. As shown
in Table 2 (w/o noise), the model achieves stronger responsiveness to abrupt or unexpected actions,
while still maintaining long-term temporal coherence and stability in video generation.

Adapting to diverse scenarios with MoAE. MoAE allows Astra to process diverse action modali-
ties in a unified way. By routing inputs to modality-specialized experts, it provides both versatility
and precision across domains such as robotics and navigation. While joint training on heteroge-
neous datasets may slightly reduce performance on any single scenario, MoAE greatly improves
cross-domain generalization and enables broader data usage—critical for real-world applications.
Our ablation in Table 2 (w/o MoAE), trained only on camera-action data since it cannot process
other modalities, further shows that MoAE markedly improves action-conditioned video generation.

4.4 EXTENDED APPLICATIONS

Our interactive world model is not limited to standard video prediction benchmarks—it naturally
extends to a wide range of real-world applications. Thanks to its balanced design of action-aware
conditioning, noise-augmented memory, and modular action encoding, the model can flexibly adapt
to diverse tasks such as camera control, manipulation video prediction, long-horizon exploration,
and autonomous driving. This versatility arises from unifying temporal consistency with respon-
sive action integration, making it a general-purpose framework for simulating, interacting with, and
editing dynamic environments. Qualitative results are provided in Section C and Figure A.

Autonomous driving. We extend Astra to autonomous driving using the nuScenes dataset (Caesar
et al., 2020), which provides multi-view videos and diverse traffic contexts. Given ego-vehicle ob-
servations and discrete control actions (e.g., turn left, move forward), Astra generates realistic future
driving videos that capture vehicle motion, road geometry, and agent interactions. Its combination
of long-term coherence and precise action responsiveness enables interactive driving simulation.

Camera control. Astra supports interactive camera control through action signals specifying cam-
era trajectories such as panning and viewpoint shifts. Conditioned on these poses, it generates videos
that follow instructed motions while maintaining spatial and temporal consistency. This enables con-
trollable, cinematic camera movement for both creative and practical applications.

Manipulation video prediction In robotic settings, Astra predicts future video chunks conditioned
on current observations and manipulation actions, simulating fine-grained interactions such as grasp-
ing or tool use with high fidelity and temporal coherence. These predictive rollouts support planning,
policy learning, and safe exploration in robot learning.

5 CONCLUSION

In this work, we present Astra, a simple yet effective framework for building interactive world
models that unify real-world video prediction with precise action conditioning. By equipping a pre-
trained video diffusion backbone with a lightweight action-aware adapter, a noise-augmented mem-
ory for balancing history and responsiveness, and a mixture of action experts for versatile control,
our model achieves interactive, consistent, and versatile video generation across diverse real-world
scenarios. Extensive experiments show long-term consistency, visual fidelity, and instruction fol-
lowing. We believe Astra offers a practical path toward more general, scalable simulators for world
modeling in exploration, robotics, autonomous driving, and embodied intelligence.

9
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Table A: Datasets used in experiments, along with their actions and sample sizes. For each dataset,
we list the action type, followed by the dimensionality of its representation.

Dataset Action Scenario Size

nuScenes (Caesar et al., 2020) Camera (7) Autonomous driving 850
Sekai (Li et al., 2025a) Camera (12) Walking & drone view 50K
SpatialVid (Wang et al., 2025) Camera (7) & keyboard / mouse In-the-wild videos 200K
RT-1 (Brohan et al., 2022) Robotic pose (7) Robot manipulation 9978
Multi-Cam Video (Bai et al., 2025) Camera (12) Human motion 136K

Total - - ∼ 397K (360 hours)

A MORE EXPERIMENTAL DETAILS

A.1 DATASETS

We use the training data sampled from the nuScenes (Caesar et al., 2020), Sekai (Li et al., 2025a),
SpatialVID (Wang et al., 2025), Multi-Cam Video (Bai et al., 2025) and RT-1 (Brohan et al., 2022).
To ensure balanced exposure across these datasets, we apply a set of sampling weights that control
the frequency with which data from each source is drawn during training. A summary of dataset
statistics is provided in Table A, with detailed descriptions reported as follows:

nuScenes: nuScenes is an autonomous vehicle dataset collected from an AV approved for testing on
public roads and it contains the full 360◦ sensor suite (lidar, images, and radar). It comprises 1000
scenes, each 20s long and fully annotated with 3D bounding boxes for 23 classes and 8 attributes.
We use its 7 dimensions pose parts as our action.

Sekai: Sekai is a high-quality first-person view worldwide video dataset with rich annotations for
world exploration. It consists of over 5,000 hours of walking or drone view (FPV and UVA) videos
from over 100 countries and regions across 750 cities. The action of this dataset is the camera pose.

SpatialVID: SpatialVID is a dataset consisting of a large corpus of in-the-wild videos with diverse
scenes, camera movements and dense 3D annotations such as per-frame camera poses, depth, and
motion instructions. SpatialVID has a total of 7,089 hours of dynamic content. We use the 7-
dimensional camera parts as our action.

RT-1: RT-1 is a large, diverse dataset of robot trajectories that includes multiple tasks, objects and
environments. It contains over 130k individual demonstrations constituting over 700 distinct task
instructions using a large variety of objects. We use its 7 dimensions ee-space pose parts as our
action. We use Open X-Embodiment (O’Neill et al., 2024) version of the RT-1 dataset.

Multi-Cam Video: Multi-Cam Video is a synthetic dataset rendered with multiple cameras cap-
turing the same scene simultaneously. Animated characters are placed in diverse 3D environments,
while cameras follow predefined trajectories to simulate synchronized shooting. We use 10K videos
with detailed camera annotations as action signals.

A.2 TRAINING DETAILS

We initialize our model using the pre-trained weights of the Wan-2.1 base model (Wan et al., 2025).
Our training is run on 8 H800 (80G) with a per-GPU batch size of 1. We train our model with
AdamW (Loshchilov & Hutter, 2017) optimizer and a learning rate of 1e−5 for 30 epochs. Our
training runs take approximately 24 hours to converge. All videos are resized and cropped to the
training resolution (480 × 832). The model is trained on the latent space produced by a 3D VAE. In
pixel space, the count of condition frames is randomly sampled from the range [1, 128], whereas the
number of target frames is consistently set to 33.

A.3 MODEL ARCHITECTURE

Our framework builds on Wan-2.1 (Wan et al., 2025), a large-scale video diffusion model composed
of 30 stacked flow transformer (DiT-style) blocks, each containing multi-head self-attention and
feed-forward layers with residual connections. Wan-2.1 serves as a strong pre-trained backbone,
providing rich generative priors for high-quality video synthesis. To enable interactive control, we
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Table B: Quantitative action-alignment comparison. We complement the human-rated
instruction-following metric by reporting rotation and translation errors that directly measure how
well generated camera motions align with the commanded actions.

Method RotErr ↓ TransErr ↓ Instruction Following ↑ Imaging Quality ↑
Wan-2.1 (Wan et al., 2025) 2.96 7.37 0.061 0.691
YUME (Mao et al., 2025) 2.20 5.80 0.268 0.741
MatrixGame (He et al., 2025) 2.25 5.63 0.652 0.748
NWM (Bar et al., 2025) 2.47 6.13 0.311 0.635

Astra (ours) 1.23 4.86 0.669 0.747

introduce two lightweight yet effective extensions: ACT-Adapter and Mixture of Action Experts
(MoAE). The ACT-Adapter is implemented as a single linear layer inserted after each self-attention
block. It is initialized as an identity mapping and fine-tuned jointly with the attention parameters,
allowing the model to inject action features into the latent space while preserving stability of the
pre-trained weights. In parallel, MoAE provides a modular action encoding mechanism. It consists
of a linear router that projects heterogeneous action modalities into a shared space, followed by a set
of MLP-based experts specialized for different action types. Specifically, we support camera control
actions represented as 7 or 12-dimensional vectors, robotic actions represented as 7-dimensional
vectors, and navigation commands expressed through discrete keyboard and mouse inputs. The
routed outputs are combined into a unified representation that is fed into the ACT-Adapter, ensuring
both precision and versatility. Together, these components augment Wan-2.1 into an autoregressive
denoising model capable of faithfully following actions while maintaining long-horizon temporal
coherence. During inference, we set the scale s for action-free guidance (AFG) to be 3.0.

A.4 METRIC DETAILS.

We follow YUME (Mao et al., 2025) to use human evaluation and VBench (Huang et al., 2024) met-
rics to assess the performance of our model. For instruction following, automated camera-motion
estimators (e.g., MegaSaM (Li et al., 2025b)) can provide approximate motion labels, but their pre-
dictions often suffer from inaccuracies and quantization errors, especially under complex scene ge-
ometry or fast motion. To ensure reliable assessment, we therefore rely purely on human evaluation.
Specifically, we recruit 20 users to inspect each generated sequence together with the corresponding
action command. The instruction-following score is computed as the ratio of users who agree that
the generated motion faithfully reflects the specified action direction and action type. For a more ob-
jective evaluation, we follow prior works (Bai et al., 2025; He et al., 2024) and measure how closely
the camera motion in the generated video matches the ground-truth trajectory, using MegaSaM to
estimate camera poses. As shown in Table B, Astra achieves lower rotation and translation errors
than existing methods, consistent with the human-rated instruction-following results. Together, these
metrics offer a fine-grained quantitative view of action alignment, further demonstrating the precise
interactive control enabled by our model.

A.5 PARAMETER ANALYSIS.

Astra is designed to be lightweight, adding far fewer parameters than prior interactive world mod-
els such as YUME (Mao et al., 2025) and MatrixGame (He et al., 2025). As shown in Table C,
MatrixGame introduces heavy cross-attention modules and large action encoders, resulting in sig-
nificant training and inference overhead, while YUME depends on a much larger 13B backbone.
In contrast, Astra adds only two small components: ACT-Adapter (a single linear layer after each
self-attention block) and MoAE (a lightweight linear router plus small MLP experts, with only one
expert active per step).

These additions contribute only a minor increase in parameters, making Astra the most parameter-
efficient model among the compared methods. Because the backbone remains frozen and the
added modules are shallow, the computation cost is nearly unchanged, enabling fast, stable training
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Table C: Parameter comparison. Astra introduces the smallest parameter overhead among all
methods, adding only lightweight adapters while preserving the efficiency of the frozen backbone.

Method Base model Trainable Params. Note

NVM (Bar et al., 2025) CDiT-XL ∼ 1B Full tuning
YUME (Mao et al., 2025) Wan2.1-14B ∼ 14B Full tuning
MatrixGame (He et al., 2025) Wan2.1-1.3B ∼ 1.8B Full tuning, cross-attn adapters

Astra (ours) Wan2.1-1.3B 366.8M Tuning adapters & self-attn.

Table D: Comparative overview of various world model methods, detailing their respective domains
of application, supported control modalities, and interaction horizons.

Method Domain Control Interaction Horizon

Wan-2.1 (Wan et al., 2025) General Text A few seconds
MatrixGame (He et al., 2025) Game-specific Keyboard / Mouse A few seconds
YUME (Mao et al., 2025) Walking-specific Keyboard / Mouse 8-10 seconds

Astra (Ours) General
Camera;

Keyboard / Mouse;
Robot pose

8-10 seconds

and long-horizon rollout without heavy architectural modifications. Overall, Astra achieves strong
action-conditioned performance with the lowest parameter and compute overhead in its class.

B COMPARISON WITH EXISTING WORLD MODELS

Table D compares four representative world models—Wan-2.1 (Wan et al., 2025), MatrixGame (He
et al., 2025), YUME (Mao et al., 2025), and Astra—across three key dimensions: domain, control
modality, and interaction horizon. In terms of domain, Astra is designed for general-purpose scenar-
ios, showcasing their versatility in a wide range of applications. MatrixGame, however, is tailored
specifically for game-related contexts, limiting its use to game-specific environments. YUME fo-
cuses on walking-specific domains, which is a niche area compared to the general-purpose methods.
For control modalities, Wan-2.1 relies solely on text input, reflecting a language-driven paradigm.
MatrixGame and YUME adopt traditional keyboard and mouse controls. Astra, enabled by MoAE,
supports multiple modalities—including camera input, keyboard/mouse, and robot pose—providing
more flexible and intuitive interaction. Finally, regarding the interaction horizon, Wan-2.1 and Ma-
trixGame are limited to short spans of a few seconds. YUME extends this to 8–10 seconds, and As-
tra matches this longer horizon through noisy memory and the input-packing technique of (Zhang
& Agrawala, 2025). Combined with its multi-modal control and general-purpose domain, Astra
emerges as the most comprehensive solution among the compared methods.

C MORE RESULTS

C.1 EXTENDED APPLICATIONS.

As shown in Figure A, our Astra framework is designed to generalize across a wide range of in-
teractive video prediction tasks, demonstrating strong adaptability in domains such as autonomous
driving, robotic manipulation, and camera control. In driving scenarios, Astra generates realistic
long-horizon rollouts that capture complex road dynamics while responding accurately to control
signals like steering or acceleration. For manipulation, it predicts object interactions conditioned on
robot actions, enabling fine-grained and physically consistent outcomes. In camera control, Astra
follows viewpoint instructions such as panning, zooming, or rotation, while maintaining temporal
and visual coherence. Together, these applications highlight Astra’s versatility and effectiveness as
a unified world modeling framework capable of handling heterogeneous action modalities in diverse
real-world settings.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(c) Camera control

(b) Manipulation video prediction

(a) Autonomous driving

Figure A: Extended applications of Astra. Our framework handles diverse scenarios: (a) au-
tonomous driving, predicting long-horizon traffic dynamics from control inputs; (b) manipula-
tion, conditioning robot actions on object interactions; and (c) camera control, reflecting viewpoint
changes in coherent videos. These demonstrate Astra’s versatility for interactive world modeling.

C.2 OUT-OF-DOMAIN GENERALIZATION.

We further evaluate Astra on out-of-domain (OOD) scenes—including indoor environments, styl-
ized anime videos, and even Minecraft gameplay—none of which are present in the training distri-
bution. Across all cases in Figure B, Astra produces coherent, action-conditioned rollouts: given
camera or navigation commands, it generates futures that accurately follow the instructed motion
while maintaining global structure and temporal consistency. In indoor scenes, the model handles
complex layouts and viewpoint shifts; in anime clips, it remains responsive despite fast and unpre-
dictable dynamics; and in Minecraft, it adapts to drastically different textures and rendering styles
while still executing the intended camera movement. These results show that Astra’s autoregressive
denoising framework, noise-augmented memory, and action-aware conditioning generalize effec-
tively under substantial distribution shift. We also present two examples applying different complex
action sequences to the same scene (Rows 3 and 4 in Figure B), both of which are followed faithfully.

C.3 MULTI-AGENT INTERACTION.

In Figure C, we illustrate Astra’s ability to handle multi-agent scenarios through a first-person driv-
ing example where the ego-vehicle overtakes two cars. Conditioned on a sequence of action com-
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Input image Action-driven video generation

Figure B: Out-of-domain generation results of Astra. Astra generalizes to scenes not seen during
training, including indoor environments, Minecraft worlds, and animation-style scenes, producing
coherent futures that follow camera or navigation commands. The last two rows show two distinct
complex action sequences executed within the same scene.

Input image Multi-agent driving interaction

W
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Figure C: Multi-agent interaction of Astra. Given a specified action sequence, Astra generates
smooth, realistic multi-agent interactions, such as an ego-vehicle overtaking other cars.

mands, the model produces a coherent rollout that follows the specified trajectory while plausibly
simulating the motions of surrounding vehicles. This highlights that Astra’s autoregressive denois-
ing process, noise-augmented memory, and MoAE-based action conditioning together enable stable
multi-agent interactions with accurate action following.

C.4 COMPARISONS WITH MORE METHODS.

To more comprehensively situate Astra within the broader landscape of visual world modeling,
we provide extended quantitative and qualitative comparisons with additional state-of-the-art ap-
proaches. Specifically, we compare against methods such as Navigation World Models (NVM) (Bar
et al., 2025) in Figure D and Table B, which are representative of recent approaches integrating
multimodal inputs and action-conditioned predictions. Our results demonstrate that Astra achieves
competitive or superior performance across key metrics, including visual fidelity, temporal consis-
tency, and action responsiveness. While direct numerical comparisons are limited by differences in
evaluation protocols and datasets, qualitative visualizations show that Astra generates long-horizon,
coherent videos that faithfully follow user-specified actions, outperforming prior methods in captur-
ing the causal dynamics of the environment. These comparisons highlight Astra’s ability to combine
accurate action conditioning with long-term rollout stability, confirming its effectiveness as a general
interactive world model across diverse scenarios. It is worth noting that many of the most advanced
world models, such as Genie-3 (Bruce et al., 2024), are currently closed-source or provide only
limited evaluation interfaces, making direct numerical comparison infeasible.
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Figure D: Qualitative comparison with NVM (Bar et al., 2025). Astra consistently produces visu-
ally coherent results while faithfully following action inputs.
Table E: Quantitative comparison on CityWalker dataset. Astra consistently achieves higher
visual quality and more reliable action following when evaluated on fully unseen scenes.

Method Instruction
Following ↑

Subject
Consistency ↑

Background
Consistency ↑

Motion
Smoothness ↑

Aesthetic
Quality ↑

Imaging
Quality ↑

Wan-2.1 (Wan et al., 2025) 0.084 0.827 0.843 0.913 0.417 0.632
MatrixGame (He et al., 2025) 0.247 0.923 0.939 0.946 0.426 0.653
Yume (Mao et al., 2025) 0.619 0.933 0.927 0.972 0.511 0.628

Astra (Ours) 0.641 0.948 0.944 0.983 0.554 0.695

C.5 QUANTITATIVE COMPARISONS ON LARGER DATASETS.

To further address concerns about evaluation scale, we conduct an expanded study on a larger held-
out set from the CityWalker (Liu et al., 2025) dataset. CityWalker is an egocentric urban navigation
corpus collected from in-the-wild YouTube walking videos with pose estimates. We sample 100
scene images, each paired with its future ground-truth action trajectory, producing 100 long-horizon
rollouts that robustly test cross-scene generalization and action adherence. Across this larger evalua-
tion, Astra consistently achieves the best action-following accuracy and video quality, outperforming
all baselines in metrics such as motion consistency, temporal stability, and VBench perceptual scores
(Table E). These results confirm that Astra’s strong performance is not an artifact of small-set eval-
uation, and that the model maintains robust generalization and reliable action responsiveness even
under substantially expanded test conditions.

D DISCUSSION ON VISUAL INERTIA.

Previous work (Zhang & Agrawala, 2025) has shown that longer video context can improve gen-
eration quality. However, in interactive world modeling, we observe that increasing context length
can reduce action responsiveness. We term this phenomenon visual inertia—the model’s tendency
to over-rely on past visual frames while neglecting user actions. To examine this, we train Astra
with different history lengths without our proposed noisy-memory mechanism. As shown in Fig-
ure E, the action-following score drops substantially as context length increases, indicating that
overly clean and long visual histories can dominate the model’s decision process. This motivates
our noise-augmented memory design, which intentionally reduces visual dominance and encourages
the model to integrate both historical context and action signals when generating future frames.

E LIMITATIONS

Despite the promising performance of Astra, our framework still faces limitations in inference effi-
ciency. Since it builds on diffusion-based generation with autoregressive rollouts, producing long-
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Figure E: Effect of visual inertia. As the history length increases, video quality improves, but the
action-following score drops sharply, illustrating the visual inertia phenomenon.

horizon interactive videos requires multiple denoising steps per frame, making real-time deployment
challenging. This constraint limits its applicability in latency-sensitive scenarios such as online con-
trol or interactive robotics. To address this, future work could explore distillation or student-teacher
compression strategies that retain the fidelity and responsiveness of Astra while reducing inference
cost, thereby paving the way for lightweight, real-time world modeling.

F CODES & DEMOS

The complete source code and demo videos for our method is provided in the ./code and
./videos folder, which contains the required files to reproduce our experiments with the Astra
framework.
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