
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOW ANIMALS DANCE (WHEN YOU’RE NOT LOOK-
ING)

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a framework for generating music-synchronized, choreography aware
animal dance videos. Our framework introduces choreography patterns—
structured sequences of motion beats that define the long-range structure of a
dance—as a novel high-level control signal for dance video generation. These
patterns can be automatically estimated from human dance videos. Starting from
a few keyframes representing distinct animal poses, generated via text-to-image
prompting or GPT-4o, we formulate dance synthesis as a graph optimization prob-
lem that seeks the optimal keyframe structure to satisfy a specified choreography
pattern of beats. We also introduce an approach for mirrored pose image gen-
eration, essential for capturing symmetry in dance. In-between frames are syn-
thesized using an video diffusion model. With as few as six input keyframes, our
method can produce up to 30 seconds dance videos across a wide range of animals
and music tracks.

1 INTRODUCTION

Everything in the universe has a rhythm; everything dances.
—Maya Angelou

Humans dance spontaneously to music—just picture a toddler cheerfully bouncing to the beats at a
birthday party. Animals can dance too; Snowball the cockatoo—can perform up to 14 distinct dance
movements in response to different musical cues (Keehn et al., 2019). In fact, our animal friends are
probably dancing all the time when we’re not looking. In this paper, we capture this hidden world
of animal dance, and expose it for the first time to the human eyes.

While we happen to be particularly obsessed with dancing animals, this paper introduces a new
framework for generating music-synchronized, highly structured, up to 30 seconds long dance
videos. Such capabilities are challenging for current state of the art generative models (Blattmann
et al., 2023; Bar-Tal et al., 2024; Zeng et al., 2024; Yang et al., 2024), most of which are limited
to short clips of a few seconds, do not produced synchronized audio and video, and lack intuitive
controls for long range motion. Beyond text prompting, most controls for video generation are fine-
grained and operate on a single frame at a time (Wang et al., 2023; Geng et al., 2024), e.g., body
pose, camera pose, motion brushes, etc. In contrast, we introduce choreography patterns as a new
control for video generation. Specifically, we allow the user to specify a structured sequence of
dance moves, or “beats”, e.g., A-B-A-B-C-D-A, where each letter corresponds to a particular move,
and constrain the motion in the video to follow that choreography. Furthermore, we show how these
choreography patterns can be automatically estimated from existing (human) dance videos.

Our use of choreography patterns as a control is inspired by how real dances are organized. A well-
formed dance follows basic choreographic rules (Chen et al., 2021), which structure the movements
to align with the rhythmic flow of the accompanying music, and often involve recurring patterns
such as mirroring and repetition to help reinforce the musical structure (Kim et al., 2003; 2006).
We leverage this inherent structure of dance to make the generation task more tractable. As input,
we use a collection of initially generated keyframes, each representing a distinct pose. We then
formulate the dance synthesis as a graph optimization problem, i.e., find the optimal walk path
through the keyframes where the underlying motion satisfy a specified choreography pattern of
beats. Each selected keyframe in the path is aligned to a musical beat. The final dance video

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

is produced by synthesizing in-between frames between the keyframes using a generative video
inbetweening model (Wang et al., 2024b;a) (Fig. 1).

Mirrored pose generation

Keyframe structure optimization

Extract choreo pattern

Augmented keyframe set

Input dance videoInitial keyframe set

Prompt GPT-4o/T2I model

Output dance video

Generative inbetweening + warp to beats

Figure 1: System overview. Given a
few initially generated keyframes as in-
put, we generate mirrored counterparts,
extract choreography pattern from a
dance video, and optimize the keyframe
structure accordingly. The final dance
is synthesized by generating in-between
frames with a video diffusion model
and warped to the musical beats. Our
method is highlighted in gray.

Beyond 1) introducing a new type of generative video
control (choreography patterns), and 2) a practical sys-
tem for generating music-synchronized dance videos, this
paper makes the following technical contributions. First,
we introduce a technique for inferring choreography pat-
terns from human dance videos, such as those found on
Youtube and TikTok. Second, we formulate the satisfac-
tion of these constraints as a graph optimization prob-
lem and solve it. Finally, we demonstrate an approach
for pose-mirroring in the image domain, while retaining
asymmetries in foreground and background features.

We demonstrate the effectiveness of our method by gen-
erating dance videos up to 30 seconds long across ap-
proximately 25 animal instances across 10 classes—
including marmots, sea otters, hedgehogs, and cats—
paired with various songs. These videos represent the
first-ever recorded demonstrations of these animals per-
forming such complex musical dance routines and will
be studied by generations of zoologists.

2 PRIOR WORK

Music-driven generative dance synthesis. Earlier
learning-based approaches developed neural networks
that synthesize human dance motion directly from mu-
sic input (Lee et al., 2018; 2019; Huang et al., 2020; Li et al., 2021; Zhang et al., 2022; Sun et al.,
2020). Recent advances have shifted toward diffusion-based methods Qi et al. (2023); Le et al.
(2023); Tseng et al. (2023), which also focus primarily on generating skeletal motions from music.
More recently, some works have begun exploring direct dance video generation using video diffu-
sion models (Sun et al., 2020; Ruan et al., 2023; Hong et al., 2025). However, directly enforcing
choreography structure within these frameworks remains challenging. In addition, these learning-
based approaches typically require training data—an issue in our case, as dance videos featuring
animals are extremely scarce.

Graph-based human dance motion synthesis. In contrast to learning-based approaches, graph-
based frameworks (Kim et al., 2003; 2006; Ofli et al., 2008; Manfrè et al., 2016; Chen et al., 2021)
synthesize new motions from an existing dance motion segments database, and cast the dance syn-
thesis as a graph optimization problem: finding an optimal path in the constructed motion graph that
aligns with the input music. For example, Kim et al. (Kim et al., 2003) introduced rhythmic and
beat-based constraints to guide the path search, while more recent work ChoreoMaster (Chen et al.,
2021) incorporated richer choreography rules, requiring not only structural alignment with music
but also stylistic compatibility.

Our approach follows this paradigm but differs in key ways. First, instead of relying on a motion
capture database, we take a small set of keyframes of an animal or subject as input. We augment
this set by generating mirrored pose images, creating a complete keyframe set for dance synthesis.
The graph is constructed over these keyframes, and a video diffusion model is applied to generate
realistic in-between frames along the optimized walk path, producing the final dance video. Second,
while basic choreography rules can be inferred from the musical structure as done in (Chen et al.,
2021), different performers may interpret the same piece differently. As such, we propose a way to
extract choreography patterns directly from a reference dance video and use it as the control.

Anthropomorphic character animation. Given a reference image, character image animation,
generates videos following a per-frame target human skeletal pose sequence. While existing meth-
ods (Hu, 2024; Hu et al., 2025) are primarily designed for human figures, recent work (Tan et al.,
2024) extends to anthropomorphic characters by learning generalized motion representation. How-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ever, it still favor human-like anatomy, often producing animals with features like elongated limbs
and human-style body proportions. They also struggle to generate high-fidelity videos from a sin-
gle image when handling long and diverse sequences, such as a 30-second dance. In contrast, our
method does not rely on per-frame human skeleton pose as guidance and uses choreography pattern
as higher-level control, letting the video diffusion model generate in-between motions so that the
final dance follows the choreographic structure, not human motion itself.

3 APPROACH

We begin by generating a small set of keyframes {Ik}K−1
k=0 , each depicting the subject, e.g., a

marmot, in different poses while maintaining a consistent background and static camera view (see
Section 4.1 for details). Our goal is to synthesize a dance video of the input animal from the pro-
vided keyframes, synchronized to the beats and following the choreography pattern extracted from
a reference dance video.

We first introduce how we extract the choreography pattern directly from a human dance video
in Section 3.1. Since motion mirroring is an essential component of dance, we then present our
approach for generating a mirrored pose counterpart for each keyframe to augment the keyframe set
in Section 3.2. Finally, in Section 3.3, we present how to synthesize the full dance video using the
complete set of keyframes, including mirrored ones, to follow the choreography pattern.

3.1 CHOREOGRAPHY PATTERN LABELING

Choreography are closely tied to the rhythmic structure of music. In music theory, a beat is the basic
temporal unit, while a bar (or measure) groups a fixed number of beats. The meter defines how
beats are grouped and emphasized within the bar, and is indicated by a time signature, e.g., 2/4, 3/4,
4/4, where the upper number specifies beats per bar, and the lower number denotes the note value
that receives one beat. In this work, we focus on music with a 4/4 time signature—each bar contains
four quarter note beats—the most common structure in popular music.

Problem definition. Given a 4/4 music track with a synchronized dance video, we begin by detect-
ing the beat times B = {t0, t1, ..., tN−1}, assuming a total of N beats, corresponding to N

4 bars.
Based on the beat times, we construct a sequence of motion segments S = {s0, s1, ..., sN

2 −1} where
each segment si spans from beat t2i to beat t2i+1. Each bar thus yields two motion segments: one
from the first to the second beat, and another from the third to the fourth beat, aligning with the 4/4
music structure where major movements typically begin on accented beats and end on weak ones,
whereas transitions occur across weak-to-accented intervals. The “choreo pattern” labeling task out-
puts a sequence of labels L = {l0, l1, ..., lN

2 −1}, e.g., A-A’-B-C-D-D, where each li corresponds to
motion segment si. Distinct motions receive different labels, identical motions share the same one,
and mirrored motions are indicated by prime-labeled counterparts (e.g., A and A’).

Motion segments quantization. We formulate motion segment sequence labeling as a quantization
problem: clustering similar motion segments and assigning each a cluster ID as its label. Each seg-
ment si of length Ti is represented by the SMPL-X (Pavlakos et al., 2019) pose sequence recovered
from the video: si = {(θti ∈ R3×(J+1), τti ∈ R3)}Ti

ti=0, where θti contains per-joint axis-angle
rotation for J = 21 body joints in addition to a joint for global rotation (the 0-th joint), and τti
denotes the global translation in 3D space.

For clustering, we focus solely on poses—ignoring global translations—to capture distinctive mo-
tion patterns. The distance between two SMPL-X poses is defined as the average geodesic distance
across joints:

dθ(θ1, θ2) =
1

J

J∑
j=0

|| log(R(θj1)
TR(θj2))||F (1)

where R(θj) converts the axis-angle representation of joint j into a rotation matrix. To account
for slight temporal offsets between beats, we compute the distance between two motion segments
using dynamic time warping (DTW), with dθ as the local cost metric between poses. The clustering

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

function C is then defined as:

C(S;DTWdθ
, ϵθ) → {C1, C2, ..., CC} (2)

where
⋃C

c=1 Cc = S , with Ci
⋂
Cj = ∅, for i ̸= j. Segments within the same cluster satisfy:

DTWdθ
(si, sj) < ϵθ, ∀si, sj ∈ Cc.

Mirrored motion segments detection. After the quantization stage, we identify mirrored motion
segments in two steps.

Mirrored pose clusters. A mirrored joint rotation is defined by reflecting the axis-angle vector across
the sagittal (YZ) plane: F(θj) = (ωx,−ωy,−ωz), where θj = (ωx, ωy, ωz). Then a mirrored pose
θ′ is obtained by applying this reflection to each joint after left-right joint swapping:

θ′j = F(θπ(j)) for j = 0, . . . , J (3)

here π(j) denotes the left-right joint permutation (e.g. swapping left/right arms, legs, and shoulders),
and for central joints (e.g., spine, neck, head), π(j) = j, so only the reflection is applied.

Two clusters Ca and Cb are considered mirrored if there exists at least one pair of segments si ∈
Ca, sj ∈ Cb, such that the mirrored version of si, denoted by s′i = {θ′ti}

Ti
ti=0, is similar to sj

under dynamic time warping: DTWdθ
(s′i, sj) < ϵθ′ . The resulting set of mirrored cluster pairs is:

M = {(Ca, Cb)| ∃si ∈ Ca, sj ∈ Cb,DTWdθ
(s′i, sj) < ϵθ′}.

Mirrored motion directions within a cluster. For clusters without a mirrored counterpart, we further
check whether they can be internally partitioned into two directionally mirrored groups. We first
extract the overall motion direction d⃗si of each motion segment si using its global translation: d⃗si =
(τTi

ti −τ0ti)/||τ
Ti
ti −τ0ti ||, where τ0tiand τTi

ti denote the segment’s start and end positions, respectively.

To identify mirrored directions, each motion direction d⃗si is reflected across the YZ plane as d⃗′si =
diag([−1, 1, 1])d⃗si . We then perform bipartite matching to find mirror pairs (si, sj) that satisfy
∥d⃗′si − d⃗sj∥ < ϵd. If valid pairs are found, we assign all matched segments into two directionally
consistent groups based on their directional similarity. The original cluster Ci is then partitioned into
two mirrored subgroups (C0

i , C1
i), which are then added to the mirrored cluster set M.

Finally, we assign a unique label to each cluster. For each mirrored pair (Ca, Cb) ∈ M, we assign a
base label la (e.g. A) to segments in Ca, and its mirrored label l′a (e.g. A’) to segments in Cb. Clusters
without a mirrored counterpart are assigned a distinct label without a prime.

3.2 MIRRORED POSE IMAGE GENERATION

“A photo of [V] marmot dancing with alpine landscape as background.”

Add
noise

Inference

ControlNet

Keyframes set

Mirrored edge Mirrored pose

Text Image

Flip+
Composite

Train

Background edge

Figure 2: Mirrored pose generation. We fine-
tune a text-to-image model with ControlNet us-
ing the canny edges extracted from each keyframe
as conditioning. During inference, mirrored pose
images are generated by flipping only the subject
edges and using an inpainted background edge
composed from the keyframe set.

To augment the keyframe set with mirrored
counterparts, we generate visually consistent
keyframe pairs for each input pose. This pro-
cess (Fig. 2) involves fine-tuning a text-to-
image model with ControlNet, generating mir-
rored edge maps, and re-generating the orig-
inal keyframes for consistency. In the end,
we get a complete set of consistent keyframes
I = {I0, . . . , IK−1, I

′
0, . . . , I

′
K−1}, where I ′k

is the mirrored version of Ik.

Fine-tuning. We fine-tune a pretrained text-to-
image model on the input keyframes set, over-
fitting it to capture the appearance of the spe-
cific input subject instance and the background.
To provide structural guidance, we incorporate
ControlNet (Zhang et al., 2023) using the canny
edge maps extracted from the input images as a
conditional input. We use the prompt format:
“A photo of [V] [subject class name] dancing [background description].”, where [V] is a unique
token for identifying the subject instance rather than class. The placeholders [subject class name]

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and [background description] are replaced with the actual class name of the subject and background
description. For example, “A photo of [V] marmot dancing with alpine landscape as background.”

Mirrored edge generation. To generate mirrored pose images, We first extract the subject mask
using SAM (Kirillov et al., 2023). We then construct a unified background canny edge map by in-
painting and stitching the background edges from all input keyframes. For each keyframe, we extract
the subject’s edge map and horizontally flip it to create a mirrored subject edge map. This flipped
edge map is then composited with the shared background edge map to generate a full mirrored edge
map. which is used as input to the fine-tuned model to generate the corresponding mirrored image.

Keyframes re-generation.

(a) raw keyframes (b) refined keyframes

Figure 3: Improving visual consistency by re-
generating keyframes with shared background
edges.

The original keyframes may contain slight in-
consistencies in the background due to gener-
ation instability. Additionally, the fine-tuned
model may introduce subtle color shifts during
inference. To ensure visual consistency among
the augmented keyframes set, we regenerate the
original keyframes using the same model and
shared background edge map (see Fig. 3 for an
example).

Implementation details. We use FLUX.1-dev
and Xlabs-AI/flux-controlnet-canny as the pre-
trained text-to-image and controlnet model. We
fine-tune them jointly with a LoRA rank of 16 for 500 epochs, Training on 6 keyframes takes around
90 minutes on a single A100 GPU. Canny edges are extracted using threshold values of (50, 100).

3.3 CHOREOGRAPHY PATTERN DRIVEN DANCE SYNTHESIS

Given the augmented keyframe set I = {I0, . . . , IK−1, I
′
0, . . . , I

′
K−1}, where I ′k denotes

the mirrored counterpart of keyframe Ik, and the choreography pattern label sequence L =
{l0, l1, ..., lN

2 −1}, the goal is to find an optimal walk path P = {Ip0
, Ip1

, . . . , IpN−1
} through the

keyframe set, and the i-th keyframe Ipi in the path corresponds to the i-th beat. We then apply video
diffusion model to generate in-between frames, finally producing the final dance video.

Since each label li corresponds to a motion segment between keyframe pairs (Ip2i
, Ip2i+1

), we cast
path planning as a graph optimization, where each node represents a candidate keyframe pair. The
choreography label sequence L specifies assignment constraints: same labels map to the same pair,
distinct labels to distinct pairs, and mirrored labels to mirrored pairs. The object is to assign each
label li to a node such that these constraints are met while minimizing the total transition cost along
the path.

Keyframe graph construction. We construct the keyframe graph G = (V,E) as a directed graph,
where each node (Iu, Iv) ∈ V , with Iu ̸= Iv , represents an ordered pair of keyframes from the
augmented keyframe set I. Note (Iu, Iv) ̸= (Iv, Iu). Each node corresponds to a potential dance
segment from Iu to Iv , and each edge (Iu, Iv) → (Iw, Ix) ∈ E, with Iv ̸= Iw, represents a valid
transition between segments.

To ensure both expressive motion and synthesis feasibility, we filter nodes based on the average flow
magnitude |F (Iu, Iv)| from Iu to Iv , computed over the foreground region of the subject. We use
RAFT (Teed & Deng, 2020) to compute the optical flow. Nodes with flow that is too small or too
large are discarded. Only node pairs with acceptable motion range are retained:

V = {(Iu, Iv) | Mlow < |F (Iu, Iv)| < Mhigh} (4)

To make the synthesized dance smooth and fluid, we define the edge cost between two nodes as
the flow magnitude between the end keyframe of the first node and start one of the next node:
T ((Iu, Iv) → (Iw, Ix)) = |F (Iv, Iw)|. We prune high-cost transitions by including only edges
with flow below a threshold:

E = {((Iu, Iv) → (Iw, Ix)) | |F (Iv, Iw)| < Mhigh} (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We also define a mirroring function µ : V → V over graph node such that two nodes are mirrored
if and only their respective keyframes are mirrored: µ((Iu, Iv)) = (I ′u, I

′
v).

Graph optimization. We define a node assignment function:ϕ : L → V , which maps each chore-
ography label li ∈ L to a graph node (Iu, Iv) ∈ V , forming a walk path through the keyframe
graph. The goal is to find the optimal assignment ϕ∗ that minimizes the total transition cost across
the sequence:

ϕ∗ = argmin

N
2 −2∑
i=0

T (ϕ(li), ϕ(li+1)) (6)

subject to the following constraints:

li = lj ⇔ ϕ(li) = ϕ(lj), l
′
i = lj ⇔ ϕ(li) = µ(ϕ(lj)) (7)

To ensure visual variety and avoid redundancy, we introduce two additional constraints:

(1) Different labels cannot map to partially mirrored node pairs—defined as nodes sharing one
keyframe (in any order), with the other keyframes mirrored:

li ̸= lj ,⇒ (Ia, Ib) ̸≈ (Ic, Id) (8)

where ϕ(li) = (Ia, Ib), ϕ(lj) = (Ic, Id).

(2) Consecutive, distinct, and non-mirrored labels must not be assigned to nodes that share a
keyframe, to prevent unnecessary single keyframe repetition.

li ̸= li+1, l
′
i ̸= li+1 ⇒ (Ia ̸= Ic ∧ Ib ̸= Id) (9)

where ϕ(li) = (Ia, Ib), ϕ(li+1) = (Ic, Id).

3.4 WARP TO MUSIC

We generate the final dance video by applying a video diffusion model to synthesize in-between
frames along the optimized keyframe walk path P = {Ip0

, Ip1
, . . . , IpN−1

}, where each keyframe
Ipi

corresponds to beat position i. Note that since there are motion repetition in the choreography,
we only have to synthesize videos between unique keyframe pairs. In practice, we use Framer (Wang
et al., 2024a), which generates 14 in-between frames, and we assume a fps of 25. To synchronize
with the music, we warp the video timeline such that the timing of every keyframe in P align with
the corresponding beat time in the audio. Following the visual rhythm strategy from (Davis &
Agrawala, 2018), we accelerate the warping rate into beat points and decelerate before and after to
preserve beat saliency while ensuring temporal smoothness.

4 EXPERIMENTS

We generate a collection of input keyframe grids featuring approximately 25 animal instances, some
captured as half-body views. The animal classes include marmot, capybara, hedgehog, meerkat,
penguin, sea otter, cat, quokka, beaver and others. We also incorporate characters such as Elmo.
For the video results, we generate dance videos for these instances using five popular song clips,
ranging from 16 to 28 seconds in length, with choreography patterns extracted from the correspond-
ing YouTube video clips. While we showcase our method using these examples, it can adapt to any
choreography patterns paired with music. Fig. 6 shows selected examples of the final keyframe pairs
assigned for each choreography label, arranged in the order specified by the choreography pattern.
We highly recommend viewing the supplementary video for the full experience.

4.1 KEYFRAMES GENERATION

We generate initial keyframes set by prompting text-to-image model FLUX to generate an image
grid with consistent keyframes using prompt template like “a 3x2 grid of frames, showing 6 consec-
utive frames from a video clip of [...]”. For example, the description prompt might be “a marmot
dancing wildly in the wild alpine landscape, striking a variety of fun and energetic poses”. The same

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

prompt format can also be used with GPT-4o, which supports even finer specifications. For instance,
one can specify: “Generate a grid with 2 rows and 3 columns. Depict a quokka with distinct poses
with a wild background. The postures should feel natural for the quokka’s anatomy....”. In all of our
results, we use a total of 6 input keyframes.

4.2 CHOREOGRAPHY PATTERN LABELING

Clustering Mirroring
ARI↑ NMI↑ Prec. ↑ Recall↑ F1↑
0.94 0.98 0.93 0.91 0.92

Table 1: Evaluation on choreography pattern
labeling.

We collect a total of 20 dance video clips featuring
various 4/4 music tracks from Youtube and TikTok,
ranging from 12s to 28s in length. To create ground
truth, we manually annotate the choreography pat-
tern label sequence. We then evaluate our method
in Section 3.1 by comparing our extracted label se-
quences against the ground truth ones. Beat times
are detected using Librosa, and SMPL-X pose sequences are recovered from the videos using
GVHMR (Shen et al., 2024). We set the threshold values as follows: ϵθ = 0.21, ϵθ′ = 0.25 and
ϵd = 0.1. Specifically, we evaluate two aspects: (1) Clustering accuracy, where each unique label—
including mirrored variants—is treated as a distinct cluster. We assess the clustering results using
standard metrics: Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI); (2) Mir-
ror detection accuracy, where we compute precision and recall based on the correctly identified
mirrored motion segments pairs.

We report the results in Table 1. Our training-free extraction method achieves overall strong quan-
tization accuracy, effectively differentiating different motion patterns. For mirroring, our prediction
occasionally misses mirrored pairs, typically in cases where the poses are symmetrical but exhibit
subtle mirroring in head or body orientation. Since our method also can output representative mo-
tions for each choreography label, users can more easily visualize the structure and manually correct
annotation errors if needed.

4.3 BASELINE COMPARISONS

Baselines. A straightforward baseline is music-conditioned video generation, which generates
videos directly from audio and text prompts. However, methods such as MusicInfuser (Hong et al.,
2025) are trained on human dance videos and typically produce only short clips, e.g., 5s. So they
cannot generalize to long animal dance videos synchronized to the input music. Several examples
are provided in the supplementary videos.

Next we compare our method to human pose driven single image animation method using Animate-
X (Tan et al., 2024), which animates an input image according to a sequence of human skeleton
poses and works with anthromorphic characters. For each of our generated dance videos, we extract
the pose sequence from the same reference video used to extract the choreography pattern and use
it as the driving sequence for Animate-X.

Figure 4: User ratings of our approach compared
to Animate-X on various criteria.

User study. Since there are no existing long,
structured animal dance videos for direct ref-
erence, we conducted a perceptual user study
to evaluate the generated dance videos. We
used 40 generated dance video pairs across
5 different songs, and invited 31 participants.
Each participant was presented a random set
of 8 pairwise comparisons of our results and
Animate-X. The order of the videos within each pair was randomized. For each pair, participants
were asked to choose which video they judged better on each of four criteria, or select “similar” if
they found no difference: (1) Beat accuracy—are the dances synchronized with the music beats?
(2) Appearance & motion naturalness —do the animals’ body proportions and movements feel nat-
ural for them? (3) Visual quality—do the videos have high overall visual quality (e.g. sharpness,
clarity, and fewer artifacts)? (4) Motion fluidity—are the dance movements smooth and fluid? The
responses are shown in Fig. 4, and example qualitative comparisons are shown in Fig.5.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

A
ni

m
at

e-
X

O
ur

s
A

ni
m

at
e-

X
O

ur
s

Figure 5: Sample frames from both our results (cropped for visualization) and Animate-X. Top:
APT (Youtube [DJz1zlm73HI]); Bottom: Cann’t Stop Feeling (Youtube [xyMBnn3dzdU]) used as
the reference dance videos. The red box marks the input image for Animate-X. See supplementary
for the full video comparison.

Discussions. While beat accuracy was rated similarly for both methods, participants found our
results more natural-looking for animals and of higher visual fidelity than those from Animate-X.
Specifically, 80.5% of responses rated our videos superior in appearance and motion naturalness,
and 88.5% rated them higher in overall visual quality. Animate-X was preferred for motion fluidity
(59.3%).

These results are in line with the different setups of these two methods. Animate-X generates an-
imal dances by following fine-grained per-frame human pose sequences, which naturally leads to
human-like figures and dance motions—resulting in more fluid and richer movement compared to
our method. Yet transferring human poses to animal bodies is inherently difficult: it requires to solve
complex correspondence across different body morphologies, and becomes even more challenging
when handling the long and diverse pose sequences of real dances. For example, in Fig. 5, Animate-
X maps the human arms to the penguin’s wings, causing the wings to move like human arms;
the penguin’s differently shaped head further introduces blurry artifacts. Our method instead uses
choreography pattern as higher-level control, letting the video diffusion model generate in-between
motions so that the final dance follows the intended dance structure rather than fined-grained poses.

5 DISCUSSION & LIMITATIONS

We present a paradigm for generating music-synchronized, choreography-aware animal dance
videos by using choreography pattern as a novel control to impose a structure on the keyframes
input. Our work opens up exciting opportunities for creative and fun applications of dancing ani-
mals in entertainment and social media. Below we discuss limitations and future works.

Limitations. We use an offline video diffusion model to generate short motion segments between
keyframes (e.g., 0.5s for a 120 BPM song). The motion can sometimes look unrealistic: animals

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

A A’ B B’

C D E E’

(a) Dance to Uptown Funk following the choreography pattern extracted from Youtube [U9Zj1BaH01c] (16.0s
to 36.0s): A-A’-A-A’-A-A’-A-A’-B-B’-C-D-E-E’-E-E’.

A B A’ B’

C D C’ D’

(b) Dance to Bumblebee following the choreography pattern extracted from Youtube [GIq7ZgmxE2w] (15.5s
to 45.5s): A-B-A’-B’-C-D-C’-D’-A-B-A’-B’-C-D-C’-D’-E-F-G-G-G-G-H-H-H’-H’-G-G-G-G-H-H.

A A’ B C D

(c) Dance to Rasputin following the choreography pattern extracted from Youtube [jkRIIH42Vo8] (12.0s to
33.24s): A-A’-A-A’-A-A’-A-A’-B-B-B-B-B-B-B-B-C-C-C-C-D-D’-D.

Figure 6: Selected examples from our generated dances. Keyframe pairs are labeled by the choreog-
raphy pattern label, arranged in the order specified by the choreography pattern. See supplementary
for the full dance video with music.

may appear to slide or morph between poses rather than moving in a physically plausible way. This
stems from the limitations of current video diffusion models in producing naturalistic motion for
articulated subjects. However, we are optimistic that these issues can be addressed with continued
advances in large-scale video diffusion models,

Future works. To generate more advanced and musically aligned animal dances, two directions can
be explored: (1) dance motion realism: the motions generated by the video diffusion model may not
always reflect plausible or expressive dance motion. Incorporating priors that favor natural, dance-
like movement could improve alignment with musical context. (2) style compatibility: although
our method follows the choreography pattern, it does not consider musical style. Modeling genre-
specific movement characteristics could enhance the stylistic coherence of generated dances.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
Junhwa Hur, Yuanzhen Li, Tomer Michaeli, et al. Lumiere: A space-time diffusion model for
video generation. arXiv preprint arXiv:2401.12945, 2024.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Kang Chen, Zhipeng Tan, Jin Lei, Song-Hai Zhang, Yuan-Chen Guo, Weidong Zhang, and Shi-Min
Hu. Choreomaster : Choreography-oriented music-driven dance synthesis. ACM Transactions on
Graphics (TOG), 40(4), 2021.

Abe Davis and Maneesh Agrawala. Visual rhythm and beat. ACM Transactions on Graphics (TOG),
37(4):1–11, 2018.

Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff, Tatiana
Lopez-Guevara, Carl Doersch, Yusuf Aytar, Michael Rubinstein, Chen Sun, Oliver Wang, An-
drew Owens, and Deqing Sun. Motion prompting: Controlling video generation with motion
trajectories. arXiv preprint arXiv:2412.02700, 2024.

Susung Hong, Ira Kemelmacher-Shlizerman, Brian Curless, and Steven M Seitz. Musicinfuser:
Making video diffusion listen and dance. arXiv preprint arXiv:2503.14505, 2025.

Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8153–8163, 2024.

Li Hu, Guangyuan Wang, Zhen Shen, Xin Gao, Dechao Meng, Lian Zhuo, Peng Zhang, Bang Zhang,
and Liefeng Bo. Animate anyone 2: High-fidelity character image animation with environment
affordance. arXiv preprint arXiv:2502.06145, 2025.

Ruozi Huang, Huang Hu, Wei Wu, Kei Sawada, Mi Zhang, and Daxin Jiang. Dance revolution:
Long-term dance generation with music via curriculum learning. In International conference on
learning representations, 2020.

R Joanne Jao Keehn, John R Iversen, Irena Schulz, and Aniruddh D Patel. Spontaneity and diversity
of movement to music are not uniquely human. Current Biology, 29(13):R621–R622, 2019.

Jae Woo Kim, Hesham Fouad, and James K Hahn. Making them dance. In AAAI Fall Symposium:
Aurally Informed Performance, volume 2, pp. 2, 2006.

Tae-hoon Kim, Sang Il Park, and Sung Yong Shin. Rhythmic-motion synthesis based on motion-beat
analysis. ACM Transactions on Graphics (TOG), 22(3):392–401, 2003.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Nhat Le, Tuong Do, Khoa Do, Hien Nguyen, Erman Tjiputra, Quang D Tran, and Anh Nguyen.
Controllable group choreography using contrastive diffusion. ACM Transactions on Graphics
(TOG), 42(6):1–14, 2023.

Hsin-Ying Lee, Xiaodong Yang, Ming-Yu Liu, Ting-Chun Wang, Yu-Ding Lu, Ming-Hsuan Yang,
and Jan Kautz. Dancing to music. Advances in neural information processing systems, 32, 2019.

Juheon Lee, Seohyun Kim, and Kyogu Lee. Listen to dance: Music-driven choreography generation
using autoregressive encoder-decoder network. arXiv preprint arXiv:1811.00818, 2018.

Ruilong Li, Shan Yang, David A Ross, and Angjoo Kanazawa. Ai choreographer: Music condi-
tioned 3d dance generation with aist++. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 13401–13412, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Adriano Manfrè, Ignazio Infantino, Filippo Vella, and Salvatore Gaglio. An automatic system for
humanoid dance creation. Biologically Inspired Cognitive Architectures, 15:1–9, 2016.

Ferda Ofli, Yasemin Demir, Yücel Yemez, Engin Erzin, A Murat Tekalp, Koray Balcı, İdil Kızoğlu,
Lale Akarun, Cristian Canton-Ferrer, Joëlle Tilmanne, et al. An audio-driven dancing avatar.
Journal on Multimodal User Interfaces, 2:93–103, 2008.

Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed A. A. Osman, Dim-
itrios Tzionas, and Michael J. Black. Expressive body capture: 3D hands, face, and body from a
single image. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pp. 10975–10985, 2019.

Qiaosong Qi, Le Zhuo, Aixi Zhang, Yue Liao, Fei Fang, Si Liu, and Shuicheng Yan. Diffdance:
Cascaded human motion diffusion model for dance generation. In Proceedings of the 31st ACM
International Conference on Multimedia, pp. 1374–1382, 2023.

Ludan Ruan, Yiyang Ma, Huan Yang, Huiguo He, Bei Liu, Jianlong Fu, Nicholas Jing Yuan, Qin
Jin, and Baining Guo. Mm-diffusion: Learning multi-modal diffusion models for joint audio and
video generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10219–10228, 2023.

Zehong Shen, Huaijin Pi, Yan Xia, Zhi Cen, Sida Peng, Zechen Hu, Hujun Bao, Ruizhen Hu,
and Xiaowei Zhou. World-grounded human motion recovery via gravity-view coordinates. In
SIGGRAPH Asia Conference Proceedings, 2024.

Guofei Sun, Yongkang Wong, Zhiyong Cheng, Mohan S Kankanhalli, Weidong Geng, and Xiang-
dong Li. Deepdance: music-to-dance motion choreography with adversarial learning. IEEE
Transactions on Multimedia, 23:497–509, 2020.

Shuai Tan, Biao Gong, Xiang Wang, Shiwei Zhang, Dandan Zheng, Ruobing Zheng, Kecheng
Zheng, Jingdong Chen, and Ming Yang. Animate-x: Universal character image animation with
enhanced motion representation. arXiv preprint arXiv:2410.10306, 2024.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In European
conference on computer vision, pp. 402–419. Springer, 2020.

Jonathan Tseng, Rodrigo Castellon, and Karen Liu. Edge: Editable dance generation from music.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
448–458, 2023.

Wen Wang, Qiuyu Wang, Kecheng Zheng, Hao Ouyang, Zhekai Chen, Biao Gong, Hao Chen,
Yujun Shen, and Chunhua Shen. Framer: Interactive frame interpolation. arXiv preprint
arXiv:2410.18978, 2024a.

Xiaojuan Wang, Boyang Zhou, Brian Curless, Ira Kemelmacher-Shlizerman, Aleksander Holynski,
and Steven M Seitz. Generative inbetweening: Adapting image-to-video models for keyframe
interpolation. arXiv preprint arXiv:2408.15239, 2024b.

Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. 2023.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

Yan Zeng, Guoqiang Wei, Jiani Zheng, Jiaxin Zou, Yang Wei, Yuchen Zhang, and Hang Li. Make
pixels dance: High-dynamic video generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8850–8860, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023.

Mingao Zhang, Changhong Liu, Yong Chen, Zhenchun Lei, and Mingwen Wang. Music-to-dance
generation with multiple conformer. In Proceedings of the 2022 International Conference on
Multimedia Retrieval, pp. 34–38, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE STATEMENT

LLM was used to correct grammar and improve the fluency of the writing in this paper.

A.2 USER CONTROL

Given the same choreography pattern for the dance, the user can use pose-grid template to guide the
input keyframe poses, control the allowed motion range in the graph, and define custom constraints
during graph optimization.

Figure 7: Keyframe pose grid mimicking.
Top row: A keyframe pose grid template
showing six distinct poses of a capybara.
Middle and bottom rows: A meerkat and a
hedgehog mimicking the capybara’s poses,
while preserving their own body structure,
generated using GPT-4o.

Pose-grid template control. Given a keyframe pose
grid as template, we prompt GPT-4o to generate a
new grid in which another animal “mimics” each
pose from the original, though the poses are not ex-
pected to be exact same since different animals have
different anatomical structures. This template may
come from a previously generated grid (see Fig. 7
for an example) or be extracted from a human dance
video by identifying distinct poses. This provides
a way to guide or customize the input poses, which
allows to generate dance videos where different an-
imals dance alike (see supplementary video for ex-
amples).

Motion range control. The threshold parameters
Mlow and Mhigh control the range of allowed mo-
tion magnitudes between keyframes. A typical set-
ting is Mlow ≥ 12.0 and Mhigh ≤ 60.0 at resolution
1024×576. Within this range, lowering Mlow and in-
creasing Mhigh introduces more candidate nodes and
transitions, potentially resulting in richer and more
expressive dances.

User custom constraints control. During graph optimization, users can specify hard constraints
on node assignments—for instance, enforcing preferred keyframe pair(s) for specific label(s). Addi-
tionally, for some dance, mirrored poses happen at the start and end of a choreography label. When
such mirrored pose pairs are detected for a specific label, we can enforce corresponding node assign-
ments during optimization. For example, such labels have to be assigned to nodes (Iu, Iv) where
Iv = I ′u, This allows closer alignment with the reference choreography.

A.3 FAILURE CASES

Figure 8: Failures. The average flow
magnitude from left to the right is not
large, but the underlying motion inten-
sity is much higher.

Motion intensity estimation. Within the keyframe
graph, we estimate the underlying motion strength be-
tween keyframe pairs using the average flow magnitude.
This measure can be unreliable in certain cases. For ex-
ample, when two keyframes depict mirrored side views,
the flow fails to capture the true motion complexity be-
tween poses. In Fig. 8, the average flow magnitude is
36.81 (image size is 1024 × 576), which appears mod-
erate due to incorrect correspondences between opposite
sides, but the sea otter must rotate from one side view to
the other, and this motion is more complex and sometimes
challenging for the video model to synthesize. Establishing a reliable link between keyframe flow
and the generated motion strength remains an open problem.

Background consistency. As described in Sec. 3.2, we re-generate the keyframes with the fine-
tuned model to improve visual consistency in the initial keyframe set using a shared background

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 9: Background inconsistency caused by missing background Canny edges in the original
keyframes. Top row: original keyframes generated by GPT-4o. Second row: Canny edge maps
used in generating the refined keyframes. Third row: our refined keyframes. Bottom row: zoom-
in of the top-left corners (red rectangles) of the refined keyframes, highlighting slight background
inconsistencies where Canny edges are absent.

Canny edge map which is inpainted from the original keyframes as control. However, slight back-
ground consistency can remain when the original keyframes have shallow depth of field, which
limits the Canny edge extraction. For example, in Fig. 9, the grass background behind the capybara
is blurred in the original keyframe, leaving no detectable edges in that region. As a result, the re-
fined keyframes show slight background inconsistencies in the grass (see bottom row). However,
for scenes with clear and sharp backgrounds, our method maintains consistency well.

13

	Introduction
	Prior Work
	Approach
	Choreography Pattern Labeling
	Mirrored Pose Image Generation
	Choreography Pattern Driven Dance Synthesis
	Warp to Music

	Experiments
	Keyframes Generation
	Choreography Pattern Labeling
	Baseline Comparisons

	Discussion & Limitations
	Appendix
	LLM Usage statement
	User Control
	Failure Cases

