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ABSTRACT

We present a scalable framework for learning deterministic and probabilistic neural
surrogates for high-resolution 3D physics simulations. We introduce P3D, a hy-
brid CNN-Transformer backbone architecture targeted for 3D physics simulations,
which significantly outperforms existing architectures in terms of speed and accu-
racy. Our proposed network can be pretrained on small patches of the simulation
domain, which can be fused to obtain a global solution, optionally guided via a
scalable sequence-to-sequence model to include long-range dependencies. This
setup allows for training large-scale models with reduced memory and compute
requirements for high-resolution datasets. We evaluate our backbone architecture
against a large set of baseline methods with the objective to simultaneously learn
the dynamics of 14 different types of PDEs in 3D. We demonstrate how to scale
our model to high-resolution isotropic turbulence with spatial resolutions of up
to 5123. Finally, we show the versatility of our architecture by training it as a
diffusion model to produce probabilistic samples of highly turbulent 3D channel
flows across varying Reynolds numbers, accurately capturing the underlying flow
statistics.

1 INTRODUCTION

Training neural networks on high-resolution data substantially increases the required GPU memory
and compute costs. Scaling models and their input dimensions typically requires substantial engineer-
ing effort, posing a major barrier to the widespread and cost-effective adoption of machine learning
across application domains. Scientific machine learning and engineering are especially affected
due to the multi-scale nature of relevant phenomena whose modeling often requires specialized and
highly computationally demanding numerical solutions. In this paper, we focus on learning surrogate
models for simulations focusing on fluid dynamics that have downstream applications in fields such
as aerospace (Arranz et al., 2024), climate science (Bodnar et al., 2024), energy systems (Degrave
et al., 2022), and biomedical engineering (Morris et al., 2016). Machine learning models inherently
compete with existing solvers, which are often employed to create the reference targets for learning.
As such, they need to either significantly outperform the corresponding solvers while maintaining an
acceptable level of accuracy (Kochkov et al., 2021; Pestourie et al., 2023), or yield solutions where
traditional solvers fall short, for example working with noisy (Franz et al., 2023) or only partial input
data (Shu et al., 2023), or by providing uncertainty estimates (Jacobsen et al., 2023). A large fraction
of papers in this area address learning problems for either low-dimensional or comparatively smooth
data in 2D. In this paper, we deliberately focus on high-resolution 3D phenomena, covering a wide
variety of different types of PDEs.

We propose P3D: a hybrid CNN-Transformer backbone built on PDE-Transformer (Holzschuh et al.,
2025) that combines fast processing of local features via convolutions and windowed attention
mechanisms for learning generalizable token representations. P3D makes important extensions for
scaling to very high resolutions in 3D: crop-based pre-training combined with a designated module
for processing global dependencies. This design achieves superior scalability and accuracy compared
to existing 3D baselines. We evaluate the P3D backbone architecture through an extensive comparison
with existing architectures for modeling physics simulations in 3D, training on 14 different types
of dynamics simultaneously. We then employ P3D as a surrogate model for isotropic turbulence at
resolution 5123 and demonstrate how the P3D architecture pretrained on crops of 1283 can be scaled
to the entire domain, while achieving high accuracy with temporally stable autoregressive rollouts.
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A significant difficulty when modeling large systems is how to aggregate and distribute information
globally across the network. We propose to link the bottleneck layers of P3D with a sequence-to-
sequence model, called context model, for an efficient global processing and information aggregation
utilizing highly optimized self-attention mechanisms in LLM layers, which is combined with different
scalable and memory-aware training and inference strategies. Additionally, we propose a direct
mechanism to let aggregated global information flow back to the decoder modules via adaptive
instance normalization layers. In our final experiment, we train P3D as a diffusion model to learn
the distribution of velocity and pressure fields of a turbulent channel flow on a non-equidistant grid.
This setup requires access to global information like the relative position to the walls, and cannot be
addressed by learning local representations alone. We verify that velocity profiles from the generated
samples of P3D closely match the ground truth, demonstrating that high distributional accuracy
can be obtained even when the solution fields are constructed from smaller regions, which are only
coordinated through the information flow from the context model. To summarize our contributions:

• We introduce P3D, a hybrid CNN-Transformer architecture for autoregressive prediction of
high-resolution physics simulations in 3D, combining convolutions for fast learning of local
features and windowed self-attention for deep representation learning.

• We demonstrate the efficiency and versatility of P3D in three experiments: (1) jointly
learning multiple types of simulations (2) scaling P3D pretrained on crops of 1283 to a
high-resolution simulation of isotropic turbulence at 5123, and, (3) generating probabilistic
samples from P3D trained via flow matching for the velocity and pressure fields of a turbulent
channel flow, closely matching the ground truth flow statistics.

• We propose mechanisms for efficient global information processing, including linking
bottleneck layers with a sequence-to-sequence global context model and injecting global
information into adaptive instance normalization layers via region tokens.

• We evaluate different setups for finetuning, which enable a more fine-grained control of
precomputation and gradient backpropagation through encoder and decoder blocks to reduce
VRAM and compute requirements.

2 RELATED WORK

PDEs and machine learning Machine learning has sparked much resonance in accelerating and
improving numerical PDE solvers as well as fully replacing them. Approaches that are combined
with existing PDE solvers can replace components of the solver (Bar-Sinai et al., 2019), learn closure
models (Duraisamy et al., 2019; Sirignano & MacArt, 2023) or learn corrections to a fast solver
on a coarse grid (Um et al., 2021; Kochkov et al., 2021; Dresdner et al., 2023). Other directions
target problems that are more difficult to address with numerical solvers, such as inverse problems
(Raissi et al., 2019; Bruna et al., 2022; Holzschuh et al., 2023), or uncertainty quantification (Xiao &
Cinnella, 2019; Liu & Thuerey, 2024). Leveraging diffusion models for autoregressive prediction
and inverse problems for PDEs has been explored by several works in the past (Lippe et al., 2023;
Kohl et al., 2024; Shu et al., 2023; Shehata et al., 2025), albeit limited to data in 2D.

Pretraining and 3D neural surrogates Subramanian et al. (2023); Yang et al. (2023); McCabe
et al. (2023) pretrain foundation models for PDEs on multiple PDE dynamics simultaneously. Such
models can be used either for zero-shot-predictions or for finetuning when adapting to new dynamics,
which allows for improved results with fewer training samples. Previous works have demonstrated
learning PDEs in 3D, e.g., learning large-eddy simulations (Peng et al., 2023; Li et al., 2023a; 2024a;
Jiang et al., 2025), and elastic wave propagation (Lehmann et al., 2024). Smoke buoyancy in 3D was
targeted as a test case by Li et al. (2023b) Notably, most previous work targets resolutions of up to
643, an exception being probabilistic experiments at a resolution of 1283 (Molinaro et al., 2024), and
surrogate training with up to 128×128×256 (Ohana et al., 2024). This motivates our contributions
for scalable architectures, as surrogate models for truly high-resolution 3D physics simulations are of
paramount interest in different scientific areas.

Scalable transformer architectures Transformers have become one of the dominant backbone
architectures in deep learning due to their high computational efficiency and their ability to model
long-range causal relationships (Vaswani et al., 2017; Devlin et al., 2018). Transformers have also
become a popular competitor to CNNs in vision and understanding tasks (Dosovitskiy et al., 2020;
Rodrigo et al., 2024), scale to large images (Gupta et al., 2024), and have recently been adopted
for learning surrogate models for physics simulations (McCabe et al., 2023; Wu et al., 2024; Alkin
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Convolutional Decoder

Transformer
Decoder

Figure 1: Overview of P3D. Convolutional blocks for local feature processing are combined with
transformers for deep representation learning, yielding a U-shaped multi-scale architecture. The
transformer backbone combines windowed attention and conditioning via adaptive instance normal-
ization, which are modified and optimized for 3D.

et al., 2024). A major computational difficulty is the quadratic complexity of the global self-attention
mechanism. Liu et al. (2021) address this limitation by restricting the computation of the attention
operation to a local window and Ho et al. (2019) by computing the attention only across the data axes.

3 METHOD

Problem formulation Let Ω denote a spatial domain with n physical quantities u(x, t) :
Ω × [0, T ] → Rn that are discretized in time and space and described by the temporal sequence
[u0,u∆t, ...,uT ]. We consider all additional information about the sequence such as the type of
PDE or hyperparameters of the simulator to be encoded in an m-dimensional conditioning vector
c ∈ Rm. We assume the availability of many such sequences as training data, representing the
temporal evolution of different types of PDEs with varying initial conditions or coefficients. We
denote our proposed network architecture by MΘ with weights Θ.

We address two main tasks in this paper. The first is autoregressive prediction: For a given sequence
of P preceding states [ut−P∆t, ...,ut−∆t], denoted by uin, our target is to predict the next state
ut := uout. The second task is to train a probabilistic sampler to draw samples from a distribution of
states representing solutions for a PDE as specified by the parameter vector c. In this case uin = ∅.

3.1 BACKBONE ARCHITECTURE: P3D TRANSFORMER

The key components of our proposed hybrid CNN-Transformer architecture P3D are the hierarchical
U-shape structure with the hybrid encoder and decoder-pair based on convolutional and transformer
blocks. A visual overview is given in Figure 1. In the following, we highlight the main components
of the architecture and explain how they support its central goal to enable the efficient training and
inference for high-resolution 3D simulations.

Hybrid encoder/decoder We utilize convolutional en- and decoders with skip connections. Fully
transformer-based architectures that work in the pixel space for 2D data and images like ViTs rely on
a patchification operation to transform patches of size p× p into tokens. A corresponding approach
in 3D would transform patches of size p3 into a single token, significantly increasing the amount of
information encoded in each token. To balance both the number of tokens for the transformer as well
as the information density of each token, we learn local features via the convolutional encoder to
obtain an optimized compressed representation.

Attention and positional encoding The self-attention operation used by transformers has quadratic
complexity in the number of tokens. For 3D data, this becomes a major computational issue as the
number of tokens grows cubically with the spatial discretization, leading to computational blow-up
as the domain size increases. The central building block of our transformer encoder is the windowed
multi-head self-attention (Liu et al., 2021), which only computes self-attention within a local
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windows. For computing the attention scores between tokens, we use the log-spaced relative positions
of tokens inside the same window.

The architecture of the P3D combines Swin transformers (Liu et al., 2021), diffusion transformers
(Peebles & Xie, 2023, DiT) and UNets (Ronneberger et al., 2015) into a 3D variant, which can be
seen as an extension of PDE-Transformer (Holzschuh et al., 2025) in 3D. The main alteration is
the replacement of the patchification with large convolutional en- and decoders. We also removed
the shifting of windows during the computation of self-attention. The convolutional en- and de-
coder follow the design of modern UNet blocks, using adaptive instance normalization and group
normalization. We give a detailed description of the architecture in Section A.4.

3.2 CONTEXT NETWORK

P3D does not include any absolute positional embeddings as well as no operations aggregating and
distributing information globally. Thus, it has to rely on learning local features and dynamics within
its perceptual field. This promotes translation-equivariance, which is an important inductive bias
for surrogate modeling of PDEs. Our design choice to not include other physical inductive biases
is intentional to keep the P3D backbone architecture flexible. For learning large-scale simulations,
we pretrain P3D on smaller crops of the simulation domain and then scale the pretrained network to
larger inputs. However, global information and long-range dependencies often play a crucial role
to obtain correct solutions, which is also a major limitation of PDE-Transformer. To address this
shortcoming, we introduce the context network.

Condi�oning

Sequence Model

+

Latent tokensRegion tokens

MLP

Skip connec�on

Inject global 
informa�on    

Transformer
Encoder

Transformer
Decoder

+ posi�onal encoding

Figure 2: Global context via a sequence
model. The bottleneck layers are connected to
the sequence model, which embeds the bottle-
neck representation as latent tokens. Region
tokens are used to inject global information
directly into the decoder.
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Figure 3: Conditioning via the region to-
kens. The input domain is partitioned into re-
gions/crops, each of which has a correspond-
ing messenger token. The regions are mod-
ulated individually via learnable scale and
shifts based on the region tokens.

Token embeddings The bottleneck layer of the
transformer encoder consist of tokens, which are em-
bedded into latent tokens via a linear layer. P3D
compresses a crop of size 163 into a single latent to-
ken. Then, a frequency-based positional embedding
vector is added to each latent token, similar to Doso-
vitskiy et al. (2020). In addition, we partition the
domain into regions and we match the size of regions
with the size of the domain crops P3D was pretrained
on. For each region, we include a corresponding so-
called region token in the sequence of latent tokens,
similar to the classification token in ViTs. Each re-
gion token is initialized via a learnable embedding
layer and we add a frequency-based positional em-
bedding vector. The purpose of region tokens is to
serve as a more direct feedback mechanism to the
decoder, which we describe in the next paragraph.
Our implementation processes the token sequence
via n = 6 scalable LLMLayers. Figure 2 provides
an overview of this setup. In principle, any efficient
sequence model can be used. After the sequence of
region and latent tokens is processed, the latent to-
kens are added to the input of the decoder via a skip
connection. See Section A.5 for a full description.

Region tokens The region tokens are retained and
used as a more direct mechanism to let information
flow through the decoder network. Region tokens
are initialized as a learnable embedding vector with
frequency-based positional encoding and are pro-
cessed in the sequence model together with the latent
tokens. Each region token corresponds to a crop that
is processed independently of other crops by the en-
coder and decoder blocks. We use scale and shift
operations to condition the decoder block of each re-
gion on the region token. Within each decoder block,
for each adaptive instance normalization layer with
scale or shift operations, we transform the region token via a linear layer to a region embedding
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(d) randomized
backpropagation

active gradient backpropagation inactive gradient backpropagation

(a) full domain (b) cropped domain (c) global context (e) decoder only

Figure 4: Different training and inference setups. (a) shows training on the full domain and (b) on
domain crops. (c) includes the context network for global information processing, which can also
be trained by randomly disabling gradient backpropagation for a percentage of the encoders and
decoders, see (d). In (e) the latent codes from a pretrained encoder can be precomputed and only the
context network and decoder are trained.

vector which is added to the embedding vector of the conditioning c. Each region gets modulated
differently based on the region token. This is visualized in Figure 3.

3.3 SCALING OUTPUT DOMAINS

We consider different setups for training and inference, see Figure 4, which include training on the
full domain (a), on crops (b) and different training variants in combination with the context network
(c) to (e). While it is preferable to train on small crops due to compute requirements, for inference,
we generally want to process the full domain. We consider two strategies: (1) we scale to the full
domain via the translation equivariance of the P3D architecture, i.e., we combine the domain crops
and process them as a single input, and, (2) we encode and decode each crop of the full domain
independently and combine the network outputs. We tag a model that is trained on crops of resolution
x3 and which internally runs inference on resolution y3 by <x|y>. For example, a network trained on
crops of size 643 that is scaled via strategy (1) to resolution 1283 is tagged <64|128>, while the same
network scaled via strategy (2) is tagged <64|64>. For strategy (2), if we use the context network for
communication between the latent codes, we use the tag <Xx|Xy>.

4 EXPERIMENTS

We evaluate P3D as well as different scaling and finetuning setups in three experiments. P3D has
3 different configurations: S, B and L that determine the embedding dimension d (32, 64 and 128
respectively) of the first layer. The corresponding models have 11M to 180M parameters. We denote
the configurations with P3D-S for our model with the S config, changed accordingly for B and L.

4.1 JOINTLY LEARNING MULTIPLE PDES

Our dataset for this task comprises 14 different types of PDEs including Burger’s equation, Kuramoto-
Shivashinsky, Gray-Scott, Swift-Hohenberg and many others. The dataset is based on APEBench
(Koehler et al., 2024), and a full description of each PDE with visualizations can be found in
Section B.2 in the appendix. For all PDEs except Gray-Scott, we consider 60 different simulations
with varying initial conditions and PDE-specific parameters such as viscosity, domain extent or
diffusivity. For Gray-Scott, we include 10 simulations for each of its hyperparameters. Each spatially
periodic simulation contains 20 snapshots discretized at resolution 3203 for Gray-Scott and 3843 for
all other PDEs. We evaluate and benchmark models on random crops of the simulation domain of
size 1283, 643 and 323 using supervised training, see Section A.1. Even with full information about
simulation hyperparameters and the type of PDE, the behavior is not fully deterministic as quantities
beyond the cropped regions influence the solution inside it. Simulations have different numbers of
channels and we zero-pad data with fewer channels than the number of maximum channels NC = 3.

Training on cropped data Cropped data has an implicit time-dependent boundary condition,
which is not known by the model. This can be seen as an extension and more difficult variant of the
multi-physics training (Subramanian et al., 2023; Yang et al., 2023; McCabe et al., 2023), where
in addition to not knowing the PDE or simulation hyperparameters, the model has to estimate the
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Figure 5: Comparison of model accuracy vs. (left) memory usage during backpropagation and (right)
computational costs for inference for jointly learning different types of PDEs with crops of size 643

for P3D and baselines.

boundary conditions in a data-driven manner. Mathematically, the model Mθ is trained to regress
argmin

Θ
E(st,st+∆t,c)∈Dtrain

[E(scropt ,scropt+∆t)
[||MΘ(s

crop
t , c)− scropt+∆t||

2
2]], (1)

where we sample (st, st+∆t, c) ∈ Dtrain from the training dataset and apply a random cropping
to obtain (scropt , scropt+∆t). The input uin corresponds to scropt and uout to scropt+∆t. The mapping
scropt 7→ scropt+∆t is not deterministic since the boundary conditions are not prescribed. The model MΘ

has to learn a prediction that minimizes the prediction error w.r.t. all possible simulation states that
are outside the cropped domain, i.e., the optimal prediction s∗ for scropt+∆t minimizes

s∗ = argmin
s

E(ŝt,ŝt+∆t)∼Dtrain

[
||crop(ŝt+∆t)− s||22 | crop(ŝt) = scropt

]
, (2)

where crop(·) is the crop operation used for scropt . The performance depends on how well the model
is able to extrapolate the dynamics outside the cropped input for a short prediction horizon.

Table 1: Comparison of the nRMSE (×10−2)
on the test dataset (averaged over all PDEs).

Method Crop size

epochs = 1000 323 643 1283

TFNO 8.46 8.37 -
FactFormer 6.24 4.62 -
UNetConvNext 8.59 7.09 -
UNetGenCFD 7.61 8.04 8.27
AViT 20.9 25.0 15.1
Swin3D 7.92 7.04 5.03
AFNO 9.95 4.98 4.79

P3D-S 6.27 3.76 3.33
P3D-B 4.69 3.03 2.52
P3D-L 4.13 2.49 2.08

nRMSE evaluation We evaluate the nRMSE, see
Section A.3, and consider a wide range of sota base-
line architectures. Specifically, we include Swin3D,
our own implementation of the SwinV2 architec-
ture (Liu et al., 2021) extended to 3D, AViT, an ax-
ial vision transformer (McCabe et al., 2023), Adap-
tive FNOs (Guibas et al., 2021, AFNO), Tucker-
Factorized FNOs (Kossaifi et al., 2023, TFNO), and
FactFormer (Li et al., 2024b), Additionally, we con-
sider two different convolutional UNet architectures,
UNetConvNeXt as used in Ohana et al. (2024) and
UNetGenCFD (Molinaro et al., 2024). We train all
models for 1000 epochs on four H100 GPUs. We use
a fixed learning rate of 2.0 · 10−4 for all models with
the AdamW optimizer with weight decay 10−15 and
batch size 256 in bf16-mixed precision. See Table 1
for the results and Tables B2 to B4 for detailed evalu-
ations of each PDE type. As we train on bigger crop
sizes, the observed simulation domains becomes larger, increasing the amount of information that
becomes available to the network. At the same time, the relative volume of the boundary becomes
smaller, thus decreasing its relative weight and causing an according decrease in the nRMSE. P3D
performs best across all crop sizes. Performance significantly improves when scaling the model size
from S to L.

Memory and compute For scaling an architecture to high-resolution 3D simulations, the memory
requirements as well as the inference speed are essential. Transformer architectures have been shown
to achieve improved accuracy as the number of parameters and floating point operations increase,
therefore comparing different architectures needs to take both factors into account. In Figure 5, we
compare the nRMSE at patch size 643 against (1) the computational cost for inference measured in
GFLOPs, and (2) the VRAM consumption in MB for a backward pass with batch size 1. The P3D
networks provide the best tradeoff between accuracy and computational cost/memory requirements.
See Table A2 for additional information.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

x
-s

lic
e

v
e
lo

ci
ty

 X

y-
sl

ic
e

t = 15t = 0t = 15 t = 15 t = 15

P3D-S <128|512> P3D-S <128|128> Reference

Figure 6: Forced isotropic turbulence. Prediction on the test set at resolution 5123 with an autore-
gressive rollout of 15 steps. The model is pretrained on patches of size 1283, without finetuning
on 5123. P3D-S <128|512> successfully scales to the full domain, whereas for P3D-S <128|128>
discontinuities at the borders of crop regions become apparent.

Table 2: Validation MSE (×10−3, time-
weighted EMA with λ = 0.99).

Method Crop size

epochs = 400 323 643 1283

P3D-S-conv 8.33 5.40 3.25
P3D-S-patch∗ 6.48 3.78 2.16
P3D-S-no-c 5.69 2.94 1.41
P3D-S-shift 5.41 2.84 1.37
P3D-S 5.44 2.77 1.35
P3D-S w = 2 5.68 2.96 1.49
P3D-S w = 4 5.44 2.77 1.35
P3D-S w = 8 5.44 2.90 1.32

Ablation on network design We empirically verify
our network design and consider: (1) P3D without the
transformer backbone, which purely relies on the con-
volutional encoder and decoder, denoted P3D-conv,
(2) a patch-based P3D with linear tokenizer for patch
size p = 4 and no convolutional encoder and decoder,
denoted P3D-patch. This baseline (∗) extends the
mixed channel version of PDE-Transformer to 3D.
(3) disabling PDE type conditioning by setting c = 0,
denoted P3D-no-c, (4) P3D with window shifting en-
abled, P3D-shift. Additionally, we evaluate different
values of the window size w = 2, w = 4 (default)
and w = 8. P3D achieves a relative improvement of
16.0% (323), 26.7% (643) and 37.5% (1283) over 3D
PDE-Transformer(∗), see Table 2. Shifting and larger
window sizes give no significant improvements here.

4.2 ISOTROPIC TURBULENCE

The goal of the this experiment is to scale P3D to a high-resolution simulation involving complex
dynamics. For this, we consider forced isotopic turbulence simulated via direct numerical simulation
(DNS) at resolution 10243 provided by the John Hopkins Turbulence Database (Perlman et al., 2007).
The dataset is cropped from the original resolution to 5123 with a total of 500 snapshots, which
are saved after reaching a statistical stationary state and comprises channels for the velocity X/Y/Z
and pressure. The data is split into test and training sets, where the first 420 snapshots are used for
training and the last 80 snapshots for testing.

Table 3: RMSE (×10−2) and the enstrophy spec-
trum error (×102) at different autoregressive roll-
out steps on the test set with crop size 1283.

Method RMSE Enstrophy
1 15 1 15

UNetGenCFD 5.48 67.7 4.2 140
Swin3D 3.22 24.3 4.0 156
AViT 9.45 37.7 26.7 112
AFNO 3.69 29.8 7.6 190

P3D-S 2.81 28.2 2.15 31.9
P3D-B 2.04 31.5 0.72 19.2

RMSE and enstrophy error for crops 1283

We first evaluate the performance of P3D com-
pared to baselines from the previous experiment
trained on domain crops of size 1283. We con-
sider an evaluation of autoregressive rollouts
from 1 to 15 steps. We evaluate the RMSE and a
spectral error based on the enstrophy spectrum,
which we compute based on the vorticity that
is derived from the velocity fields of the data,
see Section C.3. We train all models for 4000
epochs using the same setup as in Section 4.1,
but reduce the batch size to 32. P3D performs
best and achieves the lowest RMSE for few au-
toregressive rollout steps. It consistenly has by
far the best spectral error, see Table 3 and Ta-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026
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Figure 7: Turbulent channel flow. We pretrain PDE-L on crops of size 483. For P3D-L <48|192>
scaled to the full domain 962 × 192, the relative positions of crops to the wall is critical. Without
absolute positional encodings and global information passing, the generated samples are incorrect.
P3D-L <X48|X48> finetuned with the context network resolves this issue.

ble C1 for an extended evaluation. For many autoregressive rollout steps, the RMSE becomes less
informative, as the prediction starts to deviate from the reference due to the uncertainty from the
boundary of the crop regions. See Figures C6 and C7 for visualizations.

Table 4: RMSE (×10−2) on the test set for P3D
trained on crop size 1283 and evaluated at 5123 for
different scaling strategies.

Method Scaling strategy
<128|128> <128|256> <128|512>

P3D-S 1.90 1.68 1.60
P3D-B 1.38 1.24 -

Scaling P3D to 5123 We scale P3D pre-
trained on crops of size 1283 to the full do-
main 5123. Training P3D on cropped data re-
quires less than a day on four A100 GPUs. See
Section C.4 for details. We compare the per-
formance of P3D when scaling the network to
larger domain sizes using the scaling strategies
introduced in Section 3.3. P3D <128|128> pro-
cesses blocks independently using the original
training resolution. Thus the domain 5123 is
split into 64 blocks of size 1283 that are processed independent of each other. P3D <128|512>
processes the full domain, leveraging the translation-equivariance of the architecture. See Table 4
for an evaluation of the RMSE. Increasing the domain size during inference consistently gives
improvements. With increasing domain size, the relative volume of the boundary shrinks, thus
the uncertainty of turbulent motions is reduced and networks are able to provide more accurate
predictions. Similar to previous results, larger networks improve performance as well. Note that
the RMSE is different between Tables 3 and 4, since we do not consider longer rollouts in Table 4
which affects the distribution of samples in the test set. In this experiment, due to the isotropic and
homogeneous nature of the simulation, we achieve highly accurate results without finetuning or
global information.

4.3 TURBULENT CHANNEL FLOW

Figure 8: Flow statistics of samples produced by
P3D-L conditioned with varying Reynolds number
(left) and the time-resolved DNS (right).

For the last experiment we train P3D as a gen-
erative model for learning to sample from a
turbulent channel flow simulation with a pe-
riodic channel with no-slip boundaries at ±y
and is driven by a dynamic forcing to prevent
a loss of energy. The seemingly simply geom-
etry represents a well-studied and relevant sce-
nario that is highly challenging as it requires
fine spatial and temporal discretizations with
correspondingly long simulation times to pro-
vide converged turbulence statistics (Hoyas &
Jiménez, 2008). Due to the very costly initial
transient phase of these simulations, it is espe-
cially attractive to phrase the turbulent channel
flow (TCF) problem as a probabilistic learning
problem, where states from the relevant equilibrium phase can be sampled directly, i.e. with-
out resolving the initial warm-up phase. We generate a dataset comprising 20 simulations with
Reynolds numbers Re within the interval [400, 800] spaced equidistantly, see Section D.1. The
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computational grid comprises 96 × 96 × 192 spatially adaptive cells with a finer discretization
near the wall. The data contains channels for the velocity in X/Y/Z direction as well as pressure.

Table 5: L2 error for the mean µ (×10−5) and variance σ2

(×10−5) of the velocity profiles along the channel flow direc-
tion, see Section D.2 for details. For finetuning, we report the
mean and std. dev. over 5 different seeds.

Model Mean L2 Variance L2 VRAM epochs
UNetGenCFD full domain 132.38 17.66 17.4 GB 400
AFNO full domain 28.73 1849.3 3.4 GB 400
P3D-L full domain 3.02 13.20 14.9 GB 400
P3D-L <48|192> 5862.81 233.77 2.8 GB 2000

finetune w/o region tokens 4541 ± 495 2026 ± 267 15.8 GB 20
finetune 23.6 ± 21.4 40.4 ± 49.4 15.8 GB 20
finetune, decoder only 941 ± 484 1170 ± 392 6.0 GB 20
finetune, decoder only 97.7 ± 102.6 131 ± 149 6.0 GB 100
finetune, decoder only 16.8 ± 5.0 24.1 ± 17.2 6.0 GB 500

P3D-L pretrained on 483 We
train P3D-L as a diffusion model
following Section A.2 on crops
of size 483. Pretraining on
crops requires significantly less
compute and VRAM and the
network converges much faster.
For P3D-L with scaling strat-
egy <48|192>, the network is
not aware of the position of the
wall relative to the position of the
individual regions, causing the
global structure of the generated
flow to be incorrect, see Figure 7.
For a quantitative statistical eval-
uation including training on the full domain and baselines, see Table 5.

Ablation on finetuning and context We evaluate finetuning P3D pretrained on the cropped domain
483 using the context model, see Table 5. Finetuning corresponds to P3D-L <X48|X48> with different
training setups, see Figure 4. finetune and finetune w/o region tokens follows the setup of Figure 4c,
which backpropagates gradients through all crops and network modules. While this requires more
VRAM than training on the full domain, only few epochs to achieve good results are necessary. For
finetune, decoder only, we only backpropagate gradients through the decoder and context network,
and also only backpropagate through 10% randomly selected decoder blocks, which corresponds
to the setup in Figure 4e. We do not precompute the bottleneck representations from the frozen
encoders, but this could be done to further reduce the VRAM and compute requirements. This setup
achieves a significant reduction in VRAM, but requires more training epochs. The generated sample
for P3D-L <X48|X48>, see Figure 7, qualitatively shows the correct global structure and content of
individual regions. See also Figure 8 and Figures D6 to D9 for comparisons of the velocity profiles.
While finetuning matches the statistics well, there are still visible discontinuities between generated
crop regions, which leaves further room for improvement.

Table 6: Speedup compared to DNS.

Method samples/s Speedup
P3D-L 0.17 144x
AFNO 1.53 1246x
UNetGenCFD 0.10 81x

DNS (GPU) 0.0022 -

Benchmarking speedups We give speedups compared
to our GPU-based solver used for dataset generation, see
Table 6. The warmup phase of the DNS takes on aver-
age 2 hours and 24 minutes, which cannot be skipped.
Timings are obtained on a L40 GPU with 100 inference
steps. For the calculation of the speedup, we assume 20
samples for each Reynolds number and select every 10th
step of the DNS to avoid high autocorrelation of samples.
While AFNO has a higher speedup, its statistics are not
sufficiently accurate.

5 CONCLUSION

We have presented P3D: an efficient hybrid CNN-Transformer architecture for learning surrogates
for high-resolution 3D physics simulations. We demonstrated the strong advantages of P3D over
a comprehensive list of baselines for simultaneously learning different types of PDEs, showing
improved accuracy and stable training while at the same time being faster and more memory efficient
than the strongest competitors. We scaled P3D to a high-resolution isotropic turbulence simulation
by pretraining on smaller crops from the domain, and demonstrated its capabilities as a probabilistic
generative model. The P3D model accurately predicts distributions of high-resolution velocity
and pressure fields for a turbulent channel flow with varying Reynolds numbers, demonstrating
how to include global information and coordinated pretrained networks via a global context model.
Our architecture establishes the foundation for scaling scientific foundation models to very high
resolutions, unlocking their potential to deliver real-world impact across scientific domains.
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A TRAINING METHODOLOGY AND NETWORK ARCHITECTURES

A.1 SUPERVISED TRAINING

For tasks that have a deterministic solution, such as training a surrogate model for a numerical solver,
the P3D can be trained in a supervised manner using mean squared error (MSE) loss, enabling fast,
single-step inference. In this case the network is directly optimized with the MSE

LS = E
[
||MΘ(uin, c)− uout||22

]
. (3)

A.2 PROBABILISTIC TRAINING

To allow for sampling from the full posterior distribution rather than approximating an averaged
outcome, diffusion training is preferable for probabilistic solutions. For such cases, we employ the
flow matching formulation of diffusion models (Lipman et al., 2023; Liu et al., 2023; Ho et al.,
2020). Given the input uin and a conditioning vector c, samples x0 drawn from a noise distribution
p0 = N (0, I) are transformed into samples x1 from the posterior distribution p1 by solving an
ordinary differential equation (ODE) of the form dxt = v(xt, t); dt. Then the model MΘ learns
the velocity field v by regressing a vector field that defines a probabilistic trajectory from p0 to p1.
Samples along this trajectory are produced through the forward process

xt = t uout + [1− (1− σmin)t] ϵ (4)

for t ∈ [0, 1] with ϵ ∼ N (0, I) and a time threshold of σmin = 10−4. The velocity v can be regressed
by training via

LFM = E
[
||MΘ(uin,xt, c, t)− uout + (1− σmin)ϵ||22

]
. (5)

After training, samples can be drawn from the posterior conditioned on uin and c, by sampling
x0 ∼ N (0, I) and integrating the corresponding ODE dxt = M(uin,xt, c, t) dt over the time
interval t = 0 to t = 1. We typically employ explicit Euler steps with a suitable, chosen step size ∆t.

A.3 NORMALIZED RMSE

The normalized RMSE (nRMSE) is defined as

nRMSE =
1

M

M∑
i=1

√
MSE(ûout,uout)

MSE(0,uout)
, (6)

where ûout is the network prediction and M corresponds to the number of trajectories for a specific
PDE in the test dataset. In our evaluation, we calculate the nRMSE for each PDE dataset and report
the nRMSE averaged over all PDE datasets.

We can also define the nRMSE for autoregressive rollouts over the entire simulation trajectory. We
define the nRMSEt at time t by comparing the predicted state ûS

t for a given system S at time t with
the reference uS

t . We average over all systems S for each PDE dataset.

A.4 P3D ARCHITECTURE

We provide additional details on the backbone architecture of P3D below.

Embedding of time, class labels and physical parameters We combine all three types of con-
ditionings within a combined embedding layer. Time for flow matching/diffusion and physical
parameters are implemented via timestep embeddings. Class labels are implemented via label em-
beddings. The embedding vectors of all three types are added and used as the joint embedding. The
embedding dimension for each in the convolutional encoder/decoder is 64. In our experiments, class
labels are used in Section 4.1. Physical parameters and timestep embeddings are used in Section 4.3.
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Convolutional encoder The convolution encoder first embeds the input using a Conv3D layer
(kernel size 3, padding 1) with filters that correspond to the embedding dimensions of the configuration.
This is followed by downsampling layers implemented via Conv3D layers (kernel size 3, padding 1,
stride 2). Intermediate states before each downsampling operations are saved for residual connections.
Encoder blocks and consecutive downsampling are applied twice. For each layer, the corresponding
number of filters is shown in Table A1. Encoder blocks are repeated twice. Each encoder block
consists of GroupNormalization layers, followed by GELU activations, Conv3D layer (kernel size
3, padding 1), GroupNormalization, modulation via shift and scale operations depending on the
conditioning, GELU and an additional Conv3D layer (kernel size 3, padding 1). The input and output
of each encoder block are connected via skip connections. The shift and scale vectors are learned via
linear layers from the embedding vectors of the convolutional encoder/decoder.

Convolutional decoder The design of the convolutional decoder mirrors the convolutional encoder
in a U-shape architecture with residual connections. Upsampling layers are implemented via a
combination of Conv3D layers to increase the number of filters and PixelShuffle3D layers. For an
input number of channels Cin and a target number of channels in the upsampled output Cout, the
Conv3D operation first expands the number of channels Cin×H×W ×D → 8Cout×H×W ×D
and PixelShuffle3D spatially rearranges the pixels 8Cout ×H ×W ×D → Cout × 2H × 2W × 2D.

A.5 CONTEXT MODEL

The context module is a transformer-based architecture for processing 3D volumetric data in a
sequence-like fashion. The model’s design and operation can be broken down into the following key
components:

Latent tokens The model accepts a 5D tensor of shape (B,C,H,W,D) with batch size B, token
embedding dimension C, height H , width W , and depth D, corresponding to the token representations
of the transformer encoder block arranged on a 3D spatial grid according to their positions. This
input is first reshaped into a 2D sequence of tokens with shape (N, (H ×W ×D), C) by flattening
the spatial dimensions (H,W,D) into a single sequence length. This token sequence is then passed
through an input projection layer to map it to the model’s internal hidden size dC = 512. The new
tokens are called latent tokens.

Region tokens The model utilizes learnable region tokens, which are a set of nn.Parameter
tensors. The number of tokens is defined by the number of regions. The region tokens are initialized
from a normal distribution with a standard deviation of 10−6. Regions tokens are appended to the
input sequence and are used to obtain embeddings for each region, which are injected into the adaptive
instance normalization layers of the decoder modules.

Positional encoding Positional information is incorporated using 3D sine-cosine positional em-
beddings. The embeddings are added to the input token sequence after the initial projection and
concatenation with region tokens. The positional embedding for a given position (w, h, d) and
dimension i is calculated by concatenating three separate 1D sine-cosine embeddings for each spatial
axis. The 1D positional embedding at position p and dimension i are calculated via:

PE(p, 2i) = sin
( p

T 2i/dP

)
(7)

PE(p, 2i+ 1) = cos
( p

T 2i/dP

)
, (8)

where dP = dC/3 is the embedding dimension per axis, and T = 10 is a temperature hyperparameter.
Both latent tokens and regions tokens have their own positional encoding.

Core architectural blocks The sequence of tokens is processed by a stack of nL = 6 LLMLayer
blocks. Each block consists of:

• LlamaRMSNorm: A root mean square normalization layer that normalizes the input to
a unit RMS, followed by a learned scaling factor. It is a more computationally efficient
alternative to traditional layer normalization.
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• LLMAttention: A multi-head self-attention module that computes attention weights to
model relationships between tokens in the input sequence. This block receives the input
query tokens and calculates query, key, and value vectors. We use hyper attention , this is a
specialized attention variant designed for efficient long-sequence processing.

• LlamaMLP: A gated multi-layer perceptron with a GELU activation function.

Output The processed latent tokens are projected back to the original token size C via a linear layer
and reshaped to match the input of the context network. The resulting tensor is added to the input of
the transformer decoder, forming a skip connection. For each adaptive instance normalization module
in the decoder, the regions tokens are embedded via a unique linear layer. The region embeddings
are added to the input of the adaptive instance normalization layer of their corresponding region,
resulting in a different modulation for each region.

Table A1: Different configurations S, B and L of P3D. Table shows the total number of weights, the
number of filters within the convolutional encoder/decoder and the number of groups for GroupNor-
malization layers.

Configuration Number of parameters Embedding dimensions Number of groups

S 11.2M [32, 32, 64] 16
B 46.2M [64, 128, 128] 32
L 181M [128, 256, 256] 32

A.6 BASELINE ARCHITECTURES

Performance comparison of baseline architectures Below, we summarize the numbers of the
different architectures used in the experiments for an input of size 1283 with a single channel, see
Table A2.

Table A2: Performance comparison of architectures.

Model Params GFLOPS Memory Throughput
Swin3D 50.3M 144.8 2.9GB 9.86it/s
FactFormer 5.0M - 20.4GB 0.82it/s
UNetGenCFD 100.0M 5519.8 4.8GB 2.03it/s
UNetConvNext 9.2M 167.8 2.4GB 11.9it/s
TFNO 75.6M 69.7 5.1GB 4.7it/s
AViT 60.0M 71.5 0.3GB 188.3it/s
AFNO 64.1M 1058.2 0.4GB 31.7it/s

P3D-S 11.2M 108.5 0.9GB 35.2it/s
P3D-B 46.1M 1165.3 2.1GB 10.0it/s
P3D-L 181.2M 4638.1 4.6GB 3.7it/s

Regarding the number of parameters, GFLOPs, memory and throughput, the three configurations S,
B and L of P3D are well positioned compared to the baselines we chose. Timings were obtained on
a RTX A5000 GPU with batch size 1. Importantly, across all tasks, P3D outperforms the baselines in
terms of accuracy. We fixed the training setup for all architectures, using learning rate/optimizer/batch
size that are common for training large transformer and UNet models (Esser et al., 2024). Due to the
number and size of the different models, we do not perform any hyperparameter tuning for individual
models.

Swin3D Our implementation of extends the SwinV2 (Liu et al., 2021) transformer in 3D. The
code is based Swinv2PreTrainedModel in the Python transformers package, with pixel
shuffling in 3D for upsampling. For the B (default) configuration of Swin3D, we use a token
embedding dimension of 96 with patch size p = 2, four stages with two layers each, window size
w = 4 and 12 attention heads for each stage.
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FactFormer We use the official code repository of FactFormer https://github.com/
BaratiLab/FactFormer. We adapt the FactFormer3D module used for the 3D Navier-
Stokes experiment (Li et al., 2023b). Hyperparameters are taken from the configuration file in the
repository: dim=128, depth=4, dim_head=64, heads=6.

UNetGenCFD We use the official code repository for UNetGenCFD https://github.com/
camlab-ethz/GenCFD. We remove any modifications of the core UNet structure spe-
cific to the diffusion training setup in Molinaro et al. (2024). Hyperparameters are taken
from the repository: num_channels=[128,256,256], downsample_ratio=[2,2,2],
num_blocks=4, padding_method=’circular’, use_position_encoding=True
and num_heads=8.

UNetConvNeXt We use the implementation of UNetConvNeXt with ConvNeXt blocks provided
by the GitHub repository https://github.com/PolymathicAI/the_well. This ar-
chitecture was used as a benchmark in Ohana et al. (2024). Hyperparameters are kept the
same: spatial_resolution=[128,128,128], stages=4, blocks_per_stage=1,
blocks_per_neck=1, init_features=32.

TFNO We use the implementation of TFNO (Kossaifi et al., 2023) from the Python
neuralop package https://github.com/neuraloperator/neuraloperator. Hy-
perparameters are: spatial_resolution=[128,128,128], modes_1=16, modes_2=16,
modes_3=16, hidden_channels=64.

AViT We use the implementation of axial vision transformers (Ho et al., 2019) provided by
the GitHub repository https://github.com/PolymathicAI/the_well. This architec-
ture was used as a benchmark in Ohana et al. (2024). Hyperparameters for the B configu-
ration are kept the same: spatial_resolution=[128,128,128], hidden_dim=768,
num_heads=12, processor_blocks=8.

AFNO We use the implementation of AFNO (Guibas et al., 2021) provided by the GitHub
repository https://github.com/PolymathicAI/the_well. This architecture was used
as a benchmark in Ohana et al. (2024). Hyperparameters for the B configuration are kept
the same: spatial_resolution=[128,128,128], hidden_dim=768, n_blocks=12,
cmlp_diagonal_blocks=8 and patch_size=8.
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B EXPERIMENT 1: JOINTLY LEARNING PDES

The datasets used in this experiment were carefully selected for a diverse list of partial differential
equations (PDEs) with a focus on high spatial resolution. This is combined with variations of the
physical parameters of the PDEs and different initial conditions, creating diverse dynamics across the
different simulations for each type of PDE.

The dataset encompasses linear, reaction-diffusion, and nonlinear PDEs. We utilized the
Exponax solver, as detailed by Koehler et al. (2024) in the APEBench benchmark. The solver
utilizes Exponential Time Differencing Runge-Kutta (ETDRK) methods. We intentionally opted
not to use the APEBench dataset directly from the original authors. This decision was driven by
our goal to create datasets with enhanced resolution and greater diversity in the underlying physical
behaviors, rather than relying solely on variations in initial conditions as done in APEBench. It is a
characteristic of the ETDRK methods that they operate within the Fourier domain. Consequently,
their application is limited to scenarios with periodic domains and cannot accommodate complex
boundary conditions.

Table B1: Summary of datasets produced for the joint PDE learning task, covering linear, reaction-
diffusion, and nonlinear PDEs. The table details the dimensions of each dataset: number of simula-
tions (s), time steps (t), fields/channels (f), and spatial dimensions (x, y, z). Beyond the explicitly
varied quantities listed for each dataset, the initial conditions for every simulation (s) are also distinct.

Dataset s t f x y z Varied Quantities across s Test Set

hyp 60 30 1 384 384 384 hyper-diffusivity s ∈ [50, 60[

fisher 60 30 1 384 384 384 diffusivity, reactivity s ∈ [50, 60[
sh 60 30 1 384 384 384 reactivity, critical number s ∈ [50, 60[
gs-alpha 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs-beta 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs-gamma 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs-delta 10 30 2 320 320 320 initial conditions only s ∈ [8, 10[
gs-epsilon 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs-theta 10 30 2 320 320 320 initial conditions only s ∈ [8, 10[
gs-iota 10 30 2 320 320 320 initial conditions only s ∈ [8, 10[
gs-kappa 10 30 2 320 320 320 initial conditions only s ∈ [8, 10[

burgers 60 30 2 384 384 384 viscosity s ∈ [50, 60[
kdv 60 30 2 384 384 384 domain extent, viscosity s ∈ [50, 60[
ks 60 30 1 384 384 384 domain extent separate: s=5, t=200

B.1 DATA GENERATION SETUP

A key aspect of the simulations, in addition to parameter variation, is the use of randomized initial
conditions. The standard approach for constructing these conditions involves randomly selecting one
of three initialization methods, each providing a unique spectral energy distribution. The first method,
a random truncated Fourier series initializer, involves summing multiple Fourier series up to a cutoff
frequency, chosen as a uniformly random integer between 2 and 10 (exclusive of 11). The second,
the Gaussian random field initializer, produces a power-law spectrum in Fourier space, where energy
diminishes polynomially with the wavenumber; its exponent is uniformly randomly selected from
[2.3,3.6[. The third method, the diffused noise initializer, generates a tensor of values from normally
distributed white noise, subsequently diffusing it. This results in a spectrum that decays exponentially
quadratically, with an intensity rate uniformly random from [0.00005,0.01[. After generation, all
initializers ensure the initial conditions’ values are normalized to a maximum absolute value of one.
For vector quantities, the randomly chosen initializer is applied independently to each component.

B.2 PDE TYPES

We make use of Exponential Time Differencing Runge-Kutta (ETDRK) methods to efficiently
simulate different PDEs via Exponax. While the chosen linear PDEs are simple and analytically

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

solvable, the underlying dynamics are essential for more complicated PDEs. These linear PDEs can
be understood as representing a scalar attribute, such as density. Unless stated otherwise, sampling
from intervals is consistently performed using a uniform random distribution. In the following, we
describe a range of different three-dimensional PDE problems that are employed in our experiments
ranging from linear, over reaction-diffusion, to non-linear PDEs. The class of non-linear PDEs is
particularly challenging, as these cases more closely resemble real-world problems.

Hyper-Diffusion (hyp) behaves similarly to diffusion, where density dissipates inside a periodic
domain due to the effects of hyper-diffusion. Unlike diffusion, hyper-diffusion does not treat all
wavelengths equally, analogous to the relation between dispersion and advection. Higher frequency
components are damped even more aggressively compared to normal diffusion, leading to visually
stronger blur effect of the density field over time.

• Dimensionality: s = 60, t = 30, f = 1, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
• Boundary Conditions: periodic
• Time Step of Stored Data: 0.01
• Spatial Domain Size of Simulation: [0, 1]× [0, 1]

• Fields: density
• Varied Parameters: hyper-diffusivity ∈ [0.00005, 0.0005[

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [50, 60[

Figure B1: Random example simulation from hyp.
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Fisher-KPP (fisher) is a foundational reaction-diffusion PDE. These systems are used to model
biological or geological processes, often resulting in pattern formation. This equation details how the
concentration of a substance varies over time and space, influenced by a reaction process governed by
a reactivity parameter, and its dispersal through diffusion, which is defined by a diffusivity parameter.
Its applications extend to various domains, including wave propagation, population dynamics, ecology,
and plasma physics. Figure B2 shows example visualizations from fisher.

• Dimensionality: s = 60, t = 30, f = 1, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise (with
clamping to [0, 1])

• Boundary Conditions: periodic
• Time Step of Stored Data: 0.005
• Spatial Domain Size of Simulation: [0, 1]× [0, 1]

• Fields: concentration
• Varied Parameters: diffusivity ∈ [0.0001, 0.02[ and reactivity ∈ [5, 15[

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [50, 60[

Figure B2: Random example simulation from fisher.
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Swift-Hohenberg (sh) is known for depicting various pattern formation processes. This equation
can be applied to illustrate the structure of wrinkles in curved elastic bilayer materials. A prime
example is the formation of human fingerprints, where tensions between skin layers generate their
unique wrinkling. Figure B3 shows example visualizations from sh.

• Dimensionality: s = 60, t = 30, f = 1, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
• Boundary Conditions: periodic
• Time Step of Stored Data: 0.5 (with 5 substeps for the simulation)
• Spatial Domain Size of Simulation: [0, 20π]× [0, 20π]

• Fields: concentration
• Varied Parameters: reactivity ∈ [0.4, 1[ and critical number ∈ [0.8, 1.2[

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [50, 60[

Figure B3: Random example simulation from sh.
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Gray-Scott (gs) illustrates the dynamic interplay of two reacting and diffusing chemical
substances. Substance sa with concentration ca is depleted through reaction but resupplied based
on a defined feed rate. Meanwhile, substance sb, the reaction’s product with concentration cb, is
eliminated from the domain at a given kill rate. The balance between these two rates profoundly
influences the simulation outcomes, leading to diverse stable or evolving patterns. We simulate
several cases: four with temporally steady configurations, which result in a state that does not
substantially change anymore (gs-delta, gs-theta, gs-iota, and gs-kappa), and four
temporally unsteady configurations, which continuously evolve over time (gs-alpha, gs-beta,
gs-gamma, and gs-epsilon). For the unsteady case, separate test sets with longer temporal
rollouts are created. Figure B4 shows example visualizations from the steady configurations, and
Figure B5 from the unsteady configurations and corresponding test sets. For further details, see
(Pearson, 1993).

For all simulations, the diffusivity of the substances is fixed to da = 0.00002 and db = 0.00001. In
addition to that, datasets are initialized with a Gaussian blob initializer. The initializer creates four
Gaussian blobs at random positions and variances in the center 60% (20% for gs-kappa) of the
domain, where the initialization of ca is the complement of cb, i.e. ca = 1− cb.

Steady Configurations (gs-delta, gs-theta, gs-iota, and gs-kappa):
• Dimensionality: s = 10, t = 30, f = 2, x = 320, y = 320, z = 320 (per configuration)
• Initial Conditions: random Gaussian blobs
• Boundary Conditions: periodic
• Time Step of Simulation: 1.0 (all configurations)
• Time Step of Stored Data:

– gs-delta: 130.0
– gs-theta: 200.0
– gs-iota: 240.0
– gs-kappa: 300.0

• Number of Warmup Steps (discarded, in time step of data storage):

– gs-delta: 0
– gs-theta: 0
– gs-iota: 0
– gs-kappa: 15

• Spatial Domain Size of Simulation: [0, 2.5]× [0, 2.5]

• Fields: concentration ca, concentration cb
• Varied Parameters: feed rate and kill rate determined by configuration (i.e., initial conditions

only within configuration)

– gs-delta: feed rate: 0.028, kill rate: 0.056
– gs-theta: feed rate: 0.040, kill rate: 0.060
– gs-iota: feed rate: 0.050, kill rate: 0.0605
– gs-kappa: feed rate: 0.052, kill rate: 0.063

• Validation Set: random 15% split of all sequences from s ∈ [0, 8[

• Test Set: all sequences from s ∈ [8, 10[

Unsteady Configurations (gs-alpha, gs-beta, gs-gamma, and gs-epsilon):
• Dimensionality: s = 10, t = 30, f = 2, x = 320, y = 320, z = 320 (per configuration)

• Initial Conditions: random Gaussian blobs

• Boundary Conditions: periodic

• Time Step of Simulation: 1.0 (all configurations)

• Time Step of Stored Data:

– gs-alpha: 30.0
– gs-beta: 30.0
– gs-gamma: 75.0
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– gs-epsilon: 15.0
• Number of Warmup Steps (discarded, in time step of data storage):

– gs-alpha: 75
– gs-beta: 50
– gs-gamma: 70
– gs-epsilon: 300

• Spatial Domain Size of Simulation: [0, 2.5]× [0, 2.5]

• Fields: concentration ca, concentration cb

• Varied Parameters: feed rate and kill rate determined by configuration (i.e., initial conditions
only within configuration)

– gs-alpha: feed rate: 0.008, kill rate: 0.046
– gs-beta: feed rate: 0.020, kill rate: 0.046
– gs-gamma: feed rate: 0.024, kill rate: 0.056
– gs-epsilon: feed rate: 0.020, kill rate: 0.056

• Validation Set: random 15% split of all sequences from s ∈ [0, 10[

• Test Set: separate simulations with s = 30, t = 100, f = 2, x = 320, y = 320, z = 320
(per configuration)
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Figure B4: Random example simulations from steady configurations of the Gray-Scott model of a
reaction-diffusion system: gs-delta, gs-theta.
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Figure B5: Random example simulations from unsteady configurations of the Gray-Scott model of a
reaction-diffusion system: gs-alpha, gs-beta.
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Burgers (burgers) bears resemblance to an advection-diffusion problem. Instead of modeling
the transport of a scalar density, this equation describes how a flow field itself evolves due to the
combined effects of advection and diffusion. This process can result in the formation of abrupt
discontinuities, often referred to as shock waves, which present a significant challenge for accurate
simulation. Burgers’ equation also finds utility in fields such as nonlinear acoustics and the modeling
of traffic flow. Figure B6 shows example visualizations from burgers.

• Dimensionality: s = 60, t = 30, f = 2, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
• Boundary Conditions: periodic
• Time Step of Stored Data: 0.01 (with 50 substeps for the simulation)
• Spatial Domain Size of Simulation: [0, 1]× [0, 1]

• Fields: velocity (x, y)
• Varied Parameters: viscosity ∈ [0.001, 0.005[

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [50, 60[

Figure B6: Random example simulation from burgers.
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Korteweg-de-Vries (kdv) presents simulations of the Korteweg-de-Vries equation within a pe-
riodic domain. This equation models dispersive, non-dissipative wave propagation and is a classic
example of an integrable PDE. It poses a challenge because energy is transferred to high spatial
frequencies, resulting in distinct, moving soliton waves that maintain their shape and propagation
speed. Throughout these simulations, the convection coefficient remains constant at −6, and the
dispersivity coefficient is consistently 1. Figure B7 shows example visualizations from kdv.

• Dimensionality: s = 60, t = 30, f = 2, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
• Boundary Conditions: periodic
• Time Step of Stored Data: 0.05 (with 10 substeps for the simulation)
• Spatial Domain Size of Simulation: varied per simulation
• Fields: velocity (x, y)
• Varied Parameters: domain extent ∈ [30, 120[ identically for x, y, z, i.e. a square domain,

and viscosity ∈ [0.1, 0.25[

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [50, 60[

Figure B7: Random example simulation from kdv.
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Kuramoto-Sivashinsky (ks) models thermo-diffusive flame instabilities in combustion and also
finds use in reaction-diffusion systems on a periodic domain. It’s notable for its chaotic behavior,
where even slightly different initial conditions can lead to wildly divergent temporal trajectories over
time. The initial transient phase of the simulations is not included in the dataset. Figure B8 shows
example visualizations from ks.

• Dimensionality: s = 60, t = 30, f = 1, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
• Boundary Conditions: periodic
• Time Step of Stored Data: 0.2 (with 2 substeps for the simulation)
• Number of Warmup Steps (discarded, in time step of data storage): 200
• Spatial Domain Size of Simulation: varied per simulation
• Fields: density
• Varied Parameters: domain extent ∈ [10, 130[ identically for x, y, i.e. a square domain
• Validation Set: random 15% split of all sequences from s ∈ [0, 600[

• Test Set: separate simulations with s = 50, t = 200, f = 1, x = 384, y = 384, z = 384

Figure B8: Random example simulation from ks.
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Figure B9: hyp. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L <128|384>
(right) on the test set at resolution 3843.

B.3 VISUALIZATIONS OF PREDICTIONS

Below, we visualize several example predictions from the P3D-L network trained on crop size 1283

on the test datasets. See Figures B9 to B17. During inference, we apply the network to larger crops of
domain size 3203 for the Gray-Scott PDEs and 3843 for all other PDEs. The resolution is significantly
higher than what the network was originally trained on. In addition, since the full domain is periodic,
we change the padding mode of convolutional layers within the convolutional encoder and decoder
from "zeros" to "circular". We consider autoregressive rollouts of up to t = 8 steps.
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Figure B10: fisher. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L
<128|384> (right) on the test set at resolution 3843.
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Figure B11: sh. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L <128|384>
(right) on the test set at resolution 3843.
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Figure B12: gs-alpha. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L
<128|320> (right) on the test set at resolution 3203.
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Figure B13: gs-epsilon. Reference (left) and autoregressive prediction for t = 8 steps with
P3D-L <128|320> (right) on the test set at resolution 3203.
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Figure B14: gs-delta. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L
<128|320> (right) on the test set at resolution 3203.
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Figure B15: burgers. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L
<128|384> (right) on the test set at resolution 3843.
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Figure B16: kdv. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L
<128|384> (right) on the test set at resolution 3843.
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Figure B17: ks. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L <128|384>
(right) on the test set at resolution 3843.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table B2: Normalized RMSE (×10−3) for crop size 128.

Model Name Fisher GS α GS β GS δ GS ϵ GS γ GS ι GS κ GS θ Hyp KDV KS SH Burgers Average

P3D-S 8.3 15.7 29.3 14.1 13.4 47.4 12.9 16.0 6.3 73.4 92.0 18.9 91.4 27.2 33.3
P3D-B 7.1 9.0 14.9 8.1 7.7 19.9 9.1 10.6 4.7 75.3 75.3 19.0 75.6 16.8 25.2
P3D-L 6.9 5.7 8.9 5.7 5.4 16.0 6.0 7.1 2.3 69.1 65.8 18.4 62.7 11.1 20.8

AFNO 13.0 20.7 30.4 18.8 23.3 43.3 17.1 20.0 6.1 146.5 81.5 32.4 183.5 34.6 47.9
AVIT 124.6 49.7 60.8 51.7 62.7 101.0 47.6 48.1 56.7 619.2 191.2 65.1 470.7 177.0 151.9
Swin3D 11.7 24.3 30.7 22.0 23.0 50.0 22.8 17.5 5.2 153.6 90.1 27.0 190.8 36.7 50.4
UNetGenCFD 17.3 35.8 19.5 6.4 24.9 50.7 6.4 6.4 6.4 214.2 107.7 43.2 573.1 45.8 82.7

Table B3: Normalized RMSE (×10−3) for crop size 64.

Model Name Fisher GS α GS β GS δ GS ϵ GS γ GS ι GS κ GS θ Hyp KDV KS SH Burgers Average

P3D-S 10.4 21.0 25.4 5.2 18.1 43.3 4.6 4.6 4.6 92.2 100.4 50.5 111.8 34.4 37.6
P3D-B 8.3 11.7 10.9 4.2 10.1 26.1 3.8 3.8 3.8 83.6 92.2 42.1 98.7 26.2 30.4
P3D-L 6.8 7.3 10.1 7.1 6.6 17.5 8.8 8.3 1.4 69.6 73.7 28.5 88.1 15.0 24.9

AFNO 19.7 20.0 22.7 3.1 21.0 38.0 2.3 2.3 2.3 189.4 90.8 39.4 210.7 36.3 49.9
AVIT 175.6 81.9 53.6 19.5 88.3 106.0 19.0 19.0 19.0 2004.7 206.6 92.7 450.8 213.9 253.6
Swin3D 20.7 67.4 56.9 5.0 59.7 98.4 4.5 4.5 4.5 155.6 115.9 61.2 285.3 46.2 70.4
FactFormer 19.06 18.01 13.94 3.75 16.10 30.76 3.75 3.75 3.75 182.78 95.13 31.53 184.20 40.48 46.2
UNetGenCFD 36.6 35.1 72.7 14.0 42.5 65.5 13.7 13.6 13.7 272.4 128.4 37.0 324.4 56.2 80.4
UNetConvNeXt 18.6 40.3 49.8 6.8 36.2 66.8 6.5 6.5 6.5 190.8 108.8 42.1 364.5 49.0 70.9
TFNO 23.2 111.6 56.2 6.3 49.5 96.7 6.0 6.0 6.0 175.5 113.8 222.1 263.1 36.2 83.7

Table B4: Normalized RMSE (×10−3) for crop size 32.

Model Name Fisher GS α GS β GS δ GS ϵ GS γ GS ι GS κ GS θ Hyp KDV KS SH Burgers Average

P3D-S 9.2 49.7 56.3 6.3 33.7 57.2 6.3 6.3 6.3 146.5 127.3 158.4 176.2 38.8 62.7
P3D-B 8.3 24.5 14.8 2.5 15.9 40.1 2.5 2.5 2.5 131.1 126.4 117.5 131.7 37.9 46.9
P3D-L 7.9 18.5 11.4 1.9 14.2 32.4 1.9 1.9 1.9 109.3 110.8 110.9 129.4 27.3 41.4

AFNO 21.7 43.8 22.0 5.8 33.4 65.9 5.8 5.8 5.8 188.7 118.3 74.0 619.5 43.1 89.5
AVIT 237.1 126.7 50.7 13.6 107.6 122.7 13.6 13.6 13.6 1089.4 256.7 177.6 476.0 230.1 209.2
Swin3D 16.6 154.5 38.6 3.8 56.2 92.6 3.8 3.8 3.8 189.1 143.6 83.4 263.5 55.7 79.2
FactFormer 20.1 43.1 23.1 5.8 32.0 43.9 5.8 5.8 5.8 222.9 105.0 54.4 263.7 43.3 62.5
UNetGenCFD 18.5 38.6 22.1 3.5 20.9 53.6 3.5 3.5 3.6 196.3 105.8 37.0 517.2 41.9 76.1
UNetConvNeXt 20.3 111.6 38.3 7.4 49.2 89.9 7.4 7.4 7.4 166.3 128.5 77.4 442.5 48.9 85.9
TFNO 21.9 176.8 41.2 5.6 46.4 84.4 5.6 5.6 5.6 175.3 121.8 204.1 252.4 38.3 84.7
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C EXPERIMENT 2: ISOTROPIC TURBULENCE

For the second experiment, we make use of the Johns Hopkins Turbulence Database (JHTDB). It
contains data from various direct numerical simulations of homogeneous and wall-bounded turbulent
flows (Perlman et al., 2007). The simulations are stored with space-time history and allow for arbitrary
spatiotemporal query points.

Isotropic Turbulence (iso-turb) a direct numerical simulation of the Navier-Stokes equations
at Reynolds number around 433 simulated on a 10243 periodic grid via a pseudo-spectral parallel
code. It contains homogeneous isotropic turbulence, i.e., an idealized version of realistic turbulence
with statistical properties that are invariant to translations and rotations of the coordinate axes. The
following overview summarizes key characteristics of the dataset (for further details see Perlman
et al., 2007):

• Dimensionality: s = 1, t = 500, f = 4, x = 512, y = 512, z = 512

• Boundary conditions: periodic
• Time step of stored data: 0.002
• Spatial domain size: [0, 2π]× [0, 2π]× [0, 2π]

• Fields: velocity X/Y/Z, pressure
• Validation set: random 15% split of all timesteps from t ∈ [0, 420]

• Test set: all sequences from t ∈ [420, 500]

C.1 EXTENDED EVALUATION

See Table C1 for an extended evaluation expanding upon Table 4. The B config corresponds to the
previous size of the baselines models for Swin3D, AViT and AFNO. The S config decreases the
hidden dimensionality of the model architecture, which we change from 768 (B) to 384 (S) for AViT
and AFNO. For Swin3D, we decrease it from 96 (B) to 48 (S). For Swin3D and AViT, the hidden
dimensionality corresponds to the token embedding dimension. We also trained an L config for the
AViT model with hidden dimensionality 1536. All baseline models were trained for 4000 epochs.
Additionally, we kept training P3D-S and P3D-B for a total of 20000 epochs. The evaluation shows
that the RMSE and spectral error keep improving, showing no indication of overfitting.

We also include a benchmark comparison regarding the number of parameters, GFLOPs, VRAM and
throughput for inference of P3D and the different baseline architectures in Table C2.
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Figure C1: Isotropic Turbulence. Training dataset visualization at resolution 5123 showing the
velocity X/Y/Z and pressure from t = 0 until t = 420. The first six rows are 2D mean projections
and slices of the velocity in x-direction. The 3D renderings show velocity X/Y/Z and pressure.
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Table C1: Performance comparison on the test set with crop size 1283 for RMSE (×10−2) and the
L2 enstrophy graph error (×102) at different autoregressive rollout steps.

Model RMSE L2 Enstrophy epochs
1 5 10 15 1 5 10 15

UNetGenCFD 5.48 25.42 48.60 67.72 4.25 14.5 22.7 140 4000

Swin3D-S 4.04 11.53 18.66 24.30 6.28 59.7 120 158 4000
Swin3D-B 3.22 10.45 18.15 24.36 4.06 52.1 112 156 4000

AViT-S 10.09 21.47 32.60 40.36 31.60 44.1 99.2 144 4000
AViT-B 9.45 19.57 30.00 37.77 26.70 49.1 84.6 112 4000
AViT-L 9.18 18.80 29.76 39.20 24.20 54.6 96.8 129 4000

AFNO-S 4.25 14.80 23.58 30.40 8.30 99.9 171 196 4000
AFNO-B 3.69 13.33 23.52 29.80 7.69 88.7 158 190 4000

P3D-S 2.81 9.87 20.50 28.25 2.15 8.23 21.6 31.9 4000
2.17 8.99 19.40 27.40 1.29 6.68 16.0 25.3 20000

P3D-B 2.04 8.79 20.23 31.52 0.72 1.39 3.38 19.2 4000
1.54 8.11 21.09 44.92 0.21 0.71 3.49 14.7 20000

Table C2: Architecture benchmark comparison on crop size 1283 measured on a H100 GPU using
CUDA 12.8. VRAM is measured at inference with batch size 1. Throughput with batch size 16.

Model Params GFLOPs VRAM Throughput

Swin3D-S 18.9M 38.8 2.2G 51.2it/s
Swin3D-B 50.3M 144.8 2.9G 34.1it/s

AViT-S 15.1M 24.4 0.16G 859it/s
AViT-B 60.0M 71.5 0.3G 346it/s
AViT-L 239.2M 233.5 1.1G 128it/s

AFNO-S 17.0M 471.1 0.2G 167it/s
AFNO-B 64.1M 1058.2 0.4G 58.6it/s

P3D-S 11.2M 108.5 0.9G 88.9it/s
P3D-B 46.1M 1165.3 2.1G 30.9it/s
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C.2 VORTICITY

The vorticity ω, is a measure of the local rotation in a fluid flow. It is defined as the curl of the velocity
vector field u = (ux, uy, uz), where u, v and w are the velocity fields in x, y and z direction. The
vorticity is defined as

ω = ∇× u =

(
∂uz

∂y
− ∂uy

∂z

)
e1 +

(
∂ux

∂z
− ∂uz

∂x

)
e2 +

(
∂uy

∂x
− ∂ux

∂y

)
e3, (9)

where e1, e2 and e3 represent the unit vectors in x, y and z direction.

The vorticity is not part of the data. Only the velocity channels in X/Y/Z are available.

Approximation by finite differences To compute the components of the vorticity numerically
from the velocity, we use finite difference approximations for the partial derivatives in Equation (9).

For a grid point (i, j, k) located in the interior of the discretized simulation domain, we approximate
the partial derivates as

∂ux

∂x
≈ ui+1,j,k

x − ui−1,j,k
x

2∆x
∂ux

∂y
≈ ui,j+1,k

x − ui,j−1,k
x

2∆y

∂ux

∂z
≈ ui,j,k+1

x − ui,j,k−1
x

2∆z
and analogously for uy and uz .

C.3 ENSTROPHY GRAPH

We consider the magnitude |ω| of the vorticity ω, which is a scalar field defined as

|ω| =

√√√√ n∑
i=1

|ωi|2. (10)

The enstrophy of the magnitude of the vorticity field |ω| at wavenumber k ∈ R+ is defined as

Enstrophy(k) =
∑

k≤|m|≤k+1

|ω̂(m)|2, (11)

where ŵ with m ∈ Z2 are the Fourier coefficients of |ω|, see Chen et al. (2024, C.2) for reference.
The enstrophy spectrum is the graph of the function k 7→ Enstrophy(k). We average the enstrophy
spectrum over different vorticity fields.

We compute the L2 enstrophy error between the reference enstrophy spectrum and the enstrophy
spectrum of generated vorticities as

L2
Enstrophy :=

1

K + 1

∑
0≤k≤K

[
Enstrophyavgreference(k)− Enstrophyavggenerated(k)

]2
(12)

with K = 16.

Hanning filter The data on the cropped domain of size 1283 is not periodic, thus there are artifacts
at the boundary of the crop. This leads to problems when calculating the Fourier coefficients ω̂.
We therefore smoothen |ω| towards the boundary by multiplying the data with the Hann window as
defined in torch.hann_window.

In Figure C2 we show the magnitude of the vorticity |ω| generated by P3D-B and the reference after
applying the Hanning filter (t = 1 autoregressive steps).

See Figure C3 for the enstrophy spectrum Enstrophyavggenerated of the predicted vorticities by P3D-B
and the enstrophy spectrum Enstrophyavgreference of the reference for autoregressive unrolling steps
t = 1 and t = 15 on the test set.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Figure C2: Generated vorticity magnitude |ω| by P3D-B (left) and reference (right) after applying
the Hanning filter.
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Figure C3: Enstrophy spectrum of P3D-B and the reference simulation at resolution 1283 for t = 1
and t = 15 autoregressive prediction steps.

C.4 TRAINING AND EVALUATION

The model weights for the evaluation in Table 4 are the EMA weights at epoch 2000. We train both
the S and B configurations of P3D on crop size 1283. Training P3D-S for 4000 epochs took 11h
48m and training P3D-B took 20h 25m on four A100 GPUs. See Figure C4 for the validation loss
curve.

In Figure C5 we show a comparison between the reference and P3D-S <128|512> with an autoregres-
sive rollout until t = 16 on the test set at resolution 5123.
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Figure C4: Isotropic Turbulence. Validation MSE for P3D-S and P3D-B during training.

(a) Reference (b) P3D-S <128|512>

Figure C5: Isotropic Turbulence. Autoregressive prediction for t = 16 steps with P3D-S <128|512>
on the test set at resolution 5123. The first six rows are 2D mean projections and slices of the velocity
in x-direction. The 3D renderings show velocity X/Y/Z and pressure.
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Figure C6: Vorticity magnitude |ω| calculated from the predicted velocity X/Y/Z for different models
(1/2).
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Figure C7: Vorticity magnitude |ω| calculated from the predicted velocity X/Y/Z for different models
(2/2).
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D EXPERIMENT 3: TURBULENT CHANNEL FLOW

The dataset for the turbulent channel flow (TCF) represents a periodic channel with no-slip
boundaries at ±y that is driven by a dynamic forcing to re-inject energy lost due to wall friction, and
prevent the flow from slowing down. This results in a continuous production of vortex structures at
the walls, which have a very characteristic and well-studied, spatially-varying distribution (Hoyas &
Jiménez, 2008). Due to the complexity of the flow, these flows require very long transient phases to
develop the characteristic structures, We target this scenario by learning with a generative model, in
the context of which the TCF problem represents a probabilistic learning problem to infer turbulent
stats from the equilibrium phase, bypassing the costly transient warm-up phase.

D.1 DATASET

We generate a dataset comprising 20 simulations with Reynolds numbers within the interval [400, 800]
spaced equidistantly. After the initial-warmup phase, we simulate ETT = 20 eddy turnover cycles,
which we save in 200 snapshots with ∆t = 0.1. The computational grid comprises 96× 96× 192
spatially adaptive cells with a finer discretization near the wall. The data contains channels for the
velocity in X/Y/Z direction as well as pressure. We train P3D directly with computational grid data,
which is shown in Figure D1. In Figures D2 and D3 we show visualizations of the turbulent channel
flow for Reynold numbers Re = 400 and Re = 640 respectively.

• Dimensionality: s = 20, t = 200, f = 4, x = 96, y = 96, z = 192

• Initial conditions: noise
• Boundary conditions: periodic (x), wall (y,z)
• Time step of stored data: 0.1
• Number of warmup steps (discarded, in time step of data storage): 200
• Spatial domain: [−1, 1]× [−1, 1]× [−π, π]

• Fields: velocity X/Y/Z, pressure
• Varied parameters: Reynolds number ∈ [400, 800]

• Validation set: random 15% split of Reynolds number

3 2 1 0 1 2 3

1.00
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0.50

0.25
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Figure D1: Computational grid of the turbulent channel flow simulation. The spatial discretization is
refined in the near-wall region to resolve the boundary layer.
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Figure D2: Turbulent channel flow with Reynolds number 400.
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Figure D3: Turbulent channel flow with Reynolds number 640.
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Training S, B and L configs We train P3D with the configurations S, B and L for 400 epochs on
the full domain of size 962 × 192. The training loss is shown in Figure D4. It is important to choose
large architectures in our generative modeling setup based on flow matching. The network size,
specifically the embedding dimension is critical for this task with the L config reaching significantly
lower loss values compared to the S config trained with the same number of epochs. All models were
trained on 4 A100 GPUs with 80GB VRAM. Training took 11h 4m, 14h 43m and 27h 55m for the S,
B and L configs respectively.
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Figure D4: Turbulent channel flow. Training curve for different configurations of P3D.

D.2 STATISTICAL EVALUATION

Let x = (x1, x2, x3) denote the spatial coordinates and u(x, t,Re) denote the velocity of the flow
direction X. The reference simulations reach an equilibrium phase after the initial transient phase of
the warmup. Therefore, for the reference simulations, the moments um(x, t,Re) should be the same
for all t. Additionally, the setup combining periodic boundary conditions and no-slip boundaries
for the wall implies that the statistics only depend on the distance to the wall on the flow axis x1,
i.e., um((x1, x2, x3), t,Re) is the same for all x2 and x3 inside the domain. Thus it is reasonable
to consider um(x1,Re) and calculate the moments by sampling over x2, x3, t. Since the baseline
methods cannot be conditioned on the Reynolds number Re, we also compute the velocity profile
over Re. We compute the L2 distance between mean µ (m = 0) and variance σ2 (m = 1) of the
velocity profile graph x1 7→ um(x1) of the time-resolved DNS reference and generated samples.
The resulting L2 distance for the mean µ and variance σ2 is shown in Table 5, which provides a
meaningful statistical metric to evaluate accuracy. We additionally train two baselines, AFNO and
UNetGenCFD with identical training setups as P3D-L on the full domain.

Moments of the flow field We included comparisons of the first three moments (mean, variance,
skewness) um of the flow direction (velocity in x-direction) averaging over x1 as well. We report
the standard deviation when estimating the moments of the reference based on randomly drawing 20
simulations states of the equilibrium phase per Reynolds number as done for the velocity profiles to
properly assess how close the generated samples should match the reference. For the finetuned P3D-L
<X48|X48>, we picked the best model out of the five finetuned models. See Table D1. Overall,
P3D-L trained on the full domain and P3D-L <X48|X48> achieve the best results.

Velocity profile comparison See Figure D5 for a comparison between the mean channel flow
of the reference simulation for different Reynolds number and the mean flow from the generative
model P3D-L trained on the full domain. We show additional comparisons between the different
training and inference strategies in Figure D6. Scaling the P3D-L network trained on the small
crops of size 483 to the full domain does not work well and results in incorrect velocity profiles.
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Table D1: First three moments of the velocity field in the flow direction for the reference, P3D-L and
the two baseline methods.

Moment Mean Variance Skewness
Reference 0.5034±0.0007 0.0511±0.0001 -0.776±0.007

UNetGenCFD full domain 0.5002 0.0532 -0.723
AFNO full domain 0.5040 0.0930 -0.361

P3D-L full domain 0.5009 0.0513 -0.789
P3D-L <X48|X48> 0.5044 0.0510 -0.802

By finetuning with the context network, region crops can coordinate and obtain information about
their relative position to each other as well as to the wall. As a results, the flow statistics improve
significantly, more closely matching the reference and samples from P3D-L trained on the full domain.

We show samples from P3D-L trained on the full domain in Figure D7, when applying
P3D-L pretrained on the full domain without any finetuning in Figure D8 and with finetuning via the
context network and learned region-dependent conditioning in Figure D9 respectively.
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Figure D5: Comparison of the mean channel flow of the reference and of generated samples from
P3D-L trained on the full domain.
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Figure D6: Comparison of the first two moments of the velocity profile between the reference DNS
and generated samples from P3D-L with different training and inference strategies.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Figure D7: Samples from P3D-L trained on the full domain at Re = 800.
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Figure D8: Samples from P3D-L <48|192> pretrained on crops of size 483. Inference on the full
domain at Re = 800 produces incorrect samples, as information on the relative positions between
region crops is not available.
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Figure D9: Samples from P3D-L <X48|X48> pretrained on crops of size 483 and finetuned with the
context network. Inference on the full domain at Re = 800 produces samples that exhibit the correct
flow statistics.
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