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Abstract
Graph Neural Networks (GNNs) often struggle in
preserving high-frequency components of nodal
signals when dealing with directed graphs. Such
components are crucial for modeling flow dynam-
ics, without which a traditional GNN tends to treat
a graph with forward and reverse topologies equal.
To make GNNs sensitive to those high-frequency
components thereby being capable to capture de-
tailed topological differences, this paper proposes
a novel framework that combines 1) explicit dif-
ference matrices that model directional gradients
and 2) implicit physical constraints that enforce
messages passing within GNNs to be consistent
with natural laws. Evaluations on two real-world
directed graph data, namely, water flux network
and urban traffic flow network, demonstrate the
effectiveness of our proposal. The code for this
paper is available at https://github.com/
HaoyangJiang-WM/PhysicsNFP.

1. Introduction
Directed graphs are frequently used to model various phys-
ical and engineering systems, due to their strength in cap-
turing spatial dependencies and complex interactions be-
tween components. Graph Neural Networks (GNNs) have
emerged as powerful tools for modeling such graphs, partic-
ularly in applications like water flux prediction and traffic
flow analysis (Kratzert et al., 2021; Jin et al., 2023). How-
ever, recent studies (Kirschstein & Sun, 2024) have revealed
a critical limitation, that GNNs often struggle in modeling
physics-based flow dynamics due to their insensitivity to
edge directions.

In real systems, flow dynamics follow strict physical laws,
where local and rapid changes, e.g., turbulent eddies, sharp
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flow transitions, or abrupt flux variations, only propagate in
specific directions (Sagaut, 2005; LeVeque, 2002; Canuto,
2007). Yet, GNNs typically yield similar performance
whether the original edge directions are maintained, re-
versed, or randomly perturbed. This directional insensi-
tivity mainly results from the message-passing mechanism
in GNNs, which implicitly acts as a low-pass filter (Kesting
& Treiber, 2013; Sagaut, 2005). While this filtering enables
GNNs to capture low-frequency patterns, such as seasonal
trends in river networks, it suppresses high-frequency varia-
tions that arise from rapid or local changes (Sun et al., 2022;
Bo et al., 2021; Hoang et al., 2021).

In this paper, we mainly explore two key research questions:
i) why are GNNs insensitive to edge directions and ii) how
can their directional awareness be improved.

We hypothesize that the low-pass filtering nature of message
passing is the main cause of this limitation. To validate this,
we formulate an inverse problem for flux prediction in river
networks, where the task is to infer upstream fluxes based on
downstream observations. This ill-posed setup leads to in-
stability by amplifying high-frequency components (Fisher
et al., 2020; Ferrari et al., 2018), where small numerical er-
rors can result in significant variations in inferred upstream
conditions, making the problem highly sensitive to local flux
changes. Yet, standard GNNs fail to capture these amplified
high-frequency signals, resulting in poor performance when
modeling directional dependencies.

To overcome these challenges, we propose a novel physics-
guided neural flux prediction (PhyNFP) framework that
integrates physical laws into GNN training, preserving high-
frequency components for better flow dynamics modeling.
Our framework has two main components: 1) At local level,
PhyNFP replaces traditional adjacency matrices with dis-
cretized difference matrices, which encode local variations
and directional dependencies between nodes. These matri-
ces capture directional gradients, allowing the GNN to retain
high-frequency information and distinguish flow directions.
2) At global level, PhyNFP incorporates physical equations
that describe flow dynamics, e.g., conservation of momen-
tum, directly in GNN training. This physics-guided regu-
larization ensures that predictions remain consistent with
underlying physical principles. Note, our PhyNFP frame-
work is generalizable in the sense that different physical
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equations can be adopted for various types of flow networks.
We evaluate PhyNFP on two real-world datasets, imple-
menting the Saint-Venant equations for river networks and
the Aw-Rascle equations for traffic networks. Experimental
results demonstrate that PhyNFP enhances GNN perfor-
mance by improving sensitivity to directional dependencies
and high-frequency dynamics. Furthermore, we validate
our hypothesis regarding the inverse problem nature of the
reversed topology by examining the model’s behavior under
perturbation in this setting.

Specific contributions in this paper include:

1. This is the first study to guide training of GNNs with
physics information for flux prediction, in order to
enhance their sensitivity to high-frequency components
and edge directions.

2. An inverse problem is formulated to validate the low-
pass filtering nature of GNNs, substantiating their in-
capability in capturing high-frequency components in
nodal features hence insensitive to edge directions.

3. Empirical evaluations on two different directed net-
works demonstrate the effectiveness of our framework,
which i) Outperforms its GNN competitors by 31.6%
in the river dataset and 4.9% in the traffic dataset on
average in flux prediction. ii) Uplifts the GNN sensi-
tivity to edge directions by 96.5% in the river dataset
and 79.9% in the traffic dataset.

2. Preliminaries
Problem Statement. Consider a directed graph G(A) =
(V,E) representing a flow network, where A is the graph
adjacency matrix and A ̸= A⊤ in general. V = {vi} is the
set of nodes, with each node vi associated with a vector xi ∈
Rt×p that encodes the quantities of p variables (e.g., flux
volume, density, and velocity) over t time steps. We have
X = [x1, . . . ,x|V |]

⊤ to denote the nodal feature matrix of
G. Let E ⊆ V × V be the edge set, and eij = (vi, vj) ∈ E
represents an edge pointing from vi to vj , associated with
a vector eij ∈ Rq that encodes physical quantities such as
level difference or distance between nodes.

In this paper, we follow the prior study (Kirschstein & Sun,
2024) to frame the flux prediction task in supervised node
regression. Specifically, our goal is to predict the lead time
hours in the future, i.e., predicting the flux volume at t+ n
step for all nodes, where n is a configurable prediction
horizon. The ground-truth of all nodes is denoted by y ∈
R|V |. Our objective takes the form:

min
θ

1

|V |
∑
vi∈V

ℓ (yi, f(xi, eij , A; θ)) ,

where ℓ denotes the loss function (e.g., MSE or RMSE), f
denotes the GNN model parameterized by θ, yi ∈ y is the
true flux volume of node i at step t+ n.

Figure 1. Left: Trends of temporal gradients w.r.t. the increasing
number of message-passing layers. Right: MSE Trends of GCN in
the original (Forward), inverse (Reverse), and undirected network
settings w.r.t. the increasing number of message-passing layers.

Technical Challenges

GNNs leverage neighborhood aggregation to yield node
embeddings that harmonize information from both nodal
features and graph topology. Denoted by hl+1

i the embed-
ding vector of node vi resulted from the (l + 1)-th message-
passing layer, it is computed in a recursive form as follows.

hl+1
i = Ul

(
hl
i,

∑
vj∈Nin[vi]

Ml(h
l
i,h

l
j , eji)

)
, h0

i = xi (1)

where Nin[vi] denotes the incoming neighbors of vi in G,
i.e., vj is upstream of vi. Ul and Ml denote the update and
aggregation functions of the l-th layer, respectively.

This message-passing process leads to the smoothing effect
because it inherently acts as a low-pass filter, which encour-
ages similar embeddings of neighboring nodes and attenu-
ates high-frequency components (Sun et al., 2022; Bo et al.,
2021). Denoted by ∆xi = (1/t)

∑t
s=1(xi[s]−E(xi))

2 the
temporal gradient of each node vi, which represents the rate
of change of p variables between consecutive time steps.
Figure 1 (left) illustrates the temporal gradients of all nodes
in the river dataset (details in Sec. 4), and how they change
w.r.t GNN layers. We observe that the differences among
the temporal gradients of these nodes and their embeddings
diminish with more message-passing layers, validating that
high-frequency components, as rapid variations of input
node features, cannot be captured in their embeddings.

We further validate that GNNs are insensitive to edge di-
rections due to their incapability to capture these high-
frequency components. To wit, we set up an inverse problem
of our prediction task. Specifically, in our original problem,
information propagates downstream in both space and time,
where each node embedding hi depends on features from
upstream nodes vj , as indicated in Eq. (1). In its inverse
problem, the edge directions are reversed, making A⊤ the
graph adjacency. The task becomes ill-posed because it
requires inferring upstream from downstream conditions,
which incurs two issues. First, the upstream boundary condi-
tions are lacking (Fisher et al., 2020),as downstream nodes
do not contain sufficient information of upstream flow condi-

2



Topology-aware Neural Flux Prediction Guided by Physics

tions, making the mapping potentially one-to-many. Second,
small numerical errors in the inference process can propa-
gate and be amplified, leading to instability and sensitivity
in the reconstructed upstream conditions. As a result, the
solutions are non-unique with high-frequency noises am-
plified during inverse problem. This instability introduces
high-frequency errors, causing small perturbations to result
in drastically different inferred solutions.

Figure 2 (right) demonstrates the trends of prediction loss
w.r.t. different numbers of forward (original), reverse, and
undirected message-passing layers. Similar loss trends
across all configurations indicate that while high-frequency
attenuation increases GNN robustness by suppressing noise
inherent in inverse problems, it simultaneously reduces the
GNN sensitivity to changes in flow direction. This attenua-
tion effect limits GNNs to capture complex flow dynamics,
particularly in cases where distinguishing between forward
and reverse flow directions is critical. More detailed analysis
of the technical challenges are deferred to the supplementary
material due to page limits.

3. Proposed Approach
To improve the directional awareness of GNNs, we pro-
pose PhyNFP that integrates explicit and implicit physical
constraints. In this section, we first introduce discretized
difference matrices, as explicit constraints, that model local
gradient changes in Sec. 3.1. Next, we present how these
difference matrices are integrated with physical conserva-
tion laws, as implicit constraints, to ensure global consis-
tency in flow dynamics in Sec. 3.2. Finally, we propose a
new message-passing equation that incorporates these con-
straints, demonstrating its capability to capture complex
flow dynamics in Sec. 3.3.

3.1. Discretized Difference Matrices for Explicit Local
Directionality Encoding

Discretized difference matrices encode directional sensi-
tivity by approximating spatial gradients in discrete form,
providing a framework for modeling local variations and
directional dependencies in flow dynamics. Inspired by re-
cent numerical methods (LeVeque, 2002), the discretized
difference update process can be interpreted as a multi-layer
GNN with specific adjacency matrices.

To see this, we start from its general format. A time-space
discretized physics process can be described as:

µt+1 = µt +∆t
∂µt

∂x
, (2)

where µt ∈ R|V | is a row vector of nodal feature matrix
X, representing the state of a variable (i.e., flux volume) in
the graph G at time t. ∆t is the time step that defines the

temporal resolution. ∂µt/∂x represents the spatial gradient
of µ along the x-direction (i.e., the edge direction), which
captures local directional variations. µt+1 is the updated
state of this variable after incorporating temporal and spatial
changes. Approximating the gradient ∂µt/∂x in Eq. (2)
using a discretized difference scheme, we have:

µt+1 = µt + αD̂µt = (I + αD̂)µt, (3)

where D̂ is the discretized difference matrix, I is the identity
matrix, and α = ∆t/∆x is a scalar balancing the time step
∆t and the spatial step ∆x. Eq. (3) links the discrete update
process to the graph adjacency operator (I+αD̂), encoding
both the original topology and local variations.

To capture directionality in regions with rapid transitions
and local changes, we leverage the the upwind scheme that
allows for modeling directional dependencies in dynamic
systems (Bermudez & Vazquez, 1994), further ensuring
numerical stability in our framework. The upwind scheme
approximates gradients as ∂µ/∂x ≈ (µi − µj)/∆x, where
µi and µj are the i-th and j-th entries of µt, representing the
physical quantities of nodes vi and vj at time t, respectively.
∆x represents the spatial step between nodes vi and vj ,
with vj being the upstream neighbor of vi. This equation
prioritizes upstream information, aligning with the physical
reality of flows propagating downstream.

As such, we can construct the discretized difference matrix
D̂ based on the graph structure, where the nodes represent
spatial locations and the edges encode directional depen-
dencies. For a node vi and its upstream neighbor vj , the
(i, j)-th entry of D̂ can be defined as:

D̂ij =

1, if i = j,

−1, if j is the upstream node of i,
0, otherwise.

In the first row of D̂, we enforce directionality from v1 to v0,
allowing v0 to receive information without explicit initial
conditions while preserving correct flow dependencies.

Using edge vector eij , we define two enhanced difference
matrices D1 and D2 as follows.

D1 =
1

∆x
D̂, D2 =

∆z

∆x
D̂, (4)

where ∆x = ϕ1(eij) and ∆z = ϕ2(eij), and ϕ1 and ϕ2 are
learnable mappings such as multi-layer perceptrons (MLPs).

The intuition behind Eq. (4) is that, ∆x represents the spatial
distance, governing the propagation rate, while ∆z reflects
elevation differences, encoding gravitational effects. These
specific matrices arise naturally from the chosen PDEs, but
the underlying approach of using difference operators de-
rived from graph topology (e.g., spatial adjacency or func-
tional relationships) is generalizable (Grady & Polimeni,
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2010). Incorporating D1 and D2 into the GNN framework
enhances its ability to model directional dependencies, align-
ing with natural flow dynamics while maintaining stability.

3.2. Incorporating Physical Equations as Implicit GNN
Training Regularizers

Physical equations provide implicit constraints by enforcing
global conservation laws, while difference matrices encode
directional sensitivity at the local level. In fact, our tai-
lored difference matrices can be applied to a wide range
of flow models and are particularly suited for integration
with physical equations. This allows for the incorporation
of problem-specific constraints to address particular appli-
cations. In this study, we demonstrate that the difference
matrices allow for the incorporation of problem-specific
constraints to address two different applications.

CASE 1: S-V EQUATION FOR RIVER NETWORKS

In river flow modeling, the Saint-Venant (S-V) equations
are widely used to describe water flow dynamics (Wu, 2007;
Vreugdenhil, 2013). These equations establish the conser-
vation of mass and momentum as the fundamental physical
principles governing river water movement.

Conservation of Momentum. The momentum conser-
vation equation accounts for the forces influencing water
movement, including gravity and friction. Q = h · u repre-
sents discharge, where h is water depth and u is velocity. g
is gravitational acceleration, and z(x) is bed elevation. The
momentum conservation equation is given by:

∂Q

∂t
+

∂

∂x

(
Q2

h
+

1

2
gh2

)
= −gh

∂z

∂x
− f, (5)

where f = gn2Q|Q|/h4/3 denotes the friction term, with n
being the Manning coefficient.

Eq. (5) inherently captures the directionality of river flow.
The term −gh ∂z

∂x ensures downhill water movement by
aligning with the steepest descent, while the inertial term
∂
∂x

(
Q2

h + 1
2gh

2
)

maintains consistency in flow dynamics.
By integrating difference matrices with these terms, the solu-
tion space is constrained to adhere to fundamental physical
laws while ensuring stability and directionality.

In implementation, we further simplify Eq. (5) by neglecting
water depth and friction effects, which yields:

∂u

∂t
+ u · ∂u

∂x
= −g

∂z

∂x
, (6)

where u ∈ R|V| is the vector of fluid velocity of all nodes
at time t, and z denotes elevation.

Discretization. Eq. (6) can be discretized in both time and
space to facilitate numerical implementation. Using dis-

cretized difference matrices and rearranging terms leads to
the update rule for velocity at each node i:

ut+1
i = ut

i −∆t

(
ut
i

ut
i+1 − ut

i

∆x
+ g

zi+1 − zi
∆x

)
, (7)

where ut
i is the scalar velocity at node i and time step t, and

zi is the scalar elevation at node i.

Integration with Difference Matrices. To enhance GNNs
for modeling spatial variations and flow directions, we ini-
tially replace the adjacency matrix with a generalized differ-
ence matrix in Eq.(3). This general framework provides a
foundation for directional sensitivity and spatial variation
modeling in GNNs. To further align with physical princi-
ples, the generalized difference matrix Eq.(3) is adapted
to the governing PDE by incorporating specific physical
properties. For example, in the momentum equation, Eq.(3)
is replaced with a PDE-specific difference matrix, which
encodes elevation-based gradients and flow transport. The
updated velocity at node i is then computed as:

ut+1
i = ut

i − α
(
ut
i(D̂ut)i + g(D̂z)i

)
, (8)

where (D̂ut)i represents velocity differences, and (D̂z)i
encodes elevation-driven effects. Parameter α controls the
influence of the difference matrix in the overall update rule.

CASE 2: A-R EQUATION FOR TRAFFIC NETWORKS

In traffic flow modeling, the Aw-Rascle (A-R) equations
are widely used to describe vehicle dynamics by extending
classical traffic flow models. These equations provide a
hyperbolic system of conservation laws to model traffic
behavior. (Aw & Rascle, 2000).

Conservation of Mass. The mass conservation equation
governs the evolution of vehicle density ρ(x, t) over time
and space. Representing ρ as the vehicle density and u(x, t)
as the velocity, the conservation of mass is expressed as:

∂ρ

∂t
+

∂(ρu)

∂x
= 0. (9)

This equation ensures that the total number of vehicles is
conserved across the traffic network, where ρu represents
the traffic flux. The coupling of vehicle density ρ(x, t) and
velocity u(x, t) in ρu captures the effects of local density
variations and their influence on traffic movement. This
formulation allows the AR model to effectively represent
traffic dynamics in real-world scenarios.

Discretization. The mass conservation equation for traffic
networks can be discretized in both time and space to facili-
tate numerical implementation. Using discretized difference
schemes and rearranging terms, we derive the update rule
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for density at each node:

ρt+1
i = ρti −∆t

(
ut
i

ρti+1 − ρti
∆x

+ ρti
ut
i+1 − ut

i

∆x

)
, (10)

where ρti is the scalar density at node i and time step t, and
ut
i is the scalar velocity at node i. Eq. (10) accounts for both

the spatial variation of density and the effect of velocity
gradients, ensuring consistency with total traffic mass.

Integration with Difference Matrices. The updated traffic
density at node i is then computed as:

ρt+1
i = ρti − α

(
ut
i(D̂ρt)i + ρti(D̂ut)i

)
, (11)

where (D̂ut)i represents velocity differences, and (D̂ρt)i
encodes density-driven effects. α is a balancing factor.
These terms approximate the spatial derivatives of velocity
and density, respectively, using a difference operator D̂.

3.3. Unifying Difference Matrices and PDEs in
Message-Passing Layers

We integrate physical knowledge into the GNN training pro-
cess by unifying difference matrices and PDEs to enhance
modeling for flood and traffic flow dynamics.

CASE 1: MESSAGE-PASSING FOR FLOOD PREDICTION

We extrapolate the message-passing function indicated in
Eq. (1) by explicitly distinguishing the roles of D̂ in captur-
ing both local gradients and elevation-driven effects, based
on Eq. (8). Specifically, we follow Eq. (4) to decompose
D̂ into D1 and D2. The message-passing process in our
PhyNFP framework for river network can be formulated as:

hl+1 = hl −∆t
(
hl ⊙ (D1h

lW1) + ĝ · (D2h
lW2)

)
, (12)

where hl ∈ R|V |×d represents the node embedding matrix
at layer l, initialized as h0 = X ∈ R|V |×(t·p). As deeper
message-passing layers enables information exchange be-
tween a node and its topologically more faraway neighbors,
simulating longer-term system dynamics, we use the update
from l to the (l+1)-th layer to surrogate the accumulation of
changes over two consecutive time steps in PDEs. The dif-
ference matrices D1 ∈ R|V |×|V | captures local spatial gra-
dients and D2 ∈ R|V |×|V | incorporates elevation-driven dy-
namics influenced by graph topology. W1 and W2 ∈ Rd×d

are learnable parameters that learn node embeddings within
the same dimension, allowing for the element-wise multipli-
cation ⊙. ∆t and ĝ are learnable scalars that modulating the
influence of spatial and elevation-driven terms and scales
the contribution of elevation-driven dynamics, respectively.

In our tailored message-passing Eq. (12), the term D1h
l

captures local spatial derivatives, reinforcing directional

information, and D2h
l integrates elevation variations that

influence flow propagation. The learnable weights W1 and
W2 further refine these representations, ensuring consis-
tency across layers. Using learnable ∆t and g allows for
additional flexibility, making GNNs adaptive to based on
training data while preserving the underlying physical prin-
ciples. Leveraging Eq. (12), our PhyNFP empowers GNNs
to model rapid spatial and directional variations, improving
performance in predicting flux volumes of river networks.

CASE 2: MESSAGE-PASSING FOR TRAFFIC FLOW

To enhance directional sensitivity in traffic networks, we re-
formulate the traffic flow conservation Eq. (9) by regulating
the contributions of traffic density and velocity variations:

hl+1 = hl −∆t
(
hl ⊙ (D1v

lW1) + vl ⊙ (D1h
lW2)

)
, (13)

where the node embedding matrix at layer l remains hl ∈
R|V |×p, but initialized as h0 = MLPh(X) ∈ R|V |×d. De-
noted by vl ∈ R|V |×p an embedding matrix, initialized as
v0 = MLPv(X) ∈ R|V |×d that extracts velocity property
from raw nodal features. Here, we only use D1 ∈ R|V |×|V |

that encodes spatial variations in both traffic density and
velocity, reflecting how traffic propagates through the net-
work. W1 and W2 ∈ Rd×d are learnable weights, and ∆t
is a learnable scalar used to balance local traffic variations
and temporal propagation. In the message-passing Eq. (13)
tailored for traffic network, D1v

l captures velocity gradi-
ents that drive traffic movement, while D1h

l accounts for
density variations that influence traffic congestion. There-
fore, although both terms share the same difference matrix
D1, their physical interpretations differ. Namely, D1v

l

determines velocity-induced flow adjustments, and D1h
l

regulates density-based congestion propagation. The learn-
able matrices W1 and W2 refine these interactions, enabling
GNNs to adapt to free-flow and congested conditions. By
making ∆t learnable, GNNs can adjust their sensitivity to
real-time traffic conditions, providing a physics-aware ap-
proach to traffic prediction.

4. Experiments
Datasets. Two datasets collected from real-world directed
graphs are used. 1) River, preprocessed from LamaH-CE2
(Klingler et al., 2021), which documents historical discharge
and meteorological measurements with hourly resolution in
the Danube river network. It consists of 358 nodes and 357
edges. Five nodal features include discharge, surface pres-
sure, precipitation, temperature, and soil moisture. Three
edge features include length, slope, and distance. 2) Traffic,
preprocessed from PEMS-04 (Yu et al., 2018), that com-
prises traffic flow records collected from roadside sensor
stations. It consists of 307 nodes and 340 edges. Three
nodal features include flow, occupy and speed. Edge fea-
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Table 1. Comparative results in two datasets, with prediction horizon n = 6 and MSE measured on the volume rescaled by normal score.

Datasets River Network Traffic Network
Forward (F) Reverse (R) DS RDS Forward (F) Reverse (R) DS RDS

PhyNFP (Ours) 0.0801 0.0906 +0.0105 - 0.0696 0.0724 +0.0028 -
PhyNFPDM (ablation) 0.0898 0.0961 +0.0063 -40.0% 0.0721 0.0738 +0.0017 -39.3%

GWN 0.1101 0.1132 +0.0031 -70.5% 0.0709 0.0706 -0.0003 -110.7%
MP PDE Solver 0.1126 0.1082 -0.0044 -141.9% 0.0700 0.0711 +0.0011 -60.7%

MPNN 0.1170 0.1182 +0.0012 -88.6% 0.0713 0.0720 +0.0007 -75.0%
GraphSAGE 0.1224 0.1149 -0.0075 -171.4% 0.0724 0.0712 -0.0012 -142.9%

GAT 0.1233 0.1265 +0.0032 -69.5% 0.0768 0.0776 +0.0008 -71.4%
GNO 0.1247 0.1265 +0.0018 -82.9% 0.0757 0.0765 +0.0008 -71.4%
GCN 0.1365 0.1357 -0.0008 -107.6% 0.0769 0.0778 +0.0009 -67.9%

ture is the distance between nodes. Input features over W
hours are concatenated along the feature dimension before
being fed into the models. The ground-true flux volumes
Y ∈ R|V | are available for all nodes in both datasets. We
normalize all physical variables including the nodal features
and output volume to the same scale in an element-wise
fashion using standard score (LeCun et al., 2002).

Metrics. Following the prior art (Kirschstein & Sun,
2024), we benchmark the models in the regime of supervised
node regression. Given a certain amount of W (i.e., a win-
dow size) observations of flux volume of all nodes, our task
is to predict the volume n hours ahead, namely, the predic-
tion horizon is n. We set W = 24 for training and n = 6 for
the lead time prediction for applicability. The prediction dis-
crepancy is gauged by the mean squared error (MSE) aver-
aged over all nodes, namely, ℓ(Ŷ,Y) = (1/|V |)∥Y−Y∥22.

Direction Sensitivity. To substantiate the effectiveness
of distinguishing edge directions, we benchmark the ex-
periments in the original graph datasets (denoted as For-
ward) and their inverse counterparts, where the direction
on every edge is reversed (denoted as Reverse). We define
direction sensitivity of a certain model M as DS(M) =
ℓM (Reverse)−ℓM (Forward), where ℓM indicates the MSE
loss of M , and intuitively its performance in the Forward
setting should excel. Further, we can define the relative
direction sensitivity as RDS(M1,M2) = (DS(M2) −
DS(M1))/DS(M1) between two models M1 and M2.

Competitors. Eight models are identified for compara-
tive study, divided into three categories as follows. First,
the traditional GNNs including 1) Graph Convolutional
Network (GCN) (Wu et al., 2019) that propagates node
features in spectral domain, 2) Graph Attention Network
(GAT) (Veličković et al., 2018) that furthers GCN with at-
tention mechanism, 3) Message-Passing Neural Network
(MPNN) (Gilmer et al., 2020) that employs general feature
aggregation and update functions, 4) GraphSAGE (Hamil-
ton et al., 2017) for inductive representation learning, and

5) Graph Wavelet Network (GWN) (Xu et al., 2019) that
uses wavelet transforms to capture high-frequency compo-
nents. Compared with those traditional GNNs, the efficacy
of our PhyNFP performs in preserving directional sensitiv-
ity, capturing high-frequency components, and improving
flux predictive performance.

Second, the graph learning models for problem-solving in
physical systems. They include 6) Message-Passing PDE
Solver (MP-PDE Solver) (Brandstetter et al., 2022) that uses
message passing to approximate PDE solutions, capturing
spatial and temporal dynamics without enforcing physical
constraints, and 7) Graph Neural Operator (GNO) (Li et al.,
2020) that learns mappings between function spaces, so to
adapt to spatial and temporal dynamics without enforcing
physical constraints. Both MP-PDE Solver and GNO are
data-driven approaches that do not explicitly incorporate
physical laws. Comparing with them help evaluating how
well the proposed PhyNFP balances physical consistency
and data-driven modeling.

Third, for ablation study, we propose a variant reduced
from our proposed approach: 8) PhyNFPDM , which only
uses the basic adjacency information constructed from dis-
cretized difference matrices in Eq. (3) for message-passing.
This variant does not incorporate PDEs into its GNN train-
ing. A comparison with it will demonstrate the effectiveness
of incorporating specific PDEs as constraints for domain
problems as specified in Sec. 3.2.

Results and findings. Table 1 presents the MSE and direc-
tional sensitivity scores (DS and RDS) for different models
on river and traffic networks. We answer the following
research questions (RQs) based on the results.

RQ1 How does the proposed PhyNFP framework improve
flux prediction over the compared graph learners?

Our method achieves the best overall performance in both
datasets. To quantify these improvements, we compute

6
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Method Forward (F)
n 3 6 9

PhyNFP 0.0514 0.0801 0.1087
GAT 0.0617 0.1233 0.1433
GCN 0.0632 0.1365 0.1481

Table 2. Comparative results with baseline GNN models in river
network with varying prediction time horizon n.

the average Forward MSE, DS, and RDS across all base-
line models, including the ablation version of our method,
and compare them with our approach. Specifically, in the
river network, the compared methods on average achieve an
MSE in the Forward setting as 0.1170, whereas our method
achieves 0.0801, representing a 31.6% reduction in the MSE
prediction error. The DS score of PhyNFP is 0.0105, out-
performing the compared methods that on average arrive
at 0.0004, leading to 26× improvement in relative direc-
tional sensitivity (RDS). In the traffic network, the base-
line average Forward MSE is 0.0732, while our method
achieves 0.0696, reducing error by 4.9%. The baseline DS
is 0.0006, while our model achieves 0.0028, correspond-
ing to a 3.6× improvement in RDS. These results indicate
that traditional graph-based models, including GNNs and
graph-aware PDE solvers, struggle with directional sensitiv-
ity, while our method significantly enhances topology-aware
modeling, resulting in improvement in flux prediction.

RQ2 Does domain-specific physics information helpful in
graph-related flux prediction tasks?

To understand performance variations, we categorize mod-
els into two groups: physics-guided models (e.g., MP-PDE
Solver, GNO and PhyNFPDM (ablation)) and purely data-
driven models (e.g., GCN, GraphSAGE, GWN, GAT, and
MPNN). In the river network, physics-guided models have
an average Forward MSE of 0.1090, which is 26.5% higher
than our 0.0801, while their average DS is 0.0012 com-
pared to our 0.0105, resulting in a 88.3% lower RDS. Purely
data-driven models perform similarly, with an average For-
ward MSE of 0.1218 (34.3% higher than ours) and a DS
of -0.0002, leading to a 101.9% lower RDS. In the traffic
network, physics-guided models have an average Forward
MSE of 0.0726, which is 4.1% higher than our 0.0696, and
an average DS of 0.0012, making their RDS 57.1% lower.
Purely data-driven models show an average Forward MSE
of 0.0736 (5.4% higher than ours) and a DS of 0.0002, lead-
ing to a 92.8% lower RDS. Physics-guided models achieve
lower Forward MSE and better DS/RDS than purely data-
driven models, showing that incorporating physical knowl-
edge helps with directional flow modeling. However, those
physics-guided models perform worse than our method.

We observe weaker directional sensitivity (DS/RDS) in the

1
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(a) Graph topology of the River dataset.

Index of Nodes 
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Index of Nodes 

1 2 3

Curve of ResGCN

4

(c) ResGCN

Curve of PhyNFP  

Index of Nodes 
1 2 3 4

(d) PhyNFP

Figure 2. Trends of prediction results in response to a local and
rapid flux change. (a) The change occurs in node v1 and propagates
to the downstream nodes v2, v3, and v4. The responsive prediction
errors (in MSE) across the four nodes from (b) GCN, (c) ResGCN,
and (d) our PhyNFP framework.

Traffic network compared to the River network, stemming
from two main factors. First, the governing physics dif-
fer: river flow modeling (momentum-based) enforces direc-
tion more strongly than traffic flow modeling (mass/density-
based). Second, their graph structures contrast: the River
network is largely tree-like, inherently supporting directed
information flow during message passing. The Traffic net-
work, however, contains many cycles, which allow message
passing routes that can counteract strict directionality, thus
blurring the distinction between the deliberately set forward
and reverse topologies. Both the physics and the cyclic struc-
ture therefore make achieving high directional sensitivity
more challenging in the traffic network.

RQ3 What is the impact of time horizon in prediction?

Table 2 presents the MSE for different methods under for-
ward flow in the river network as the prediction horizon n
increases. We observe that, as n increases from 3 to 9, all
models show increasing errors, reflecting the challenge of
long-horizon predictions. However, the error growth is sig-
nificantly slower for our method, increasing by only 0.0573
(from 0.0514 to 0.1087), whereas GAT and GCN experience
larger increases of 0.0816 and 0.0849, respectively. Mean-
while, our method consistently achieves lower MSE across
all horizons, demonstrating that our method maintains better
stability and robustness over longer horizons.

RQ4 How well is our proposed PhyNFP in capturing high-
frequency components and local and rapid changes?

7
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Figure 2 shows the topology of the river dataset and the
prediction results under perturbations (i.e., simulating high-
frequency components). The y-axis represents the differ-
ence between perturbed and unperturbed predictions. In
Figure 2(b), (c), and (d), the blue line indicates the mean
prediction over the test set, while the gray area represents
the 3σ confidence interval.

In Figure 2(a), the topology of the river network is depicted
as a tree-like structure. A perturbation (+0.5) on v1 is
introduced at the final time step to observe its effect on
downstream nodes. This perturbation amount is consid-
erable given the data has been normalized. Figure 2(b)
shows that GCN fails to propagate the perturbation to down-
stream nodes, indicating that GCN struggles to capture high-
frequency components in nodal representations. Figure 2(c)
illustrates that, although ResGCN demonstrates propagation
at certain extend, it introduces more errors. For example, the
perturbation at v2 should increase the value; instead, Res-
GCN causes a decrease, showing that it lacks consistency
in flow modeling. In Figure 2(d), PhyNFP successfully
propagates the perturbation to multiple downstream nodes
without introducing error responses. This demonstrates that
our model effectively captures upstream-to-downstream de-
pendencies while maintaining physical consistency.

RQ5 How well is PhyNFP able to extract physics under-
lying PDE in solving the inverse problem?

To validate that PhyNFP truly incorporates the physical dy-
namics described by the PDEs, and to confirm our hypothe-
sis about the reverse task behaving as an ill-posed inverse
problem, we analyze its behavior in the reverse setting, par-
ticularly when subject to local perturbations. As established
in Section 2, solving hyperbolic PDEs upstream in space is
inherently unstable and sensitive to high-frequency perturba-
tions. A model that correctly captures these physics should
exhibit signs of this instability in the reverse setting, unlike
standard GNNs which tend to smooth out such effects.

Figure 4 in the Appendix illustrates the model responses to a
local perturbation injected at a node (v1) in the reverse river
network setting. For PhyNFP, the perturbation incorrectly
propagates upstream (to v2, v3, . . . ). While physically incor-
rect for forward flow, this behavior is the expected signature
of solving the PDE backward from downstream data. The
response of PhyNFP in this setting, which directly reflects
the ill-posed and potentially unstable nature of this inverse
problem, thus demonstrates its capture of the PDE-encoded
dynamics. In contrast, GCN and ResGCN show minimal
upstream response, suppressing the perturbation due to their
low-pass filtering property, which highlights their insensi-
tivity to such physical dynamics and direction reversal.

Further evidence comes from the learned time step param-
eter ∆t. As shown in Figure 3, ∆t stabilizes at a higher

Figure 3. Evolution of the learned time-step parameter ∆t over
training epochs for the forward and reverse settings in the river
network. The model starts with an initial ∆t = 0.7.

value in the forward setting, whereas in the reverse setting it
converges to a value approximately 21.58% smaller. This re-
flects the need for tighter step sizes to ensure stability when
solving ill-posed inverse problems (Baumeister, 1987).

These results demonstrate that PhyNFP effectively extracts
the physics embedded in the governing PDE. Its response
to upstream perturbations and the adaptive adjustment of
the learned time step ∆t reflect its ability to capture the
instability associated with solving the PDE in reverse.

5. Related Work
We identify three thrusts of related studies as follows.

Physics-based Flood Forecasting Traditional hydrody-
namic models, based on the Saint-Venant equations, are
widely used for flood forecasting due to their detailed physi-
cal representation of river flows. These models solve PDEs
to simulate key hydrological variables such as water flow,
velocity, and depth across spatial grids. Examples include
HEC-RAS (Hydrologic Engineering Center’s River Analy-
sis System)(Brunner, 2002), HL-RDHM (Hydrology Lab-
oratory Research Distributed Hydrologic Model)(Moreda
et al., 2006; Fares et al., 2014), and SWAT (Soil and Water
Assessment Tool) (RS & Williams, 1998), which approx-
imate water movement based on river topology, rainfall
intensity, and terrain features. Despite their accuracy, these
models demand extensive computational resources due to
fine-grained spatial and temporal discretization, making
real-time adaptation challenging.

Physics-based Traffic Flow Prediction. Traditional traf-
fic flow models are formulated as partial differential equa-
tions (PDEs) to capture the macroscopic dynamics of ve-
hicle movements. Classical models such as the Lighthill-
Whitham-Richards (LWR) model(Leclercq, 2007) describe
traffic density evolution using conservation laws, while the
Aw-Rascle-Zhang (ARZ) model(Aw & Rascle, 2000; Yu
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& Krstic, 2019) extends LWR by incorporating velocity-
dependent pressure terms to model traffic congestion more
accurately. Additionally, the second-order macroscopic
models, such as the Payne-Whitham model (Jin & Zhang,
2003), introduce momentum conservation to capture driver
reaction behaviors. These models provide interpretable the-
oretical frameworks but require detailed parameter calibra-
tion and struggle to adapt to dynamic traffic conditions.
Furthermore, alternative data-driven approaches, such as
multi-stream fuzzy learning or topology-based fuzzy net-
works, aim to address uncertainty and dynamic changes in
transportation systems (Yu et al., 2020; 2022).

Physics-Informed/Guided Graph Neural Networks.
The integration of physics with GNNs has proven effec-
tive for solving systems governed by PDEs. Graph Neural
Operators (GNOs) (Li et al., 2020) use graph kernels to
learn mappings between function spaces, enabling efficient
PDE solutions across varying domains. Graph Neural Diffu-
sion (GRAND) (Chamberlain et al., 2021) models diffusion
processes on graphs, capturing long-range dependencies and
incorporating physical principles. Graph Neural Ordinary
Differential Equations (GDEs) (Poli et al., 2019) describe
node feature evolution as continuous trajectories governed
by ODEs, offering adaptive computation for dynamic pro-
cesses. Message Passing Neural PDE Solvers (Brandstetter
et al., 2022) leverage graph structures to propagate infor-
mation and approximate PDE solutions. These approaches
illustrate the synergy between physics-based modeling and
GNNs in scientific and engineering tasks. In addition, PDE-
Net(Long et al., 2018) embed differential operators into
neural networks, enhancing interpretability and enforcing
physical constraints. Some studies further demonstrate how
to leverage difference matrices to encode physical laws (Liu
et al., 2024). Spatio-temporal graph neural networks (ST-
GNNs) have been shown to enhance predictions by integrat-
ing rainfall-runoff data with river topologies in complex net-
works for flood forecasting (Roudbari et al., 2024; Kazadi
et al., 2023; Farahmand et al., 2023) and traffic flow model-
ing (Bui et al., 2022; Guo et al., 2019). These approaches
enable scalable and consistent solutions for tasks like flood
prediction and urban traffic forecasting.

However, deep GNNs, including physics-informed ones,
often encounter the over-smoothing problem, where node
features tend to become overly similar with increasing net-
work depth. This limitation restricts their ability to capture
high-frequency components in flow dynamics. Some studies
have attempted to mitigate the over-smoothing with PDE.
For example, PDE-GCN constructs GCNs by discretizing
hyperbolic PDEs (Eliasof et al., 2021). Rusch et al. intro-
duce GraphCON, a framework based on coupled oscillators
(Rusch et al., 2022), and further propose Gradient Gating
(G2) to control information flow and address oversmoothing

(Rusch et al., 2023). Our proposed PhyNFP framework is
also grounded in PDEs. Its ability to operate effectively
with up to 19 layers as in (Kirschstein & Sun, 2024), in
contrast to standard GNNs, stems from the use of upwind
schemes in the difference matrices and the enforcement of
physical consistency. These mechanisms inherently stabi-
lize the message-passing process without relying on explicit
over-smoothing regularization.

6. Conclusion
This paper explored the limitation of GNNs in modeling
directed graph-based flow systems, where physical dynam-
ics are governed by directional dependencies. Our analysis
demonstrates that GNNs often exhibit directional insensi-
tivity due to their inherent low-pass filtering effect during
message passing. This limitation prevents them from effec-
tively capturing high-frequency variations in flow dynamics,
such as abrupt flux changes and sharp transitions. As such,
standard GNNs struggle with inverse problems, where accu-
rate representation of directional and localized changes is
crucial. In response, we proposed the PhyNFP framework,
which integrates physical principles into GNN training to
enhance directional sensitivity and improve performance in
flow dynamics modeling. PhyNFP consists of two main
components, namely 1) discretized difference matrices that
encode directional gradients and local variations, preserving
high-frequency information that traditional adjacency-based
GNNs filter out, and 2) physical law regularization, whereby
incorporating global physical equations such as momentum
conservation into the training process, PhyNFP ensures the
compliance between predictive results and the underlying
physics. Extensive experiments on real-world river and traf-
fic networks demonstrate that PhyNFP can better capture
both high-frequency and directional dependencies, leading
to significant improvements over baseline GNN models and
graph-aware PDE solvers in terms of prediction accuracy
and flow representation, substantiating the effectiveness and
promising modeling of integrating domain-specific physical
knowledge into graph learning regimes.

In future work, we aim to extend our framework to incorpo-
rate boundary and initial conditions of the governing PDEs,
which lend a more faithful representation of fluid dynamics.
Their explicit integration may further improve the physical
fidelity and predictive accuracy of our model.
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Overview. This supplementary material provides a results figure in reverse setting (in Appendix A) and additional analysis
to support our main paper in two key aspects. First, we evaluate the effectiveness of the proposed discretized difference
matrices using the Discrete-Time Fourier Transform (DTFT), demonstrating that these matrices enhance the model sensitivity
to high-frequency components, as detailed in Appendix B. Second, we formulate the flux prediction problem on a directed
graph with reversed edge directions as an inverse problem and provide a detailed rationale for this approach, which is
discussed in Appendix C.

A. Results under Perturbations in Reverse Setting

1
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(a) Graph topology of the River dataset.
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(b) GCN
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Figure 4. Trends of prediction results in response to a local and rapid flux change. (a) The change occurs in node v1 and propagates to the
upstream nodes v2 through v6. The responsive prediction errors (in MSE) across the six nodes are shown for (b) GCN, (c) ResGCN, and
(d) our PhyNFP framework.

B. Difference Matrix and High-Frequency Sensitivity
B.1. Definition of the Difference Matrix

In signal processing, the difference operator is used to capture variations in a signal. For a 1D sequential signal, the forward
difference matrix D of size n× n is defined as

D =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . . . . .

...
0 0 · · · −1 1

 .
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Applying D to a discrete-time signal x = [x1, x2, . . . , xn]
T gives

D x =


x1

x2 − x1

x3 − x2

...
xn − xn−1

 ,

which captures the differences between consecutive elements, making it sensitive to rapid changes in the signal.

B.2. DTFT of the Difference Matrix

To analyze the effect of D in the frequency domain, we use the Discrete-Time Fourier Transform (DTFT). The DTFT of a
discrete-time signal x(n) is

X(ejω) =

∞∑
n=−∞

x(n) e−jωn.

Consider the difference equation
y(n) = x(n)− x(n− 1).

Taking its DTFT:

Y (ejω) =

∞∑
n=−∞

[
x(n)− x(n− 1)

]
e−jωn.

Using the time-shift property F [x(n− k)] = e−jωk X(ejω), we have

F [x(n− 1)] = e−jω X(ejω).

Thus,
Y (ejω) = X(ejω)− e−jω X(ejω) =

(
1− e−jω

)
X(ejω).

Hence, the frequency response of the difference operator is

D(ejω) = 1− e−jω.

B.3. Magnitude Response of the Difference Operator

Writing e−jω = cosω − j sinω,
D(ejω) = (1− cosω) + j sinω.

Its magnitude is

|D(ejω)| =
√
(1− cosω)2 + sin2 ω.

Using 1− cosω = 2 sin2(ω/2), we get
|D(ejω)| = 2

∣∣sin(ω/2)∣∣.
For ω → 0, |D(ejω)| → 0, so low-frequency components are suppressed. For ω → π, |D(ejπ)| = 2, so high-frequency
components are amplified. Thus, D acts like a high-pass filter.

B.4. Composite Operator I + αD

Since I is the identity operator (preserving all frequencies) and D is a high-pass filter, their combination

Hcombined = I + αD

balances the global structure (I) with local variations (D).
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B.4.1. FREQUENCY RESPONSE OF I + αD

Taking the DTFT of Hcombined:

Hcombined(e
jω) = 1 + α

(
1− e−jω

)
= 1 + α− α e−jω.

Using e−jω = cosω − j sinω,

Hcombined(e
jω) = (1 + α)− α cosω + j α sinω.

B.4.2. MAGNITUDE RESPONSE

The magnitude is

|Hcombined(e
jω)| =

√(
1 + α− α cosω

)2
+

(
α sinω

)2
.

B.4.3. SPECIAL CASES

For ω = 0:
|Hcombined(e

j0)|2 = 1,

so low-frequency components are unchanged.

For ω = π:
|Hcombined(e

jπ)|2 = (1 + 2α)2,

hence
|Hcombined(e

jπ)| = | 1 + 2α |,

allowing control of high-frequency amplification by adjusting α.

Remark. The operator I + αD can be tuned to preserve smooth trends while selectively enhancing or reducing sharp
transitions, making it highly adaptable in various discrete signal and graph processing tasks.

C. Hyperbolic PDEs and Reverse Characteristic Tracing
C.1. General Form of Hyperbolic PDEs

A hyperbolic partial differential equation can often be written as

∂u

∂t
+

∂f(u)

∂x
= 0, (14)

where u(x, t) depends on time t and space x, and f(u) is the flux function. If f(u) = c u with a positive constant c, then

ut + c ux = 0,

indicating that information propagates at speed c. If f(u) = u2

2 , then

ut + uux = 0,

where f ′(u) = u depends on the solution itself, leading to wave speeds that can vary in space and time.

C.2. Forward and Reverse Characteristic Tracing

C.2.1. CHARACTERISTIC EQUATIONS AND FORWARD TRACING

From (14), one derives the characteristic form:

d

dt
u
(
x(t), t

)
= ut +

dx

dt
ux = ut + f ′(u)ux = 0. (15)
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This implies
du

dt
= 0 =⇒ u

(
x(t), t

)
= constant,

and
dx

dt
= f ′(u).

In the linear case f ′(u) = c, characteristics are straight lines x(t) = x0+ c t. If f ′(u) depends on u, different characteristics
may cross or diverge. For forward tracing, the solution evolves from an initial condition at t = 0 along these characteristic
lines.

C.2.2. REVERSE TRACING AND FLOW DIRECTION REVERSAL

To reconstruct the state at t = 0 from known data at t = T , one must trace characteristics backward. In the simpler linear
case ut + c ux = 0, suppose

u(x, t) =

∫ ∞

−∞
û(ω, t) e i ω x dω,

then
û(ω, t) = û(ω, 0) e− i c ω t.

If only noisy observations ûobs(ω, T ) are available at t = T , the inverse solution at t = 0 retains high-frequency noise, often
leading to large oscillations in the physical domain.

In a river network or directed graph, reversing edges from downstream to upstream has an analogous meaning: instead
of following the natural (forward) downstream flow, one essentially attempts to trace information upstream. From a PDE
perspective, this parallels reversing the direction of characteristics. While valuable for estimating upstream fluxes or initial
states, such a reversed approach can suffer from noise amplification and multivalued solutions when no dissipation is present.

C.3. Effects of Nonlinearity and Multivalued Solutions

When f ′(u) depends on u, characteristic speeds vary with the solution. Different characteristic curves may converge (forming
shocks) or diverge (forming rarefactions), sometimes creating multiple values of the solution in the same region. Nonlinearity
also causes spectral broadening, so different frequency components can interact and generate new high-frequency terms.
Consequently, reverse reconstruction is more sensitive to noise and can become numerically unstable.

C.4. Regularization and Stability

Typical techniques to stabilize reverse problems include:

1. Adding a small viscous term,
ut + f(u)x = ν uxx, ν > 0,

to provide smoothing and suppress high-frequency oscillations.

2. Introducing constraints or penalties in the inverse problem,

min
u

∥A(u)− b∥2 + λ∥u∥2, λ > 0,

to tame large oscillations in the reconstructed solution.

3. Applying smoothing to boundary or initial data to mitigate discontinuities and avoid severe multivalued paths.

Remark. Reversing edges from downstream to upstream in a graph to predict flux is essentially a reverse characteristic
approach akin to hyperbolic PDE theory. While it enables upstream inference, it also highlights the need for regularization
or dissipative mechanisms to control noise amplification and potential multivalued solutions.
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