
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

P3D: HIGHLY SCALABLE 3D NEURAL SURROGATES
FOR PHYSICS SIMULATIONS WITH GLOBAL CONTEXT

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a scalable framework for learning deterministic and probabilistic neural
surrogates for high-resolution 3D physics simulations. We introduce P3D, a hy-
brid CNN-Transformer backbone architecture targeted for 3D physics simulations,
which significantly outperforms existing architectures in terms of speed and accu-
racy. Our proposed network can be pretrained on small patches of the simulation
domain, which can be fused to obtain a global solution, optionally guided via a
scalable sequence-to-sequence model to include long-range dependencies. This
setup allows for training large-scale models with reduced memory and compute
requirements for high-resolution datasets. We evaluate our backbone architecture
against a large set of baseline methods with the objective to simultaneously learn
the dynamics of 14 different types of PDEs in 3D. We demonstrate how to scale
our model to high-resolution isotropic turbulence with spatial resolutions of up
to 5123. Finally, we show the versatility of our architecture by training it as a
diffusion model to produce probabilistic samples of highly turbulent 3D channel
flows across varying Reynolds numbers, accurately capturing the underlying flow
statistics.

1 INTRODUCTION

Training neural networks on high-resolution data substantially increases the required GPU memory
and compute costs. Scaling models and their input dimensions typically requires substantial engineer-
ing effort, posing a major barrier to the widespread and cost-effective adoption of machine learning
across application domains. Scientific machine learning and engineering are especially affected
due to the multi-scale nature of relevant phenomena whose modeling often requires specialized and
highly computationally demanding numerical solutions. In this paper, we focus on learning surrogate
models for simulations focusing on fluid dynamics that have downstream applications in fields such
as aerospace (Arranz et al., 2024), climate science (Bodnar et al., 2024), energy systems (Degrave
et al., 2022), and biomedical engineering (Morris et al., 2016). Machine learning models inherently
compete with existing solvers, which are often employed to create the reference targets for learning.
As such, they need to either significantly outperform the corresponding solvers while maintaining an
acceptable level of accuracy (Kochkov et al., 2021; Pestourie et al., 2023), or yield solutions where
traditional solvers fall short, for example working with noisy (Franz et al., 2023) or only partial input
data (Shu et al., 2023), or by providing uncertainty estimates (Jacobsen et al., 2023). A large fraction
of papers in this area address learning problems for either low-dimensional or comparatively smooth
data in 2D. In this paper, we deliberately focus on high-resolution 3D phenomena, covering a wide
variety of different types of PDEs.

We propose P3D: a hybrid CNN-Transformer backbone built on PDE-Transformer (Holzschuh et al.,
2025) that combines fast processing of local features via convolutions and windowed attention
mechanisms for learning generalizable token representations. P3D makes important extensions for
scaling to very high resolutions in 3D: crop-based pre-training combined with a designated module
for processing global dependencies. This design achieves superior scalability and accuracy compared
to existing 3D baselines. We evaluate the P3D backbone architecture through an extensive comparison
with existing architectures for modeling physics simulations in 3D, training on 14 different types
of dynamics simultaneously. We then employ P3D as a surrogate model for isotropic turbulence at
resolution 5123 and demonstrate how the P3D architecture pretrained on crops of 1283 can be scaled
to the entire domain, while achieving high accuracy with temporally stable autoregressive rollouts.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A significant difficulty when modeling large systems is how to aggregate and distribute information
globally across the network. We propose to link the bottleneck layers of P3D with a sequence-to-
sequence model, called context model, for an efficient global processing and information aggregation
utilizing highly optimized self-attention mechanisms in LLM layers, which is combined with different
scalable and memory-aware training and inference strategies. Additionally, we propose a direct
mechanism to let aggregated global information flow back to the decoder modules via adaptive
instance normalization layers. In our final experiment, we train P3D as a diffusion model to learn
the distribution of velocity and pressure fields of a turbulent channel flow on a non-equidistant grid.
This setup requires access to global information like the relative position to the walls, and cannot be
addressed by learning local representations alone. We verify that velocity profiles from the generated
samples of P3D closely match the ground truth, demonstrating that high distributional accuracy
can be obtained even when the solution fields are constructed from smaller regions, which are only
coordinated through the information flow from the context model. To summarize our contributions:

• We introduce P3D, a hybrid CNN-Transformer architecture for autoregressive prediction of
high-resolution physics simulations in 3D, combining convolutions for fast learning of local
features and windowed self-attention for deep representation learning.

• We demonstrate the efficiency and versatility of P3D in three experiments: (1) jointly
learning multiple types of simulations (2) scaling P3D pretrained on crops of 1283 to a
high-resolution simulation of isotropic turbulence at 5123, and, (3) generating probabilistic
samples from P3D trained via flow matching for the velocity and pressure fields of a turbulent
channel flow, closely matching the ground truth flow statistics.

• We propose mechanisms for efficient global information processing, including linking
bottleneck layers with a sequence-to-sequence global context model and injecting global
information into adaptive instance normalization layers via region tokens.

• We evaluate different setups for finetuning, which enable a more fine-grained control of
precomputation and gradient backpropagation through encoder and decoder blocks to reduce
VRAM and compute requirements.

2 RELATED WORK

PDEs and machine learning Machine learning has sparked much resonance in accelerating and
improving numerical PDE solvers as well as fully replacing them. Approaches that are combined
with existing PDE solvers can replace components of the solver (Bar-Sinai et al., 2019), learn closure
models (Duraisamy et al., 2019; Sirignano & MacArt, 2023) or learn corrections to a fast solver
on a coarse grid (Um et al., 2021; Kochkov et al., 2021; Dresdner et al., 2023). Other directions
target problems that are more difficult to address with numerical solvers, such as inverse problems
(Raissi et al., 2019; Bruna et al., 2022; Holzschuh et al., 2023), or uncertainty quantification (Xiao &
Cinnella, 2019; Liu & Thuerey, 2024). Leveraging diffusion models for autoregressive prediction
and inverse problems for PDEs has been explored by several works in the past (Lippe et al., 2023;
Kohl et al., 2024; Shu et al., 2023; Shehata et al., 2025), albeit limited to data in 2D.

Pretraining and 3D neural surrogates Subramanian et al. (2023); Yang et al. (2023); McCabe
et al. (2023) pretrain foundation models for PDEs on multiple PDE dynamics simultaneously. Such
models can be used either for zero-shot-predictions or for finetuning when adapting to new dynamics,
which allows for improved results with fewer training samples. Previous works have demonstrated
learning PDEs in 3D, e.g., learning large-eddy simulations (Peng et al., 2023; Li et al., 2023a; 2024a;
Jiang et al., 2025), and elastic wave propagation (Lehmann et al., 2024). Smoke buoyancy in 3D was
targeted as a test case by Li et al. (2023b) Notably, most previous work targets resolutions of up to
643, an exception being probabilistic experiments at a resolution of 1283 (Molinaro et al., 2024), and
surrogate training with up to 128×128×256 (Ohana et al., 2024). This motivates our contributions
for scalable architectures, as surrogate models for truly high-resolution 3D physics simulations are of
paramount interest in different scientific areas.

Scalable transformer architectures Transformers have become one of the dominant backbone
architectures in deep learning due to their high computational efficiency and their ability to model
long-range causal relationships (Vaswani et al., 2017; Devlin et al., 2018). Transformers have also
become a popular competitor to CNNs in vision and understanding tasks (Dosovitskiy et al., 2020;
Rodrigo et al., 2024), scale to large images (Gupta et al., 2024), and have recently been adopted
for learning surrogate models for physics simulations (McCabe et al., 2023; Wu et al., 2024; Alkin

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Convolutional Decoder

Transformer
Decoder

Figure 1: Overview of P3D. Convolutional blocks for local feature processing are combined with
transformers for deep representation learning, yielding a U-shaped multi-scale architecture. The
transformer backbone combines windowed attention and conditioning via adaptive instance normal-
ization, which are modified and optimized for 3D.

et al., 2024). A major computational difficulty is the quadratic complexity of the global self-attention
mechanism. Liu et al. (2021) address this limitation by restricting the computation of the attention
operation to a local window and Ho et al. (2019) by computing the attention only across the data axes.

3 METHOD

Problem formulation Let Ω denote a spatial domain with n physical quantities u(x, t) :
Ω × [0, T] → Rn that are discretized in time and space and described by the temporal sequence
[u0,u∆t, ...,uT]. We consider all additional information about the sequence such as the type of
PDE or hyperparameters of the simulator to be encoded in an m-dimensional conditioning vector
c ∈ Rm. We assume the availability of many such sequences as training data, representing the
temporal evolution of different types of PDEs with varying initial conditions or coefficients. We
denote our proposed network architecture by MΘ with weights Θ.

We address two main tasks in this paper. The first is autoregressive prediction: For a given sequence
of P preceding states [ut−P∆t, ...,ut−∆t], denoted by uin, our target is to predict the next state
ut := uout. The second task is to train a probabilistic sampler to draw samples from a distribution of
states representing solutions for a PDE as specified by the parameter vector c. In this case uin = ∅.

3.1 BACKBONE ARCHITECTURE: P3D TRANSFORMER

The key components of our proposed hybrid CNN-Transformer architecture P3D are the hierarchical
U-shape structure with the hybrid encoder and decoder-pair based on convolutional and transformer
blocks. A visual overview is given in Figure 1. In the following, we highlight the main components
of the architecture and explain how they support its central goal to enable the efficient training and
inference for high-resolution 3D simulations.

Hybrid encoder/decoder We utilize convolutional en- and decoders with skip connections. Fully
transformer-based architectures that work in the pixel space for 2D data and images like ViTs rely on
a patchification operation to transform patches of size p× p into tokens. A corresponding approach
in 3D would transform patches of size p3 into a single token, significantly increasing the amount of
information encoded in each token. To balance both the number of tokens for the transformer as well
as the information density of each token, we learn local features via the convolutional encoder to
obtain an optimized compressed representation.

Attention and positional encoding The self-attention operation used by transformers has quadratic
complexity in the number of tokens. For 3D data, this becomes a major computational issue as the
number of tokens grows cubically with the spatial discretization, leading to computational blow-up
as the domain size increases. The central building block of our transformer encoder is the windowed
multi-head self-attention (Liu et al., 2021), which only computes self-attention within a local

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

windows. For computing the attention scores between tokens, we use the log-spaced relative positions
of tokens inside the same window.

The architecture of the P3D combines Swin transformers (Liu et al., 2021), diffusion transformers
(Peebles & Xie, 2023, DiT) and UNets (Ronneberger et al., 2015) into a 3D variant, which can be
seen as an extension of PDE-Transformer (Holzschuh et al., 2025) in 3D. The main alteration is
the replacement of the patchification with large convolutional en- and decoders. We also removed
the shifting of windows during the computation of self-attention. The convolutional en- and de-
coder follow the design of modern UNet blocks, using adaptive instance normalization and group
normalization. We give a detailed description of the architecture in Section A.4.

3.2 CONTEXT NETWORK

P3D does not include any absolute positional embeddings as well as no operations aggregating and
distributing information globally. Thus, it has to rely on learning local features and dynamics within
its perceptual field. This promotes translation-equivariance, which is an important inductive bias
for surrogate modeling of PDEs. Our design choice to not include other physical inductive biases
is intentional to keep the P3D backbone architecture flexible. For learning large-scale simulations,
we pretrain P3D on smaller crops of the simulation domain and then scale the pretrained network to
larger inputs. However, global information and long-range dependencies often play a crucial role
to obtain correct solutions, which is also a major limitation of PDE-Transformer. To address this
shortcoming, we introduce the context network.

Condi�oning

Sequence Model

+

Latent tokensRegion tokens

MLP

Skip connec�on

Inject global
informa�on

Transformer
Encoder

Transformer
Decoder

+ posi�onal encoding

Figure 2: Global context via a sequence
model. The bottleneck layers are connected to
the sequence model, which embeds the bottle-
neck representation as latent tokens. Region
tokens are used to inject global information
directly into the decoder.

C
o

n
d

i�
o

n
in

g

M
LP

Sc
al

e,
 s

h
i�

+

+

+

+

Region tokens

Regions

Figure 3: Conditioning via the region to-
kens. The input domain is partitioned into re-
gions/crops, each of which has a correspond-
ing messenger token. The regions are mod-
ulated individually via learnable scale and
shifts based on the region tokens.

Token embeddings The bottleneck layer of the
transformer encoder consist of tokens, which are em-
bedded into latent tokens via a linear layer. P3D
compresses a crop of size 163 into a single latent to-
ken. Then, a frequency-based positional embedding
vector is added to each latent token, similar to Doso-
vitskiy et al. (2020). In addition, we partition the
domain into regions and we match the size of regions
with the size of the domain crops P3D was pretrained
on. For each region, we include a corresponding so-
called region token in the sequence of latent tokens,
similar to the classification token in ViTs. Each re-
gion token is initialized via a learnable embedding
layer and we add a frequency-based positional em-
bedding vector. The purpose of region tokens is to
serve as a more direct feedback mechanism to the
decoder, which we describe in the next paragraph.
Our implementation processes the token sequence
via n = 6 scalable LLMLayers. Figure 2 provides
an overview of this setup. In principle, any efficient
sequence model can be used. After the sequence of
region and latent tokens is processed, the latent to-
kens are added to the input of the decoder via a skip
connection. See Section A.5 for a full description.

Region tokens The region tokens are retained and
used as a more direct mechanism to let information
flow through the decoder network. Region tokens
are initialized as a learnable embedding vector with
frequency-based positional encoding and are pro-
cessed in the sequence model together with the latent
tokens. Each region token corresponds to a crop that
is processed independently of other crops by the en-
coder and decoder blocks. We use scale and shift
operations to condition the decoder block of each re-
gion on the region token. Within each decoder block,
for each adaptive instance normalization layer with
scale or shift operations, we transform the region token via a linear layer to a region embedding

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(d) randomized
backpropagation

active gradient backpropagation inactive gradient backpropagation

(a) full domain (b) cropped domain (c) global context (e) decoder only

Figure 4: Different training and inference setups. (a) shows training on the full domain and (b) on
domain crops. (c) includes the context network for global information processing, which can also
be trained by randomly disabling gradient backpropagation for a percentage of the encoders and
decoders, see (d). In (e) the latent codes from a pretrained encoder can be precomputed and only the
context network and decoder are trained.

vector which is added to the embedding vector of the conditioning c. Each region gets modulated
differently based on the region token. This is visualized in Figure 3.

3.3 SCALING OUTPUT DOMAINS

We consider different setups for training and inference, see Figure 4, which include training on the
full domain (a), on crops (b) and different training variants in combination with the context network
(c) to (e). While it is preferable to train on small crops due to compute requirements, for inference,
we generally want to process the full domain. We consider two strategies: (1) we scale to the full
domain via the translation equivariance of the P3D architecture, i.e., we combine the domain crops
and process them as a single input, and, (2) we encode and decode each crop of the full domain
independently and combine the network outputs. We tag a model that is trained on crops of resolution
x3 and which internally runs inference on resolution y3 by <x|y>. For example, a network trained on
crops of size 643 that is scaled via strategy (1) to resolution 1283 is tagged <64|128>, while the same
network scaled via strategy (2) is tagged <64|64>. For strategy (2), if we use the context network for
communication between the latent codes, we use the tag <Xx|Xy>.

4 EXPERIMENTS

We evaluate P3D as well as different scaling and finetuning setups in three experiments. P3D has
3 different configurations: S, B and L that determine the embedding dimension d (32, 64 and 128
respectively) of the first layer. The corresponding models have 11M to 180M parameters. We denote
the configurations with P3D-S for our model with the S config, changed accordingly for B and L.

4.1 JOINTLY LEARNING MULTIPLE PDES

Our dataset for this task comprises 14 different types of PDEs including Burger’s equation, Kuramoto-
Shivashinsky, Gray-Scott, Swift-Hohenberg and many others. The dataset is based on APEBench
(Koehler et al., 2024), and a full description of each PDE with visualizations can be found in
Section B.2 in the appendix. For all PDEs except Gray-Scott, we consider 60 different simulations
with varying initial conditions and PDE-specific parameters such as viscosity, domain extent or
diffusivity. For Gray-Scott, we include 10 simulations for each of its hyperparameters. Each spatially
periodic simulation contains 20 snapshots discretized at resolution 3203 for Gray-Scott and 3843 for
all other PDEs. We evaluate and benchmark models on random crops of the simulation domain of
size 1283, 643 and 323 using supervised training, see Section A.1. Even with full information about
simulation hyperparameters and the type of PDE, the behavior is not fully deterministic as quantities
beyond the cropped regions influence the solution inside it. Simulations have different numbers of
channels and we zero-pad data with fewer channels than the number of maximum channels NC = 3.

Training on cropped data Cropped data has an implicit time-dependent boundary condition,
which is not known by the model. This can be seen as an extension and more difficult variant of the
multi-physics training (Subramanian et al., 2023; Yang et al., 2023; McCabe et al., 2023), where
in addition to not knowing the PDE or simulation hyperparameters, the model has to estimate the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

103 104

Memory Consumption (MB)

10 1

3×10 2

4×10 2

6×10 2

n
R

M
S

E
P3D-S

P3D-B

P3D-L

10 100
Computational Cost (GFLOPs)

3 × 10 2

4 × 10 2

6 × 10 2

n
R

M
S

E

P3D-S

P3D-B

P3D-L

P3D-S (ours)

P3D-B (ours)

P3D-L (ours)

Swin3D

FactFormer3D
UNet3DGenCFD

UNet3DConvNext

TFNO

AVIT

AFNO

10 1

Figure 5: Comparison of model accuracy vs. (left) memory usage during backpropagation and (right)
computational costs for inference for jointly learning different types of PDEs with crops of size 643

for P3D and baselines.

boundary conditions in a data-driven manner. Mathematically, the model Mθ is trained to regress
argmin

Θ
E(st,st+∆t,c)∈Dtrain

[E(scropt ,scropt+∆t)
[||MΘ(s

crop
t , c)− scropt+∆t||

2
2]], (1)

where we sample (st, st+∆t, c) ∈ Dtrain from the training dataset and apply a random cropping
to obtain (scropt , scropt+∆t). The input uin corresponds to scropt and uout to scropt+∆t. The mapping
scropt 7→ scropt+∆t is not deterministic since the boundary conditions are not prescribed. The model MΘ

has to learn a prediction that minimizes the prediction error w.r.t. all possible simulation states that
are outside the cropped domain, i.e., the optimal prediction s∗ for scropt+∆t minimizes

s∗ = argmin
s

E(ŝt,ŝt+∆t)∼Dtrain

[
||crop(ŝt+∆t)− s||22 | crop(ŝt) = scropt

]
, (2)

where crop(·) is the crop operation used for scropt . The performance depends on how well the model
is able to extrapolate the dynamics outside the cropped input for a short prediction horizon.

Table 1: Comparison of the nRMSE (×10−2)
on the test dataset (averaged over all PDEs).

Method Crop size

epochs = 1000 323 643 1283

TFNO 8.46 8.37 -
FactFormer 6.24 4.62 -
UNetConvNext 8.59 7.09 -
UNetGenCFD 7.61 8.04 8.27
AViT 20.9 25.0 15.1
Swin3D 7.92 7.04 5.03
AFNO 9.95 4.98 4.79

P3D-S 6.27 3.76 3.33
P3D-B 4.69 3.03 2.52
P3D-L 4.13 2.49 2.08

nRMSE evaluation We evaluate the nRMSE, see
Section A.3, and consider a wide range of sota base-
line architectures. Specifically, we include Swin3D,
our own implementation of the SwinV2 architec-
ture (Liu et al., 2021) extended to 3D, AViT, an ax-
ial vision transformer (McCabe et al., 2023), Adap-
tive FNOs (Guibas et al., 2021, AFNO), Tucker-
Factorized FNOs (Kossaifi et al., 2023, TFNO), and
FactFormer (Li et al., 2024b), Additionally, we con-
sider two different convolutional UNet architectures,
UNetConvNeXt as used in Ohana et al. (2024) and
UNetGenCFD (Molinaro et al., 2024). We train all
models for 1000 epochs on four H100 GPUs. We use
a fixed learning rate of 2.0 · 10−4 for all models with
the AdamW optimizer with weight decay 10−15 and
batch size 256 in bf16-mixed precision. See Table 1
for the results and Tables B2 to B4 for detailed evalu-
ations of each PDE type. As we train on bigger crop
sizes, the observed simulation domains becomes larger, increasing the amount of information that
becomes available to the network. At the same time, the relative volume of the boundary becomes
smaller, thus decreasing its relative weight and causing an according decrease in the nRMSE. P3D
performs best across all crop sizes. Performance significantly improves when scaling the model size
from S to L.

Memory and compute For scaling an architecture to high-resolution 3D simulations, the memory
requirements as well as the inference speed are essential. Transformer architectures have been shown
to achieve improved accuracy as the number of parameters and floating point operations increase,
therefore comparing different architectures needs to take both factors into account. In Figure 5, we
compare the nRMSE at patch size 643 against (1) the computational cost for inference measured in
GFLOPs, and (2) the VRAM consumption in MB for a backward pass with batch size 1. The P3D
networks provide the best tradeoff between accuracy and computational cost/memory requirements.
See Table A2 for additional information.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

x
-s

lic
e

v
e
lo

ci
ty

 X

y-
sl

ic
e

t = 15t = 0t = 15 t = 15 t = 15

P3D-S <128|512> P3D-S <128|128> Reference

Figure 6: Forced isotropic turbulence. Prediction on the test set at resolution 5123 with an autore-
gressive rollout of 15 steps. The model is pretrained on patches of size 1283, without finetuning
on 5123. P3D-S <128|512> successfully scales to the full domain, whereas for P3D-S <128|128>
discontinuities at the borders of crop regions become apparent.

Table 2: Validation MSE (×10−3, time-
weighted EMA with λ = 0.99).

Method Crop size

epochs = 400 323 643 1283

P3D-S-conv 8.33 5.40 3.25
P3D-S-patch∗ 6.48 3.78 2.16
P3D-S-no-c 5.69 2.94 1.41
P3D-S-shift 5.41 2.84 1.37
P3D-S 5.44 2.77 1.35
P3D-S w = 2 5.68 2.96 1.49
P3D-S w = 4 5.44 2.77 1.35
P3D-S w = 8 5.44 2.90 1.32

Ablation on network design We empirically verify
our network design and consider: (1) P3D without the
transformer backbone, which purely relies on the con-
volutional encoder and decoder, denoted P3D-conv,
(2) a patch-based P3D with linear tokenizer for patch
size p = 4 and no convolutional encoder and decoder,
denoted P3D-patch. This baseline (∗) extends the
mixed channel version of PDE-Transformer to 3D.
(3) disabling PDE type conditioning by setting c = 0,
denoted P3D-no-c, (4) P3D with window shifting en-
abled, P3D-shift. Additionally, we evaluate different
values of the window size w = 2, w = 4 (default)
and w = 8. P3D achieves a relative improvement of
16.0% (323), 26.7% (643) and 37.5% (1283) over 3D
PDE-Transformer(∗), see Table 2. Shifting and larger
window sizes give no significant improvements here.

4.2 ISOTROPIC TURBULENCE

The goal of the this experiment is to scale P3D to a high-resolution simulation involving complex
dynamics. For this, we consider forced isotopic turbulence simulated via direct numerical simulation
(DNS) at resolution 10243 provided by the John Hopkins Turbulence Database (Perlman et al., 2007).
The dataset is cropped from the original resolution to 5123 with a total of 500 snapshots, which
are saved after reaching a statistical stationary state and comprises channels for the velocity X/Y/Z
and pressure. The data is split into test and training sets, where the first 420 snapshots are used for
training and the last 80 snapshots for testing.

Table 3: RMSE (×10−2) and the enstrophy spec-
trum error (×102) at different autoregressive roll-
out steps on the test set with crop size 1283.

Method RMSE Enstrophy
1 15 1 15

UNetGenCFD 5.48 67.7 4.2 140
Swin3D 3.22 24.3 4.0 156
AViT 9.45 37.7 26.7 112
AFNO 3.69 29.8 7.6 190

P3D-S 2.81 28.2 2.15 31.9
P3D-B 2.04 31.5 0.72 19.2

RMSE and enstrophy error for crops 1283

We first evaluate the performance of P3D com-
pared to baselines from the previous experiment
trained on domain crops of size 1283. We con-
sider an evaluation of autoregressive rollouts
from 1 to 15 steps. We evaluate the RMSE and a
spectral error based on the enstrophy spectrum,
which we compute based on the vorticity that
is derived from the velocity fields of the data,
see Section C.3. We train all models for 4000
epochs using the same setup as in Section 4.1,
but reduce the batch size to 32. P3D performs
best and achieves the lowest RMSE for few au-
toregressive rollout steps. It consistenly has by
far the best spectral error, see Table 3 and Ta-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

P3D-L pretrained on 48
3

P3D-L <48|192> P3D-L <X48|X48>

V
el

o
ci

ty
 X

x-
sl

ic
e

Figure 7: Turbulent channel flow. We pretrain PDE-L on crops of size 483. For P3D-L <48|192>
scaled to the full domain 962 × 192, the relative positions of crops to the wall is critical. Without
absolute positional encodings and global information passing, the generated samples are incorrect.
P3D-L <X48|X48> finetuned with the context network resolves this issue.

ble C1 for an extended evaluation. For many autoregressive rollout steps, the RMSE becomes less
informative, as the prediction starts to deviate from the reference due to the uncertainty from the
boundary of the crop regions. See Figures C6 and C7 for visualizations.

Table 4: RMSE (×10−2) on the test set for P3D
trained on crop size 1283 and evaluated at 5123 for
different scaling strategies.

Method Scaling strategy
<128|128> <128|256> <128|512>

P3D-S 1.90 1.68 1.60
P3D-B 1.38 1.24 -

Scaling P3D to 5123 We scale P3D pre-
trained on crops of size 1283 to the full do-
main 5123. Training P3D on cropped data re-
quires less than a day on four A100 GPUs. See
Section C.4 for details. We compare the per-
formance of P3D when scaling the network to
larger domain sizes using the scaling strategies
introduced in Section 3.3. P3D <128|128> pro-
cesses blocks independently using the original
training resolution. Thus the domain 5123 is
split into 64 blocks of size 1283 that are processed independent of each other. P3D <128|512>
processes the full domain, leveraging the translation-equivariance of the architecture. See Table 4
for an evaluation of the RMSE. Increasing the domain size during inference consistently gives
improvements. With increasing domain size, the relative volume of the boundary shrinks, thus
the uncertainty of turbulent motions is reduced and networks are able to provide more accurate
predictions. Similar to previous results, larger networks improve performance as well. Note that
the RMSE is different between Tables 3 and 4, since we do not consider longer rollouts in Table 4
which affects the distribution of samples in the test set. In this experiment, due to the isotropic and
homogeneous nature of the simulation, we achieve highly accurate results without finetuning or
global information.

4.3 TURBULENT CHANNEL FLOW

Figure 8: Flow statistics of samples produced by
P3D-L conditioned with varying Reynolds number
(left) and the time-resolved DNS (right).

For the last experiment we train P3D as a gen-
erative model for learning to sample from a
turbulent channel flow simulation with a pe-
riodic channel with no-slip boundaries at ±y
and is driven by a dynamic forcing to prevent
a loss of energy. The seemingly simply geom-
etry represents a well-studied and relevant sce-
nario that is highly challenging as it requires
fine spatial and temporal discretizations with
correspondingly long simulation times to pro-
vide converged turbulence statistics (Hoyas &
Jiménez, 2008). Due to the very costly initial
transient phase of these simulations, it is espe-
cially attractive to phrase the turbulent channel
flow (TCF) problem as a probabilistic learning
problem, where states from the relevant equilibrium phase can be sampled directly, i.e. with-
out resolving the initial warm-up phase. We generate a dataset comprising 20 simulations with
Reynolds numbers Re within the interval [400, 800] spaced equidistantly, see Section D.1. The

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

computational grid comprises 96 × 96 × 192 spatially adaptive cells with a finer discretization
near the wall. The data contains channels for the velocity in X/Y/Z direction as well as pressure.

Table 5: L2 error for the mean µ (×10−5) and variance σ2

(×10−5) of the velocity profiles along the channel flow direc-
tion, see Section D.2 for details. For finetuning, we report the
mean and std. dev. over 5 different seeds.

Model Mean L2 Variance L2 VRAM epochs
UNetGenCFD full domain 132.38 17.66 17.4 GB 400
AFNO full domain 28.73 1849.3 3.4 GB 400
P3D-L full domain 3.02 13.20 14.9 GB 400
P3D-L <48|192> 5862.81 233.77 2.8 GB 2000

finetune w/o region tokens 4541 ± 495 2026 ± 267 15.8 GB 20
finetune 23.6 ± 21.4 40.4 ± 49.4 15.8 GB 20
finetune, decoder only 941 ± 484 1170 ± 392 6.0 GB 20
finetune, decoder only 97.7 ± 102.6 131 ± 149 6.0 GB 100
finetune, decoder only 16.8 ± 5.0 24.1 ± 17.2 6.0 GB 500

P3D-L pretrained on 483 We
train P3D-L as a diffusion model
following Section A.2 on crops
of size 483. Pretraining on
crops requires significantly less
compute and VRAM and the
network converges much faster.
For P3D-L with scaling strat-
egy <48|192>, the network is
not aware of the position of the
wall relative to the position of the
individual regions, causing the
global structure of the generated
flow to be incorrect, see Figure 7.
For a quantitative statistical eval-
uation including training on the full domain and baselines, see Table 5.

Ablation on finetuning and context We evaluate finetuning P3D pretrained on the cropped domain
483 using the context model, see Table 5. Finetuning corresponds to P3D-L <X48|X48> with different
training setups, see Figure 4. finetune and finetune w/o region tokens follows the setup of Figure 4c,
which backpropagates gradients through all crops and network modules. While this requires more
VRAM than training on the full domain, only few epochs to achieve good results are necessary. For
finetune, decoder only, we only backpropagate gradients through the decoder and context network,
and also only backpropagate through 10% randomly selected decoder blocks, which corresponds
to the setup in Figure 4e. We do not precompute the bottleneck representations from the frozen
encoders, but this could be done to further reduce the VRAM and compute requirements. This setup
achieves a significant reduction in VRAM, but requires more training epochs. The generated sample
for P3D-L <X48|X48>, see Figure 7, qualitatively shows the correct global structure and content of
individual regions. See also Figure 8 and Figures D6 to D9 for comparisons of the velocity profiles.
While finetuning matches the statistics well, there are still visible discontinuities between generated
crop regions, which leaves further room for improvement.

Table 6: Speedup compared to DNS.

Method samples/s Speedup
P3D-L 0.17 144x
AFNO 1.53 1246x
UNetGenCFD 0.10 81x

DNS (GPU) 0.0022 -

Benchmarking speedups We give speedups compared
to our GPU-based solver used for dataset generation, see
Table 6. The warmup phase of the DNS takes on aver-
age 2 hours and 24 minutes, which cannot be skipped.
Timings are obtained on a L40 GPU with 100 inference
steps. For the calculation of the speedup, we assume 20
samples for each Reynolds number and select every 10th
step of the DNS to avoid high autocorrelation of samples.
While AFNO has a higher speedup, its statistics are not
sufficiently accurate.

5 CONCLUSION

We have presented P3D: an efficient hybrid CNN-Transformer architecture for learning surrogates
for high-resolution 3D physics simulations. We demonstrated the strong advantages of P3D over
a comprehensive list of baselines for simultaneously learning different types of PDEs, showing
improved accuracy and stable training while at the same time being faster and more memory efficient
than the strongest competitors. We scaled P3D to a high-resolution isotropic turbulence simulation
by pretraining on smaller crops from the domain, and demonstrated its capabilities as a probabilistic
generative model. The P3D model accurately predicts distributions of high-resolution velocity
and pressure fields for a turbulent channel flow with varying Reynolds numbers, demonstrating
how to include global information and coordinated pretrained networks via a global context model.
Our architecture establishes the foundation for scaling scientific foundation models to very high
resolutions, unlocking their potential to deliver real-world impact across scientific domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers: A framework for efficiently scaling neural operators.
Advances in Neural Information Processing Systems, 37:25152–25194, 2024.

Gonzalo Arranz, Yuenong Ling, Sam Costa, Konrad Goc, and Adrian Lozano-Duran. Building-block
flow model for computational fluids. arXiv:2403.09000, 2024.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P. Brenner. Learning data driven
discretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1814058116.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora: A foundation
model of the atmosphere. arXiv preprint arXiv:2405.13063, 2024.

Joan Bruna, Benjamin Peherstorfer, and Eric Vanden-Eijnden. Neural galerkin scheme with active
learning for high-dimensional evolution equations, 2022.

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S Albergo, Nicholas M Boffi, and Eric
Vanden-Eijnden. Probabilistic forecasting with stochastic interpolants and föllmer processes. In
Proceedings of the 41st International Conference on Machine Learning, pp. 6728–6756, 2024.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese,
Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Gideon Dresdner, Dmitrii Kochkov, Peter Christian Norgaard, Leonardo Zepeda-Nunez, Jamie
Smith, Michael Brenner, and Stephan Hoyer. Learning to correct spectral methods for simulating
turbulent flows. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=wNBARGxoJn.

Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao. Turbulence modeling in
the age of data. Annual Review of Fluid Mechanics, 51(1):357–377, jan 2019.
doi: 10.1146/annurev-fluid-010518-040547. URL https://doi.org/10.1146%
2Fannurev-fluid-010518-040547.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
glish, and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthe-
sis. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
FPnUhsQJ5B.

Erik Franz, Barbara Solenthaler, and Nils Thuerey. Learning to estimate single-view volumetric flow
motions without 3d supervision. In International Conference on Learning Representations, 2023.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro.
Adaptive fourier neural operators: Efficient token mixers for transformers. CoRR, abs/2111.13587,
2021. URL https://arxiv.org/abs/2111.13587.

Ritwik Gupta, Shufan Li, Tyler Zhu, Jitendra Malik, Trevor Darrell, and Karttikeya Mangalam. xt:
Nested tokenization for larger context in large images. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=wDDprThYeT.

10

https://openreview.net/forum?id=wNBARGxoJn
https://doi.org/10.1146%2Fannurev-fluid-010518-040547
https://doi.org/10.1146%2Fannurev-fluid-010518-040547
https://openreview.net/forum?id=FPnUhsQJ5B
https://openreview.net/forum?id=FPnUhsQJ5B
https://arxiv.org/abs/2111.13587
https://openreview.net/forum?id=wDDprThYeT

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Benjamin Holzschuh, Simona Vegetti, and Nils Thuerey. Solving inverse physics problems with score
matching. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023.

Benjamin Holzschuh, Qiang Liu, Georg Kohl, and Nils Thuerey. Pde-transformer: Efficient and
versatile transformers for physics simulations. 2025.

Sergio Hoyas and Javier Jiménez. Reynolds number effects on the Reynolds-stress budgets in turbulent
channels. Physics of Fluids, 20(10):101511, 10 2008. ISSN 1070-6631. doi: 10.1063/1.3005862.

Christian Jacobsen, Yilin Zhuang, and Karthik Duraisamy. Cocogen: Physically-consistent and
conditioned score-based generative models for forward and inverse problems. arXiv preprint
arXiv:2312.10527, 2023.

Yuchi Jiang, Zhijie Li, Yunpeng Wang, Huiyu Yang, and Jianchun Wang. An implicit adaptive
fourier neural operator for long-term predictions of three-dimensional turbulence. arXiv preprint
arXiv:2501.12740, 2025.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021. doi: 10.1073/pnas.2101784118. URL https:
//www.pnas.org/doi/abs/10.1073/pnas.2101784118.

Felix Koehler, Simon Niedermayr, Rüdiger Westermann, and Nils Thuerey. Apebench: A benchmark
for autoregressive neural emulators of pdes. In Advances in Neural Information Processing Systems
37 (Datasets and Benchmarks Track), 2024. URL https://openreview.net/forum?id=
iWc0qE116u.

Georg Kohl, Li-Wei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
models for turbulent flow simulation, 2024. URL https://arxiv.org/abs/2309.01745.

Jean Kossaifi, Nikola Kovachki, Kamyar Azizzadenesheli, and Anima Anandkumar. Multi-grid
tensorized fourier neural operator for high-resolution pdes. arXiv preprint arXiv:2310.00120,
2023.

Fanny Lehmann, Filippo Gatti, Michaël Bertin, and Didier Clouteau. 3d elastic wave propagation
with a factorized fourier neural operator (f-fno). Computer Methods in Applied Mechanics and
Engineering, 420:116718, 2024.

Zhijie Li, Wenhui Peng, Zelong Yuan, and Jianchun Wang. Long-term predictions of turbulence by
implicit u-net enhanced fourier neural operator. Physics of Fluids, 35(7), 2023a.

Zhijie Li, Tianyuan Liu, Wenhui Peng, Zelong Yuan, and Jianchun Wang. A transformer-based neural
operator for large-eddy simulation of turbulence. Physics of Fluids, 36(6), 2024a.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling.
Advances in Neural Information Processing Systems, 36:28010–28039, 2023b.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling.
Advances in Neural Information Processing Systems, 36, 2024b.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.

11

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://openreview.net/forum?id=iWc0qE116u
https://openreview.net/forum?id=iWc0qE116u
https://arxiv.org/abs/2309.01745
https://arxiv.org/abs/2210.02747

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-
refiner: Achieving accurate long rollouts with neural pde solvers. Advances in Neural Information
Processing Systems, 36:67398–67433, 2023.

Qiang Liu and Nils Thuerey. Uncertainty-aware surrogate models for airfoil flow simulations
with denoising diffusion probabilistic models. AIAA Journal, 62(8):2912–2933, 2024. doi:
10.2514/1.J063440. URL https://doi.org/10.2514/1.J063440.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=XVjTT1nw5z.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Parker, Ruben Ohana, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, Mariel
Pettee, Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho. Multiple physics pretraining for
physical surrogate models. In NeurIPS 2023 AI for Science Workshop, 2023. URL https:
//openreview.net/forum?id=M12lmQKuxa.

Roberto Molinaro, Samuel Lanthaler, Bogdan Raonic, Tobias Rohner, Victor Armegioiu, Zhong Yi
Wan, Fei Sha, Siddhartha Mishra, and Leonardo Zepeda-Núñez. Generative AI for fast and accurate
statistical computation of fluids. CoRR, abs/2409.18359, 2024. doi: 10.48550/ARXIV.2409.18359.
URL https://doi.org/10.48550/arXiv.2409.18359.

Paul D Morris, Andrew Narracott, Hendrik von Tengg-Kobligk, Daniel Alejandro Silva Soto, Sarah
Hsiao, Angela Lungu, Paul Evans, Neil W Bressloff, Patricia V Lawford, D Rodney Hose, et al.
Computational fluid dynamics modelling in cardiovascular medicine. Heart, 102(1):18–28, 2016.

Ruben Ohana, Michael McCabe, Lucas Thibaut Meyer, Rudy Morel, Fruzsina Julia Agocs, Miguel
Beneitez, Marsha Berger, Blakesley Burkhart, Stuart B. Dalziel, Drummond Buschman Fielding,
Daniel Fortunato, Jared A. Goldberg, Keiya Hirashima, Yan-Fei Jiang, Rich Kerswell, Surya-
narayana Maddu, Jonah M. Miller, Payel Mukhopadhyay, Stefan S. Nixon, Jeff Shen, Romain
Watteaux, Bruno Régaldo-Saint Blancard, François Rozet, Liam Holden Parker, Miles Cranmer,
and Shirley Ho. The well: a large-scale collection of diverse physics simulations for machine
learning. In Advances in Neural Information Processing Systems 37 (Datasets and Benchmarks
Track), 2024. URL https://openreview.net/forum?id=00Sx577BT3.

John E. Pearson. Complex patterns in a simple system. Science, 261(5118):189–192, 1993. doi:
10.1126/science.261.5118.189. URL https://www.science.org/doi/abs/10.1126/
science.261.5118.189.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4172–4182, 2023. doi: 10.1109/
ICCV51070.2023.00387.

Wenhui Peng, Zelong Yuan, Zhijie Li, and Jianchun Wang. Linear attention coupled fourier neural
operator for simulation of three-dimensional turbulence. Physics of Fluids, 35(1), 2023.

Eric A. Perlman, Randal C. Burns, Yi Li, and Charles Meneveau. Data exploration of turbulence
simulations using a database cluster. In Proceedings of the ACM/IEEE Conference on High
Performance Networking and Computing, SC 2007, pp. 23, 2007. doi: 10.1145/1362622.1362654.
URL https://doi.org/10.1145/1362622.1362654.

Raphaël Pestourie, Youssef Mroueh, Chris Rackauckas, Payel Das, and Steven G Johnson. Physics-
enhanced deep surrogates for partial differential equations. Nature Machine Intelligence, 5(12):
1458–1465, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

12

https://doi.org/10.2514/1.J063440
https://openreview.net/forum?id=XVjTT1nw5z
https://openreview.net/forum?id=M12lmQKuxa
https://openreview.net/forum?id=M12lmQKuxa
https://doi.org/10.48550/arXiv.2409.18359
https://openreview.net/forum?id=00Sx577BT3
https://www.science.org/doi/abs/10.1126/science.261.5118.189
https://www.science.org/doi/abs/10.1126/science.261.5118.189
https://doi.org/10.1145/1362622.1362654

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Marcos Rodrigo, Carlos Cuevas, and Narciso García. Comprehensive comparison between vision
transformers and convolutional neural networks for face recognition tasks. Scientific reports, 14
(1):21392, 2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241. Springer, 2015.

Youssef Shehata, Benjamin Holzschuh, and Nils Thuerey. Improved sampling of diffusion models in
fluid dynamics with tweedie’s formula. In The Thirteenth International Conference on Learning
Representations, 2025.

Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-fidelity
flow field reconstruction. Journal of Computational Physics, 478:111972, 2023.

Justin Sirignano and Jonathan F. MacArt. Deep learning closure models for large-eddy simulation of
flows around bluff bodies. Journal of Fluid Mechanics, 966, jul 2023. doi: 10.1017/jfm.2023.446.
URL https://doi.org/10.1017%2Fjfm.2023.446.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael
Mahoney, and Amir Gholami. Towards foundation models for scientific machine learning: Charac-
terizing scaling and transfer behavior, 2023.

Kiwon Um, Robert Brand, Yun, Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop: Learning
from differentiable physics to interact with iterative pde-solvers, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024.

Heng Xiao and Paola Cinnella. Quantification of model uncertainty in rans simulations: A review.
Progress in Aerospace Sciences, 108:1–31, 2019.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning for differential
equation problems. arXiv preprint arXiv:2304.07993, 2023.

13

https://doi.org/10.1017%2Fjfm.2023.446

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TRAINING METHODOLOGY AND NETWORK ARCHITECTURES

A.1 SUPERVISED TRAINING

For tasks that have a deterministic solution, such as training a surrogate model for a numerical solver,
the P3D can be trained in a supervised manner using mean squared error (MSE) loss, enabling fast,
single-step inference. In this case the network is directly optimized with the MSE

LS = E
[
||MΘ(uin, c)− uout||22

]
. (3)

A.2 PROBABILISTIC TRAINING

To allow for sampling from the full posterior distribution rather than approximating an averaged
outcome, diffusion training is preferable for probabilistic solutions. For such cases, we employ the
flow matching formulation of diffusion models (Lipman et al., 2023; Liu et al., 2023; Ho et al.,
2020). Given the input uin and a conditioning vector c, samples x0 drawn from a noise distribution
p0 = N (0, I) are transformed into samples x1 from the posterior distribution p1 by solving an
ordinary differential equation (ODE) of the form dxt = v(xt, t); dt. Then the model MΘ learns
the velocity field v by regressing a vector field that defines a probabilistic trajectory from p0 to p1.
Samples along this trajectory are produced through the forward process

xt = t uout + [1− (1− σmin)t] ϵ (4)

for t ∈ [0, 1] with ϵ ∼ N (0, I) and a time threshold of σmin = 10−4. The velocity v can be regressed
by training via

LFM = E
[
||MΘ(uin,xt, c, t)− uout + (1− σmin)ϵ||22

]
. (5)

After training, samples can be drawn from the posterior conditioned on uin and c, by sampling
x0 ∼ N (0, I) and integrating the corresponding ODE dxt = M(uin,xt, c, t) dt over the time
interval t = 0 to t = 1. We typically employ explicit Euler steps with a suitable, chosen step size ∆t.

A.3 NORMALIZED RMSE

The normalized RMSE (nRMSE) is defined as

nRMSE =
1

M

M∑
i=1

√
MSE(ûout,uout)

MSE(0,uout)
, (6)

where ûout is the network prediction and M corresponds to the number of trajectories for a specific
PDE in the test dataset. In our evaluation, we calculate the nRMSE for each PDE dataset and report
the nRMSE averaged over all PDE datasets.

We can also define the nRMSE for autoregressive rollouts over the entire simulation trajectory. We
define the nRMSEt at time t by comparing the predicted state ûS

t for a given system S at time t with
the reference uS

t . We average over all systems S for each PDE dataset.

A.4 P3D ARCHITECTURE

We provide additional details on the backbone architecture of P3D below.

Embedding of time, class labels and physical parameters We combine all three types of con-
ditionings within a combined embedding layer. Time for flow matching/diffusion and physical
parameters are implemented via timestep embeddings. Class labels are implemented via label em-
beddings. The embedding vectors of all three types are added and used as the joint embedding. The
embedding dimension for each in the convolutional encoder/decoder is 64. In our experiments, class
labels are used in Section 4.1. Physical parameters and timestep embeddings are used in Section 4.3.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Convolutional encoder The convolution encoder first embeds the input using a Conv3D layer
(kernel size 3, padding 1) with filters that correspond to the embedding dimensions of the configuration.
This is followed by downsampling layers implemented via Conv3D layers (kernel size 3, padding 1,
stride 2). Intermediate states before each downsampling operations are saved for residual connections.
Encoder blocks and consecutive downsampling are applied twice. For each layer, the corresponding
number of filters is shown in Table A1. Encoder blocks are repeated twice. Each encoder block
consists of GroupNormalization layers, followed by GELU activations, Conv3D layer (kernel size
3, padding 1), GroupNormalization, modulation via shift and scale operations depending on the
conditioning, GELU and an additional Conv3D layer (kernel size 3, padding 1). The input and output
of each encoder block are connected via skip connections. The shift and scale vectors are learned via
linear layers from the embedding vectors of the convolutional encoder/decoder.

Convolutional decoder The design of the convolutional decoder mirrors the convolutional encoder
in a U-shape architecture with residual connections. Upsampling layers are implemented via a
combination of Conv3D layers to increase the number of filters and PixelShuffle3D layers. For an
input number of channels Cin and a target number of channels in the upsampled output Cout, the
Conv3D operation first expands the number of channels Cin×H×W ×D → 8Cout×H×W ×D
and PixelShuffle3D spatially rearranges the pixels 8Cout ×H ×W ×D → Cout × 2H × 2W × 2D.

A.5 CONTEXT MODEL

The context module is a transformer-based architecture for processing 3D volumetric data in a
sequence-like fashion. The model’s design and operation can be broken down into the following key
components:

Latent tokens The model accepts a 5D tensor of shape (B,C,H,W,D) with batch size B, token
embedding dimension C, height H , width W , and depth D, corresponding to the token representations
of the transformer encoder block arranged on a 3D spatial grid according to their positions. This
input is first reshaped into a 2D sequence of tokens with shape (N, (H ×W ×D), C) by flattening
the spatial dimensions (H,W,D) into a single sequence length. This token sequence is then passed
through an input projection layer to map it to the model’s internal hidden size dC = 512. The new
tokens are called latent tokens.

Region tokens The model utilizes learnable region tokens, which are a set of nn.Parameter
tensors. The number of tokens is defined by the number of regions. The region tokens are initialized
from a normal distribution with a standard deviation of 10−6. Regions tokens are appended to the
input sequence and are used to obtain embeddings for each region, which are injected into the adaptive
instance normalization layers of the decoder modules.

Positional encoding Positional information is incorporated using 3D sine-cosine positional em-
beddings. The embeddings are added to the input token sequence after the initial projection and
concatenation with region tokens. The positional embedding for a given position (w, h, d) and
dimension i is calculated by concatenating three separate 1D sine-cosine embeddings for each spatial
axis. The 1D positional embedding at position p and dimension i are calculated via:

PE(p, 2i) = sin
(p

T 2i/dP

)
(7)

PE(p, 2i+ 1) = cos
(p

T 2i/dP

)
, (8)

where dP = dC/3 is the embedding dimension per axis, and T = 10 is a temperature hyperparameter.
Both latent tokens and regions tokens have their own positional encoding.

Core architectural blocks The sequence of tokens is processed by a stack of nL = 6 LLMLayer
blocks. Each block consists of:

• LlamaRMSNorm: A root mean square normalization layer that normalizes the input to
a unit RMS, followed by a learned scaling factor. It is a more computationally efficient
alternative to traditional layer normalization.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• LLMAttention: A multi-head self-attention module that computes attention weights to
model relationships between tokens in the input sequence. This block receives the input
query tokens and calculates query, key, and value vectors. We use hyper attention , this is a
specialized attention variant designed for efficient long-sequence processing.

• LlamaMLP: A gated multi-layer perceptron with a GELU activation function.

Output The processed latent tokens are projected back to the original token size C via a linear layer
and reshaped to match the input of the context network. The resulting tensor is added to the input of
the transformer decoder, forming a skip connection. For each adaptive instance normalization module
in the decoder, the regions tokens are embedded via a unique linear layer. The region embeddings
are added to the input of the adaptive instance normalization layer of their corresponding region,
resulting in a different modulation for each region.

Table A1: Different configurations S, B and L of P3D. Table shows the total number of weights, the
number of filters within the convolutional encoder/decoder and the number of groups for GroupNor-
malization layers.

Configuration Number of parameters Embedding dimensions Number of groups

S 11.2M [32, 32, 64] 16
B 46.2M [64, 128, 128] 32
L 181M [128, 256, 256] 32

A.6 BASELINE ARCHITECTURES

Performance comparison of baseline architectures Below, we summarize the numbers of the
different architectures used in the experiments for an input of size 1283 with a single channel, see
Table A2.

Table A2: Performance comparison of architectures.

Model Params GFLOPS Memory Throughput
Swin3D 50.3M 144.8 2.9GB 9.86it/s
FactFormer 5.0M - 20.4GB 0.82it/s
UNetGenCFD 100.0M 5519.8 4.8GB 2.03it/s
UNetConvNext 9.2M 167.8 2.4GB 11.9it/s
TFNO 75.6M 69.7 5.1GB 4.7it/s
AViT 60.0M 71.5 0.3GB 188.3it/s
AFNO 64.1M 1058.2 0.4GB 31.7it/s

P3D-S 11.2M 108.5 0.9GB 35.2it/s
P3D-B 46.1M 1165.3 2.1GB 10.0it/s
P3D-L 181.2M 4638.1 4.6GB 3.7it/s

Regarding the number of parameters, GFLOPs, memory and throughput, the three configurations S,
B and L of P3D are well positioned compared to the baselines we chose. Timings were obtained on
a RTX A5000 GPU with batch size 1. Importantly, across all tasks, P3D outperforms the baselines in
terms of accuracy. We fixed the training setup for all architectures, using learning rate/optimizer/batch
size that are common for training large transformer and UNet models (Esser et al., 2024). Due to the
number and size of the different models, we do not perform any hyperparameter tuning for individual
models.

Swin3D Our implementation of extends the SwinV2 (Liu et al., 2021) transformer in 3D. The
code is based Swinv2PreTrainedModel in the Python transformers package, with pixel
shuffling in 3D for upsampling. For the B (default) configuration of Swin3D, we use a token
embedding dimension of 96 with patch size p = 2, four stages with two layers each, window size
w = 4 and 12 attention heads for each stage.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

FactFormer We use the official code repository of FactFormer https://github.com/
BaratiLab/FactFormer. We adapt the FactFormer3D module used for the 3D Navier-
Stokes experiment (Li et al., 2023b). Hyperparameters are taken from the configuration file in the
repository: dim=128, depth=4, dim_head=64, heads=6.

UNetGenCFD We use the official code repository for UNetGenCFD https://github.com/
camlab-ethz/GenCFD. We remove any modifications of the core UNet structure spe-
cific to the diffusion training setup in Molinaro et al. (2024). Hyperparameters are taken
from the repository: num_channels=[128,256,256], downsample_ratio=[2,2,2],
num_blocks=4, padding_method=’circular’, use_position_encoding=True
and num_heads=8.

UNetConvNeXt We use the implementation of UNetConvNeXt with ConvNeXt blocks provided
by the GitHub repository https://github.com/PolymathicAI/the_well. This ar-
chitecture was used as a benchmark in Ohana et al. (2024). Hyperparameters are kept the
same: spatial_resolution=[128,128,128], stages=4, blocks_per_stage=1,
blocks_per_neck=1, init_features=32.

TFNO We use the implementation of TFNO (Kossaifi et al., 2023) from the Python
neuralop package https://github.com/neuraloperator/neuraloperator. Hy-
perparameters are: spatial_resolution=[128,128,128], modes_1=16, modes_2=16,
modes_3=16, hidden_channels=64.

AViT We use the implementation of axial vision transformers (Ho et al., 2019) provided by
the GitHub repository https://github.com/PolymathicAI/the_well. This architec-
ture was used as a benchmark in Ohana et al. (2024). Hyperparameters for the B configu-
ration are kept the same: spatial_resolution=[128,128,128], hidden_dim=768,
num_heads=12, processor_blocks=8.

AFNO We use the implementation of AFNO (Guibas et al., 2021) provided by the GitHub
repository https://github.com/PolymathicAI/the_well. This architecture was used
as a benchmark in Ohana et al. (2024). Hyperparameters for the B configuration are kept
the same: spatial_resolution=[128,128,128], hidden_dim=768, n_blocks=12,
cmlp_diagonal_blocks=8 and patch_size=8.

17

https://github.com/BaratiLab/FactFormer
https://github.com/BaratiLab/FactFormer
https://github.com/camlab-ethz/GenCFD
https://github.com/camlab-ethz/GenCFD
https://github.com/PolymathicAI/the_well
https://github.com/neuraloperator/neuraloperator
https://github.com/PolymathicAI/the_well
https://github.com/PolymathicAI/the_well

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B EXPERIMENT 1: JOINTLY LEARNING PDES

The datasets used in this experiment were carefully selected for a diverse list of partial differential
equations (PDEs) with a focus on high spatial resolution. This is combined with variations of the
physical parameters of the PDEs and different initial conditions, creating diverse dynamics across the
different simulations for each type of PDE.

The dataset encompasses linear, reaction-diffusion, and nonlinear PDEs. We utilized the
Exponax solver, as detailed by Koehler et al. (2024) in the APEBench benchmark. The solver
utilizes Exponential Time Differencing Runge-Kutta (ETDRK) methods. We intentionally opted
not to use the APEBench dataset directly from the original authors. This decision was driven by
our goal to create datasets with enhanced resolution and greater diversity in the underlying physical
behaviors, rather than relying solely on variations in initial conditions as done in APEBench. It is a
characteristic of the ETDRK methods that they operate within the Fourier domain. Consequently,
their application is limited to scenarios with periodic domains and cannot accommodate complex
boundary conditions.

Table B1: Summary of datasets produced for the joint PDE learning task, covering linear, reaction-
diffusion, and nonlinear PDEs. The table details the dimensions of each dataset: number of simula-
tions (s), time steps (t), fields/channels (f), and spatial dimensions (x, y, z). Beyond the explicitly
varied quantities listed for each dataset, the initial conditions for every simulation (s) are also distinct.

Dataset s t f x y z Varied Quantities across s Test Set

hyp 60 30 1 384 384 384 hyper-diffusivity s ∈ [50, 60[

fisher 60 30 1 384 384 384 diffusivity, reactivity s ∈ [50, 60[
sh 60 30 1 384 384 384 reactivity, critical number s ∈ [50, 60[
gs-alpha 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs-beta 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs-gamma 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs-delta 10 30 2 320 320 320 initial conditions only s ∈ [8, 10[
gs-epsilon 10 30 2 320 320 320 initial conditions only separate: s=3, t=100
gs-theta 10 30 2 320 320 320 initial conditions only s ∈ [8, 10[
gs-iota 10 30 2 320 320 320 initial conditions only s ∈ [8, 10[
gs-kappa 10 30 2 320 320 320 initial conditions only s ∈ [8, 10[

burgers 60 30 2 384 384 384 viscosity s ∈ [50, 60[
kdv 60 30 2 384 384 384 domain extent, viscosity s ∈ [50, 60[
ks 60 30 1 384 384 384 domain extent separate: s=5, t=200

B.1 DATA GENERATION SETUP

A key aspect of the simulations, in addition to parameter variation, is the use of randomized initial
conditions. The standard approach for constructing these conditions involves randomly selecting one
of three initialization methods, each providing a unique spectral energy distribution. The first method,
a random truncated Fourier series initializer, involves summing multiple Fourier series up to a cutoff
frequency, chosen as a uniformly random integer between 2 and 10 (exclusive of 11). The second,
the Gaussian random field initializer, produces a power-law spectrum in Fourier space, where energy
diminishes polynomially with the wavenumber; its exponent is uniformly randomly selected from
[2.3,3.6[. The third method, the diffused noise initializer, generates a tensor of values from normally
distributed white noise, subsequently diffusing it. This results in a spectrum that decays exponentially
quadratically, with an intensity rate uniformly random from [0.00005,0.01[. After generation, all
initializers ensure the initial conditions’ values are normalized to a maximum absolute value of one.
For vector quantities, the randomly chosen initializer is applied independently to each component.

B.2 PDE TYPES

We make use of Exponential Time Differencing Runge-Kutta (ETDRK) methods to efficiently
simulate different PDEs via Exponax. While the chosen linear PDEs are simple and analytically

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

solvable, the underlying dynamics are essential for more complicated PDEs. These linear PDEs can
be understood as representing a scalar attribute, such as density. Unless stated otherwise, sampling
from intervals is consistently performed using a uniform random distribution. In the following, we
describe a range of different three-dimensional PDE problems that are employed in our experiments
ranging from linear, over reaction-diffusion, to non-linear PDEs. The class of non-linear PDEs is
particularly challenging, as these cases more closely resemble real-world problems.

Hyper-Diffusion (hyp) behaves similarly to diffusion, where density dissipates inside a periodic
domain due to the effects of hyper-diffusion. Unlike diffusion, hyper-diffusion does not treat all
wavelengths equally, analogous to the relation between dispersion and advection. Higher frequency
components are damped even more aggressively compared to normal diffusion, leading to visually
stronger blur effect of the density field over time.

• Dimensionality: s = 60, t = 30, f = 1, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
• Boundary Conditions: periodic
• Time Step of Stored Data: 0.01
• Spatial Domain Size of Simulation: [0, 1]× [0, 1]

• Fields: density
• Varied Parameters: hyper-diffusivity ∈ [0.00005, 0.0005[

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [50, 60[

Figure B1: Random example simulation from hyp.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Fisher-KPP (fisher) is a foundational reaction-diffusion PDE. These systems are used to model
biological or geological processes, often resulting in pattern formation. This equation details how the
concentration of a substance varies over time and space, influenced by a reaction process governed by
a reactivity parameter, and its dispersal through diffusion, which is defined by a diffusivity parameter.
Its applications extend to various domains, including wave propagation, population dynamics, ecology,
and plasma physics. Figure B2 shows example visualizations from fisher.

• Dimensionality: s = 60, t = 30, f = 1, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise (with
clamping to [0, 1])

• Boundary Conditions: periodic
• Time Step of Stored Data: 0.005
• Spatial Domain Size of Simulation: [0, 1]× [0, 1]

• Fields: concentration
• Varied Parameters: diffusivity ∈ [0.0001, 0.02[and reactivity ∈ [5, 15[

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [50, 60[

Figure B2: Random example simulation from fisher.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Swift-Hohenberg (sh) is known for depicting various pattern formation processes. This equation
can be applied to illustrate the structure of wrinkles in curved elastic bilayer materials. A prime
example is the formation of human fingerprints, where tensions between skin layers generate their
unique wrinkling. Figure B3 shows example visualizations from sh.

• Dimensionality: s = 60, t = 30, f = 1, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
• Boundary Conditions: periodic
• Time Step of Stored Data: 0.5 (with 5 substeps for the simulation)
• Spatial Domain Size of Simulation: [0, 20π]× [0, 20π]

• Fields: concentration
• Varied Parameters: reactivity ∈ [0.4, 1[and critical number ∈ [0.8, 1.2[

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [50, 60[

Figure B3: Random example simulation from sh.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Gray-Scott (gs) illustrates the dynamic interplay of two reacting and diffusing chemical
substances. Substance sa with concentration ca is depleted through reaction but resupplied based
on a defined feed rate. Meanwhile, substance sb, the reaction’s product with concentration cb, is
eliminated from the domain at a given kill rate. The balance between these two rates profoundly
influences the simulation outcomes, leading to diverse stable or evolving patterns. We simulate
several cases: four with temporally steady configurations, which result in a state that does not
substantially change anymore (gs-delta, gs-theta, gs-iota, and gs-kappa), and four
temporally unsteady configurations, which continuously evolve over time (gs-alpha, gs-beta,
gs-gamma, and gs-epsilon). For the unsteady case, separate test sets with longer temporal
rollouts are created. Figure B4 shows example visualizations from the steady configurations, and
Figure B5 from the unsteady configurations and corresponding test sets. For further details, see
(Pearson, 1993).

For all simulations, the diffusivity of the substances is fixed to da = 0.00002 and db = 0.00001. In
addition to that, datasets are initialized with a Gaussian blob initializer. The initializer creates four
Gaussian blobs at random positions and variances in the center 60% (20% for gs-kappa) of the
domain, where the initialization of ca is the complement of cb, i.e. ca = 1− cb.

Steady Configurations (gs-delta, gs-theta, gs-iota, and gs-kappa):
• Dimensionality: s = 10, t = 30, f = 2, x = 320, y = 320, z = 320 (per configuration)
• Initial Conditions: random Gaussian blobs
• Boundary Conditions: periodic
• Time Step of Simulation: 1.0 (all configurations)
• Time Step of Stored Data:

– gs-delta: 130.0
– gs-theta: 200.0
– gs-iota: 240.0
– gs-kappa: 300.0

• Number of Warmup Steps (discarded, in time step of data storage):

– gs-delta: 0
– gs-theta: 0
– gs-iota: 0
– gs-kappa: 15

• Spatial Domain Size of Simulation: [0, 2.5]× [0, 2.5]

• Fields: concentration ca, concentration cb
• Varied Parameters: feed rate and kill rate determined by configuration (i.e., initial conditions

only within configuration)

– gs-delta: feed rate: 0.028, kill rate: 0.056
– gs-theta: feed rate: 0.040, kill rate: 0.060
– gs-iota: feed rate: 0.050, kill rate: 0.0605
– gs-kappa: feed rate: 0.052, kill rate: 0.063

• Validation Set: random 15% split of all sequences from s ∈ [0, 8[

• Test Set: all sequences from s ∈ [8, 10[

Unsteady Configurations (gs-alpha, gs-beta, gs-gamma, and gs-epsilon):
• Dimensionality: s = 10, t = 30, f = 2, x = 320, y = 320, z = 320 (per configuration)

• Initial Conditions: random Gaussian blobs

• Boundary Conditions: periodic

• Time Step of Simulation: 1.0 (all configurations)

• Time Step of Stored Data:

– gs-alpha: 30.0
– gs-beta: 30.0
– gs-gamma: 75.0

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

– gs-epsilon: 15.0
• Number of Warmup Steps (discarded, in time step of data storage):

– gs-alpha: 75
– gs-beta: 50
– gs-gamma: 70
– gs-epsilon: 300

• Spatial Domain Size of Simulation: [0, 2.5]× [0, 2.5]

• Fields: concentration ca, concentration cb

• Varied Parameters: feed rate and kill rate determined by configuration (i.e., initial conditions
only within configuration)

– gs-alpha: feed rate: 0.008, kill rate: 0.046
– gs-beta: feed rate: 0.020, kill rate: 0.046
– gs-gamma: feed rate: 0.024, kill rate: 0.056
– gs-epsilon: feed rate: 0.020, kill rate: 0.056

• Validation Set: random 15% split of all sequences from s ∈ [0, 10[

• Test Set: separate simulations with s = 30, t = 100, f = 2, x = 320, y = 320, z = 320
(per configuration)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure B4: Random example simulations from steady configurations of the Gray-Scott model of a
reaction-diffusion system: gs-delta, gs-theta.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure B5: Random example simulations from unsteady configurations of the Gray-Scott model of a
reaction-diffusion system: gs-alpha, gs-beta.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Burgers (burgers) bears resemblance to an advection-diffusion problem. Instead of modeling
the transport of a scalar density, this equation describes how a flow field itself evolves due to the
combined effects of advection and diffusion. This process can result in the formation of abrupt
discontinuities, often referred to as shock waves, which present a significant challenge for accurate
simulation. Burgers’ equation also finds utility in fields such as nonlinear acoustics and the modeling
of traffic flow. Figure B6 shows example visualizations from burgers.

• Dimensionality: s = 60, t = 30, f = 2, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
• Boundary Conditions: periodic
• Time Step of Stored Data: 0.01 (with 50 substeps for the simulation)
• Spatial Domain Size of Simulation: [0, 1]× [0, 1]

• Fields: velocity (x, y)
• Varied Parameters: viscosity ∈ [0.001, 0.005[

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [50, 60[

Figure B6: Random example simulation from burgers.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Korteweg-de-Vries (kdv) presents simulations of the Korteweg-de-Vries equation within a pe-
riodic domain. This equation models dispersive, non-dissipative wave propagation and is a classic
example of an integrable PDE. It poses a challenge because energy is transferred to high spatial
frequencies, resulting in distinct, moving soliton waves that maintain their shape and propagation
speed. Throughout these simulations, the convection coefficient remains constant at −6, and the
dispersivity coefficient is consistently 1. Figure B7 shows example visualizations from kdv.

• Dimensionality: s = 60, t = 30, f = 2, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
• Boundary Conditions: periodic
• Time Step of Stored Data: 0.05 (with 10 substeps for the simulation)
• Spatial Domain Size of Simulation: varied per simulation
• Fields: velocity (x, y)
• Varied Parameters: domain extent ∈ [30, 120[identically for x, y, z, i.e. a square domain,

and viscosity ∈ [0.1, 0.25[

• Validation Set: random 15% split of all sequences from s ∈ [0, 50[

• Test Set: all sequences from s ∈ [50, 60[

Figure B7: Random example simulation from kdv.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Kuramoto-Sivashinsky (ks) models thermo-diffusive flame instabilities in combustion and also
finds use in reaction-diffusion systems on a periodic domain. It’s notable for its chaotic behavior,
where even slightly different initial conditions can lead to wildly divergent temporal trajectories over
time. The initial transient phase of the simulations is not included in the dataset. Figure B8 shows
example visualizations from ks.

• Dimensionality: s = 60, t = 30, f = 1, x = 384, y = 384, z = 384

• Initial Conditions: random truncated Fourier / Gaussian random field / diffused noise
• Boundary Conditions: periodic
• Time Step of Stored Data: 0.2 (with 2 substeps for the simulation)
• Number of Warmup Steps (discarded, in time step of data storage): 200
• Spatial Domain Size of Simulation: varied per simulation
• Fields: density
• Varied Parameters: domain extent ∈ [10, 130[identically for x, y, i.e. a square domain
• Validation Set: random 15% split of all sequences from s ∈ [0, 600[

• Test Set: separate simulations with s = 50, t = 200, f = 1, x = 384, y = 384, z = 384

Figure B8: Random example simulation from ks.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 2 t = 4 t = 6 t = 8

0.4

0.2

0.0

0.2

0.4

hyp - Simulation 0

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 2 t = 4 t = 6 t = 8

0.4

0.2

0.0

0.2

0.4

hyp - Simulation 0

Figure B9: hyp. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L <128|384>
(right) on the test set at resolution 3843.

B.3 VISUALIZATIONS OF PREDICTIONS

Below, we visualize several example predictions from the P3D-L network trained on crop size 1283

on the test datasets. See Figures B9 to B17. During inference, we apply the network to larger crops of
domain size 3203 for the Gray-Scott PDEs and 3843 for all other PDEs. The resolution is significantly
higher than what the network was originally trained on. In addition, since the full domain is periodic,
we change the padding mode of convolutional layers within the convolutional encoder and decoder
from "zeros" to "circular". We consider autoregressive rollouts of up to t = 8 steps.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 2 t = 4 t = 6 t = 8 0.0

0.2

0.4

0.6

0.8

1.0

fisher - Simulation 0

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 2 t = 4 t = 6 t = 8 0.0

0.2

0.4

0.6

0.8

1.0

fisher - Simulation 0

Figure B10: fisher. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L
<128|384> (right) on the test set at resolution 3843.

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 2 t = 4 t = 6 t = 8

1.0

0.5

0.0

0.5

1.0

1.5

sh - Simulation 0

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 2 t = 4 t = 6 t = 8

1.0

0.5

0.0

0.5

1.0

1.5

2.0

sh - Simulation 0

Figure B11: sh. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L <128|384>
(right) on the test set at resolution 3843.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce
va

pe
-c

0

t = 0

va
pe

-c
1

t = 2 t = 4 t = 6 t = 8 0.0

0.2

0.4

0.6

0.8

1.0

gs_alpha_test - Simulation 0

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce
va

pe
-c

0

t = 0

va
pe

-c
1

t = 2 t = 4 t = 6 t = 8 0.0

0.2

0.4

0.6

0.8

1.0

gs_alpha_test - Simulation 0

Figure B12: gs-alpha. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L
<128|320> (right) on the test set at resolution 3203.

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce
va

pe
-c

0

t = 0

va
pe

-c
1

t = 2 t = 4 t = 6 t = 8 0.0

0.2

0.4

0.6

0.8

1.0

gs_epsilon_test - Simulation 0

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce
va

pe
-c

0

t = 0

va
pe

-c
1

t = 2 t = 4 t = 6 t = 8 0.0

0.2

0.4

0.6

0.8

1.0

gs_epsilon_test - Simulation 0

Figure B13: gs-epsilon. Reference (left) and autoregressive prediction for t = 8 steps with
P3D-L <128|320> (right) on the test set at resolution 3203.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce
va

pe
-c

0

t = 0

va
pe

-c
1

t = 1 t = 2 t = 3 t = 4 0.0

0.2

0.4

0.6

0.8

1.0

gs_delta - Simulation 0

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce
va

pe
-c

0

t = 0

va
pe

-c
1

t = 1 t = 2 t = 3 t = 4 0.0

0.2

0.4

0.6

0.8

1.0

gs_delta - Simulation 0

Figure B14: gs-delta. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L
<128|320> (right) on the test set at resolution 3203.

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce
va

pe
-c

0
va

pe
-c

1

t = 0

va
pe

-c
2

t = 2 t = 4 t = 6 t = 8

0.4

0.2

0.0

0.2

0.4

burgers - Simulation 0

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce
va

pe
-c

0
va

pe
-c

1

t = 0

va
pe

-c
2

t = 2 t = 4 t = 6 t = 8

0.4

0.2

0.0

0.2

0.4

burgers - Simulation 0

Figure B15: burgers. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L
<128|384> (right) on the test set at resolution 3843.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce
va

pe
-c

0
va

pe
-c

1

t = 0

va
pe

-c
2

t = 2 t = 4 t = 6 t = 8

0.4

0.2

0.0

0.2

0.4

kdv - Simulation 0

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce
va

pe
-c

0
va

pe
-c

1

t = 0

va
pe

-c
2

t = 2 t = 4 t = 6 t = 8

0.4

0.2

0.0

0.2

0.4

kdv - Simulation 0

Figure B16: kdv. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L
<128|384> (right) on the test set at resolution 3843.

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 2 t = 4 t = 6 t = 8

15

10

5

0

5

10

15

ks_test - Simulation 0

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 2 t = 4 t = 6 t = 8

15

10

5

0

5

10

15

ks_test - Simulation 0

Figure B17: ks. Reference (left) and autoregressive prediction for t = 8 steps with P3D-L <128|384>
(right) on the test set at resolution 3843.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table B2: Normalized RMSE (×10−3) for crop size 128.

Model Name Fisher GS α GS β GS δ GS ϵ GS γ GS ι GS κ GS θ Hyp KDV KS SH Burgers Average

P3D-S 8.3 15.7 29.3 14.1 13.4 47.4 12.9 16.0 6.3 73.4 92.0 18.9 91.4 27.2 33.3
P3D-B 7.1 9.0 14.9 8.1 7.7 19.9 9.1 10.6 4.7 75.3 75.3 19.0 75.6 16.8 25.2
P3D-L 6.9 5.7 8.9 5.7 5.4 16.0 6.0 7.1 2.3 69.1 65.8 18.4 62.7 11.1 20.8

AFNO 13.0 20.7 30.4 18.8 23.3 43.3 17.1 20.0 6.1 146.5 81.5 32.4 183.5 34.6 47.9
AVIT 124.6 49.7 60.8 51.7 62.7 101.0 47.6 48.1 56.7 619.2 191.2 65.1 470.7 177.0 151.9
Swin3D 11.7 24.3 30.7 22.0 23.0 50.0 22.8 17.5 5.2 153.6 90.1 27.0 190.8 36.7 50.4
UNetGenCFD 17.3 35.8 19.5 6.4 24.9 50.7 6.4 6.4 6.4 214.2 107.7 43.2 573.1 45.8 82.7

Table B3: Normalized RMSE (×10−3) for crop size 64.

Model Name Fisher GS α GS β GS δ GS ϵ GS γ GS ι GS κ GS θ Hyp KDV KS SH Burgers Average

P3D-S 10.4 21.0 25.4 5.2 18.1 43.3 4.6 4.6 4.6 92.2 100.4 50.5 111.8 34.4 37.6
P3D-B 8.3 11.7 10.9 4.2 10.1 26.1 3.8 3.8 3.8 83.6 92.2 42.1 98.7 26.2 30.4
P3D-L 6.8 7.3 10.1 7.1 6.6 17.5 8.8 8.3 1.4 69.6 73.7 28.5 88.1 15.0 24.9

AFNO 19.7 20.0 22.7 3.1 21.0 38.0 2.3 2.3 2.3 189.4 90.8 39.4 210.7 36.3 49.9
AVIT 175.6 81.9 53.6 19.5 88.3 106.0 19.0 19.0 19.0 2004.7 206.6 92.7 450.8 213.9 253.6
Swin3D 20.7 67.4 56.9 5.0 59.7 98.4 4.5 4.5 4.5 155.6 115.9 61.2 285.3 46.2 70.4
FactFormer 19.06 18.01 13.94 3.75 16.10 30.76 3.75 3.75 3.75 182.78 95.13 31.53 184.20 40.48 46.2
UNetGenCFD 36.6 35.1 72.7 14.0 42.5 65.5 13.7 13.6 13.7 272.4 128.4 37.0 324.4 56.2 80.4
UNetConvNeXt 18.6 40.3 49.8 6.8 36.2 66.8 6.5 6.5 6.5 190.8 108.8 42.1 364.5 49.0 70.9
TFNO 23.2 111.6 56.2 6.3 49.5 96.7 6.0 6.0 6.0 175.5 113.8 222.1 263.1 36.2 83.7

Table B4: Normalized RMSE (×10−3) for crop size 32.

Model Name Fisher GS α GS β GS δ GS ϵ GS γ GS ι GS κ GS θ Hyp KDV KS SH Burgers Average

P3D-S 9.2 49.7 56.3 6.3 33.7 57.2 6.3 6.3 6.3 146.5 127.3 158.4 176.2 38.8 62.7
P3D-B 8.3 24.5 14.8 2.5 15.9 40.1 2.5 2.5 2.5 131.1 126.4 117.5 131.7 37.9 46.9
P3D-L 7.9 18.5 11.4 1.9 14.2 32.4 1.9 1.9 1.9 109.3 110.8 110.9 129.4 27.3 41.4

AFNO 21.7 43.8 22.0 5.8 33.4 65.9 5.8 5.8 5.8 188.7 118.3 74.0 619.5 43.1 89.5
AVIT 237.1 126.7 50.7 13.6 107.6 122.7 13.6 13.6 13.6 1089.4 256.7 177.6 476.0 230.1 209.2
Swin3D 16.6 154.5 38.6 3.8 56.2 92.6 3.8 3.8 3.8 189.1 143.6 83.4 263.5 55.7 79.2
FactFormer 20.1 43.1 23.1 5.8 32.0 43.9 5.8 5.8 5.8 222.9 105.0 54.4 263.7 43.3 62.5
UNetGenCFD 18.5 38.6 22.1 3.5 20.9 53.6 3.5 3.5 3.6 196.3 105.8 37.0 517.2 41.9 76.1
UNetConvNeXt 20.3 111.6 38.3 7.4 49.2 89.9 7.4 7.4 7.4 166.3 128.5 77.4 442.5 48.9 85.9
TFNO 21.9 176.8 41.2 5.6 46.4 84.4 5.6 5.6 5.6 175.3 121.8 204.1 252.4 38.3 84.7

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

C EXPERIMENT 2: ISOTROPIC TURBULENCE

For the second experiment, we make use of the Johns Hopkins Turbulence Database (JHTDB). It
contains data from various direct numerical simulations of homogeneous and wall-bounded turbulent
flows (Perlman et al., 2007). The simulations are stored with space-time history and allow for arbitrary
spatiotemporal query points.

Isotropic Turbulence (iso-turb) a direct numerical simulation of the Navier-Stokes equations
at Reynolds number around 433 simulated on a 10243 periodic grid via a pseudo-spectral parallel
code. It contains homogeneous isotropic turbulence, i.e., an idealized version of realistic turbulence
with statistical properties that are invariant to translations and rotations of the coordinate axes. The
following overview summarizes key characteristics of the dataset (for further details see Perlman
et al., 2007):

• Dimensionality: s = 1, t = 500, f = 4, x = 512, y = 512, z = 512

• Boundary conditions: periodic
• Time step of stored data: 0.002
• Spatial domain size: [0, 2π]× [0, 2π]× [0, 2π]

• Fields: velocity X/Y/Z, pressure
• Validation set: random 15% split of all timesteps from t ∈ [0, 420]

• Test set: all sequences from t ∈ [420, 500]

C.1 EXTENDED EVALUATION

See Table C1 for an extended evaluation expanding upon Table 4. The B config corresponds to the
previous size of the baselines models for Swin3D, AViT and AFNO. The S config decreases the
hidden dimensionality of the model architecture, which we change from 768 (B) to 384 (S) for AViT
and AFNO. For Swin3D, we decrease it from 96 (B) to 48 (S). For Swin3D and AViT, the hidden
dimensionality corresponds to the token embedding dimension. We also trained an L config for the
AViT model with hidden dimensionality 1536. All baseline models were trained for 4000 epochs.
Additionally, we kept training P3D-S and P3D-B for a total of 20000 epochs. The evaluation shows
that the RMSE and spectral error keep improving, showing no indication of overfitting.

We also include a benchmark comparison regarding the number of parameters, GFLOPs, VRAM and
throughput for inference of P3D and the different baseline architectures in Table C2.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure C1: Isotropic Turbulence. Training dataset visualization at resolution 5123 showing the
velocity X/Y/Z and pressure from t = 0 until t = 420. The first six rows are 2D mean projections
and slices of the velocity in x-direction. The 3D renderings show velocity X/Y/Z and pressure.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table C1: Performance comparison on the test set with crop size 1283 for RMSE (×10−2) and the
L2 enstrophy graph error (×102) at different autoregressive rollout steps.

Model RMSE L2 Enstrophy epochs
1 5 10 15 1 5 10 15

UNetGenCFD 5.48 25.42 48.60 67.72 4.25 14.5 22.7 140 4000

Swin3D-S 4.04 11.53 18.66 24.30 6.28 59.7 120 158 4000
Swin3D-B 3.22 10.45 18.15 24.36 4.06 52.1 112 156 4000

AViT-S 10.09 21.47 32.60 40.36 31.60 44.1 99.2 144 4000
AViT-B 9.45 19.57 30.00 37.77 26.70 49.1 84.6 112 4000
AViT-L 9.18 18.80 29.76 39.20 24.20 54.6 96.8 129 4000

AFNO-S 4.25 14.80 23.58 30.40 8.30 99.9 171 196 4000
AFNO-B 3.69 13.33 23.52 29.80 7.69 88.7 158 190 4000

P3D-S 2.81 9.87 20.50 28.25 2.15 8.23 21.6 31.9 4000
2.17 8.99 19.40 27.40 1.29 6.68 16.0 25.3 20000

P3D-B 2.04 8.79 20.23 31.52 0.72 1.39 3.38 19.2 4000
1.54 8.11 21.09 44.92 0.21 0.71 3.49 14.7 20000

Table C2: Architecture benchmark comparison on crop size 1283 measured on a H100 GPU using
CUDA 12.8. VRAM is measured at inference with batch size 1. Throughput with batch size 16.

Model Params GFLOPs VRAM Throughput

Swin3D-S 18.9M 38.8 2.2G 51.2it/s
Swin3D-B 50.3M 144.8 2.9G 34.1it/s

AViT-S 15.1M 24.4 0.16G 859it/s
AViT-B 60.0M 71.5 0.3G 346it/s
AViT-L 239.2M 233.5 1.1G 128it/s

AFNO-S 17.0M 471.1 0.2G 167it/s
AFNO-B 64.1M 1058.2 0.4G 58.6it/s

P3D-S 11.2M 108.5 0.9G 88.9it/s
P3D-B 46.1M 1165.3 2.1G 30.9it/s

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

C.2 VORTICITY

The vorticity ω, is a measure of the local rotation in a fluid flow. It is defined as the curl of the velocity
vector field u = (ux, uy, uz), where u, v and w are the velocity fields in x, y and z direction. The
vorticity is defined as

ω = ∇× u =

(
∂uz

∂y
− ∂uy

∂z

)
e1 +

(
∂ux

∂z
− ∂uz

∂x

)
e2 +

(
∂uy

∂x
− ∂ux

∂y

)
e3, (9)

where e1, e2 and e3 represent the unit vectors in x, y and z direction.

The vorticity is not part of the data. Only the velocity channels in X/Y/Z are available.

Approximation by finite differences To compute the components of the vorticity numerically
from the velocity, we use finite difference approximations for the partial derivatives in Equation (9).

For a grid point (i, j, k) located in the interior of the discretized simulation domain, we approximate
the partial derivates as

∂ux

∂x
≈ ui+1,j,k

x − ui−1,j,k
x

2∆x
∂ux

∂y
≈ ui,j+1,k

x − ui,j−1,k
x

2∆y

∂ux

∂z
≈ ui,j,k+1

x − ui,j,k−1
x

2∆z
and analogously for uy and uz .

C.3 ENSTROPHY GRAPH

We consider the magnitude |ω| of the vorticity ω, which is a scalar field defined as

|ω| =

√√√√ n∑
i=1

|ωi|2. (10)

The enstrophy of the magnitude of the vorticity field |ω| at wavenumber k ∈ R+ is defined as

Enstrophy(k) =
∑

k≤|m|≤k+1

|ω̂(m)|2, (11)

where ŵ with m ∈ Z2 are the Fourier coefficients of |ω|, see Chen et al. (2024, C.2) for reference.
The enstrophy spectrum is the graph of the function k 7→ Enstrophy(k). We average the enstrophy
spectrum over different vorticity fields.

We compute the L2 enstrophy error between the reference enstrophy spectrum and the enstrophy
spectrum of generated vorticities as

L2
Enstrophy :=

1

K + 1

∑
0≤k≤K

[
Enstrophyavgreference(k)− Enstrophyavggenerated(k)

]2
(12)

with K = 16.

Hanning filter The data on the cropped domain of size 1283 is not periodic, thus there are artifacts
at the boundary of the crop. This leads to problems when calculating the Fourier coefficients ω̂.
We therefore smoothen |ω| towards the boundary by multiplying the data with the Hann window as
defined in torch.hann_window.

In Figure C2 we show the magnitude of the vorticity |ω| generated by P3D-B and the reference after
applying the Hanning filter (t = 1 autoregressive steps).

See Figure C3 for the enstrophy spectrum Enstrophyavggenerated of the predicted vorticities by P3D-B
and the enstrophy spectrum Enstrophyavgreference of the reference for autoregressive unrolling steps
t = 1 and t = 15 on the test set.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Figure C2: Generated vorticity magnitude |ω| by P3D-B (left) and reference (right) after applying
the Hanning filter.

100 101

enstrophy spectrum (v.s. k) at time 1

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Enstrophy L2 error: 2.10e+01
Reference
Prediction

100 101

enstrophy spectrum (v.s. k) at time 15

10 5

10 4

10 3

10 2

10 1

100

101

102

103

Enstrophy L2 error: 1.47e+03
Reference
Prediction

Figure C3: Enstrophy spectrum of P3D-B and the reference simulation at resolution 1283 for t = 1
and t = 15 autoregressive prediction steps.

C.4 TRAINING AND EVALUATION

The model weights for the evaluation in Table 4 are the EMA weights at epoch 2000. We train both
the S and B configurations of P3D on crop size 1283. Training P3D-S for 4000 epochs took 11h
48m and training P3D-B took 20h 25m on four A100 GPUs. See Figure C4 for the validation loss
curve.

In Figure C5 we show a comparison between the reference and P3D-S <128|512> with an autoregres-
sive rollout until t = 16 on the test set at resolution 5123.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000 3500 4000
epoch

10 3

10 2

Va
lid

at
io

n
M

SE

P3D-S
P3D-B

Figure C4: Isotropic Turbulence. Validation MSE for P3D-S and P3D-B during training.

(a) Reference (b) P3D-S <128|512>

Figure C5: Isotropic Turbulence. Autoregressive prediction for t = 16 steps with P3D-S <128|512>
on the test set at resolution 5123. The first six rows are 2D mean projections and slices of the velocity
in x-direction. The 3D renderings show velocity X/Y/Z and pressure.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 4 t = 8 t = 12 t = 16 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 - Simulation 0

(a) Reference

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 4 t = 8 t = 12 t = 16 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 - Simulation 0

(b) P3D-S

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 4 t = 8 t = 12 t = 16 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 - Simulation 0

(c) P3D-B

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 4 t = 8 t = 12 t = 16 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 - Simulation 0

(d) UNetGenCFD

Figure C6: Vorticity magnitude |ω| calculated from the predicted velocity X/Y/Z for different models
(1/2).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 4 t = 8 t = 12 t = 16 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 - Simulation 0

(a) Reference

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 4 t = 8 t = 12 t = 16 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 - Simulation 0

(b) Swin3D-B

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 4 t = 8 t = 12 t = 16 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 - Simulation 0

(c) AFNO-B

x-
m

ea
n

y-
m

ea
n

z-
m

ea
n

x-
sli

ce
y-

sli
ce

z-
sli

ce

t = 0

va
pe

t = 4 t = 8 t = 12 t = 16 0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 - Simulation 0

(d) AViT-B

Figure C7: Vorticity magnitude |ω| calculated from the predicted velocity X/Y/Z for different models
(2/2).

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

D EXPERIMENT 3: TURBULENT CHANNEL FLOW

The dataset for the turbulent channel flow (TCF) represents a periodic channel with no-slip
boundaries at ±y that is driven by a dynamic forcing to re-inject energy lost due to wall friction, and
prevent the flow from slowing down. This results in a continuous production of vortex structures at
the walls, which have a very characteristic and well-studied, spatially-varying distribution (Hoyas &
Jiménez, 2008). Due to the complexity of the flow, these flows require very long transient phases to
develop the characteristic structures, We target this scenario by learning with a generative model, in
the context of which the TCF problem represents a probabilistic learning problem to infer turbulent
stats from the equilibrium phase, bypassing the costly transient warm-up phase.

D.1 DATASET

We generate a dataset comprising 20 simulations with Reynolds numbers within the interval [400, 800]
spaced equidistantly. After the initial-warmup phase, we simulate ETT = 20 eddy turnover cycles,
which we save in 200 snapshots with ∆t = 0.1. The computational grid comprises 96× 96× 192
spatially adaptive cells with a finer discretization near the wall. The data contains channels for the
velocity in X/Y/Z direction as well as pressure. We train P3D directly with computational grid data,
which is shown in Figure D1. In Figures D2 and D3 we show visualizations of the turbulent channel
flow for Reynold numbers Re = 400 and Re = 640 respectively.

• Dimensionality: s = 20, t = 200, f = 4, x = 96, y = 96, z = 192

• Initial conditions: noise
• Boundary conditions: periodic (x), wall (y,z)
• Time step of stored data: 0.1
• Number of warmup steps (discarded, in time step of data storage): 200
• Spatial domain: [−1, 1]× [−1, 1]× [−π, π]

• Fields: velocity X/Y/Z, pressure
• Varied parameters: Reynolds number ∈ [400, 800]

• Validation set: random 15% split of Reynolds number

3 2 1 0 1 2 3

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure D1: Computational grid of the turbulent channel flow simulation. The spatial discretization is
refined in the near-wall region to resolve the boundary layer.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Figure D2: Turbulent channel flow with Reynolds number 400.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Figure D3: Turbulent channel flow with Reynolds number 640.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Training S, B and L configs We train P3D with the configurations S, B and L for 400 epochs on
the full domain of size 962 × 192. The training loss is shown in Figure D4. It is important to choose
large architectures in our generative modeling setup based on flow matching. The network size,
specifically the embedding dimension is critical for this task with the L config reaching significantly
lower loss values compared to the S config trained with the same number of epochs. All models were
trained on 4 A100 GPUs with 80GB VRAM. Training took 11h 4m, 14h 43m and 27h 55m for the S,
B and L configs respectively.

0 50 100 150 200 250 300 350 400
epoch

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

ni
ng

 lo
ss

P3D-L
P3D-B
P3D-S

Figure D4: Turbulent channel flow. Training curve for different configurations of P3D.

D.2 STATISTICAL EVALUATION

Let x = (x1, x2, x3) denote the spatial coordinates and u(x, t,Re) denote the velocity of the flow
direction X. The reference simulations reach an equilibrium phase after the initial transient phase of
the warmup. Therefore, for the reference simulations, the moments um(x, t,Re) should be the same
for all t. Additionally, the setup combining periodic boundary conditions and no-slip boundaries
for the wall implies that the statistics only depend on the distance to the wall on the flow axis x1,
i.e., um((x1, x2, x3), t,Re) is the same for all x2 and x3 inside the domain. Thus it is reasonable
to consider um(x1,Re) and calculate the moments by sampling over x2, x3, t. Since the baseline
methods cannot be conditioned on the Reynolds number Re, we also compute the velocity profile
over Re. We compute the L2 distance between mean µ (m = 0) and variance σ2 (m = 1) of the
velocity profile graph x1 7→ um(x1) of the time-resolved DNS reference and generated samples.
The resulting L2 distance for the mean µ and variance σ2 is shown in Table 5, which provides a
meaningful statistical metric to evaluate accuracy. We additionally train two baselines, AFNO and
UNetGenCFD with identical training setups as P3D-L on the full domain.

Moments of the flow field We included comparisons of the first three moments (mean, variance,
skewness) um of the flow direction (velocity in x-direction) averaging over x1 as well. We report
the standard deviation when estimating the moments of the reference based on randomly drawing 20
simulations states of the equilibrium phase per Reynolds number as done for the velocity profiles to
properly assess how close the generated samples should match the reference. For the finetuned P3D-L
<X48|X48>, we picked the best model out of the five finetuned models. See Table D1. Overall,
P3D-L trained on the full domain and P3D-L <X48|X48> achieve the best results.

Velocity profile comparison See Figure D5 for a comparison between the mean channel flow
of the reference simulation for different Reynolds number and the mean flow from the generative
model P3D-L trained on the full domain. We show additional comparisons between the different
training and inference strategies in Figure D6. Scaling the P3D-L network trained on the small
crops of size 483 to the full domain does not work well and results in incorrect velocity profiles.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Table D1: First three moments of the velocity field in the flow direction for the reference, P3D-L and
the two baseline methods.

Moment Mean Variance Skewness
Reference 0.5034±0.0007 0.0511±0.0001 -0.776±0.007

UNetGenCFD full domain 0.5002 0.0532 -0.723
AFNO full domain 0.5040 0.0930 -0.361

P3D-L full domain 0.5009 0.0513 -0.789
P3D-L <X48|X48> 0.5044 0.0510 -0.802

By finetuning with the context network, region crops can coordinate and obtain information about
their relative position to each other as well as to the wall. As a results, the flow statistics improve
significantly, more closely matching the reference and samples from P3D-L trained on the full domain.

We show samples from P3D-L trained on the full domain in Figure D7, when applying
P3D-L pretrained on the full domain without any finetuning in Figure D8 and with finetuning via the
context network and learned region-dependent conditioning in Figure D9 respectively.

0 20 40 60 80
Velocity profile (x)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Reference

Reynolds Number
Re=400
Re=500
Re=600
Re=700
Re=800

0 20 40 60 80
Velocity profile (x)

Generated samples

Reynolds Number
Re=400
Re=500
Re=600
Re=700
Re=800

Figure D5: Comparison of the mean channel flow of the reference and of generated samples from
P3D-L trained on the full domain.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

0.0

0.2

0.4

0.6

0.8

Re
=5

00

Reference P3D-L full domain P3D-L <X48|X48> P3D-L <48|192>

0.0

0.2

0.4

0.6

0.8

Re
=6

00

Reference P3D-L full domain P3D-L <X48|X48> P3D-L <48|192>

0.0

0.2

0.4

0.6

0.8

Re
=7

00

Reference P3D-L full domain P3D-L <X48|X48> P3D-L <48|192>

0 25 50 75
Velocity profile (x)

0.0

0.2

0.4

0.6

0.8

Re
=8

00

Reference

0 25 50 75
Velocity profile (x)

P3D-L full domain

0 25 50 75
Velocity profile (x)

P3D-L <X48|X48>

0 25 50 75
Velocity profile (x)

P3D-L <48|192>

Figure D6: Comparison of the first two moments of the velocity profile between the reference DNS
and generated samples from P3D-L with different training and inference strategies.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Figure D7: Samples from P3D-L trained on the full domain at Re = 800.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Figure D8: Samples from P3D-L <48|192> pretrained on crops of size 483. Inference on the full
domain at Re = 800 produces incorrect samples, as information on the relative positions between
region crops is not available.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Figure D9: Samples from P3D-L <X48|X48> pretrained on crops of size 483 and finetuned with the
context network. Inference on the full domain at Re = 800 produces samples that exhibit the correct
flow statistics.

51

	Introduction
	Related Work
	Method
	Backbone Architecture: P3D Transformer
	Context Network
	Scaling Output Domains

	Experiments
	Jointly Learning Multiple PDEs
	Isotropic Turbulence
	Turbulent Channel Flow

	Conclusion
	Training Methodology and Network Architectures
	Supervised training
	Probabilistic training
	Normalized RMSE
	P3D Architecture
	Context model
	Baseline Architectures

	Experiment 1: Jointly Learning PDEs
	Data Generation Setup
	PDE Types
	Visualizations of Predictions

	Experiment 2: Isotropic Turbulence
	Extended evaluation
	Vorticity
	Enstrophy Graph
	Training and Evaluation

	Experiment 3: Turbulent Channel Flow
	Dataset
	Statistical evaluation

