Under review as a conference paper at ICLR 2026

P3D: HIGHLY SCALABLE 3D NEURAL SURROGATES
FOR PHYSICS SIMULATIONS WITH GLOBAL CONTEXT

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a scalable framework for learning deterministic and probabilistic neural
surrogates for high-resolution 3D physics simulations. We introduce P3D, a hy-
brid CNN-Transformer backbone architecture targeted for 3D physics simulations,
which significantly outperforms existing architectures in terms of speed and accu-
racy. Our proposed network can be pretrained on small patches of the simulation
domain, which can be fused to obtain a global solution, optionally guided via a
scalable sequence-to-sequence model to include long-range dependencies. This
setup allows for training large-scale models with reduced memory and compute
requirements for high-resolution datasets. We evaluate our backbone architecture
against a large set of baseline methods with the objective to simultaneously learn
the dynamics of 14 different types of PDEs in 3D. We demonstrate how to scale
our model to high-resolution isotropic turbulence with spatial resolutions of up
to 5123, Finally, we show the versatility of our architecture by training it as a
diffusion model to produce probabilistic samples of highly turbulent 3D channel
flows across varying Reynolds numbers, accurately capturing the underlying flow
statistics.

1 INTRODUCTION

Training neural networks on high-resolution data substantially increases the required GPU memory
and compute costs. Scaling models and their input dimensions typically requires substantial engineer-
ing effort, posing a major barrier to the widespread and cost-effective adoption of machine learning
across application domains. Scientific machine learning and engineering are especially affected
due to the multi-scale nature of relevant phenomena whose modeling often requires specialized and
highly computationally demanding numerical solutions. In this paper, we focus on learning surrogate
models for simulations focusing on fluid dynamics that have downstream applications in fields such
as aerospace (Arranz et al.| |2024), climate science (Bodnar et al.| 2024), energy systems (Degrave
et al.,[2022)), and biomedical engineering (Morris et al.,|2016)). Machine learning models inherently
compete with existing solvers, which are often employed to create the reference targets for learning.
As such, they need to either significantly outperform the corresponding solvers while maintaining an
acceptable level of accuracy (Kochkov et al.| 2021} [Pestourie et al., [2023)), or yield solutions where
traditional solvers fall short, for example working with noisy (Franz et al.,|2023)) or only partial input
data (Shu et al.||2023), or by providing uncertainty estimates (Jacobsen et al.|[2023). A large fraction
of papers in this area address learning problems for either low-dimensional or comparatively smooth
data in 2D. In this paper, we deliberately focus on high-resolution 3D phenomena, covering a wide
variety of different types of PDEs.

We propose P3D: a hybrid CNN-Transformer backbone built on PDE-Transformer (Holzschuh et al.}
2025) that combines fast processing of local features via convolutions and windowed attention
mechanisms for learning generalizable token representations. P3D makes important extensions for
scaling to very high resolutions in 3D: crop-based pre-training combined with a designated module
for processing global dependencies. This design achieves superior scalability and accuracy compared
to existing 3D baselines. We evaluate the P3D backbone architecture through an extensive comparison
with existing architectures for modeling physics simulations in 3D, training on 14 different types
of dynamics simultaneously. We then employ P3D as a surrogate model for isotropic turbulence at
resolution 5122 and demonstrate how the P3D architecture pretrained on crops of 128> can be scaled
to the entire domain, while achieving high accuracy with temporally stable autoregressive rollouts.

Under review as a conference paper at ICLR 2026

A significant difficulty when modeling large systems is how to aggregate and distribute information
globally across the network. We propose to link the bottleneck layers of P3D with a sequence-to-
sequence model, called context model, for an efficient global processing and information aggregation
utilizing highly optimized self-attention mechanisms in LLM layers, which is combined with different
scalable and memory-aware training and inference strategies. Additionally, we propose a direct
mechanism to let aggregated global information flow back to the decoder modules via adaptive
instance normalization layers. In our final experiment, we train P3D as a diffusion model to learn
the distribution of velocity and pressure fields of a turbulent channel flow on a non-equidistant grid.
This setup requires access to global information like the relative position to the walls, and cannot be
addressed by learning local representations alone. We verify that velocity profiles from the generated
samples of P3D closely match the ground truth, demonstrating that high distributional accuracy
can be obtained even when the solution fields are constructed from smaller regions, which are only
coordinated through the information flow from the context model. To summarize our contributions:

* We introduce P3D, a hybrid CNN-Transformer architecture for autoregressive prediction of
high-resolution physics simulations in 3D, combining convolutions for fast learning of local
features and windowed self-attention for deep representation learning.

* We demonstrate the efficiency and versatility of P3D in three experiments: (1) jointly
learning multiple types of simulations (2) scaling P3D pretrained on crops of 1283 to a
high-resolution simulation of isotropic turbulence at 5123, and, (3) generating probabilistic
samples from P3D trained via flow matching for the velocity and pressure fields of a turbulent
channel flow, closely matching the ground truth flow statistics.

* We propose mechanisms for efficient global information processing, including linking
bottleneck layers with a sequence-to-sequence global context model and injecting global
information into adaptive instance normalization layers via region tokens.

* We evaluate different setups for finetuning, which enable a more fine-grained control of
precomputation and gradient backpropagation through encoder and decoder blocks to reduce
VRAM and compute requirements.

2 RELATED WORK

PDEs and machine learning Machine learning has sparked much resonance in accelerating and
improving numerical PDE solvers as well as fully replacing them. Approaches that are combined
with existing PDE solvers can replace components of the solver (Bar-Sinai et al., 2019)), learn closure
models (Duraisamy et al.| [2019; [Sirignano & MacArt, [2023)) or learn corrections to a fast solver
on a coarse grid (Um et al., 2021} [Kochkov et al., [2021; |Dresdner et al., |2023). Other directions
target problems that are more difficult to address with numerical solvers, such as inverse problems
(Raissi et al., 2019} |Bruna et al.|, |[2022} Holzschuh et al., [2023), or uncertainty quantification (Xiao &
Cinnella, 2019; [Liu & Thuerey, [2024). Leveraging diffusion models for autoregressive prediction
and inverse problems for PDEs has been explored by several works in the past (Lippe et al., 2023
Kohl et al.l [2024; [Shu et al., [2023; |Shehata et al.| [2025)), albeit limited to data in 2D.

Pretraining and 3D neural surrogates |Subramanian et al.|(2023));|Yang et al.|(2023)); McCabe
et al.| (2023) pretrain foundation models for PDEs on multiple PDE dynamics simultaneously. Such
models can be used either for zero-shot-predictions or for finetuning when adapting to new dynamics,
which allows for improved results with fewer training samples. Previous works have demonstrated
learning PDEs in 3D, e.g., learning large-eddy simulations (Peng et al.,|[2023; [Li et al., [2023a}; [2024a;
Jiang et al.||2025), and elastic wave propagation (Lehmann et al., 2024). Smoke buoyancy in 3D was
targeted as a test case by [Li et al.|(2023b) Notably, most previous work targets resolutions of up to
647, an exception being probabilistic experiments at a resolution of 128> (Molinaro et al., 2024), and
surrogate training with up to 128 x 128 x 256 (Ohana et al.,|2024). This motivates our contributions
for scalable architectures, as surrogate models for truly high-resolution 3D physics simulations are of
paramount interest in different scientific areas.

Scalable transformer architectures Transformers have become one of the dominant backbone
architectures in deep learning due to their high computational efficiency and their ability to model
long-range causal relationships (Vaswani et al.,|2017; Devlin et al., [2018)). Transformers have also
become a popular competitor to CNNs in vision and understanding tasks (Dosovitskiy et al.| [2020;
Rodrigo et al., [2024)), scale to large images (Gupta et al.| 2024), and have recently been adopted
for learning surrogate models for physics simulations (McCabe et al.|[2023; ' Wu et al., |2024; |Alkin

|Under review as a conference paper at ICLR 2026

B Input s
Embedding 7 X2 J
R Conv Block
- = 1
a 1
Convolutional Encoder 5 _ /
2 /
2 x2 v
3 Conv Block
e i
3 (S——
13 +
o
k<1
\ g (
Latent Code \ S
8
el g
|5 | Cmmm
\\ E
N _
i D 2
Convolutional Decoder \\é =
cordione \\ _ g
\ c
A Output <)
m Projection ’ °©
N

Figure 1: Overview of P3D. Convolutional blocks for local feature processing are combined with
transformers for deep representation learning, yielding a U-shaped multi-scale architecture. The
transformer backbone combines windowed attention and conditioning via adaptive instance normal-
ization, which are modified and optimized for 3D.

2024). A major computational difficulty is the quadratic complexity of the global self-attention
mechanism. (2021)) address this limitation by restricting the computation of the attention
operation to a local window and|Ho et al[(2019) by computing the attention only across the data axes.

3 METHOD

Problem formulation Let Q denote a spatial domain with n physical quantities u(z,t)
Q x [0,7] — R™ that are discretized in time and space and described by the temporal sequence
[ug, uat, ..., ur]. We consider all additional information about the sequence such as the type of
PDE or hyperparameters of the simulator to be encoded in an m-dimensional conditioning vector
c € R™. We assume the availability of many such sequences as training data, representing the
temporal evolution of different types of PDEs with varying initial conditions or coefficients. We
denote our proposed network architecture by Mg with weights ©.

We address two main tasks in this paper. The first is autoregressive prediction: For a given sequence
of P preceding states [u;—pat, ..., Us—a¢), denoted by uy,, our target is to predict the next state
U := Uoys. The second task is to train a probabilistic sampler to draw samples from a distribution of
states representing solutions for a PDE as specified by the parameter vector c. In this case u;, = ().

3.1 BACKBONE ARCHITECTURE: P3D TRANSFORMER

The key components of our proposed hybrid CNN-Transformer architecture P3D are the hierarchical
U-shape structure with the hybrid encoder and decoder-pair based on convolutional and transformer
blocks. A visual overview is given in Figure[I} In the following, we highlight the main components
of the architecture and explain how they support its central goal to enable the efficient training and
inference for high-resolution 3D simulations.

Hybrid encoder/decoder We utilize convolutional en- and decoders with skip connections. Fully
transformer-based architectures that work in the pixel space for 2D data and images like ViTs rely on
a patchification operation to transform patches of size p x p into tokens. A corresponding approach
in 3D would transform patches of size p® into a single token, significantly increasing the amount of
information encoded in each token. To balance both the number of tokens for the transformer as well
as the information density of each token, we learn local features via the convolutional encoder to
obtain an optimized compressed representation.

Attention and positional encoding The self-attention operation used by transformers has quadratic
complexity in the number of tokens. For 3D data, this becomes a major computational issue as the
number of tokens grows cubically with the spatial discretization, leading to computational blow-up
as the domain size increases. The central building block of our transformer encoder is the windowed
multi-head self-attention [2021), which only computes self-attention within a local

Under review as a conference paper at ICLR 2026

windows. For computing the attention scores between tokens, we use the log-spaced relative positions
of tokens inside the same window.

The architecture of the P3D combines Swin transformers (Liu et al., [2021)), diffusion transformers
(Peebles & Xiel [2023], DiT) and UNets (Ronneberger et al., [2015)) into a 3D variant, which can be
seen as an extension of PDE-Transformer (Holzschuh et al., [2025) in 3D. The main alteration is
the replacement of the patchification with large convolutional en- and decoders. We also removed
the shifting of windows during the computation of self-attention. The convolutional en- and de-
coder follow the design of modern UNet blocks, using adaptive instance normalization and group
normalization. We give a detailed description of the architecture in Section[A.4]

3.2 CONTEXT NETWORK

P3D does not include any absolute positional embeddings as well as no operations aggregating and
distributing information globally. Thus, it has to rely on learning local features and dynamics within
its perceptual field. This promotes translation-equivariance, which is an important inductive bias
for surrogate modeling of PDEs. Our design choice to not include other physical inductive biases
is intentional to keep the P3D backbone architecture flexible. For learning large-scale simulations,
we pretrain P3D on smaller crops of the simulation domain and then scale the pretrained network to
larger inputs. However, global information and long-range dependencies often play a crucial role
to obtain correct solutions, which is also a major limitation of PDE-Transformer. To address this
shortcoming, we introduce the context network.

Token embeddings The bottleneck layer of the
transformer encoder consist of tokens, which are em-
bedded into latent tokens via a linear layer. P3D
compresses a crop of size 162 into a single latent to-
ken. Then, a frequency-based positional embedding
vector is added to each latent token, similar to Doso-
vitskiy et al|(2020). In addition, we partition the
domain into regions and we match the size of regions
with the size of the domain crops P3D was pretrained
on. For each region, we include a corresponding so-
called region token in the sequence of latent tokens,
similar to the classification token in ViTs. Each re-
gion token is initialized via a learnable embedding
layer and we add a frequency-based positional em-

Conditioning

Skip connection

Sequence Model + positional encoding

Latent tokens

Region tokens

Inject global
information

bedding vector. The purpose of region tokens is to
serve as a more direct feedback mechanism to the
decoder, which we describe in the next paragraph.
Our implementation processes the token sequence
via n = 6 scalable LLMLayers. Figure 2] provides
an overview of this setup. In principle, any efficient
sequence model can be used. After the sequence of
region and latent tokens is processed, the latent to-
kens are added to the input of the decoder via a skip
connection. See Section [A-3]for a full description.

Region tokens The region tokens are retained and
used as a more direct mechanism to let information
flow through the decoder network. Region tokens
are initialized as a learnable embedding vector with
frequency-based positional encoding and are pro-
cessed in the sequence model together with the latent
tokens. Each region token corresponds to a crop that
is processed independently of other crops by the en-
coder and decoder blocks. We use scale and shift
operations to condition the decoder block of each re-
gion on the region token. Within each decoder block,
for each adaptive instance normalization layer with

Figure 2: Global context via a sequence
model. The bottleneck layers are connected to
the sequence model, which embeds the bottle-
neck representation as latent tokens. Region
tokens are used to inject global information
directly into the decoder.

Region tokens

?EFDD Regions
‘c
K}
s L <=
S : s —5—U
v E 3
&

—\9_

Figure 3: Conditioning via the region to-
kens. The input domain is partitioned into re-
gions/crops, each of which has a correspond-
ing messenger token. The regions are mod-
ulated individually via learnable scale and
shifts based on the region tokens.

scale or shift operations, we transform the region token via a linear layer to a region embedding

Under review as a conference paper at ICLR 2026

active gradient backpropagation Q w inactive gradient backpropagation

0 OO0 OEE 85 E
AYA AN AVA

1 o oo O Le—{l—{] L] e—{«—]

£\ £\ L

(d) randomized
backpropagation

(a) full domain (b) cropped domain (c) global context (e) decoder only

Figure 4: Different training and inference setups. (a) shows training on the full domain and (b) on
domain crops. (¢) includes the context network for global information processing, which can also
be trained by randomly disabling gradient backpropagation for a percentage of the encoders and
decoders, see (d). In (e) the latent codes from a pretrained encoder can be precomputed and only the
context network and decoder are trained.

vector which is added to the embedding vector of the conditioning c. Each region gets modulated
differently based on the region token. This is visualized in Figure[3]

3.3 SCALING OUTPUT DOMAINS

We consider different setups for training and inference, see Figure[d which include training on the
full domain (a), on crops (b) and different training variants in combination with the context network
(c) to (e). While it is preferable to train on small crops due to compute requirements, for inference,
we generally want to process the full domain. We consider two strategies: (1) we scale to the full
domain via the translation equivariance of the P3D architecture, i.e., we combine the domain crops
and process them as a single input, and, (2) we encode and decode each crop of the full domain
independently and combine the network outputs. We tag a model that is trained on crops of resolution
2 and which internally runs inference on resolution 3® by <zly>. For example, a network trained on
crops of size 643 that is scaled via strategy (1) to resolution 1282 is tagged <64|128>, while the same
network scaled via strategy (2) is tagged <64164>. For strategy (2), if we use the context network for
communication between the latent codes, we use the tag <XzIXy>.

4 EXPERIMENTS

We evaluate P3D as well as different scaling and finetuning setups in three experiments. P3D has
3 different configurations: .S, B and L that determine the embedding dimension d (32, 64 and 128
respectively) of the first layer. The corresponding models have 11M to 180M parameters. We denote
the configurations with P3D-S for our model with the S config, changed accordingly for B and L.

4.1 JOINTLY LEARNING MULTIPLE PDEs

Our dataset for this task comprises 14 different types of PDEs including Burger’s equation, Kuramoto-
Shivashinsky, Gray-Scott, Swift-Hohenberg and many others. The dataset is based on APEBench
(Koehler et al [2024), and a full description of each PDE with visualizations can be found in
Section [B.2]in the appendix. For all PDEs except Gray-Scott, we consider 60 different simulations
with varying initial conditions and PDE-specific parameters such as viscosity, domain extent or
diffusivity. For Gray-Scott, we include 10 simulations for each of its hyperparameters. Each spatially
periodic simulation contains 20 snapshots discretized at resolution 3203 for Gray-Scott and 384> for
all other PDEs. We evaluate and benchmark models on random crops of the simulation domain of
size 1283, 642 and 322 using supervised training, see Section Even with full information about
simulation hyperparameters and the type of PDE, the behavior is not fully deterministic as quantities
beyond the cropped regions influence the solution inside it. Simulations have different numbers of
channels and we zero-pad data with fewer channels than the number of maximum channels N¢ = 3.

Training on cropped data Cropped data has an implicit time-dependent boundary condition,
which is not known by the model. This can be seen as an extension and more difficult variant of the
multi-physics training (Subramanian et al., 2023} [Yang et al., 2023} McCabe et al.| 2023)), where
in addition to not knowing the PDE or simulation hyperparameters, the model has to estimate the

Under review as a conference paper at ICLR 2026

® P3D-S (ours)
1071 + 1014 ® P3D-B (ours)
w v =F ’ “ E ° P3I?»L (ours)
g 6x1072 2 6x102 Swin3D
o 4 . A = d A FactFormer3D
< 4x10-2 4 B3PS P3D-B < 4%10-2 4 4 UNet3Dgencrp
_ g ¥ UNet3Dconynext
3x102-‘\'\“;L 3% 1072 A + TENO
e e " oy
o
Memory Consumption (MB) Computational Cost (GFLOPs) AFNO

Figure 5: Comparison of model accuracy vs. (left) memory usage during backpropagation and (right)
computational costs for inference for jointly learning different types of PDEs with crops of size 643
for P3D and baselines.

boundary conditions in a data-driven manner. Mathematically, the model My is trained to regress

crop crop

argénin E (5,504 a0,¢)Deran [Eseror sor [[Me (5577, €) — s737R 3], (1)

where we sample (s, S¢+At,€) € Dirain from the training dataset and apply a random cropping
to obtain (s;"°",s;"°x,). The input uj, corresponds to s;"°" and Uey; to sy, °~,. The mapping
55 P > s, n, 1s not deterministic since the boundary conditions are not prescribed. The model Me
has to learn a prediction that minimizes the prediction error w.r.t. all possible simulation states that
are outside the cropped domain, i.e., the optimal prediction s* for sffgt minimizes

st = argmin E(§t7§t+At)NDtrain [||cr0p(§t+m) - S||% | crop(ét) = SgrOP] ’ @)
S

where crop(+) is the crop operation used for s;"°". The performance depends on how well the model
is able to extrapolate the dynamics outside the cropped input for a short prediction horizon.

nRMSE evaluation We evaluate the nRMSE, see Table 1: Comparison of the nRMSE (x 1072)
Section[A.3] and consider a wide range of sota base- on the test dataset (averaged over all PDEs).
line architectures. Specifically, we include Swin3D,

our own implementation of the SwinV2 architec- Method Crop size

ture (Liu et al.l [2021) extended to 3D, AViT, an ax-
ial vision transformer (McCabe et al,[2023)), Adap- epochs = 1000 32° 64% 1283

tive FNOs (Guibas et al., 2021, AFNO), Tucker- TENO 846 8.37 _
Factorized FNOs (Kossaifi et al.,[2023, TFNO), and FactFormer 624 4.62 -
FactFormer (Li et al.| [2024b)), Additionally, we con- UNetconyNext 859 7.09 -
sider two different convolutional UNet architectures, UNetGenCFD 761 8.04 827
UNetconvNext as used in |Ohana et al.| (2024) and AViT 209 250 15.1
UNetgencrp (Molinaro et al., 2024). We train all Swin3D 792 7.04 5.03
models for 1000 epochs on four HI00 GPUs. We use AFNO 995 498 4.79
a fixed learning rate of 2.0 - 10~* for all models with

the AdamW optimizer with weight decay 10~ and P3D-5 6.27 376 333
batch size 256 in bf16-mixed precision. See Table/[I] P3D-B 469 3.03 2.52
for the results and Tables[B2]to [B4l for detailed evalu- P3D-L 413 249 2.8

ations of each PDE type. As we train on bigger crop

sizes, the observed simulation domains becomes larger, increasing the amount of information that
becomes available to the network. At the same time, the relative volume of the boundary becomes
smaller, thus decreasing its relative weight and causing an according decrease in the nRMSE. P3D
performs best across all crop sizes. Performance significantly improves when scaling the model size
from S to L.

Memory and compute For scaling an architecture to high-resolution 3D simulations, the memory
requirements as well as the inference speed are essential. Transformer architectures have been shown
to achieve improved accuracy as the number of parameters and floating point operations increase,
therefore comparing different architectures needs to take both factors into account. In Figure[5] we
compare the nRMSE at patch size 64 against (1) the computational cost for inference measured in
GFLOPs, and (2) the VRAM consumption in MB for a backward pass with batch size 1. The P3D
networks provide the best tradeoff between accuracy and computational cost/memory requirements.
See Table[A2] for additional information.

Under review as a conference paper at ICLR 2026

P3D-$<128|512> P3D-$<128|128> Reference

velocity X

Figure 6: Forced isotropic turbulence. Prediction on the test set at resolution 5123 with an autore-
gressive rollout of 15 steps. The model is pretrained on patches of size 1283, without finetuning
on 5122. P3D-S <128I512> successfully scales to the full domain, whereas for P3D-S <128/128>
discontinuities at the borders of crop regions become apparent.

Ablation on network design We empirically verify Table 2: Validation MSE (x1073, time-
our network design and consider: (1) P3D without the weighted EMA with A = 0.99).
transformer backbone, which purely relies on the con-

volutional encoder and decoder, denoted P3D-conv, Method Crop size
(2) a patch-based P3D with linear tokenizer for patch 3 3 3
size p = 4 and no convolutional encoder and decoder, epochs =400 32 64 128

denoted P3D-patch. This baseline (*) extends the P3D-S-convy 833 540 3.25
mixed channel version of PDE-Transformer to 3D. P3D-S-patch* 648 3.78 2.16

(3) disabling PDE type conditioning by setting ¢ = 0, P3D-S-no-c 569 294 141
denoted P3D-no-c, (4) P3D with window shifting en- P3D-S-shift 541 284 137
abled, P3D-shift. Additionally, we evaluate different P3D-S 544 277 135

values of the window size w = 2, w = 4 (default)
and w = 8. P3D achieves a relative improvement of P3D-Sw=2 568 296 149
16.0% (32°), 26.7% (64°) and 37.5% (128) over 3D P3D-Sw=4 544 277 135
PDE-Transformer(*), see Table[2] Shifting and larger P3D-Sw =8 544 290 132
window sizes give no significant improvements here.

4.2 ISOTROPIC TURBULENCE

The goal of the this experiment is to scale P3D to a high-resolution simulation involving complex
dynamics. For this, we consider forced isotopic turbulence simulated via direct numerical simulation
(DNS) at resolution 10242 provided by the John Hopkins Turbulence Database (Perlman et al., 2007).
The dataset is cropped from the original resolution to 5122 with a total of 500 snapshots, which
are saved after reaching a statistical stationary state and comprises channels for the velocity X/Y/Z
and pressure. The data is split into test and training sets, where the first 420 snapshots are used for
training and the last 80 snapshots for testing.

RMSE and enstrophy error for crops 1282 Table 3: RMSE (x10~2) and the enstrophy spec-
We first evaluate the performance of P3D com- trum error (x 102) at different autoregressive roll-
pared to baselines from the previous experiment out steps on the test set with crop size 1283.
trained on domain crops of size 128°. We con-

sider an evaluation of autoregressive rollouts Method RMSE Enstrophy
from 1 to 15 steps. We evaluate the RMSE and a

spectral error based on the enstrophy spectrum, 1 15 1 15
which we compute based on the vorticity that UNetgencrp 548 677 42 140
is derived from the velocity fields of the data, Swin3D 322 243 4.0 156
see Section We train all models for 4000 AViT 945 1377 267 112
epochs using the same setup as in Section {1} AFNO 369 298 7.6 190
but reduce the batch size to 32. P3D performs

best and achieves the lowest RMSE for few au- P3D-S 2.81 282 215 319
toregressive rollout steps. It consistenly has by P3D-B 2.04 315 072 19.2

far the best spectral error, see Table E] and Ta-

Under review as a conference paper at ICLR 2026

P3D-L pretrained on 48° P3D-L <48]|192> P3D-L <X48|X48>

-

x-slice

Velocity X
1
. i .1

Figure 7: Turbulent channel flow. We pretrain PDE-L on crops of size 483. For P3D-L <48/192>
scaled to the full domain 962 x 192, the relative positions of crops to the wall is critical. Without
absolute positional encodings and global information passing, the generated samples are incorrect.
P3D-L <X48I1X48> finetuned with the context network resolves this issue.

ble[CT]for an extended evaluation. For many autoregressive rollout steps, the RMSE becomes less
informative, as the prediction starts to deviate from the reference due to the uncertainty from the
boundary of the crop regions. See Figures[C6|and [C7|for visualizations.

Scaling P3D to 5123 We scale P3D pre- Table 4: RMSE (x10~2) on the test set for P3D
trained on crops of size 128" to the full do- trained on crop size 1283 and evaluated at 5123 for
main 5123, Training P3D on cropped data re- different scaling strategies.

quires less than a day on four A100 GPUs. See

?ection |Cj|}g)3r Ddetakllils. Wf‘ corrﬁpare the 1E)er- Method Scaling strategy

ormance o when scaling the network to
larger domain sizes using the sgcaling strategies <128128> <1281256> <128|512>
introduced in Section[3.3] P3D <1281128> pro- ~ P3D-S 1.90 1.68 1.60
cesses blocks independently using the original ~ P3D-B 1.38 1.24 -
training resolution. Thus the domain 5123 is
split into 64 blocks of size 1283 that are processed independent of each other. P3D <128I512>
processes the full domain, leveraging the translation-equivariance of the architecture. See Table]
for an evaluation of the RMSE. Increasing the domain size during inference consistently gives
improvements. With increasing domain size, the relative volume of the boundary shrinks, thus
the uncertainty of turbulent motions is reduced and networks are able to provide more accurate
predictions. Similar to previous results, larger networks improve performance as well. Note that
the RMSE is different between Tables [3]and @] since we do not consider longer rollouts in Table[d]
which affects the distribution of samples in the test set. In this experiment, due to the isotropic and
homogeneous nature of the simulation, we achieve highly accurate results without finetuning or
global information.

4.3 TURBULENT CHANNEL FLOW

For .the last experiment we train P3Dasa gen- o i Number emm 400 e 500 == 600 200 800
erative model for learning to sample from a Generated Samples
turbulent channel flow simulation with a pe- 084

Reference

0.84 /\\

riodic channel with no-slip boundaries at +y , A 0.6

and is driven by a dynamic forcing to prevent

a loss of energy. The seemingly simply geom- >4 I
[IJ 2‘5 5‘0 7I5

Velocity

etry represents a well-studied and relevant sce- 0.2
nario that is highly challenging as it requires 4,4

fine spatial and temporal discretizations with 0 25 50 75
correspondingly long simulation times to pro- Channel Index Channel Index

vide converged turbulence statistics Figure 8: Flow statistics of samples produced by

2008). Due to the very costly initial p3py 1 conditioned with varying Reynolds number

transient phase of these simulations, it is espe- (left) and the time-resolved DNS (right)
cially attractive to phrase the turbulent channel '

flow (TCF) problem as a probabilistic learning

problem, where states from the relevant equilibrium phase can be sampled directly, i.e. with-
out resolving the initial warm-up phase. We generate a dataset comprising 20 simulations with
Reynolds numbers Re within the interval [400, 800] spaced equidistantly, see Section The

Under review as a conference paper at ICLR 2026

computational grid comprises 96 x 96 x 192 spatially adaptive cells with a finer discretization
near the wall. The data contains channels for the velocity in X/Y/Z direction as well as pressure.

P3D-L pretrained on 48° We Table 5: L2 error for the mean x (x107°) and variance o2
train P3D-L as a diffusion model (x107°) of the velocity profiles along the channel flow direc-
following Section[A.2]on crops tion, see Section [D.2] for details. For finetuning, we report the
of size 483. Pretraining on mean and std. dev. over 5 different seeds.

crops requires significantly less

compute and VRAM and the Model Mean L2 VarianceL2 VRAM epochs
network converges much faster. “UNetg.,cpp full domain 132.38 1766 174GB 400
For P3D-L with scaling strat- AFNO full domain 28.73 1849.3 34GB 400
egy <481192>, the network is P3D-L full domain 3.02 13.20 149 GB 400
I P3D-L <481192> 5862.81 233.77 28GB 2000
not aware of the position of the v - YETTO! SOTPeT: G 2(
:] finetune w/o region tokens 541 + 495 +267 15.8GB)
wall relative to the position of the ¢ 0 - 23.6+214 404+494 158GB 20
individual regions, causing the finetune, decoder only 9414484 1170£392 60GB 20
global structure of the generated finetune, decoder only 97.7+1026 131+149 60GB 100
flow to be incorrect. see Figure finetune, decoder only 16.8 5.0 24.1+17.2 6.0 GB 500

For a quantitative statistical eval-
uation including training on the full domain and baselines, see Table [3

Ablation on finetuning and context We evaluate finetuning P3D pretrained on the cropped domain
483 using the context model, see Table Finetuning corresponds to P3D-L <X481X48> with different
training setups, see Figure[d] finetune and finetune w/o region tokens follows the setup of Figure [k,
which backpropagates gradients through all crops and network modules. While this requires more
VRAM than training on the full domain, only few epochs to achieve good results are necessary. For
finetune, decoder only, we only backpropagate gradients through the decoder and context network,
and also only backpropagate through 10% randomly selected decoder blocks, which corresponds
to the setup in Figure . We do not precompute the bottleneck representations from the frozen
encoders, but this could be done to further reduce the VRAM and compute requirements. This setup
achieves a significant reduction in VRAM, but requires more training epochs. The generated sample
for P3D-L <X481X48>, see Figure|/| qualitatively shows the correct global structure and content of
individual regions. See also Figure [§|and Figures [D6]to [D9]for comparisons of the velocity profiles.
While finetuning matches the statistics well, there are still visible discontinuities between generated
crop regions, which leaves further room for improvement.

Benchmarking speedups We give speedups compared Table 6: Speedup compared to DNS.
to our GPU-based solver used for dataset generation, see

Table [6] The warmup phase of the DNS takes on aver- Method samples/s Speedup
age 2 hours and 24 minutes, which cannot be skipped.

Timings are obtained on a L40 GPU with 100 inference P3D-L 0.17 1d4x
steps. For the calculation of the speedup, we assume 20 AFNO 153 1246x
: ’ UNetgencrD 0.10 81x

samples for each Reynolds number and select every 10th
step of the DNS to avoid high autocorrelation of samples. ~ DNS (GPU) 0.0022 -
While AFNO has a higher speedup, its statistics are not

sufficiently accurate.

5 CONCLUSION

We have presented P3D: an efficient hybrid CNN-Transformer architecture for learning surrogates
for high-resolution 3D physics simulations. We demonstrated the strong advantages of P3D over
a comprehensive list of baselines for simultaneously learning different types of PDEs, showing
improved accuracy and stable training while at the same time being faster and more memory efficient
than the strongest competitors. We scaled P3D to a high-resolution isotropic turbulence simulation
by pretraining on smaller crops from the domain, and demonstrated its capabilities as a probabilistic
generative model. The P3D model accurately predicts distributions of high-resolution velocity
and pressure fields for a turbulent channel flow with varying Reynolds numbers, demonstrating
how to include global information and coordinated pretrained networks via a global context model.
Our architecture establishes the foundation for scaling scientific foundation models to very high
resolutions, unlocking their potential to deliver real-world impact across scientific domains.

Under review as a conference paper at ICLR 2026

REFERENCES

Benedikt Alkin, Andreas Fiirst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers: A framework for efficiently scaling neural operators.
Advances in Neural Information Processing Systems, 37:25152-25194, 2024.

Gonzalo Arranz, Yuenong Ling, Sam Costa, Konrad Goc, and Adrian Lozano-Duran. Building-block
flow model for computational fluids. arXiv:2403.09000, 2024.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P. Brenner. Learning data driven
discretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344-15349, 2019. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1814058116.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora: A foundation
model of the atmosphere. arXiv preprint arXiv:2405.13063, 2024.

Joan Bruna, Benjamin Peherstorfer, and Eric Vanden-Eijnden. Neural galerkin scheme with active
learning for high-dimensional evolution equations, 2022.

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S Albergo, Nicholas M Boffi, and Eric
Vanden-FEijnden. Probabilistic forecasting with stochastic interpolants and follmer processes. In
Proceedings of the 41st International Conference on Machine Learning, pp. 6728-6756, 2024.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414-419, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Gideon Dresdner, Dmitrii Kochkov, Peter Christian Norgaard, Leonardo Zepeda-Nunez, Jamie
Smith, Michael Brenner, and Stephan Hoyer. Learning to correct spectral methods for simulating
turbulent flows. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=wNBARGxoJn.

Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in
the age of data. Annual Review of Fluid Mechanics, 51(1):357-377, jan 2019.
doi: 10.1146/annurev-fluid-010518-040547. URL https://doi.org/10.1146%
2Fannurev—-f1luid-010518-040547.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
glish, and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthe-
sis. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
FPnUhsQJb5B.

Erik Franz, Barbara Solenthaler, and Nils Thuerey. Learning to estimate single-view volumetric flow
motions without 3d supervision. In International Conference on Learning Representations, 2023.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro.
Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR, abs/2111.13587,
2021. URL https://arxiv.org/abs/2111.13587.

Ritwik Gupta, Shufan Li, Tyler Zhu, Jitendra Malik, Trevor Darrell, and Karttikeya Mangalam. xt:
Nested tokenization for larger context in large images. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=wDDprThYeTl

10

https://openreview.net/forum?id=wNBARGxoJn
https://doi.org/10.1146%2Fannurev-fluid-010518-040547
https://doi.org/10.1146%2Fannurev-fluid-010518-040547
https://openreview.net/forum?id=FPnUhsQJ5B
https://openreview.net/forum?id=FPnUhsQJ5B
https://arxiv.org/abs/2111.13587
https://openreview.net/forum?id=wDDprThYeT

Under review as a conference paper at ICLR 2026

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. @ Denoising diffusion probabilistic models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 6840-6851. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
4cSbcfec8584af0d967f1abl0179cadb-Paper.pdf.

Benjamin Holzschuh, Simona Vegetti, and Nils Thuerey. Solving inverse physics problems with score
matching. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023.

Benjamin Holzschuh, Qiang Liu, Georg Kohl, and Nils Thuerey. Pde-transformer: Efficient and
versatile transformers for physics simulations. 2025.

Sergio Hoyas and Javier Jiménez. Reynolds number effects on the Reynolds-stress budgets in turbulent
channels. Physics of Fluids, 20(10):101511, 10 2008. ISSN 1070-6631. doi: 10.1063/1.3005862.

Christian Jacobsen, Yilin Zhuang, and Karthik Duraisamy. Cocogen: Physically-consistent and
conditioned score-based generative models for forward and inverse problems. arXiv preprint
arXiv:2312.10527, 2023.

Yuchi Jiang, Zhijie Li, Yunpeng Wang, Huiyu Yang, and Jianchun Wang. An implicit adaptive
fourier neural operator for long-term predictions of three-dimensional turbulence. arXiv preprint
arXiv:2501.12740, 2025.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan
Hoyer. Machine learning—accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):¢2101784118, 2021. doi: 10.1073/pnas.2101784118. URL |https:
//www.pnas.org/doi/abs/10.1073/pnas.2101784118.

Felix Koehler, Simon Niedermayr, Riidiger Westermann, and Nils Thuerey. Apebench: A benchmark
for autoregressive neural emulators of pdes. In Advances in Neural Information Processing Systems
37 (Datasets and Benchmarks Track), 2024. URL https://openreview.net/forum?id=
iWcOgElléu.

Georg Kohl, Li-Wei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
models for turbulent flow simulation, 2024. URL https://arxiv.org/abs/2309.01745!

Jean Kossaifi, Nikola Kovachki, Kamyar Azizzadenesheli, and Anima Anandkumar. Multi-grid
tensorized fourier neural operator for high-resolution pdes. arXiv preprint arXiv:2310.00120,
2023.

Fanny Lehmann, Filippo Gatti, Michaél Bertin, and Didier Clouteau. 3d elastic wave propagation
with a factorized fourier neural operator (f-fno). Computer Methods in Applied Mechanics and
Engineering, 420:116718, 2024.

Zhijie Li, Wenhui Peng, Zelong Yuan, and Jianchun Wang. Long-term predictions of turbulence by
implicit u-net enhanced fourier neural operator. Physics of Fluids, 35(7), 2023a.

Zhijie Li, Tianyuan Liu, Wenhui Peng, Zelong Yuan, and Jianchun Wang. A transformer-based neural
operator for large-eddy simulation of turbulence. Physics of Fluids, 36(6), 2024a.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling.
Advances in Neural Information Processing Systems, 36:28010-28039, 2023b.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling.
Advances in Neural Information Processing Systems, 36, 2024b.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747,

11

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://openreview.net/forum?id=iWc0qE116u
https://openreview.net/forum?id=iWc0qE116u
https://arxiv.org/abs/2309.01745
https://arxiv.org/abs/2210.02747

Under review as a conference paper at ICLR 2026

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-
refiner: Achieving accurate long rollouts with neural pde solvers. Advances in Neural Information
Processing Systems, 36:67398-67433, 2023.

Qiang Liu and Nils Thuerey. Uncertainty-aware surrogate models for airfoil flow simulations
with denoising diffusion probabilistic models. AIAA Journal, 62(8):2912-2933, 2024. doi:
10.2514/1.J063440. URL |https://doi.org/10.2514/1.J063440.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=XVijTTlnw5z.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Parker, Ruben Ohana, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, Mariel
Pettee, Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho. Multiple physics pretraining for
physical surrogate models. In NeurIPS 2023 Al for Science Workshop, 2023. URL https:
//openreview.net/forum?id=M121mQKuxa.

Roberto Molinaro, Samuel Lanthaler, Bogdan Raonic, Tobias Rohner, Victor Armegioiu, Zhong Yi
Wan, Fei Sha, Siddhartha Mishra, and Leonardo Zepeda-Nufiez. Generative Al for fast and accurate
statistical computation of fluids. CoRR, abs/2409.18359, 2024. doi: 10.48550/ARXIV.2409.18359.
URLhttps://doi.org/10.48550/arXiv.2409.18359,

Paul D Morris, Andrew Narracott, Hendrik von Tengg-Kobligk, Daniel Alejandro Silva Soto, Sarah
Hsiao, Angela Lungu, Paul Evans, Neil W Bressloff, Patricia V Lawford, D Rodney Hose, et al.
Computational fluid dynamics modelling in cardiovascular medicine. Heart, 102(1):18-28, 2016.

Ruben Ohana, Michael McCabe, Lucas Thibaut Meyer, Rudy Morel, Fruzsina Julia Agocs, Miguel
Beneitez, Marsha Berger, Blakesley Burkhart, Stuart B. Dalziel, Drummond Buschman Fielding,
Daniel Fortunato, Jared A. Goldberg, Keiya Hirashima, Yan-Fei Jiang, Rich Kerswell, Surya-
narayana Maddu, Jonah M. Miller, Payel Mukhopadhyay, Stefan S. Nixon, Jeff Shen, Romain
Watteaux, Bruno Régaldo-Saint Blancard, Frangois Rozet, Liam Holden Parker, Miles Cranmer,
and Shirley Ho. The well: a large-scale collection of diverse physics simulations for machine
learning. In Advances in Neural Information Processing Systems 37 (Datasets and Benchmarks
Track),2024. URL https://openreview.net/forum?id=00Sx577BT3.

John E. Pearson. Complex patterns in a simple system. Science, 261(5118):189-192, 1993. doi:
10.1126/science.261.5118.189. URL https://www.science.org/doi/abs/10.1126/
science.261.5118.189.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4172-4182, 2023. doi: 10.1109/
ICCV51070.2023.00387.

Wenhui Peng, Zelong Yuan, Zhijie Li, and Jianchun Wang. Linear attention coupled fourier neural
operator for simulation of three-dimensional turbulence. Physics of Fluids, 35(1), 2023.

Eric A. Perlman, Randal C. Burns, Yi Li, and Charles Meneveau. Data exploration of turbulence
simulations using a database cluster. In Proceedings of the ACM/IEEE Conference on High
Performance Networking and Computing, SC 2007, pp. 23, 2007. doi: 10.1145/1362622.1362654.
URLhttps://doi.org/10.1145/1362622.1362654.

Raphaél Pestourie, Youssef Mroueh, Chris Rackauckas, Payel Das, and Steven G Johnson. Physics-
enhanced deep surrogates for partial differential equations. Nature Machine Intelligence, 5(12):
1458-1465, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686-707, 2019.

12

https://doi.org/10.2514/1.J063440
https://openreview.net/forum?id=XVjTT1nw5z
https://openreview.net/forum?id=M12lmQKuxa
https://openreview.net/forum?id=M12lmQKuxa
https://doi.org/10.48550/arXiv.2409.18359
https://openreview.net/forum?id=00Sx577BT3
https://www.science.org/doi/abs/10.1126/science.261.5118.189
https://www.science.org/doi/abs/10.1126/science.261.5118.189
https://doi.org/10.1145/1362622.1362654

Under review as a conference paper at ICLR 2026

Marcos Rodrigo, Carlos Cuevas, and Narciso Garcia. Comprehensive comparison between vision
transformers and convolutional neural networks for face recognition tasks. Scientific reports, 14
(1):21392, 2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention—-MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part II1
18, pp. 234-241. Springer, 2015.

Youssef Shehata, Benjamin Holzschuh, and Nils Thuerey. Improved sampling of diffusion models in
fluid dynamics with tweedie’s formula. In The Thirteenth International Conference on Learning
Representations, 2025.

Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-fidelity
flow field reconstruction. Journal of Computational Physics, 478:111972, 2023.

Justin Sirignano and Jonathan F. MacArt. Deep learning closure models for large-eddy simulation of
flows around bluff bodies. Journal of Fluid Mechanics, 966, jul 2023. doi: 10.1017/jfm.2023.446.
URLhttps://doi.org/10.1017%2F jfm.2023.446.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael
Mahoney, and Amir Gholami. Towards foundation models for scientific machine learning: Charac-
terizing scaling and transfer behavior, 2023.

Kiwon Um, Robert Brand, Yun, Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop: Learning
from differentiable physics to interact with iterative pde-solvers, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024.

Heng Xiao and Paola Cinnella. Quantification of model uncertainty in rans simulations: A review.
Progress in Aerospace Sciences, 108:1-31, 2019.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning for differential
equation problems. arXiv preprint arXiv:2304.07993, 2023.

13

https://doi.org/10.1017%2Fjfm.2023.446

Under review as a conference paper at ICLR 2026

A TRAINING METHODOLOGY AND NETWORK ARCHITECTURES

A.1 SUPERVISED TRAINING

For tasks that have a deterministic solution, such as training a surrogate model for a numerical solver,
the P3D can be trained in a supervised manner using mean squared error (MSE) loss, enabling fast,
single-step inference. In this case the network is directly optimized with the MSE

ES =E [HM@(uinvC) - uoutH%] . (3)

A.2 PROBABILISTIC TRAINING

To allow for sampling from the full posterior distribution rather than approximating an averaged
outcome, diffusion training is preferable for probabilistic solutions. For such cases, we employ the
flow matching formulation of diffusion models (Lipman et al., [2023}; |Liu et al., |2023; [Ho et al.,
2020). Given the input u;, and a conditioning vector ¢, samples X drawn from a noise distribution
po = N(0, I) are transformed into samples x; from the posterior distribution p; by solving an
ordinary differential equation (ODE) of the form dx; = v(x¢,t);dt. Then the model Mg learns
the velocity field v by regressing a vector field that defines a probabilistic trajectory from pg to p;.
Samples along this trajectory are produced through the forward process

Xt = t Uout + [1 — (]. — O'mjn)t} € (4)

fort € [0, 1] with e ~ N(0, I') and a time threshold of ¢y,;, = 10~%. The velocity v can be regressed
by training via
EFM =K [||M®(uin;Xt>C7 t) — Uout + (1 - O-min)eHg} - (5)

After training, samples can be drawn from the posterior conditioned on u;, and c, by sampling
xg ~ N(0,7) and integrating the corresponding ODE dx; = M (uy,, Xy, ¢, t) dt over the time
interval ¢ = 0 to t = 1. We typically employ explicit Euler steps with a suitable, chosen step size At.

A.3 NORMALIZED RMSE

The normalized RMSE (nRMSE) is defined as

MSE uouta uout)
MSE = _
nRMS M Z\/ MSE(0, uout) ©)

where U,y is the network prediction and M corresponds to the number of trajectories for a specific
PDE in the test dataset. In our evaluation, we calculate the nRMSE for each PDE dataset and report
the nRMSE averaged over all PDE datasets.

We can also define the nRMSE for autoregresswe rollouts over the entire simulation trajectory. We
define the nRMSEt at time ¢ by comparing the predicted state @i for a given system S at time ¢ with
the reference ut We average over all systems S for each PDE dataset.

A.4 P3D ARCHITECTURE

We provide additional details on the backbone architecture of P3D below.

Embedding of time, class labels and physical parameters We combine all three types of con-
ditionings within a combined embedding layer. Time for flow matching/diffusion and physical
parameters are implemented via timestep embeddings. Class labels are implemented via label em-
beddings. The embedding vectors of all three types are added and used as the joint embedding. The
embedding dimension for each in the convolutional encoder/decoder is 64. In our experiments, class
labels are used in Section[4.1] Physical parameters and timestep embeddings are used in Section .3]

14

Under review as a conference paper at ICLR 2026

Convolutional encoder The convolution encoder first embeds the input using a Conv3D layer
(kernel size 3, padding 1) with filters that correspond to the embedding dimensions of the configuration.
This is followed by downsampling layers implemented via Conv3D layers (kernel size 3, padding 1,
stride 2). Intermediate states before each downsampling operations are saved for residual connections.
Encoder blocks and consecutive downsampling are applied twice. For each layer, the corresponding
number of filters is shown in Table [AT] Encoder blocks are repeated twice. Each encoder block
consists of GroupNormalization layers, followed by GELU activations, Conv3D layer (kernel size
3, padding 1), GroupNormalization, modulation via shift and scale operations depending on the
conditioning, GELU and an additional Conv3D layer (kernel size 3, padding 1). The input and output
of each encoder block are connected via skip connections. The shift and scale vectors are learned via
linear layers from the embedding vectors of the convolutional encoder/decoder.

Convolutional decoder The design of the convolutional decoder mirrors the convolutional encoder
in a U-shape architecture with residual connections. Upsampling layers are implemented via a
combination of Conv3D layers to increase the number of filters and PixelShuffle3D layers. For an
input number of channels Cj, and a target number of channels in the upsampled output Cy, the
Conv3D operation first expands the number of channels Ci, X H X W x D — 8 Coyt X H x W x D
and PixelShuffle3D spatially rearranges the pixels 8 Couy X H X W X D — Coyy X 2H x 2W x 2D.

A.5 CONTEXT MODEL

The context module is a transformer-based architecture for processing 3D volumetric data in a
sequence-like fashion. The model’s design and operation can be broken down into the following key
components:

Latent tokens The model accepts a 5D tensor of shape (B, C, H, W, D) with batch size B, token
embedding dimension C', height H, width 1/, and depth D, corresponding to the token representations
of the transformer encoder block arranged on a 3D spatial grid according to their positions. This
input is first reshaped into a 2D sequence of tokens with shape (N, (H x W x D), C) by flattening
the spatial dimensions (H, W, D) into a single sequence length. This token sequence is then passed
through an input projection layer to map it to the model’s internal hidden size do = 512. The new
tokens are called latent tokens.

Region tokens The model utilizes learnable region tokens, which are a set of nn.Parameter
tensors. The number of tokens is defined by the number of regions. The region tokens are initialized
from a normal distribution with a standard deviation of 10~°. Regions tokens are appended to the
input sequence and are used to obtain embeddings for each region, which are injected into the adaptive
instance normalization layers of the decoder modules.

Positional encoding Positional information is incorporated using 3D sine-cosine positional em-
beddings. The embeddings are added to the input token sequence after the initial projection and
concatenation with region tokens. The positional embedding for a given position (w, h, d) and
dimension 7 is calculated by concatenating three separate 1D sine-cosine embeddings for each spatial
axis. The 1D positional embedding at position p and dimension ¢ are calculated via:

N p

PE(p, 2'1,) = Sin (m) (7)
o p

PE(p,2i+ 1) = cos (7T2i/dp) ,)

where dp = d¢ /3 is the embedding dimension per axis, and 7' = 10 is a temperature hyperparameter.
Both latent tokens and regions tokens have their own positional encoding.

Core architectural blocks The sequence of tokens is processed by a stack of ny, = 6 LLMLayer
blocks. Each block consists of:

* LlamaRMSNorm: A root mean square normalization layer that normalizes the input to

a unit RMS, followed by a learned scaling factor. It is a more computationally efficient
alternative to traditional layer normalization.

15

Under review as a conference paper at ICLR 2026

* LLMAttention: A multi-head self-attention module that computes attention weights to
model relationships between tokens in the input sequence. This block receives the input
query tokens and calculates query, key, and value vectors. We use hyper attention , this is a
specialized attention variant designed for efficient long-sequence processing.

* LlamaMLP: A gated multi-layer perceptron with a GELU activation function.

Output The processed latent tokens are projected back to the original token size C' via a linear layer
and reshaped to match the input of the context network. The resulting tensor is added to the input of
the transformer decoder, forming a skip connection. For each adaptive instance normalization module
in the decoder, the regions tokens are embedded via a unique linear layer. The region embeddings
are added to the input of the adaptive instance normalization layer of their corresponding region,
resulting in a different modulation for each region.

Table A1: Different configurations S, B and L of P3D. Table shows the total number of weights, the
number of filters within the convolutional encoder/decoder and the number of groups for GroupNor-
malization layers.

Configuration Number of parameters Embedding dimensions ~ Number of groups

S 11.2M [32, 32, 64] 16
B 46.2M [64, 128, 128] 32
L 181M [128, 256, 256] 32

A.6 BASELINE ARCHITECTURES

Performance comparison of baseline architectures Below, we summarize the numbers of the
different architectures used in the experiments for an input of size 128> with a single channel, see
Table

Table A2: Performance comparison of architectures.

Model Params GFLOPS Memory Throughput
Swin3D 50.3M 144.8 2.9GB 9.86it/s
FactFormer 5.0M - 20.4GB 0.82it/s
UNetgencFD 100.0M 5519.8 4.8GB 2.03it/s
UNetconyNext 9.2M 167.8 2.4GB 11.9it/s
TFNO 75.6M 69.7 5.1GB 4.7it/s
AViIT 60.0M 71.5 0.3GB 188.3it/s
AFNO 64.1M 1058.2 0.4GB 31.7it/s
P3D-S 11.2M 108.5 0.9GB 35.2it/s
P3D-B 46.1M 1165.3 2.1GB 10.0it/s
P3D-L 181.2M 4638.1 4.6GB 3.7it/s

Regarding the number of parameters, GFLOPs, memory and throughput, the three configurations S,
B and L of P3D are well positioned compared to the baselines we chose. Timings were obtained on
a RTX A5000 GPU with batch size 1. Importantly, across all tasks, P3D outperforms the baselines in
terms of accuracy. We fixed the training setup for all architectures, using learning rate/optimizer/batch
size that are common for training large transformer and UNet models (Esser et al., 2024)). Due to the
number and size of the different models, we do not perform any hyperparameter tuning for individual
models.

Swin3D Our implementation of extends the SwinV2 (Liu et al., 2021) transformer in 3D. The
code is based Swinv2PreTrainedModel in the Python t ransformers package, with pixel
shuffling in 3D for upsampling. For the B (default) configuration of Swin3D, we use a token
embedding dimension of 96 with patch size p = 2, four stages with two layers each, window size
w = 4 and 12 attention heads for each stage.

16

Under review as a conference paper at ICLR 2026

FactFormer We use the official code repository of FactFormer https://github.com/
BaratilLab/FactFormer. We adapt the FactFormer3D module used for the 3D Navier-
Stokes experiment (L1 et al.,[2023b). Hyperparameters are taken from the configuration file in the
repository: dim=128, depth=4, dim_head=64, heads=6.

UNetcencrp We use the official code repository for UNetgencrp https://github.com/
camlab-ethz/GenCFD. We remove any modifications of the core UNet structure spe-
cific to the diffusion training setup in Molinaro et al. (2024). Hyperparameters are taken
from the repository: num_channels=[128,256,256], downsample_ratio=[2,2,2],
num_blocks=4, padding_method=’circular’, use_position_encoding=True
and num_heads=8.

UNetconvnext We use the implementation of UNetconynext With ConvNeXt blocks provided
by the GitHub repository https://github.com/PolymathicAI/the_well. This ar-
chitecture was used as a benchmark in |(Ohana et al.| (2024). Hyperparameters are kept the
same: spatial_resolution=[128,128,128], stages=4, blocks_per_stage=1,
blocks_per_neck=1l,init_features=32.

TFNO We use the implementation of TFNO (Kossaifi et al., [2023) from the Python
neuralop package https://github.com/neuraloperator/neuraloperator. Hy-
perparameters are: spatial_resolution=[128,128,128],modes_1=16,modes_2=16,
modes_3=16,hidden_channels=64.

AViT We use the implementation of axial vision transformers (Ho et al) [2019) provided by
the GitHub repository https://github.com/PolymathicAI/the_well. This architec-
ture was used as a benchmark in (Ohana et al. (2024). Hyperparameters for the B configu-
ration are kept the same: spatial_resolution=[128,128,128], hidden_dim=768,
num_heads=12, processor_pblocks=8.

AFNO We use the implementation of AFNO (Guibas et al.l [2021)) provided by the GitHub
repository https://github.com/PolymathicAI/the_well. This architecture was used
as a benchmark in Ohana et al.| (2024). Hyperparameters for the B configuration are kept
the same: spatial_resolution=[128,128,128],hidden_dim=768, n_blocks=12,
cmlp_diagonal_blocks=8 and patch_size=8.

17

https://github.com/BaratiLab/FactFormer
https://github.com/BaratiLab/FactFormer
https://github.com/camlab-ethz/GenCFD
https://github.com/camlab-ethz/GenCFD
https://github.com/PolymathicAI/the_well
https://github.com/neuraloperator/neuraloperator
https://github.com/PolymathicAI/the_well
https://github.com/PolymathicAI/the_well

Under review as a conference paper at ICLR 2026

B EXPERIMENT 1: JOINTLY LEARNING PDES

The datasets used in this experiment were carefully selected for a diverse list of partial differential
equations (PDEs) with a focus on high spatial resolution. This is combined with variations of the
physical parameters of the PDEs and different initial conditions, creating diverse dynamics across the
different simulations for each type of PDE.

The dataset encompasses linear, reaction-diffusion, and nonlinear PDEs. We utilized the
Exponax solver, as detailed by Koehler et al. (2024) in the APEBench benchmark. The solver
utilizes Exponential Time Differencing Runge-Kutta (ETDRK) methods. We intentionally opted
not to use the APEBench dataset directly from the original authors. This decision was driven by
our goal to create datasets with enhanced resolution and greater diversity in the underlying physical
behaviors, rather than relying solely on variations in initial conditions as done in APEBench. It is a
characteristic of the ETDRK methods that they operate within the Fourier domain. Consequently,
their application is limited to scenarios with periodic domains and cannot accommodate complex
boundary conditions.

Table B1: Summary of datasets produced for the joint PDE learning task, covering linear, reaction-
diffusion, and nonlinear PDEs. The table details the dimensions of each dataset: number of simula-
tions (s), time steps (t), fields/channels (f), and spatial dimensions (X, y, z). Beyond the explicitly
varied quantities listed for each dataset, the initial conditions for every simulation (s) are also distinct.

Dataset \ S t f X y z Varied Quantities across s Test Set

hyp | 60 30 1 384 384 384 hyper-diffusivity s € [50,60]
fisher 60 30 1 384 384 384 diffusivity, reactivity s € [50,60]

sh 60 30 1 384 384 384 reactivity, critical number s € [50,60]
gs—alpha 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs-beta 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs—gamma 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs-delta 10 30 2 320 320 320 initial conditions only s €[8,10]
gs-epsilon | 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs—theta 10 30 2 320 320 320 initial conditions only s €[8,10]
gs-iota 10 30 2 320 320 320 initial conditions only s €[8,10]
gs—kappa 10 30 2 320 320 320 initial conditions only s € [8,10]
burgers 60 30 2 384 384 384 viscosity s € [50,60]
kdv 60 30 2 384 384 384 domain extent, viscosity s € [50,60]

ks 60 30 1 384 384 384 domain extent separate: s=5, t=200

B.1 DATA GENERATION SETUP

A key aspect of the simulations, in addition to parameter variation, is the use of randomized initial
conditions. The standard approach for constructing these conditions involves randomly selecting one
of three initialization methods, each providing a unique spectral energy distribution. The first method,
a random truncated Fourier series initializer, involves summing multiple Fourier series up to a cutoff
frequency, chosen as a uniformly random integer between 2 and 10 (exclusive of 11). The second,
the Gaussian random field initializer, produces a power-law spectrum in Fourier space, where energy
diminishes polynomially with the wavenumber; its exponent is uniformly randomly selected from
[2.3,3.6[. The third method, the diffused noise initializer, generates a tensor of values from normally
distributed white noise, subsequently diffusing it. This results in a spectrum that decays exponentially
quadratically, with an intensity rate uniformly random from [0.00005,0.01[. After generation, all
initializers ensure the initial conditions’ values are normalized to a maximum absolute value of one.
For vector quantities, the randomly chosen initializer is applied independently to each component.

B.2 PDE TYPES

We make use of Exponential Time Differencing Runge-Kutta (ETDRK) methods to efficiently
simulate different PDEs via Exponax. While the chosen linear PDEs are simple and analytically

18

Under review as a conference paper at ICLR 2026

solvable, the underlying dynamics are essential for more complicated PDEs. These linear PDEs can
be understood as representing a scalar attribute, such as density. Unless stated otherwise, sampling
from intervals is consistently performed using a uniform random distribution. In the following, we
describe a range of different three-dimensional PDE problems that are employed in our experiments
ranging from linear, over reaction-diffusion, to non-linear PDEs. The class of non-linear PDEs is
particularly challenging, as these cases more closely resemble real-world problems.

Hyper-Diffusion (hyp) behaves similarly to diffusion, where density dissipates inside a periodic
domain due to the effects of hyper-diffusion. Unlike diffusion, hyper-diffusion does not treat all
wavelengths equally, analogous to the relation between dispersion and advection. Higher frequency
components are damped even more aggressively compared to normal diffusion, leading to visually
stronger blur effect of the density field over time.

* Dimensionality: s = 60,t =30, f = 1,2 =384,y = 384, 2 = 384

¢ Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
* Boundary Conditions: periodic

* Time Step of Stored Data: 0.01

* Spatial Domain Size of Simulation: [0, 1] x [0, 1]

* Fields: density

* Varied Parameters: hyper-diffusivity € [0.00005,0.0005]

* Validation Set: random 15% split of all sequences from s € [0, 50]

* Test Set: all sequences from s € [50, 60[

hyp - Simulation 21

>

N}

=

|
=)

.2

|
o

4

Figure B1: Random example simulation from hyp.

Under review as a conference paper at ICLR 2026

1026 Fisher-KPP (fisher) is a foundational reaction-diffusion PDE. These systems are used to model
1027 biological or geological processes, often resulting in pattern formation. This equation details how the
1028 concentration of a substance varies over time and space, influenced by a reaction process governed by
1029 areactivity parameter, and its dispersal through diffusion, which is defined by a diffusivity parameter.
1030 Its applications extend to various domains, including wave propagation, population dynamics, ecology,
1031 and plasma physics. Figure[B2]shows example visualizations from fisher.

1032

1033 * Dimensionality: s = 60,t =30, f =1,z = 384, y = 384, z = 384

1034 * Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise (with
1035 clamping to [0, 1])

1036 * Boundary Conditions: periodic

1037 * Time Step of Stored Data: 0.005

1038 * Spatial Domain Size of Simulation: [0, 1] x [0, 1]

1039 * Fields: concentration

1040 ¢ Varied Parameters: diffusivity € [0.0001, 0.02[and reactivity € [5, 15]

1041 .

Validation Set: random 15% split of all sequences from s € [0, 50[

oAz o Test Set: all sequences from s € [50, 60]

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

fisher - Simulation 21

0.8

0.6

0.4

Figure B2: Random example simulation from fisher.

Under review as a conference paper at ICLR 2026

Swift-Hohenberg (sh) is known for depicting various pattern formation processes. This equation
can be applied to illustrate the structure of wrinkles in curved elastic bilayer materials. A prime
example is the formation of human fingerprints, where tensions between skin layers generate their
unique wrinkling. Figure [B3]shows example visualizations from sh.

z-slice y-slice x-slice z-mean y-mean X-mean

vape

Dimensionality: s = 60,t =30, f =1,z = 384, y = 384, z = 384

Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
Boundary Conditions: periodic

Time Step of Stored Data: 0.5 (with 5 substeps for the simulation)

Spatial Domain Size of Simulation: [0, 207] x [0, 207]

Fields: concentration

Varied Parameters: reactivity € [0.4, 1[and critical number € [0.8,1.2]

Validation Set: random 15% split of all sequences from s € [0, 50]

Test Set: all sequences from s € [50, 60]

sh - Simulation 40

o

1.

>

1.

N}

1.0

0.8

0.6

0.4

0.2

0.0

Figure B3: Random example simulation from sh.

Under review as a conference paper at ICLR 2026

Gray-Scott (gs) illustrates the dynamic interplay of two reacting and diffusing chemical
substances. Substance s, with concentration ¢, is depleted through reaction but resupplied based
on a defined feed rate. Meanwhile, substance s;, the reaction’s product with concentration ¢, is
eliminated from the domain at a given kill rate. The balance between these two rates profoundly
influences the simulation outcomes, leading to diverse stable or evolving patterns. We simulate
several cases: four with temporally steady configurations, which result in a state that does not
substantially change anymore (gs—-delta, gs—theta, gs—iota, and gs—-kappa), and four
temporally unsteady configurations, which continuously evolve over time (gs—alpha, gs-beta,
gs—gamma, and gs—epsilon). For the unsteady case, separate test sets with longer temporal
rollouts are created. Figure [B4]shows example visualizations from the steady configurations, and
Figure B3| from the unsteady configurations and corresponding test sets. For further details, see
(Pearsonl, [1993)).

For all simulations, the diffusivity of the substances is fixed to d, = 0.00002 and d; = 0.00001. In
addition to that, datasets are initialized with a Gaussian blob initializer. The initializer creates four
Gaussian blobs at random positions and variances in the center 60% (20% for gs—-kappa) of the
domain, where the initialization of c, is the complement of ¢, i.e. ¢, = 1 — ¢p.

Steady Configurations (gs—delta, gs—theta, gs—iota, and gs—kappa):
e Dimensionality: s = 10, ¢t = 30, f = 2, z = 320, y = 320, z = 320 (per configuration)

¢ Initial Conditions: random Gaussian blobs

* Boundary Conditions: periodic

» Time Step of Simulation: 1.0 (all configurations)
* Time Step of Stored Data:

gs—delta: 130.0

— gs—theta: 200.0

gs—iota: 240.0

gs—kappa: 300.0

* Number of Warmup Steps (discarded, in time step of data storage):
- gs—-delta: 0
- gs-theta: 0
- gs—iota: 0
- gs—kappa: 15
* Spatial Domain Size of Simulation: [0, 2.5] x [0, 2.5]
 Fields: concentration c,, concentration ¢
* Varied Parameters: feed rate and kill rate determined by configuration (i.e., initial conditions
only within configuration)
gs—delta: feed rate: 0.028, kill rate: 0.056
— gs—theta: feed rate: 0.040, kill rate: 0.060
— gs—iota: feed rate: 0.050, kill rate: 0.0605
— gs—kappa: feed rate: 0.052, kill rate: 0.063
* Validation Set: random 15% split of all sequences from s € [0, 8]
* Test Set: all sequences from s € [8,10]

Unsteady Configurations (gs—alpha, gs—-beta, gs—gamma, and gs—epsilon):
* Dimensionality: s = 10, ¢t = 30, f = 2, z = 320, y = 320, z = 320 (per configuration)

¢ Initial Conditions: random Gaussian blobs

* Boundary Conditions: periodic

* Time Step of Simulation: 1.0 (all configurations)
* Time Step of Stored Data:

- gs—alpha: 30.0
— gs—-beta: 30.0
- gs—gamma: 75.0

22

Under review as a conference paper at ICLR 2026

— gs—epsilon: 15.0
* Number of Warmup Steps (discarded, in time step of data storage):
— gs—alpha: 75
— gs—beta: 50
— gs—gamma: 70
— gs—epsilon: 300
* Spatial Domain Size of Simulation: [0, 2.5] x [0, 2.5]
¢ Fields: concentration c,, concentration ¢

* Varied Parameters: feed rate and kill rate determined by configuration (i.e., initial conditions
only within configuration)

— gs—alpha: feed rate: 0.008, kill rate: 0.046
— gs—beta: feed rate: 0.020, kill rate: 0.046
— gs—gamma: feed rate: 0.024, kill rate: 0.056
— gs—epsilon: feed rate: 0.020, kill rate: 0.056
* Validation Set: random 15% split of all sequences from s € [0, 10]

 Test Set: separate simulations with s = 30, t = 100, f = 2, z = 320, y = 320, z = 320
(per configuration)

23

Under review as a conference paper at ICLR 2026

1242
1243
1244
1245

1 246 gs_delta - Simulation 0
1247 Sl 1
PR NN Y T
1249 i ik
1250

Y

1.0

x-mean

°
®

ymw
(o]

o

3

1251
1252
1253

w @ @

1254

R O Y
€y
O

z-mean

x-slice

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266 >
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289 T T £
1290

1291
1000 Figure B4: Random example simulations from steady configurations of the Gray-Scott model of a

1293 reaction-diffusion system: gs—-delta, gs—theta.

y-slice

vape-c0
%

o
@

vape-cl
L)
[J

. . | |

_ b |
Xy

o
. ¢ o]0 |8

0.0

I
=}
w

-6 t=9 t=12

1.0

x-mean

y-mean

z-mean

x-slice

y-slice

z-slice

vape-cO
®

vape-cl
[]

0.0

Il
N
s}

1294
1295

24

Under review as a conference paper at ICLR 2026

1296

1297

1298

1299

1300 gs_alpha - Simulation 8
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

1345
1345 Figure B5: Random example simulations from unsteady configurations of the Gray-Scott model of a

1947 reaction-diffusion system: gs—alpha, gs—beta.

0.0

0.0

1348
1349

Under review as a conference paper at ICLR 2026

Burgers (burgers) bears resemblance to an advection-diffusion problem. Instead of modeling
the transport of a scalar density, this equation describes how a flow field itself evolves due to the
combined effects of advection and diffusion. This process can result in the formation of abrupt
discontinuities, often referred to as shock waves, which present a significant challenge for accurate
simulation. Burgers’ equation also finds utility in fields such as nonlinear acoustics and the modeling
of traffic flow. Figure B shows example visualizations from burgers.

* Dimensionality: s = 60,¢t =30, f =2,z = 384,y = 384, z = 384

* Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
* Boundary Conditions: periodic

* Time Step of Stored Data: 0.01 (with 50 substeps for the simulation)

* Spatial Domain Size of Simulation: [0, 1] x [0, 1]

* Fields: velocity (x,y)

* Varied Parameters: viscosity € [0.001, 0.005]

* Validation Set: random 15% split of all sequences from s € [0, 50]

* Test Set: all sequences from s € [50, 60[

burgers - Simulation 24

c
©
o
ES
=
©
o
N 0.

x-mean

=

N

x-slice

y-slice

0.0

z-slice

vape-c0

vape-cl

vape-c2

Figure B6: Random example simulation from burgers.

Under review as a conference paper at ICLR 2026

Korteweg-de-Vries (kdv) presents simulations of the Korteweg-de-Vries equation within a pe-
riodic domain. This equation models dispersive, non-dissipative wave propagation and is a classic
example of an integrable PDE. It poses a challenge because energy is transferred to high spatial
frequencies, resulting in distinct, moving soliton waves that maintain their shape and propagation
speed. Throughout these simulations, the convection coefficient remains constant at —6, and the
dispersivity coefficient is consistently 1. Figure [B7)shows example visualizations from kdv.

* Dimensionality: s = 60,¢t =30, f =2,z = 384,y = 384, z = 384

¢ Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
* Boundary Conditions: periodic

* Time Step of Stored Data: 0.05 (with 10 substeps for the simulation)

* Spatial Domain Size of Simulation: varied per simulation

* Fields: velocity (x,y)

* Varied Parameters: domain extent € [30, 120[identically for , y, 2, i.e. a square domain,
and viscosity € [0.1,0.25[

* Validation Set: random 15% split of all sequences from s € [0, 50]
* Test Set: all sequences from s € [50, 60]

kdv - Simulation 12

x-mean

0.0

z-mean y-mean
IS

N

x-slice

z-slice

-0.2

vape-cO

vape-cl

-0.4

vape-c2

Figure B7: Random example simulation from kdv.

27

Under review as a conference paper at ICLR 2026

Kuramoto-Sivashinsky (ks) models thermo-diffusive flame instabilities in combustion and also
finds use in reaction-diffusion systems on a periodic domain. It’s notable for its chaotic behavior,
where even slightly different initial conditions can lead to wildly divergent temporal trajectories over
time. The initial transient phase of the simulations is not included in the dataset. Figure [B§|shows
example visualizations from ks.

* Dimensionality: s = 60,t =30, f =1,z =384,y = 384, 2 = 384

* Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise

* Boundary Conditions: periodic

» Time Step of Stored Data: 0.2 (with 2 substeps for the simulation)

* Number of Warmup Steps (discarded, in time step of data storage): 200

* Spatial Domain Size of Simulation: varied per simulation

* Fields: density

* Varied Parameters: domain extent € [10, 130[identically for , y, i.e. a square domain

* Validation Set: random 15% split of all sequences from s € [0, 600]

o Test Set: separate simulations with s = 50, ¢t = 200, f =1, x = 384, y = 384, z = 384

ks - Simulation 21

o

o

=
o

«

o

|
o

|
-

0

bS]
080000000

Figure B8: Random example simulation from ks.

|
-

28

Under review as a conference paper at ICLR 2026

t=0 t=2 t=4 t=6 t=8

t=4 t=6 t=8

t=0 t=2

Figure B9: hyp. Reference (left) and autoregressive prediction for ¢ = 8 steps with P3D-L <1281384>
(right) on the test set at resolution 3843.

B.3 VISUALIZATIONS OF PREDICTIONS

Below, we visualize several example predictions from the P3D-L network trained on crop size 128>
on the test datasets. See Figures[B9|to[BI7] During inference, we apply the network to larger crops of
domain size 3202 for the Gray-Scott PDEs and 3842 for all other PDEs. The resolution is significantly
higher than what the network was originally trained on. In addition, since the full domain is periodic,
we change the padding mode of convolutional layers within the convolutional encoder and decoder
from "zeros" to "circular". We consider autoregressive rollouts of up to ¢ = § steps.

29

Under review as a conference paper at ICLR 2026

--.-- 1vo ---.- 1'0
0.8 0.8
0.6 0.6

--.. 0.4 ---.- 0-4

0.2 0.2
t=0 t=2 t=4 t=6 t=8 0.0 t=0 t=2 t=4 t=6 t=8 00

Figure B10: fisher. Reference (left) and autoregressive prediction for ¢ = 8 steps with P3D-L

<128I384> (right) on the test set at resolution 3843.
ll. |
- < 0.5

1.0
2- . - 0.5
.--. . :

.. ; S 5
.’ ™
E » - » 0.0
. . WA N M
I-- B e .--" h --- ; -
. - -
‘ . -1.0
t=0 t=2 t=4 t=6 t=8

z-slice y-slice x-slice z-mean y-mean X-mean

vape

WWWW

Figure B11: sh. Reference (left) and autoregressive prediction for ¢ = 8 steps with P3D-L <128|384>
(right) on the test set at resolution 3843.

30

Under review as a conference paper at ICLR 2026

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641 | e
1642 3
1643 -

1644
1645 Figure B12: gs—-alpha. Reference (left) and autoregressive prediction for ¢ = 8 steps with P3D-L
1645 <128I1320> (right) on the test set at resolution 3203,

1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670

0.0

1671 t=0 t=2 t=4 t=6 t=8 t=0 t=2 t=4 t=6 t=8

1672 Figure B13: gs—epsilon. Reference (left) and autoregressive prediction for ¢ = 8 steps with
1675 P3D-L <128I320> (right) on the test set at resolution 3203,

1.0 1.0

X-mean

o
@
y-mean
o
@

z-mean

0.6

0.4

z-slice

0.2

vape-c0

vape-cl
I
‘Iggq
g

0.0

0 t=2 t=4 t=6 t=0 t=2 t=4 00

1.0

0.0

31

Under review as a conference paper at ICLR 2026

1.0 1.0

-
«>»
Y

>

x-mean
-
«»
«
Xx-mean
f

ymean
-
“
\
W
-
ymean
-
-
\
7
2

.
(&)
Q
Q
A
a
(@)
@

°
o
o
@
®)
e
@)
9
@)
°
°
o
L
o)
Q
o
e
O)

°
[+
.
(o)
[)
(o)
L)
O
°
o
‘e
(o}
[+]
()
)
(@)

z-slice
-
o

z-slice
-
o

vape-c0

| | 8| $® Ol | | |) &R

vape-c0

o8| o8| 8| S° | B I . A

t=0 t=1 t=2 t=3 t=4 t=0 t=1 t=2 t=3 t=4

vape-cl
vape-cl

Figure B14: gs—delta. Reference (left) and autoregressive prediction for ¢ = 8 steps with P3D-L
<1281320> (right) on the test set at resolution 3203.

x-mean
x-mean

0.4 0.4
- -
g H
§ g
£ 13
I 3
c -
g g
g g
& 13
9 02 % 02
" o
2 8
w° w
i p
g o
= =
7 00 = 0.0
S S
g o
L2 L2
w w
3 i
E . -02g -0.2
¢ &
g g
g g
g g
: ‘ i
P ¢
g &
g &
g g
g g
-04 ~0.4
o ‘ o
N N
g &
g8 ! g
g 2
g g

]
o

t=2

Figure B15: burgers. Reference (left) and autoregressive prediction for ¢ = 8 steps with P3D-L
<128I384> (right) on the test set at resolution 3843.

32

Under review as a conference paper at ICLR 2026

0.4

ESENENENEN
SRR
Gl
S
LUV
R
Seeses
LU L L L
LI L

ueaw-x ueaw-A

0.4

ueaw-x ueaw-A

0.2

uesw-z

0.2

uesw-z

0.0

0I|S-X ERITEVA

.0

=)

ERIER l|s-A

-0.4

?2I|5-2 02-2den
N
o
1

12-adea

Z2-aden

-0.4

Se8es
LU L L L
L L L

2l|5-Z 02-adea

12-aden

Z2-aden

8 steps with P3D-L

Figure B16: kdv. Reference (left) and autoregressive prediction for ¢

<128I384> (right) on the test set at resolution 3843.

o
secee

Figure B17: ks. Reference (left) and autoregressive prediction for ¢ = 8 steps with P3D-L <1281384>

(right) on the test set at resolution 3843.

ueaw-x ueaw-A uesaw-z 0I|5-X Is-A

2I5-2 aden

33

Under review as a conference paper at ICLR 2026

Table B2: Normalized RMSE (x10~3) for crop size 128.

Model Name Fisher GSa GSj3 GS6 GSe GSy GS: GSk GS# Hyp KDV KS SH Burgers Average
P3D-S 8.3 15.7 293 141 134 474 129 16.0 6.3 73.4 92.0 189 914 27.2 33.3
P3D-B 7.1 9.0 14.9 8.1 7.7 19.9 9.1 10.6 4.7 753 753 19.0 75.6 16.8 25.2
P3D-L 6.9 5.7 8.9 5.7 5.4 16.0 6.0 7.1 2.3 69.1 65.8 184 62.7 11.1 20.8
AFNO 13.0 20.7 304 188 233 433 171 200 6.1 146.5 815 324 1835 34.6 47.9
AVIT 1246 497 608 51.7 62.7 101.0 47.6 48.1 56.7 619.2 191.2 65.1 470.7 177.0 151.9
Swin3D 11.7 243 307 220 23.0 50.0 228 175 5.2 153.6 90.1 27.0 190.8 36.7 50.4
UNetgencrp 17.3 35.8 19.5 6.4 249 507 6.4 6.4 6.4 2142 107.7 432 573.1 45.8 82.7
Table B3: Normalized RMSE (x10~3) for crop size 64.
Model Name ~ Fisher GSa GSfS GSd GSe¢ GSy GS: GSk GS6¢ Hyp KDV KS SH Burgers Average
P3D-S 10.4 21.0 254 5.2 18.1 43.3 4.6 4.6 4.6 92.2 100.4 50.5 111.8 34.4 37.6
P3D-B 8.3 11.7 10.9 4.2 10.1 26.1 3.8 3.8 3.8 83.6 92.2 421 98.7 26.2 30.4
P3D-L 6.8 73 10.1 7.1 6.6 17.5 8.8 8.3 1.4 69.6 73.7 285 88.1 15.0 24.9
AFNO 19.7 20.0 227 3.1 21.0 38.0 2.3 2.3 2.3 189.4 90.8 39.4 210.7 36.3 49.9
AVIT 175.6 819 536 195 8.3 106.0 19.0 19.0 19.0 2004.7 206.6 92.7 450.8 213.9 253.6
Swin3D 20.7 67.4 56.9 5.0 59.7 984 4.5 4.5 4.5 155.6 1159 61.2 285.3 46.2 70.4
FactFormer 19.06 18.01 1394 3.75 16.10 30.76 3.75 3.75 3.75 182.78 95.13 31.53 184.20 4048 46.2
UNetGencFD 36.6 35.1 72,7 14.0 425 65.5 13.7 13.6 13.7 2724 1284 37.0 324.4 56.2 80.4
UNetconvnext 18.6 403 498 6.8 362 66.8 6.5 6.5 6.5 190.8 108.8 42.1 364.5 49.0 70.9
TFENO 232 1116 56.2 6.3 49.5 96.7 6.0 6.0 6.0 1755 113.8 2221 263.1 36.2 83.7
Table B4: Normalized RMSE (x 10~2) for crop size 32.

Model Name Fisher GSa GSfS GS6 GSe¢ GSy GS: GSk GSO Hyp KDV KS SH Burgers Average
P3D-S 9.2 49.7 56.3 6.3 33.7 57.2 6.3 6.3 6.3 146.5 127.3 1584 176.2 38.8 62.7
P3D-B 8.3 24.5 14.8 2.5 15.9 40.1 2.5 2.5 2.5 131.1 1264 1175 131.7 37.9 46.9
P3D-L 7.9 18.5 11.4 1.9 14.2 324 19 1.9 1.9 109.3 110.8 1109 1294 27.3 414
AFNO 21.7 43.8 220 5.8 33.4 65.9 5.8 5.8 5.8 188.7 1183 74.0 619.5 43.1 89.5
AVIT 2371 126.7 50.7 13.6 107.6 122.7 13.6 13.6 13.6 1089.4 256.7 177.6 476.0 230.1 209.2
Swin3D 16.6 1545 386 3.8 56.2 926 3.8 3.8 3.8 189.1 1436 834 2635 55.7 79.2
FactFormer 20.1 43.1 23.1 5.8 32.0 43.9 5.8 5.8 5.8 2229 105.0 544 263.7 43.3 62.5
UNetgencrp 18.5 38.6 221 3.5 20.9 53.6 3.5 3.5 3.6 196.3 1058 37.0 517.2 41.9 76.1
UNetconvnext 203 111.6 38.3 74 49.2 89.9 7.4 74 74 166.3 128.5 774 4425 48.9 85.9
TENO 219 176.8 41.2 5.6 46.4 84.4 5.6 5.6 5.6 175.3 121.8 204.1 2524 38.3 84.7

34

Under review as a conference paper at ICLR 2026

C EXPERIMENT 2: ISOTROPIC TURBULENCE

For the second experiment, we make use of the Johns Hopkins Turbulence Database (JHTDB). It
contains data from various direct numerical simulations of homogeneous and wall-bounded turbulent
flows (Perlman et al.,[2007). The simulations are stored with space-time history and allow for arbitrary
spatiotemporal query points.

Isotropic Turbulence (iso—turb) a direct numerical simulation of the Navier-Stokes equations
at Reynolds number around 433 simulated on a 10242 periodic grid via a pseudo-spectral parallel
code. It contains homogeneous isotropic turbulence, i.e., an idealized version of realistic turbulence
with statistical properties that are invariant to translations and rotations of the coordinate axes. The
following overview summarizes key characteristics of the dataset (for further details see |Perlman
et al., [2007):

e Dimensionality: s = 1,¢ =500, f =4,z =512,y = 512, z = 512
* Boundary conditions: periodic

* Time step of stored data: 0.002

* Spatial domain size: [0, 27] x [0, 27] x [0, 27]

* Fields: velocity X/Y/Z, pressure

* Validation set: random 15% split of all timesteps from ¢ € [0, 420]

* Test set: all sequences from ¢ € [420, 500]

C.1 EXTENDED EVALUATION

See Table[CI] for an extended evaluation expanding upon Table[d The B config corresponds to the
previous size of the baselines models for Swin3D, AViT and AFNO. The S config decreases the
hidden dimensionality of the model architecture, which we change from 768 (B) to 384 (.S) for AViT
and AFNO. For Swin3D, we decrease it from 96 (B) to 48 (.5). For Swin3D and AViT, the hidden
dimensionality corresponds to the token embedding dimension. We also trained an L config for the
AViT model with hidden dimensionality 1536. All baseline models were trained for 4000 epochs.
Additionally, we kept training P3D-S and P3D-B for a total of 20000 epochs. The evaluation shows
that the RMSE and spectral error keep improving, showing no indication of overfitting.

We also include a benchmark comparison regarding the number of parameters, GFLOPs, VRAM and
throughput for inference of P3D and the different baseline architectures in Table [C2]

35

Under review as a conference paper at ICLR 2026

y-slice x-slice z-mean y-mean X-mean

z-slice

vape-c0

vape-cl

vape-c2

vape-c3

Figure C1: Isotropic Turbulence. Training dataset visualization at resolution 5123 showing the
velocity X/Y/Z and pressure from ¢ = 0 until ¢ = 420. The first six rows are 2D mean projections
and slices of the velocity in z-direction. The 3D renderings show velocity X/Y/Z and pressure.

36

Under review as a conference paper at ICLR 2026

Table C1: Performance comparison on the test set with crop size 1282 for RMSE (x10~2) and the
L2 enstrophy graph error (x 10?) at different autoregressive rollout steps.

Model RMSE L2 Enstrophy epochs
1 5 10 15 1 5 10 15
UNetgencrp 548 2542 48.60 67.72 425 145 227 140 4000

Swin3D-S 4.04 1153 18.66 2430 628 59.7 120 158 4000
Swin3D-B 322 1045 1815 2436 4.06 521 112 156 4000

AVIT-S 10.09 2147 32.60 4036 31.60 44.1 99.2 144 4000
AViT-B 945 19.57 30.00 37.77 2670 49.1 84.6 112 4000
AVIT-L 9.18 18.80 29.76 3920 2420 54.6 96.8 129 4000
AFNO-S 425 1480 2358 3040 830 999 171 196 4000
AFNO-B 369 1333 2352 2980 7.69 88.7 158 190 4000
P3D-S 281 987 2050 2825 215 823 21.6 319 4000
217 899 1940 2740 129 6.68 160 253 20000
P3D-B 204 879 2023 3152 072 1.39 338 192 4000

1.54 811 21.09 4492 021 071 349 14.7 20000

Table C2: Architecture benchmark comparison on crop size 1283 measured on a H100 GPU using
CUDA 12.8. VRAM is measured at inference with batch size 1. Throughput with batch size 16.

Model Params GFLOPs VRAM Throughput

Swin3D-S 18.9M 38.8 2.2G 51.2it/s
Swin3D-B 50.3M 144.8 2.9G 34.1it/s

AVIT-S 15.1M 244 0.16G 859it/s
AViT-B 60.0M 71.5 0.3G 346it/s
AVIiT-L 239.2M 233.5 1.1G 128it/s
AFNO-S 17.0M 471.1 0.2G 167it/s
AFNO-B 64.1M 1058.2 0.4G 58.6it/s
P3D-S 11.2M 108.5 0.9G 88.9it/s
P3D-B 46.1M 1165.3 2.1G 30.9it/s

37

Under review as a conference paper at ICLR 2026

C.2 VORTICITY

The vorticity w, is a measure of the local rotation in a fluid flow. It is defined as the curl of the velocity
vector field u = (uy, uy, u.), where u, v and w are the velocity fields in x, y and z direction. The
vorticity is defined as

B [Ou, _% Ouy B ou, %_81%
w-qu-(ay 8z)el+(8z 6x>62+<8x 834)637 ©)

where e, e2 and eg represent the unit vectors in x, y and z direction.

The vorticity is not part of the data. Only the velocity channels in X/Y/Z are available.

Approximation by finite differences To compute the components of the vorticity numerically
from the velocity, we use finite difference approximations for the partial derivatives in Equation (9).

For a grid point (4, j, k) located in the interior of the discretized simulation domain, we approximate
the partial derivates as

Qu, _ uitlk —yiLik

ox 2Ax
ig+lk _ -1k
Oug _ uy’ ub?
0y 2Ay
g k41l igk—1
Oug uy’ ul?
0z 2Az

and analogously for u, and u.

C.3 ENSTROPHY GRAPH

We consider the magnitude |w| of the vorticity w, which is a scalar field defined as

|w| = (10)
The enstrophy of the magnitude of the vorticity field |w| at wavenumber k& € R is defined as
Enstrophy(k) = Z |l&o(m)|?, (11)

k<|m|<k+1

where w0 with m € Z2 are the Fourier coefficients of |w], see|Chen et al.| (2024, C.2) for reference.
The enstrophy spectrum is the graph of the function & — Enstrophy (k). We average the enstrophy
spectrum over different vorticity fields.

We compute the L2 enstrophy error between the reference enstrophy spectrum and the enstrophy
spectrum of generated vorticities as

1

: . 2
Linstrophy = K+l Z [EDStrophyavg (k) — Enstrophy > (kz)} (12)

reference enerated
0<k<K
with K = 16.

Hanning filter The data on the cropped domain of size 128? is not periodic, thus there are artifacts
at the boundary of the crop. This leads to problems when calculating the Fourier coefficients w.
We therefore smoothen |w| towards the boundary by multiplying the data with the Hann window as
defined in torch.hann_window.

In Figure |C2| we show the magnitude of the vorticity |w| generated by P3D-B and the reference after
applying the Hanning filter (¢ = 1 autoregressive steps).
See Figure for the enstrophy spectrum Enstrophyg‘efﬁemte q of the predicted vorticities by P3D-B

and the enstrophy spectrum Enstrophy ™2

oforence Of the reference for autoregressive unrolling steps
t =1andt = 15 on the test set.

38

Under review as a conference paper at ICLR 2026

Prediction Vorticity Magnitude (Slice H=64) Reference Vorticity Magnitude (Slice H=64)

120 0.30 120
0.30

100 0.25 100
0.25

80 020 80
0.20

o =]
60 0.15 60 o015
© 010 0.10
20 0.05 20 0.05
0 0.00 0.00
0 20 40 60 80 100 120
w

Figure C2: Generated vorticity magnitude |w| by P3D-B (left) and reference (right) after applying
the Hanning filter.

Enstrophy L? error: 2.10e+01 Enstrophy L? error: 1.47e+03
103 4 —— Reference 103 4 —— Reference
W0 e Prediction 102 f— Prediction
10! 4 - 10! 4
100 4 100
1071 4 10-1 4
1072 4 102 4
1073 - 1073 4
1074 4 | 104 4
107> 4 10-5 4
Too o T o
enstrophy spectrum (v.s. k) at time 1 enstrophy spectrum (v.s. k) at time 15

Figure C3: Enstrophy spectrum of P3D-B and the reference simulation at resolution 1283 for t = 1
and ¢ = 15 autoregressive prediction steps.

C.4 TRAINING AND EVALUATION

The model weights for the evaluation in Table f] are the EMA weights at epoch 2000. We train both
the S and B configurations of P3D on crop size 1283, Training P3D-S for 4000 epochs took 11h
48m and training P3D-B took 20h 25m on four A100 GPUs. See Figure [C4]for the validation loss
curve.

In Figure [C3] we show a comparison between the reference and P3D-S <1281512> with an autoregres-
sive rollout until ¢ = 16 on the test set at resolution 5123,

39

Under review as a conference paper at ICLR 2026

1 —— P3D-S
1 —— P3D-B
W 1072 4
un]
=]
p]
s]
prws) m
(]
_'9 4
©
>
1073 1
T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

epoch

Figure C4: Isotropic Turbulence. Validation MSE for P3D-S and P3D-B during training.

1.0

0.8

0.6

0.4

0.2

0.0

(a) Reference (b) P3D-S <128I512>

Figure C5: Isotropic Turbulence. Autoregressive prediction for t = 16 steps with P3D-S <128I512>
on the test set at resolution 5123. The first six rows are 2D mean projections and slices of the velocity
in z-direction. The 3D renderings show velocity X/Y/Z and pressure.

40

Under review as a conference paper at ICLR 2026

t=4

0.4

0.8
0.2

16

0.0

16

(b) P3D-S

(a) Reference

1.4

1.2

1.0

0.8

ERIESY

d
o

0.6

dls-A

d
o

dls-A

0.2

o
o

0.0

0.0

(d) UNetgencrp

(c) P3D-B

Figure C6: Vorticity magnitude |w| calculated from the predicted velocity X/Y/Z for different models

(172).

41

Under review as a conference paper at ICLR 2026

1.4

0.8

d
o

ls-A

0.4

ERIES

0.2

t=16

12

t

0.0

2
a
(98]
=)
=
3
78}
—~
°
=
< ~ o o
— - — o
Q
Q
=)
=
&
Q
~
—~
<
~

d
o

dls-A

0.4

ERIER

0.2

0.0

(d) AViT-B

(c) AFNO-B

Figure C7: Vorticity magnitude |w| calculated from the predicted velocity X/Y/Z for different models

2/2).

42

Under review as a conference paper at ICLR 2026

D EXPERIMENT 3: TURBULENT CHANNEL FLOW

The dataset for the turbulent channel flow (TCF) represents a periodic channel with no-slip
boundaries at +y that is driven by a dynamic forcing to re-inject energy lost due to wall friction, and
prevent the flow from slowing down. This results in a continuous production of vortex structures at
the walls, which have a very characteristic and well-studied, spatially-varying distribution
Jiménez, [2008). Due to the complexity of the flow, these flows require very long transient phases to
develop the characteristic structures, We target this scenario by learning with a generative model, in
the context of which the TCF problem represents a probabilistic learning problem to infer turbulent
stats from the equilibrium phase, bypassing the costly transient warm-up phase.

D.1 DATASET

We generate a dataset comprising 20 simulations with Reynolds numbers within the interval [400, 800]
spaced equidistantly. After the initial-warmup phase, we simulate ETT = 20 eddy turnover cycles,
which we save in 200 snapshots with At = 0.1. The computational grid comprises 96 x 96 x 192
spatially adaptive cells with a finer discretization near the wall. The data contains channels for the
velocity in X/Y/Z direction as well as pressure. We train P3D directly with computational grid data,
which is shown in Figure[DI] In Figures[D2]and [D3|we show visualizations of the turbulent channel
flow for Reynold numbers Re = 400 and Re = 640 respectively.

e Dimensionality: s = 20, ¢ = 200, f =4, x = 96, y = 96, z = 192

* Initial conditions: noise

* Boundary conditions: periodic (x), wall (y,z)

* Time step of stored data: 0.1

* Number of warmup steps (discarded, in time step of data storage): 200
* Spatial domain: [—1,1] x [—1,1] x [—m, 7]

* Fields: velocity X/Y/Z, pressure

* Varied parameters: Reynolds number € [400, 800]

* Validation set: random 15% split of Reynolds number

-0.25

-0.50

-0.75

-1.00

0 1 2 3

Figure D1: Computational grid of the turbulent channel flow simulation. The spatial discretization is
refined in the near-wall region to resolve the boundary layer.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

x-slice z-mean y-mean X-mean

y-slice

z-slice

vape-c2 vape-cl

vape-c3

Figure D2: Turbulent channel flow with Reynolds number 400.

44

o

8

0.6

0.4

0.2

0.0

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

x-slice z-mean y-mean X-mean

y-slice

z-slice

vape-c2 vape-cl

vape-c3

Figure D3: Turbulent channel flow with Reynolds number 640.

45

=

8

0.6

0.4

0.2

0.0

-0.2

Under review as a conference paper at ICLR 2026

Training S, B and L configs We train P3D with the configurations S, B and L for 400 epochs on
the full domain of size 962 x 192. The training loss is shown in Figure It is important to choose
large architectures in our generative modeling setup based on flow matching. The network size,
specifically the embedding dimension is critical for this task with the L config reaching significantly
lower loss values compared to the S config trained with the same number of epochs. All models were
trained on 4 A100 GPUs with 80GB VRAM. Training took 11h 4m, 14h 43m and 27h 55m for the S,
B and L configs respectively.

10°

— P3DL
P3D-B
— P3DS
6x 107!
wn
(2]
o
o -1]
24x10
£
o
F 3x101 l
> 10-1] M

T T T T T T T
0 50 100 150 200 250 300 350 400
epoch

Figure D4: Turbulent channel flow. Training curve for different configurations of P3D.

D.2 STATISTICAL EVALUATION

Let x = (x1, z2, x3) denote the spatial coordinates and u(x, t, Re) denote the velocity of the flow
direction X. The reference simulations reach an equilibrium phase after the initial transient phase of
the warmup. Therefore, for the reference simulations, the moments u,, (x, t, Re) should be the same
for all ¢. Additionally, the setup combining periodic boundary conditions and no-slip boundaries
for the wall implies that the statistics only depend on the distance to the wall on the flow axis z1,
i.e., um((x1, 22, 23),t, Re) is the same for all 25 and x3 inside the domain. Thus it is reasonable
to consider w,, (z1, Re) and calculate the moments by sampling over xs, x3, t. Since the baseline
methods cannot be conditioned on the Reynolds number Re, we also compute the velocity profile
over Re. We compute the L2 distance between mean u (m = 0) and variance o2 (m = 1) of the
velocity profile graph x1 +— u,,(z1) of the time-resolved DNS reference and generated samples.
The resulting L2 distance for the mean y and variance o2 is shown in Table |S which provides a
meaningful statistical metric to evaluate accuracy. We additionally train two baselines, AFNO and
UNetgencrp With identical training setups as P3D-L on the full domain.

Moments of the flow field We included comparisons of the first three moments (mean, variance,
skewness) u,, of the flow direction (velocity in x-direction) averaging over x; as well. We report
the standard deviation when estimating the moments of the reference based on randomly drawing 20
simulations states of the equilibrium phase per Reynolds number as done for the velocity profiles to
properly assess how close the generated samples should match the reference. For the finetuned P3D-L
<X48IX48>, we picked the best model out of the five finetuned models. See Table @} Overall,
P3D-L trained on the full domain and P3D-L <X48IX48> achieve the best results.

Velocity profile comparison See Figure [D3] for a comparison between the mean channel flow
of the reference simulation for different Reynolds number and the mean flow from the generative
model P3D-L trained on the full domain. We show additional comparisons between the different
training and inference strategies in Figure Scaling the P3D-L network trained on the small
crops of size 483 to the full domain does not work well and results in incorrect velocity profiles.

46

Under review as a conference paper at ICLR 2026

Table D1: First three moments of the velocity field in the flow direction for the reference, P3D-L and
the two baseline methods.

Moment Mean Variance Skewness
Reference 0.5034+0.0007 0.05114+0.0001 -0.77640.007
UNetgencrp full domain 0.5002 0.0532 -0.723
AFNO full domain 0.5040 0.0930 -0.361
P3D-L full domain 0.5009 0.0513 -0.789
P3D-L <X48IX48> 0.5044 0.0510 -0.802

By finetuning with the context network, region crops can coordinate and obtain information about
their relative position to each other as well as to the wall. As a results, the flow statistics improve
significantly, more closely matching the reference and samples from P3D-L trained on the full domain.

We show samples from P3D-L trained on the full domain in Figure [D7, when applying
P3D-L pretrained on the full domain without any finetuning in Figure [D8|and with finetuning via the
context network and learned region-dependent conditioning in Figure [D9]respectively.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

20

Reference

40

Velocity profile (x)

Reynolds Number

Re=400
Re=500
Re=600
Re=700
Re=800

60

80

Generated samples

20

Reynolds Number

40

Re=400
Re=500
Re=600
Re=700
Re=800

60 80

Velocity profile (x)

Figure D5: Comparison of the mean channel flow of the reference and of generated samples from
P3D-L trained on the full domain.

47

Under review as a conference paper at ICLR 2026

0.8

0.6

500

0.4

Re=

0.2

0.0

0.8

0.6

600

0.4

Re=

0.2

0.0

0.8

0.6

700

0.4

Re=

0.2

0.0

0.8

0.6

800

0.4

Re=

0.2

0.0

Reference

Reference

o o

25 50 75
Velocity profile (x)

P3D-L full domain

P3D-L full domain

P3D-L full domain

P3D-L full domain

25 50 75
Velocity profile (x)

0

P3D-L <X48|X48>

P3D-L <X48|X48>

P3D-L <X48|X48>

P3D-L <X48|X48>

25 50 75
Velocity profile (x)

P3D-L <48|192>

P3D-L <48|192>

P3D-L <48|192>

P3D-L <48|192>

0 25 50 75
Velocity profile (x)

Figure D6: Comparison of the first two moments of the velocity profile between the reference DNS
and generated samples from P3D-L with different training and inference strategies.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

vape-c2 vape-cl vape-cO z-slice y-slice x-slice z-mean y-mean X-mean

vape-c3

r 1.0

-0.6

FEEEFFEEEY
eooooee|

o000 000
ooooooo9|
dddddddd}

Figure D7: Samples from P3D-L trained on the full domain at Re = 800.

49

Under review as a conference paper at ICLR 2026

2646
2647
2648
2649
2650
2651
2652
2653

2654
2655
2656 :
2657
2658
2659 :
2660
2661
2662
2663 '
2664
2665
2666 5
2667
2668
2669 _
2670 '
2671
2672
2673 -
2674

2675
2676

N dd d d d d e
B d d d d d d e
dd d d d d d e
ddddddddl

2682
2683
2684
2685

2686

2687

2688

2689

2690

2091 Figure D8: Samples from P3D-L <481192> pretrained on crops of size 483. Inference on the full
2592 domain at Re = 800 produces incorrect samples, as information on the relative positions between
2693 region crops is not available.

2694

2695

2696

2697

2698

2699

X-mean

y-mean

vape-cO z-slice y-slice x-slice z-mean

vape-cl

vape-c2

vape-c3

50

Under review as a conference paper at ICLR 2026

2700
2701
2702
2703
2704
2705
2706
2707 .
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729

X-mean

y-mean
|
o
[e-]

Z-mean

x-slice
|

o

[=)]

y-slice

z-slice

FEEFEFEEY
T,

vape-cO

2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744

ooo00000
"Ll Ll
dldldldd o de

aras Figure D9: Samples from P3D-L <X48/X48> pretrained on crops of size 48> and finetuned with the
2745 context network. Inference on the full domain at Re = 800 produces samples that exhibit the correct

2747 flow statistics.
2748

2749
2750
2751
2752
2753

vape-c2 vape-cl

vape-c3

51

	Introduction
	Related Work
	Method
	Backbone Architecture: P3D Transformer
	Context Network
	Scaling Output Domains

	Experiments
	Jointly Learning Multiple PDEs
	Isotropic Turbulence
	Turbulent Channel Flow

	Conclusion
	Training Methodology and Network Architectures
	Supervised training
	Probabilistic training
	Normalized RMSE
	P3D Architecture
	Context model
	Baseline Architectures

	Experiment 1: Jointly Learning PDEs
	Data Generation Setup
	PDE Types
	Visualizations of Predictions

	Experiment 2: Isotropic Turbulence
	Extended evaluation
	Vorticity
	Enstrophy Graph
	Training and Evaluation

	Experiment 3: Turbulent Channel Flow
	Dataset
	Statistical evaluation

