

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW ANIMALS DANCE (WHEN YOU'RE NOT LOOKING)

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a framework for generating music-synchronized, choreography aware animal dance videos. Our framework introduces choreography patterns—structured sequences of motion beats that define the long-range structure of a dance—as a novel high-level control signal for dance video generation. These patterns can be automatically estimated from human dance videos. Starting from a few keyframes representing distinct animal poses, generated via text-to-image prompting or GPT-4o, we formulate dance synthesis as a graph optimization problem that seeks the optimal keyframe structure to satisfy a specified choreography pattern of beats. We also introduce an approach for mirrored pose image generation, essential for capturing symmetry in dance. In-between frames are synthesized using an video diffusion model. With as few as six input keyframes, our method can produce up to 30 seconds dance videos across a wide range of animals and music tracks.

1 INTRODUCTION

Everything in the universe has a rhythm; everything dances.

—Maya Angelou

Humans dance spontaneously to music—just picture a toddler cheerfully bouncing to the beats at a birthday party. Animals can dance too; *Snowball the cockatoo*—can perform up to 14 distinct dance movements in response to different musical cues (Keehn et al., 2019). In fact, our animal friends are probably dancing all the time when we’re not looking. In this paper, we capture this hidden world of animal dance, and expose it *for the first time* to the human eyes.

While we happen to be particularly obsessed with dancing animals, this paper introduces a new framework for generating music-synchronized, highly structured, up to 30 seconds long dance videos. Such capabilities are challenging for current state of the art generative models (Blattmann et al., 2023; Bar-Tal et al., 2024; Zeng et al., 2024; Yang et al., 2024), most of which are limited to short clips of a few seconds, do not produce synchronized audio and video, and lack intuitive controls for long range motion. Beyond text prompting, most controls for video generation are fine-grained and operate on a single frame at a time (Wang et al., 2023; Geng et al., 2024), *e.g.*, body pose, camera pose, motion brushes, etc. In contrast, we introduce *choreography patterns* as a new control for video generation. Specifically, we allow the user to specify a structured sequence of dance moves, or “beats”, *e.g.*, A-B-A-B-C-D-A, where each letter corresponds to a particular move, and constrain the motion in the video to follow that choreography. Furthermore, we show how these choreography patterns can be automatically estimated from existing (human) dance videos.

Our use of choreography patterns as a control is inspired by how real dances are organized. A well-formed dance follows basic choreographic rules (Chen et al., 2021), which structure the movements to align with the rhythmic flow of the accompanying music, and often involve recurring patterns such as mirroring and repetition to help reinforce the musical structure (Kim et al., 2003; 2006). We leverage this inherent structure of dance to make the generation task more tractable. As input, we use a collection of initially generated keyframes, each representing a distinct pose. We then formulate the dance synthesis as a graph optimization problem, *i.e.*, find the optimal walk path through the keyframes where the underlying motion satisfy a specified choreography pattern of beats. Each selected keyframe in the path is aligned to a musical beat. The final dance video

054 is produced by synthesizing in-between frames between the keyframes using a generative video
 055 inbetweening model (Wang et al., 2024b;a) (Fig. 1).

056 Beyond 1) introducing a new type of generative video
 057 control (choreography patterns), and 2) a practical system
 058 for generating music-synchronized dance videos, this
 059 paper makes the following technical contributions. First,
 060 we introduce a technique for inferring choreography pat-
 061 terns from human dance videos, such as those found on
 062 YouTube and TikTok. Second, we formulate the satis-
 063 faction of these constraints as a graph optimization prob-
 064 lem and solve it. Finally, we demonstrate an approach
 065 for pose-mirroring in the image domain, while retaining
 066 asymmetries in foreground and background features.

067 We demonstrate the effectiveness of our method by gen-
 068 erating dance videos up to 30 seconds long across ap-
 069 proximately 25 animal instances across 10 classes—
 070 including marmots, sea otters, hedgehogs, and cats—
 071 paired with various songs. These videos represent the
 072 first-ever recorded demonstrations of these animals per-
 073 forming such complex musical dance routines and will
 074 be studied by generations of zoologists.

075 2 PRIOR WORK

076 **Music-driven generative dance synthesis.** Earlier
 077 learning-based approaches developed neural networks
 078 that synthesize human dance motion directly from mu-
 079 sic input (Lee et al., 2018; 2019; Huang et al., 2020; Li et al.,
 080 2021; Zhang et al., 2022; Sun et al., 2020). Recent advances have shifted toward diffusion-based methods Qi et al. (2023); Le et al.
 081 (2023); Tseng et al. (2023), which also focus primarily on generating skeletal motions from music.
 082 More recently, some works have begun exploring direct dance video generation using video diffu-
 083 sion models (Sun et al., 2020; Ruan et al., 2023; Hong et al., 2025). However, directly enforcing
 084 choreography structure within these frameworks remains challenging. In addition, these learning-
 085 based approaches typically require training data—an issue in our case, as dance videos featuring
 086 animals are extremely scarce.

087 **Graph-based human dance motion synthesis.** In contrast to learning-based approaches, graph-
 088 based frameworks (Kim et al., 2003; 2006; Ofli et al., 2008; Manfrè et al., 2016; Chen et al., 2021)
 089 synthesize new motions from an existing dance motion segments database, and cast the dance syn-
 090 thesis as a graph optimization problem: finding an optimal path in the constructed motion graph that
 091 aligns with the input music. For example, Kim et al. (Kim et al., 2003) introduced rhythmic and
 092 beat-based constraints to guide the path search, while more recent work *ChoreoMaster* (Chen et al.,
 093 2021) incorporated richer choreography rules, requiring not only structural alignment with music
 094 but also stylistic compatibility.

095 Our approach follows this paradigm but differs in key ways. First, instead of relying on a motion
 096 capture database, we take a small set of keyframes of an animal or subject as input. We augment
 097 this set by generating mirrored pose images, creating a complete keyframe set for dance synthesis.
 098 The graph is constructed over these keyframes, and a video diffusion model is applied to generate
 099 realistic in-between frames along the optimized walk path, producing the final dance video. Second,
 100 while basic choreography rules can be inferred from the musical structure as done in (Chen et al.,
 101 2021), different performers may interpret the same piece differently. As such, we propose a way to
 102 extract choreography patterns directly from a reference dance video and use it as the control.

103 **Anthropomorphic character animation.** Given a reference image, character image animation,
 104 generates videos following a per-frame target human skeletal pose sequence. While existing meth-
 105 ods (Hu, 2024; Hu et al., 2025) are primarily designed for human figures, recent work (Tan et al.,
 106 2024) extends to anthropomorphic characters by learning generalized motion representation. How-

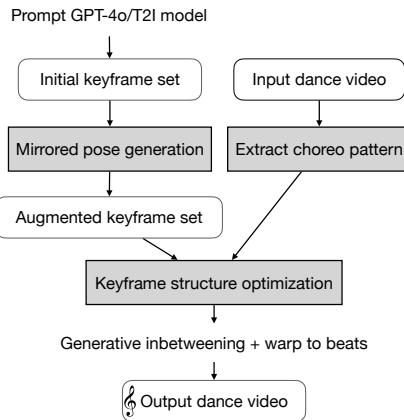


Figure 1: **System overview.** Given a few initially generated keyframes as input, we generate mirrored counterparts, extract choreography pattern from a dance video, and optimize the keyframe structure accordingly. The final dance is synthesized by generating in-between frames with a video diffusion model and warped to the musical beats. Our method is highlighted in gray.

108 ever, it still favor human-like anatomy, often producing animals with features like elongated limbs
 109 and human-style body proportions. They also struggle to generate high-fidelity videos from a single
 110 image when handling long and diverse sequences, such as a 30-second dance. In contrast, our
 111 method does not rely on per-frame human skeleton pose as guidance and uses choreography pattern
 112 as higher-level control, letting the video diffusion model generate in-between motions so that the
 113 final dance follows the choreographic structure, not human motion itself.

114

115

3 APPROACH

117

118 We begin by generating a small set of keyframes $\{I_k\}_{k=0}^{K-1}$, each depicting the subject, *e.g.*, a
 119 marmot, in different poses while maintaining a consistent background and static camera view (see
 120 Section 4.1 for details). Our goal is to synthesize a dance video of the input animal from the pro-
 121 vided keyframes, synchronized to the beats and following the choreography pattern extracted from
 122 a reference dance video.

123

124 We first introduce how we extract the choreography pattern directly from a human dance video
 125 in Section 3.1. Since motion mirroring is an essential component of dance, we then present our
 126 approach for generating a mirrored pose counterpart for each keyframe to augment the keyframe set
 127 in Section 3.2. Finally, in Section 3.3, we present how to synthesize the full dance video using the
 128 complete set of keyframes, including mirrored ones, to follow the choreography pattern.

129

3.1 CHOREOGRAPHY PATTERN LABELING

130

131 Choreography are closely tied to the rhythmic structure of music. In music theory, a *beat* is the basic
 132 temporal unit, while a *bar* (or measure) groups a fixed number of beats. The *meter* defines how
 133 beats are grouped and emphasized within the bar, and is indicated by a time signature, *e.g.*, 2/4, 3/4,
 134 4/4, where the upper number specifies beats per bar, and the lower number denotes the note value
 135 that receives one beat. In this work, we focus on music with a 4/4 time signature—each bar contains
 136 four quarter note beats—the most common structure in popular music.

137

138 **Problem definition.** Given a 4/4 music track with a synchronized dance video, we begin by detect-
 139 ing the beat times $\mathcal{B} = \{t_0, t_1, \dots, t_{N-1}\}$, assuming a total of N beats, corresponding to $\frac{N}{4}$ bars.
 140 Based on the beat times, we construct a sequence of motion segments $\mathcal{S} = \{s_0, s_1, \dots, s_{\frac{N}{2}-1}\}$ where
 141 each segment s_i spans from beat t_{2i} to beat t_{2i+1} . Each bar thus yields two motion segments: one
 142 from the first to the second beat, and another from the third to the fourth beat, aligning with the 4/4
 143 music structure where major movements typically begin on accented beats and end on weak ones,
 144 whereas transitions occur across weak-to-accented intervals. The “choreo pattern” labeling task out-
 145 puts a sequence of labels $\mathcal{L} = \{l_0, l_1, \dots, l_{\frac{N}{2}-1}\}$, *e.g.*, A-A'-B-C-D-D, where each l_i corresponds to
 146 motion segment s_i . Distinct motions receive different labels, identical motions share the same one,
 147 and mirrored motions are indicated by prime-labeled counterparts (*e.g.*, A and A').

148

149 **Motion segments quantization.** We formulate motion segment sequence labeling as a quantization
 150 problem: clustering similar motion segments and assigning each a cluster ID as its label. Each seg-
 151 ment s_i of length T_i is represented by the SMPL-X (Pavlakos et al., 2019) pose sequence recovered
 152 from the video: $s_i = \{(\theta_{t_i} \in \mathbb{R}^{3 \times (J+1)}, \tau_{t_i} \in \mathbb{R}^3)\}_{t_i=0}^{T_i}$, where θ_{t_i} contains per-joint axis-angle
 153 rotation for $J = 21$ body joints in addition to a joint for global rotation (the 0-th joint), and τ_{t_i}
 154 denotes the global translation in 3D space.

155

156 For clustering, we focus solely on poses—ignoring global translations—to capture distinctive mo-
 157 tion patterns. The distance between two SMPL-X poses is defined as the average geodesic distance
 158 across joints:

159

$$d_\theta(\theta_1, \theta_2) = \frac{1}{J} \sum_{j=0}^J \|\log(R(\theta_1^j)^T R(\theta_2^j))\|_F \quad (1)$$

160

161

162 where $R(\theta^j)$ converts the axis-angle representation of joint j into a rotation matrix. To account
 163 for slight temporal offsets between beats, we compute the distance between two motion segments
 164 using dynamic time warping (DTW), with d_θ as the local cost metric between poses. The clustering

162 function \mathcal{C} is then defined as:
 163

$$\mathcal{C}(\mathcal{S}; \text{DTW}_{d_\theta}, \epsilon_\theta) \rightarrow \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_C\} \quad (2)$$

165 where $\bigcup_{c=1}^C \mathcal{C}_c = \mathcal{S}$, with $\mathcal{C}_i \cap \mathcal{C}_j = \emptyset$, for $i \neq j$. Segments within the same cluster satisfy:
 166 $\text{DTW}_{d_\theta}(s_i, s_j) < \epsilon_\theta, \forall s_i, s_j \in \mathcal{C}_c$.
 167

168 **Mirrored motion segments detection.** After the quantization stage, we identify mirrored motion
 169 segments in two steps.

170 *Mirrored pose clusters.* A mirrored joint rotation is defined by reflecting the axis-angle vector across
 171 the sagittal (YZ) plane: $\mathcal{F}(\theta^j) = (\omega_x, -\omega_y, -\omega_z)$, where $\theta^j = (\omega_x, \omega_y, \omega_z)$. Then a mirrored pose
 172 θ' is obtained by applying this reflection to each joint after left-right joint swapping:

$$\theta'^j = \mathcal{F}(\theta^{\pi(j)}) \quad \text{for } j = 0, \dots, J \quad (3)$$

175 here $\pi(j)$ denotes the left-right joint permutation (e.g. swapping left/right arms, legs, and shoulders),
 176 and for central joints (e.g., spine, neck, head), $\pi(j) = j$, so only the reflection is applied.

177 Two clusters \mathcal{C}_a and \mathcal{C}_b are considered mirrored if there exists at least one pair of segments $s_i \in$
 178 $\mathcal{C}_a, s_j \in \mathcal{C}_b$, such that the mirrored version of s_i , denoted by $s'_i = \{\theta'_{t_i}\}_{t_i=0}^{T_i}$, is similar to s_j
 179 under dynamic time warping: $\text{DTW}_{d_\theta}(s'_i, s_j) < \epsilon_{\theta'}$. The resulting set of mirrored cluster pairs is:
 180 $\mathcal{M} = \{(\mathcal{C}_a, \mathcal{C}_b) \mid \exists s_i \in \mathcal{C}_a, s_j \in \mathcal{C}_b, \text{DTW}_{d_\theta}(s'_i, s_j) < \epsilon_{\theta'}\}$.
 181

182 *Mirrored motion directions within a cluster.* For clusters without a mirrored counterpart, we further
 183 check whether they can be internally partitioned into two directionally mirrored groups. We first
 184 extract the overall motion direction \vec{d}_{s_i} of each motion segment s_i using its global translation: $\vec{d}_{s_i} =$
 185 $(\tau_{t_i}^{T_i} - \tau_{t_i}^0) / \|\tau_{t_i}^{T_i} - \tau_{t_i}^0\|$, where $\tau_{t_i}^0$ and $\tau_{t_i}^{T_i}$ denote the segment's start and end positions, respectively.

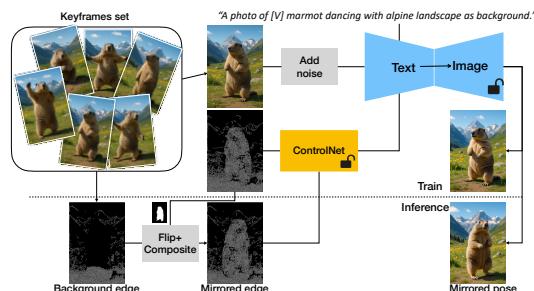
186 To identify mirrored directions, each motion direction \vec{d}_{s_i} is reflected across the YZ plane as $\vec{d}'_{s_i} =$
 187 $\text{diag}([-1, 1, 1])\vec{d}_{s_i}$. We then perform bipartite matching to find mirror pairs (s_i, s_j) that satisfy
 188 $\|\vec{d}'_{s_i} - \vec{d}_{s_j}\| < \epsilon_d$. If valid pairs are found, we assign all matched segments into two directionally
 189 consistent groups based on their directional similarity. The original cluster \mathcal{C}_i is then partitioned into
 190 two mirrored subgroups $(\mathcal{C}_i^0, \mathcal{C}_i^1)$, which are then added to the mirrored cluster set \mathcal{M} .
 191

192 Finally, we assign a unique label to each cluster. For each mirrored pair $(\mathcal{C}_a, \mathcal{C}_b) \in \mathcal{M}$, we assign a
 193 base label l_a (e.g. A) to segments in \mathcal{C}_a , and its mirrored label l'_a (e.g. A') to segments in \mathcal{C}_b . Clusters
 194 without a mirrored counterpart are assigned a distinct label without a prime.

195 3.2 MIRRORED POSE IMAGE GENERATION

196 To augment the keyframe set with mirrored
 197 counterparts, we generate visually consistent
 198 keyframe pairs for each input pose. This
 199 process (Fig. 2) involves fine-tuning a text-to-
 200 image model with ControlNet, generating
 201 mirrored edge maps, and re-generating the
 202 original keyframes for consistency. In the end,
 203 we get a complete set of consistent keyframes
 204 $\mathcal{I} = \{I_0, \dots, I_{K-1}, I'_0, \dots, I'_{K-1}\}$, where I'_k
 205 is the mirrored version of I_k .

206 **Fine-tuning.** We fine-tune a pretrained text-to-
 207 image model on the input keyframes set, over-
 208 fitting it to capture the appearance of the
 209 specific input subject instance and the background.
 210 To provide structural guidance, we incorporate
 211 ControlNet (Zhang et al., 2023) using the canny
 212 edge maps extracted from the input images as a
 213 conditional input. We use the prompt format:
 214 “A photo of [V] [subject class name] dancing [background description].”, where [V] is a unique
 215 token for identifying the subject **instance** rather than **class**. The placeholders [subject class name]



216 **Figure 2: Mirrored pose generation.** We fine-
 217 tune a text-to-image model with ControlNet us-
 218 ing the canny edges extracted from each keyframe
 219 as conditioning. During inference, mirrored pose
 220 images are generated by flipping only the subject
 221 edges and using an inpainted background edge
 222 composed from the keyframe set.

216 and [background description] are replaced with the actual class name of the subject and background
 217 description. For example, “A photo of [V] marmot dancing with alpine landscape as background.”
 218

219 **Mirrored edge generation.** To generate mirrored pose images, We first extract the subject mask
 220 using SAM (Kirillov et al., 2023). We then construct a unified background canny edge map by in-
 221 painting and stitching the background edges from all input keyframes. For each keyframe, we extract
 222 the subject’s edge map and horizontally flip it to create a mirrored subject edge map. This flipped
 223 edge map is then composited with the shared background edge map to generate a full mirrored edge
 224 map. which is used as input to the fine-tuned model to generate the corresponding mirrored image.
 225

226 Keyframes re-generation.

227 The original keyframes may contain slight in-
 228 consistencies in the background due to genera-
 229 tion instability. Additionally, the fine-tuned
 230 model may introduce subtle color shifts during
 231 inference. To ensure visual consistency among
 232 the augmented keyframes set, we regenerate the
 233 original keyframes using the same model and
 234 shared background edge map (see Fig. 3 for an
 235 example).

236 **Implementation details.** We use FLUX.1-dev
 237 and Xlabs-AI/flux-controlnet-canny as the pre-
 238 trained text-to-image and controlnet model. We
 239 fine-tune them jointly with a LoRA rank of 16 for 500 epochs, Training on 6 keyframes takes around
 240 90 minutes on a single A100 GPU. Canny edges are extracted using threshold values of (50, 100).

241 3.3 CHOREOGRAPHY PATTERN DRIVEN DANCE SYNTHESIS

242 Given the augmented keyframe set $\mathcal{I} = \{I_0, \dots, I_{K-1}, I'_0, \dots, I'_{K-1}\}$, where I'_k denotes
 243 the mirrored counterpart of keyframe I_k , and the choreography pattern label sequence $\mathcal{L} =$
 244 $\{l_0, l_1, \dots, l_{\frac{N}{2}-1}\}$, the goal is to find an optimal walk path $\mathcal{P} = \{I_{p_0}, I_{p_1}, \dots, I_{p_{N-1}}\}$ through the
 245 keyframe set, and the i -th keyframe I_{p_i} in the path corresponds to the i -th beat. We then apply video
 246 diffusion model to generate in-between frames, finally producing the final dance video.
 247

248 Since each label l_i corresponds to a motion segment between keyframe pairs $(I_{p_{2i}}, I_{p_{2i+1}})$, we cast
 249 path planning as a graph optimization, where each node represents a candidate keyframe pair. The
 250 choreography label sequence \mathcal{L} specifies assignment constraints: same labels map to the same pair,
 251 distinct labels to distinct pairs, and mirrored labels to mirrored pairs. The object is to assign each
 252 label l_i to a node such that these constraints are met while minimizing the total transition cost along
 253 the path.

254 **Keyframe graph construction.** We construct the keyframe graph $G = (V, E)$ as a directed graph,
 255 where each node $(I_u, I_v) \in V$, with $I_u \neq I_v$, represents an ordered pair of keyframes from the
 256 augmented keyframe set \mathcal{I} . Note $(I_u, I_v) \neq (I_v, I_u)$. Each node corresponds to a potential dance
 257 segment from I_u to I_v , and each edge $(I_u, I_v) \rightarrow (I_w, I_x) \in E$, with $I_v \neq I_w$, represents a valid
 258 transition between segments.

259 To ensure both expressive motion and synthesis feasibility, we filter nodes based on the average flow
 260 magnitude $|F(I_u, I_v)|$ from I_u to I_v , computed over the foreground region of the subject. We use
 261 RAFT (Teed & Deng, 2020) to compute the optical flow. Nodes with flow that is too small or too
 262 large are discarded. Only node pairs with acceptable motion range are retained:
 263

$$V = \{(I_u, I_v) \mid M_{\text{low}} < |F(I_u, I_v)| < M_{\text{high}}\} \quad (4)$$

264 To make the synthesized dance smooth and fluid, we define the edge cost between two nodes as
 265 the flow magnitude between the end keyframe of the first node and start one of the next node:
 266 $\mathcal{T}((I_u, I_v) \rightarrow (I_w, I_x)) = |F(I_v, I_w)|$. We prune high-cost transitions by including only edges
 267 with flow below a threshold:
 268

$$E = \{((I_u, I_v) \rightarrow (I_w, I_x)) \mid |F(I_v, I_w)| < M_{\text{high}}\} \quad (5)$$

270 We also define a mirroring function $\mu : V \rightarrow V$ over graph node such that two nodes are mirrored
 271 if and only their respective keyframes are mirrored: $\mu((I_u, I_v)) = (I'_u, I'_v)$.
 272

273 **Graph optimization.** We define a node assignment function: $\phi : \mathcal{L} \rightarrow V$, which maps each choreo-
 274 graph label $l_i \in \mathcal{L}$ to a graph node $(I_u, I_v) \in V$, forming a walk path through the keyframe
 275 graph. The goal is to find the optimal assignment ϕ^* that minimizes the total transition cost across
 276 the sequence:

$$277 \quad \phi^* = \operatorname{argmin} \sum_{i=0}^{\frac{N}{2}-2} \mathcal{T}(\phi(l_i), \phi(l_{i+1})) \quad (6)$$

280 subject to the following constraints:

$$281 \quad l_i = l_j \Leftrightarrow \phi(l_i) = \phi(l_j), l'_i = l_j \Leftrightarrow \phi(l_i) = \mu(\phi(l_j)) \quad (7)$$

283 To ensure visual variety and avoid redundancy, we introduce two additional constraints:
 284

285 (1) Different labels cannot map to partially mirrored node pairs—defined as nodes sharing one
 286 keyframe (in any order), with the other keyframes mirrored:

$$287 \quad l_i \neq l_j, \Rightarrow (I_a, I_b) \not\sim (I_c, I_d) \quad (8)$$

289 where $\phi(l_i) = (I_a, I_b), \phi(l_j) = (I_c, I_d)$.

290 (2) Consecutive, distinct, and non-mirrored labels must not be assigned to nodes that share a
 291 keyframe, to prevent unnecessary single keyframe repetition.

$$293 \quad l_i \neq l_{i+1}, l'_i \neq l_{i+1} \Rightarrow (I_a \neq I_c \wedge I_b \neq I_d) \quad (9)$$

294 where $\phi(l_i) = (I_a, I_b), \phi(l_{i+1}) = (I_c, I_d)$.

296 3.4 WARP TO MUSIC

298 We generate the final dance video by applying a video diffusion model to synthesize in-between
 299 frames along the optimized keyframe walk path $\mathcal{P} = \{I_{p_0}, I_{p_1}, \dots, I_{p_{N-1}}\}$, where each keyframe
 300 I_{p_i} corresponds to beat position i . Note that since there are motion repetition in the choreography,
 301 we only have to synthesize videos between unique keyframe pairs. In practice, we use Framer (Wang
 302 et al., 2024a), which generates 14 in-between frames, and we assume a fps of 25. To synchronize
 303 with the music, we warp the video timeline such that the timing of every keyframe in \mathcal{P} align with
 304 the corresponding beat time in the audio. Following the visual rhythm strategy from (Davis &
 305 Agrawala, 2018), we accelerate the warping rate into beat points and decelerate before and after to
 306 preserve beat saliency while ensuring temporal smoothness.

307 4 EXPERIMENTS

310 We generate a collection of input keyframe grids featuring approximately 25 animal instances, some
 311 captured as half-body views. The animal classes include *marmot*, *capybara*, *hedgehog*, *meerkat*,
 312 *penguin*, *sea otter*, *cat*, *quokka*, *beaver* and others. We also incorporate characters such as *Elmo*.
 313 For the video results, we generate dance videos for these instances using five popular song clips,
 314 ranging from 16 to 28 seconds in length, with choreography patterns extracted from the correspond-
 315 ing YouTube video clips. While we showcase our method using these examples, it can adapt to any
 316 choreography patterns paired with music. Fig. 6 shows selected examples of the final keyframe pairs
 317 assigned for each choreography label, arranged in the order specified by the choreography pattern.
 318 We highly recommend viewing the supplementary video for the full experience.

319 4.1 KEYFRAMES GENERATION

321 We generate initial keyframes set by prompting text-to-image model FLUX to generate an image
 322 grid with consistent keyframes using prompt template like “a 3x2 grid of frames, showing 6 consec-
 323 utive frames from a video clip of [...]. For example, the description prompt might be “*a marmot*
 324 *dancing wildly in the wild alpine landscape, striking a variety of fun and energetic poses*”. The same

prompt format can also be used with GPT-4o, which supports even finer specifications. For instance, one can specify: *“Generate a grid with 2 rows and 3 columns. Depict a quokka with distinct poses with a wild background. The postures should feel natural for the quokka’s anatomy....”*. In all of our results, we use a total of 6 input keyframes.

4.2 CHOREOGRAPHY PATTERN LABELING

We collect a total of 20 dance video clips featuring various 4/4 music tracks from Youtube and TikTok, ranging from 12s to 28s in length. To create ground truth, we manually annotate the choreography pattern label sequence. We then evaluate our method in Section 3.1 by comparing our extracted label sequences against the ground truth ones. Beat times are detected using Librosa, and SMPL-X pose sequences are recovered from the videos using GVHMR (Shen et al., 2024). We set the threshold values as follows: $\epsilon_\theta = 0.21$, $\epsilon_{\theta'} = 0.25$ and $\epsilon_d = 0.1$. Specifically, we evaluate two aspects: (1) Clustering accuracy, where each unique label—including mirrored variants—is treated as a distinct cluster. We assess the clustering results using standard metrics: Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI); (2) Mirror detection accuracy, where we compute precision and recall based on the correctly identified mirrored motion segments pairs.

We report the results in Table 1. Our training-free extraction method achieves overall strong quantization accuracy, effectively differentiating different motion patterns. For mirroring, our prediction occasionally misses mirrored pairs, typically in cases where the poses are symmetrical but exhibit subtle mirroring in head or body orientation. Since our method also can output representative motions for each choreography label, users can more easily visualize the structure and manually correct annotation errors if needed.

4.3 BASELINE COMPARISONS

Baselines. A straightforward baseline is music-conditioned video generation, which generates videos directly from audio and text prompts. However, methods such as MusicInfuser (Hong et al., 2025) are trained on human dance videos and typically produce only short clips, *e.g.*, 5s. So they cannot generalize to long animal dance videos synchronized to the input music. Several examples are provided in the supplementary videos.

Next we compare our method to human pose driven single image animation method using Animate-X (Tan et al., 2024), which animates an input image according to a sequence of human skeleton poses and works with anthropomorphic characters. For each of our generated dance videos, we extract the pose sequence from the same reference video used to extract the choreography pattern and use it as the driving sequence for Animate-X.

User study. Since there are no existing long, structured animal dance videos for direct reference, we conducted a perceptual user study to evaluate the generated dance videos. We used 40 generated dance video pairs across 5 different songs, and invited 31 participants. Each participant was presented a random set of 8 pairwise comparisons of our results and Animate-X. The order of the videos within each pair was randomized. For each pair, participants were asked to choose which video they judged better on each of four criteria, or select “similar” if they found no difference: (1) *Beat accuracy*—are the dances synchronized with the music beats? (2) *Appearance & motion naturalness*—do the animals’ body proportions and movements feel natural for them? (3) *Visual quality*—do the videos have high overall visual quality (*e.g.* sharpness, clarity, and fewer artifacts)? (4) *Motion fluidity*—are the dance movements smooth and fluid? The responses are shown in Fig. 4, and example qualitative comparisons are shown in Fig.5.

Clustering		Mirroring		
ARI↑	NMI↑	Prec. ↑	Recall↑	F1↑
0.94	0.98	0.93	0.91	0.92

Table 1: Evaluation on choreography pattern labeling.



Figure 4: User ratings of our approach compared to Animate-X on various criteria.

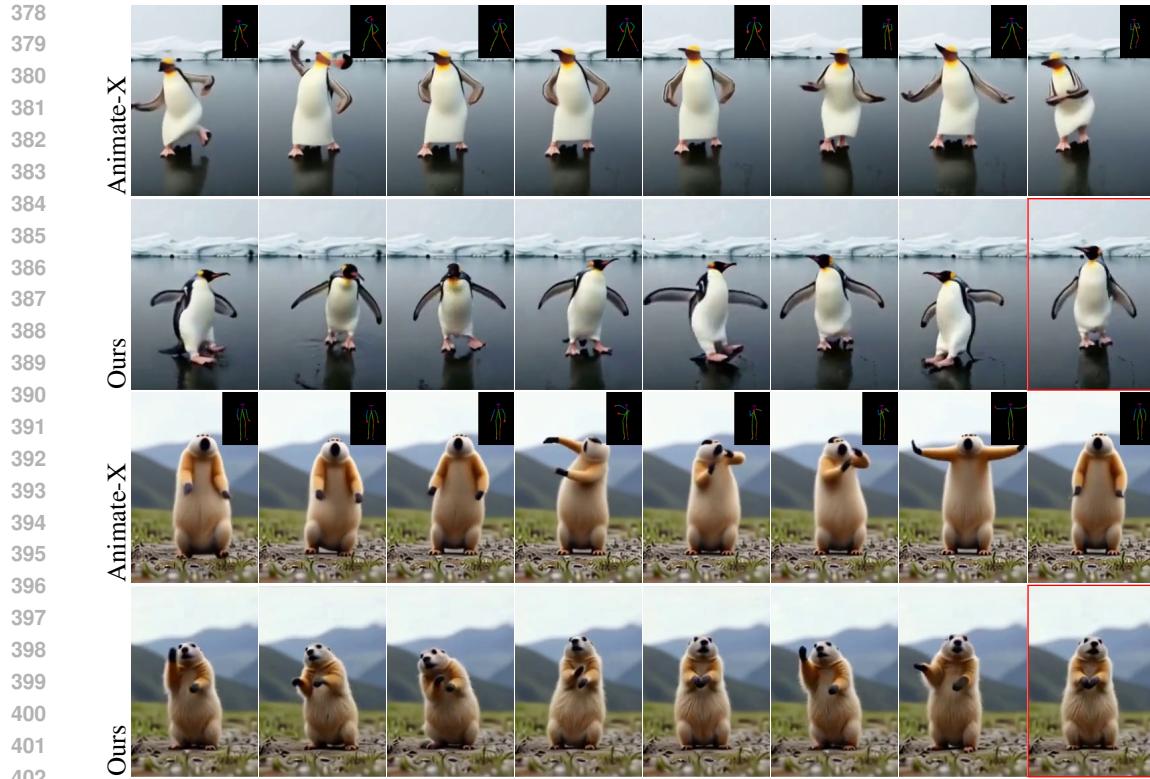


Figure 5: Sample frames from both our results (cropped for visualization) and Animate-X. Top: *APT* (Youtube [DJz1zlm73HI]); Bottom: *Can't Stop Feeling* (Youtube [xyMBnn3dzdU]) used as the reference dance videos. The red box marks the input image for Animate-X. See supplementary for the full video comparison.

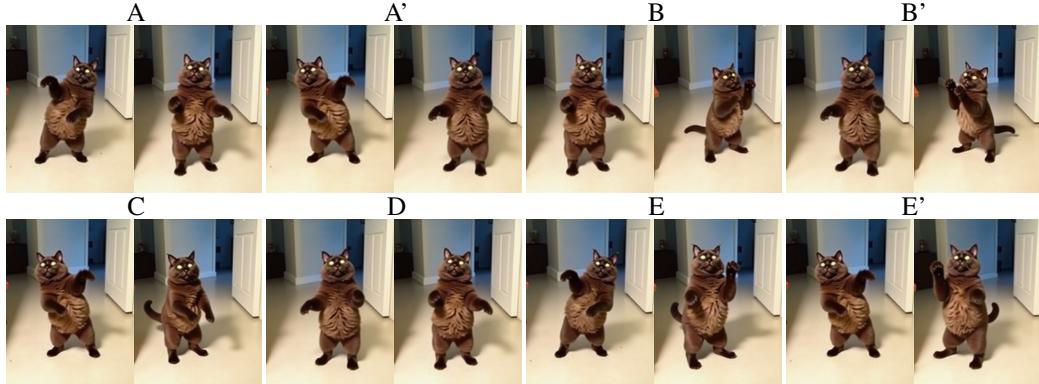
Discussions. While beat accuracy was rated similarly for both methods, participants found our results more natural-looking for animals and of higher visual fidelity than those from Animate-X. Specifically, 80.5% of responses rated our videos superior in appearance and motion naturalness, and 88.5% rated them higher in overall visual quality. Animate-X was preferred for motion fluidity (59.3%).

These results are in line with the different setups of these two methods. Animate-X generates animal dances by following fine-grained per-frame human pose sequences, which naturally leads to human-like figures and dance motions—resulting in more fluid and richer movement compared to our method. Yet transferring human poses to animal bodies is inherently difficult: it requires to solve complex correspondence across different body morphologies, and becomes even more challenging when handling the long and diverse pose sequences of real dances. For example, in Fig. 5, Animate-X maps the human arms to the penguin's wings, causing the wings to move like human arms; the penguin's differently shaped head further introduces blurry artifacts. Our method instead uses choreography pattern as higher-level control, letting the video diffusion model generate in-between motions so that the final dance follows the intended dance structure rather than fined-grained poses.

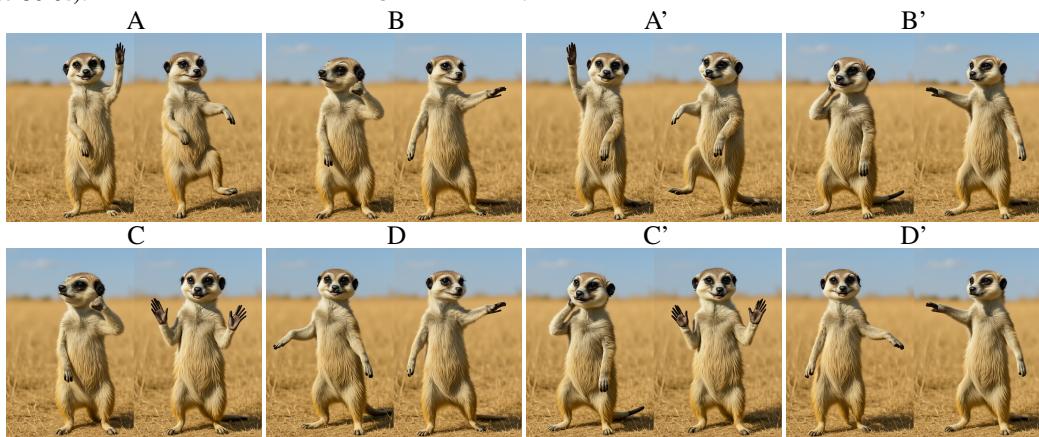
5 DISCUSSION & LIMITATIONS

We present a paradigm for generating music-synchronized, choreography-aware animal dance videos by using choreography pattern as a novel control to impose a structure on the keyframes input. Our work opens up exciting opportunities for creative and fun applications of dancing animals in entertainment and social media. Below we discuss limitations and future works.

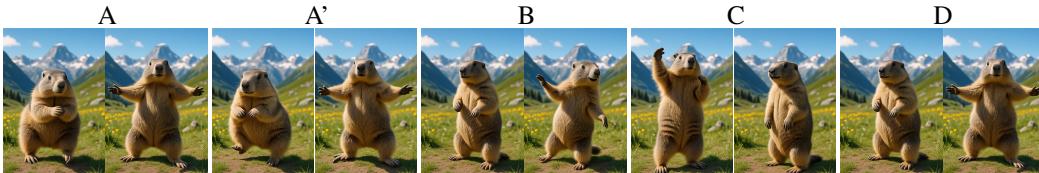
Limitations. We use an offline video diffusion model to generate short motion segments between keyframes (*e.g.*, 0.5s for a 120 BPM song). The motion can sometimes look unrealistic: animals



(a) Dance to *Uptown Funk* following the choreography pattern extracted from Youtube [U9Zj1BaH01c] (16.0s to 36.0s); A-A'-A-A'-A-A'-B-B'-C-D-E-E'-E-E'.



(b) Dance to *Bumblebee* following the choreography pattern extracted from Youtube [GIq7ZgmxE2w] (15.5s to 45.5s): A-B-A'-B'-C-D-C'-D'-A-B-A'-B'-C-D-C'-D'-E-F-G-G-G-H-H-H'-H'-G-G-G-H-H-H.



(c) Dance to *Rasputin* following the choreography pattern extracted from Youtube [jkRIIH42Vo8] (12.0s to 33.24s); A-A'-A-A'-A-A'-A-A'-B-B-B-B-B-B-B-C-C-C-C-D-D-D

Figure 6: Selected examples from our generated dances. Keyframe pairs are labeled by the choreography pattern label, arranged in the order specified by the choreography pattern. See supplementary for the full dance video with music.

may appear to slide or morph between poses rather than moving in a physically plausible way. This stems from the limitations of current video diffusion models in producing naturalistic motion for articulated subjects. However, we are optimistic that these issues can be addressed with continued advances in large-scale video diffusion models,

Future works. To generate more advanced and musically aligned animal dances, two directions can be explored: (1) *dance motion realism*: the motions generated by the video diffusion model may not always reflect plausible or expressive dance motion. Incorporating priors that favor natural, dance-like movement could improve alignment with musical context. (2) *style compatibility*: although our method follows the choreography pattern, it does not consider musical style. Modeling genre-specific movement characteristics could enhance the stylistic coherence of generated dances.

486 REFERENCES
487

488 Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
489 Junhwa Hur, Yuanzhen Li, Tomer Michaeli, et al. Lumiere: A space-time diffusion model for
490 video generation. *arXiv preprint arXiv:2401.12945*, 2024.

491 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
492 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
493 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

494 Kang Chen, Zhipeng Tan, Jin Lei, Song-Hai Zhang, Yuan-Chen Guo, Weidong Zhang, and Shi-Min
495 Hu. Choreomaster : Choreography-oriented music-driven dance synthesis. *ACM Transactions on*
496 *Graphics (TOG)*, 40(4), 2021.

497 Abe Davis and Maneesh Agrawala. Visual rhythm and beat. *ACM Transactions on Graphics (TOG)*,
498 37(4):1–11, 2018.

499 Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff, Tatiana
500 Lopez-Guevara, Carl Doersch, Yusuf Aytar, Michael Rubinstein, Chen Sun, Oliver Wang, Andrew
501 Owens, and Deqing Sun. Motion prompting: Controlling video generation with motion
502 trajectories. *arXiv preprint arXiv:2412.02700*, 2024.

503 Susung Hong, Ira Kemelmacher-Shlizerman, Brian Curless, and Steven M Seitz. Musicinfuser:
504 Making video diffusion listen and dance. *arXiv preprint arXiv:2503.14505*, 2025.

505 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
506 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
507 pp. 8153–8163, 2024.

508 Li Hu, Guangyuan Wang, Zhen Shen, Xin Gao, Dechao Meng, Lian Zhuo, Peng Zhang, Bang Zhang,
509 and Liefeng Bo. Animate anyone 2: High-fidelity character image animation with environment
510 affordance. *arXiv preprint arXiv:2502.06145*, 2025.

511 Ruozi Huang, Huang Hu, Wei Wu, Kei Sawada, Mi Zhang, and Dixin Jiang. Dance revolution:
512 Long-term dance generation with music via curriculum learning. In *International conference on*
513 *learning representations*, 2020.

514 R Joanne Jao Keehn, John R Iversen, Irena Schulz, and Aniruddh D Patel. Spontaneity and diversity
515 of movement to music are not uniquely human. *Current Biology*, 29(13):R621–R622, 2019.

516 Jae Woo Kim, Hesham Fouad, and James K Hahn. Making them dance. In *AAAI Fall Symposium:*
517 *Aurally Informed Performance*, volume 2, pp. 2, 2006.

518 Tae-hoon Kim, Sang Il Park, and Sung Yong Shin. Rhythmic-motion synthesis based on motion-beat
519 analysis. *ACM Transactions on Graphics (TOG)*, 22(3):392–401, 2003.

520 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
521 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
522 Segment anything. *arXiv:2304.02643*, 2023.

523 Nhat Le, Tuong Do, Khoa Do, Hien Nguyen, Erman Tjiputra, Quang D Tran, and Anh Nguyen.
524 Controllable group choreography using contrastive diffusion. *ACM Transactions on Graphics*
525 *(TOG)*, 42(6):1–14, 2023.

526 Hsin-Ying Lee, Xiaodong Yang, Ming-Yu Liu, Ting-Chun Wang, Yu-Ding Lu, Ming-Hsuan Yang,
527 and Jan Kautz. Dancing to music. *Advances in neural information processing systems*, 32, 2019.

528 Juheon Lee, Seohyun Kim, and Kyogu Lee. Listen to dance: Music-driven choreography generation
529 using autoregressive encoder-decoder network. *arXiv preprint arXiv:1811.00818*, 2018.

530 Ruilong Li, Shan Yang, David A Ross, and Angjoo Kanazawa. Ai choreographer: Music condi-
531 tioned 3d dance generation with aist++. In *Proceedings of the IEEE/CVF international conference*
532 *on computer vision*, pp. 13401–13412, 2021.

540 Adriano Manfrè, Ignazio Infantino, Filippo Vella, and Salvatore Gaglio. An automatic system for
 541 humanoid dance creation. *Biologically Inspired Cognitive Architectures*, 15:1–9, 2016.

542 Ferda Ofli, Yasemin Demir, Yücel Yemez, Engin Erzin, A Murat Tekalp, Koray Balcı, İdil Kızoğlu,
 543 Lale Akarun, Cristian Canton-Ferrer, Joëlle Tilmanne, et al. An audio-driven dancing avatar.
 544 *Journal on Multimodal User Interfaces*, 2:93–103, 2008.

545 Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dim-
 546 itrios Tzionas, and Michael J. Black. Expressive body capture: 3D hands, face, and body from a
 547 single image. In *Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*,
 548 pp. 10975–10985, 2019.

549 Qiaosong Qi, Le Zhuo, Aixi Zhang, Yue Liao, Fei Fang, Si Liu, and Shuicheng Yan. Diffdance:
 550 Cascaded human motion diffusion model for dance generation. In *Proceedings of the 31st ACM
 551 International Conference on Multimedia*, pp. 1374–1382, 2023.

552 Ludan Ruan, Yiyang Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong Fu, Nicholas Jing Yuan, Qin
 553 Jin, and Baining Guo. Mm-diffusion: Learning multi-modal diffusion models for joint audio and
 554 video generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 555 Recognition*, pp. 10219–10228, 2023.

556 Zehong Shen, Huajin Pi, Yan Xia, Zhi Cen, Sida Peng, Zechen Hu, Hujun Bao, Ruizhen Hu,
 557 and Xiaowei Zhou. World-grounded human motion recovery via gravity-view coordinates. In
 558 *SIGGRAPH Asia Conference Proceedings*, 2024.

559 Guofei Sun, Yongkang Wong, Zhiyong Cheng, Mohan S Kankanhalli, Weidong Geng, and Xiang-
 560 dong Li. Deepdance: music-to-dance motion choreography with adversarial learning. *IEEE
 561 Transactions on Multimedia*, 23:497–509, 2020.

562 Shuai Tan, Biao Gong, Xiang Wang, Shiwei Zhang, Dandan Zheng, Ruobing Zheng, Kecheng
 563 Zheng, Jingdong Chen, and Ming Yang. Animate-x: Universal character image animation with
 564 enhanced motion representation. *arXiv preprint arXiv:2410.10306*, 2024.

565 Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In *European
 566 conference on computer vision*, pp. 402–419. Springer, 2020.

567 Jonathan Tseng, Rodrigo Castellon, and Karen Liu. Edge: Editable dance generation from music.
 568 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 569 448–458, 2023.

570 Wen Wang, Qiuyu Wang, Kecheng Zheng, Hao Ouyang, Zhekai Chen, Biao Gong, Hao Chen,
 571 Yujun Shen, and Chunhua Shen. Framer: Interactive frame interpolation. *arXiv preprint
 572 arXiv:2410.18978*, 2024a.

573 Xiaojuan Wang, Boyang Zhou, Brian Curless, Ira Kemelmacher-Shlizerman, Aleksander Holynski,
 574 and Steven M Seitz. Generative inbetweening: Adapting image-to-video models for keyframe
 575 interpolation. *arXiv preprint arXiv:2408.15239*, 2024b.

576 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
 577 and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. 2023.

578 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 579 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 580 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

581 Yan Zeng, Guoqiang Wei, Jiani Zheng, Jiaxin Zou, Yang Wei, Yuchen Zhang, and Hang Li. Make
 582 pixels dance: High-dynamic video generation. In *Proceedings of the IEEE/CVF Conference on
 583 Computer Vision and Pattern Recognition*, pp. 8850–8860, 2024.

584 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 585 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 586 pp. 3836–3847, 2023.

587 Mingao Zhang, Changhong Liu, Yong Chen, Zhenchun Lei, and Mingwen Wang. Music-to-dance
 588 generation with multiple conformer. In *Proceedings of the 2022 International Conference on
 589 Multimedia Retrieval*, pp. 34–38, 2022.

594
595

A APPENDIX

596
597

A.1 LLM USAGE STATEMENT

598
599

LLM was used to correct grammar and improve the fluency of the writing in this paper.

600
601

A.2 USER CONTROL

602
603
604

Given the same choreography pattern for the dance, the user can use pose-grid template to guide the input keyframe poses, control the allowed motion range in the graph, and define custom constraints during graph optimization.

605
606
607
608
609
610
611
612
613
614
615
616
617

Pose-grid template control. Given a keyframe pose grid as template, we prompt GPT-4o to generate a new grid in which another animal “mimics” each pose from the original, though the poses are not expected to be exact same since different animals have different anatomical structures. This template may come from a previously generated grid (see Fig. 7 for an example) or be extracted from a human dance video by identifying distinct poses. This provides a way to guide or customize the input poses, which allows to generate dance videos where different animals dance alike (see supplementary video for examples).

618
619
620
621
622
623
624
625

Motion range control. The threshold parameters M_{low} and M_{high} control the range of allowed motion magnitudes between keyframes. A typical setting is $M_{\text{low}} \geq 12.0$ and $M_{\text{high}} \leq 60.0$ at resolution 1024×576 . Within this range, lowering M_{low} and increasing M_{high} introduces more candidate nodes and transitions, potentially resulting in richer and more expressive dances.

626
627
628
629
630
631

User custom constraints control. During graph optimization, users can specify hard constraints on node assignments—for instance, enforcing preferred keyframe pair(s) for specific label(s). Additionally, for some dance, mirrored poses happen at the start and end of a choreography label. When such mirrored pose pairs are detected for a specific label, we can enforce corresponding node assignments during optimization. For example, such labels have to be assigned to nodes (I_u, I_v) where $I_v = I'_u$. This allows closer alignment with the reference choreography.

632
633

A.3 FAILURE CASES

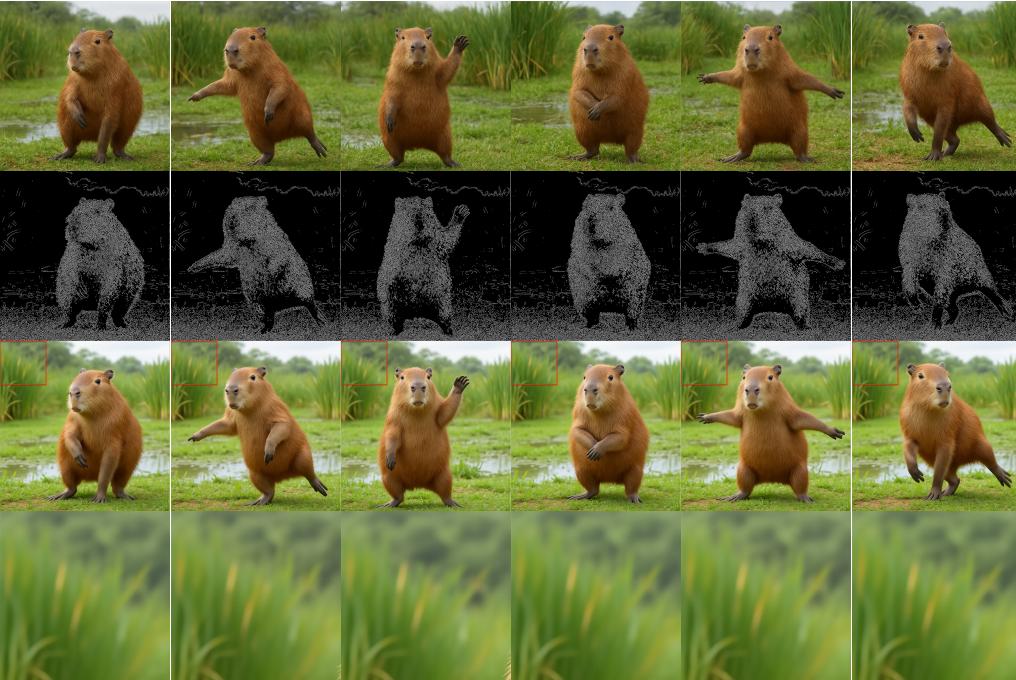
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Motion intensity estimation. Within the keyframe graph, we estimate the underlying motion strength between keyframe pairs using the average flow magnitude. This measure can be unreliable in certain cases. For example, when two keyframes depict mirrored side views, the flow fails to capture the true motion complexity between poses. In Fig. 8, the average flow magnitude is 36.81 (image size is 1024×576), which appears moderate due to incorrect correspondences between opposite sides, but the sea otter must rotate from one side view to the other, and this motion is more complex and sometimes challenging for the video model to synthesize. Establishing a reliable link between keyframe flow and the generated motion strength remains an open problem.

Background consistency. As described in Sec. 3.2, we re-generate the keyframes with the fine-tuned model to improve visual consistency in the initial keyframe set using a shared background

Figure 7: *Keyframe pose grid mimicking.* Top row: A keyframe pose grid template showing six distinct poses of a capybara. Middle and bottom rows: A meerkat and a hedgehog mimicking the capybara’s poses, while preserving their own body structure, generated using GPT-4o.

Figure 8: *Failures.* The average flow magnitude from left to the right is not large, but the underlying motion intensity is much higher.



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
Figure 9: Background inconsistency caused by missing background Canny edges in the original keyframes. Top row: original keyframes generated by GPT-4o. Second row: Canny edge maps used in generating the refined keyframes. Third row: our refined keyframes. Bottom row: zoom-in of the top-left corners (red rectangles) of the refined keyframes, highlighting slight background inconsistencies where Canny edges are absent.

676 Canny edge map which is inpainted from the original keyframes as control. However, slight back-
677 ground consistency can remain when the original keyframes have shallow depth of field, which
678 limits the Canny edge extraction. For example, in Fig. 9, the grass background behind the capybara
679 is blurred in the original keyframe, leaving no detectable edges in that region. As a result, the re-
680 fined keyframes show slight background inconsistencies in the grass (see bottom row). However,
681 for scenes with clear and sharp backgrounds, our method maintains consistency well.
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701