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Abstract

Student cognitive modeling (SCM) is a fundamental task in intelligent education,
with applications ranging from personalized learning to educational resource allo-
cation. By exploiting students’ response logs, SCM aims to predict their exercise
performance as well as estimate knowledge proficiency in a subject. Data mining
approaches such as matrix factorization can obtain high accuracy in predicting stu-
dent performance on exercises, but the knowledge proficiency is unknown or poorly
estimated. The situation is further exacerbated if only sparse interactions exist
between exercises and students (or knowledge concepts). To solve this dilemma, we
root monotonicity (a fundamental psychometric theory on educational assessments)
in a co-factorization framework and present an autoencoder-like nonnegative ma-
trix co-factorization (AE-NMCF), which improves the accuracy of estimating the
student’s knowledge proficiency via an encoder-decoder learning pipeline. The
resulting estimation problem is nonconvex with nonnegative constraints. We intro-
duce a projected gradient method based on block coordinate descent with Lipschitz
constants and guarantee the method’s theoretical convergence. Experiments on
several real-world data sets demonstrate the efficacy of our approach in terms of
both performance prediction accuracy and knowledge estimation ability, when
compared with existing student cognitive models.

1 Introduction

With the explosion of open educational resources, student cognitive modeling is receiving growing
attention. As illustrated in Figure 1, given a set of exercises (could be recommended by a learning
platform) with the expert-annotated knowledge concepts in a subject domain, a student is required to
finish the exercises and leaves the responses. Based on the response log, cognitive modeling aims to
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(a) estimate the student’s cognitive levels on the knowledge concepts (i.e., cognitive diagnosis) and
(b) predict some exercise performance. With a comprehensive understanding of students, cognitive
modeling is fruitful in applications such as computerized adaptive testing [1] and exercise recommen-
dations [2]. To profile students’ cognitive status, much progress has been made in the educational
psychology area, where one popular avenue is to use cognitive diagnosis models (CDMs) [3]. While
most CDMs provide detailed insights into students’ cognitive states, the subjective handcraft features
(e.g., the slip and guess of an exercise) may only partially capture the nuances of actual cognitive
functioning, triggering cascading errors in predicting student performance [4].
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Figure 1: A schematic illustration of the student cognitive modeling problem. On the left is a set
of exercises with the expert-labeled knowledge concepts. The middle is a student’s binary-value
response log with missing values (e.g., Ex2 is missing) that is input to the modeling, and the top
right illustrates the two cognitive tasks, which are the output of the modeling.

In a fresh direction, several studies focus on applying data mining techniques to model students’
learning status, of which the cornerstone is matrix factorization (MF) [5]. By transforming students’
response logs into a scoring matrix, MF-based models directly predict the missing response values via
latent factors, thereby reducing cascading errors. In contrast to CDMs, MF-based models enjoy high
prediction accuracy and are inexpensive to deploy [6]. On the other hand, the latent factors uncovered
from the factorization techniques, which encode students’ implicit learning ability, are unexplainable,
i.e., the true knowledge components of the students remain unknown in the latent vectors. Recognizing
this problem, a follow-up scalable nonnegative matrix co-factorization (SNMCF) model [4] utilizes a
point coverage function to learn students’ proficiency levels via pre-trained latent factors. However,
SNMCF solves the two learning tasks separately, i.e., the generation of latent features is aimed at
performance prediction without considering the target of improving cognitive diagnosis, thereby
compromising the identification of student cognitive levels. As such, the fundamental issue of
identifying students’ knowledge proficiency remains an open problem.

In this paper, we envision a reliable and interpretable data mining-based cognitive model with
interlocking learning components. Learning latent factors that help pinpoint students’ responses
to exercises can guide the assessment of their knowledge proficiency, and the corresponding latent
knowledge features, in turn, enable their success or failure on the exercises. To this end, several
challenges exist: How can we specify and assess the students’ knowledge proficiency since the
ground truth of the cognitive levels is unknown [1]? How can we frame the two learning tasks as the
building blocks of an optimization framework while reducing cascading errors?

To mitigate these challenges, we leverage the known monotonicity [7] to sidestep the issue of
unknown knowledge proficiency. The monotonicity states that a student’s knowledge proficiency has
a monotonic relationship with the probability of the right responses to related exercises. Furthermore,
by investigating the form of an autoencoder, our key observation reveals that its self-reconstruction
principle, which aims to reconstruct input data from the learned low-dimensional representations,
is amenable to the requirement of the monotonic constraint. Leveraging this observation, we root
the monotonicity in a co-factorization framework via the autoencoder mechanism. Consequently, an
autoencoder-like nonnegative matrix co-factorization (AE-NMCF) is presented, which enables an
iterative link between students’ knowledge proficiency and exercise performance, thereby enhancing
prediction accuracy and diagnostic ability. As the resulting optimization problem is not convex and
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has nonnegative constraints – which makes the complexity acute by an inverse link function (often
called response functions in the case of general linear models [8]) – we develop a projected gradient
method based on block coordinate descent with Lipschitz constants and guarantee its theoretical
convergence. The main contributions are:

• We introduce a data mining-based model (AE-NMCF) for improved student cognitive modeling,
which provides an end-to-end and data-driven way of specifying and assessing students’ under-
standing of a set of given knowledge concepts. This new model exploits the monotonicity in
educational MF-based approaches for the first time.

• To learn the model, we present a novel projected gradient method based on block coordinate descent
with Lipschitz constants, for which theoretical convergence is guaranteed. This method accounts
for the non-convexity of the optimization function with nonnegative constraints and the complexity
of the inverse link function.

• AE-NMCF provides a good fit to the students’ knowledge proficiency while maintaining student
performance prediction that is comparable to other student cognitive models.

These contributions will potentially improve the automated comprehensive understanding of students’
knowledge learning and benefit numerous intelligent educational tools.

2 Related Works

Student cognitive modeling has generally proceeded along two tracks: cognitive diagnostic
models (CDMs) and data mining approaches. CDMs are of two types: continuous CDMs, an
example of which is item response theory (IRT) [9]), and discrete CDMs such as the deterministic
inputs, noisy “and” gate (DINA) [10]). IRT predicts a student’s exercise performance based on
a single learning trait and exercise difficulty levels. In contrast, DINA probes a student’s binary
cognitive status in different knowledge concepts, which assumes that a student can answer correctly
if she has mastered all the required knowledge concepts. Traditional CDMs engender a plethora of
advanced models. For example, Cheng et al. [11] extend IRT using deep learning to enhance the
diagnostic process. Noting the importance of the relation among knowledge concepts, Gao et al. [12]
proposed a deep diagnosis framework that considers both the importance of and the interactions
between knowledge concepts. Furthermore, Yang et al. [13] recently presented a relationship-based
CDM to explore implicit knowledge-exercise relations that educators ignore.

Along the data mining approach, MF has proven to be effective in understanding students’ response
processes [12], especially toward student performance prediction. In this study, classic models (e.g.,
nonnegative MF (NMF) [14]) and their variants such as the regularized NMF [15] were successfully
applied. Because the latent trait of MF is not interpretable for knowledge estimation, Yu et al. [4]
proposed SNMCF that utilizes a coverage function to model students’ knowledge states, thereby
taking an important stride in data mining-based student cognitive modeling. But, the coverage function
often gives binary cognitive levels, failing to discern the nuance between knowledge proficiencies.

Matrix co-factorization (MCF) [16] benefits from jointly exploiting multiple data sources. It
is well established for many applications such as convolutive source separation [17], data spar-
sity [18, 19], and decision support systems [20]. Given a domain task, MCF improves performance
by incorporating knowledge in additional matrices (e.g., trust relationship for social recommen-
dation [21]), which share latent factors with the original one. This sharing mechanism facilitates
entity-relation learning [22]. It motivates us to develop an in-depth understanding of students, exer-
cises, and knowledge concepts, and facilitates an effective solution for the two learning tasks, which
differs from existing MCF-based approaches that aim at performance boost only.

Recently, the autoencoder architecture is being explored in dimensionality reduction [23],
classification [24], and anomaly detection [25, 26]. For example, Wang et al. [23] proposed
a deep version of autoencoder to explore manifold data structures. Gong et al. [25] augmented
the autoencoder with a memory module to mitigate anomaly reconstruction problems. For student
cognitive modeling, given the reconstruction ability of autoencoder, our work is the first attempt to
exploit this mechanism in MF-based approaches to estimate student knowledge proficiency.

3



3 AE-NMCF Model and Method

Given M students and N exercises, all students’ responses to the exercises are recorded in a binary
scoring matrix X ∈ [0|1]N×M, where Xnm denotes student Stm’s answer on exercise Exn. In
addition, given K knowledge concepts, we have an expert-labeled Q-matrix Q ∈ [0|1]N×K, where
Qnk = 1 if Exn relates to knowledge concept Kck, otherwise Qnk = 0. With X and Q in hand, we
aim to (a) learn students’ proficiency in knowledge concepts from the responses, and (b) predict
students’ performance on exercises that they have never done.

3.1 Model Formulation

Figure 2 (from left to right) offers an overview of the approach, which includes an encoder and a
decoder. The encoder and decoder specify and diagnose students’ cognitive levels, thereby enabling
monotonicity. Specifically, the new framework receives the student scoring matrix (X) and the
Q-matrix (Q). In the encoder process, we introduce the exercise-knowledge association matrix (B)
and then jointly decompose X and B to obtain three low-dimensional nonnegative matrices: the
student proficiency matrix (U), the exercise characteristic matrix (E), and the knowledge requirement
matrix (V). Note that the shared matrix E places U on the same scale as V, which shapes a pathway
to specify the students’ knowledge proficiency (A). In the decoder process, we introduce the exercise
difficulty vector (M), which is combined with A and B to form cognitive factors. By re-fitting X,
the decoder process ensures that students’ knowledge proficiency is monotonic with the probability
of the correct exercise responses, which embodies our desire to maintain the monotonicity.
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Figure 2: The end-to-end pipeline of AE-NMCF. We start from the scoring matrix (X), which is
also the ending module. The question marks (‘?’) in X denote the absent responses that the students
have never visited the exercises before. Here, we use the cell shadings to highlight the nonnegative
constraints on the matrix blocks, wherein the dotted lines impose the sparse constraints. In addition,
the solid and chain-dotted lines denote the decomposing and composing processes, respectively.

The encoder process. Given X ∈ [0|1]N×M and Q ∈ [0|1]N×K, we start the encoder process with
optimization problem (1), where we have three low-dimensional nonnegative matrices: E ∈ RN×T,
U ∈ RT×M, and V ∈ RT×K, each of which consists of T latent factors. The latent factors can be
loosely viewed as a series of topic skills denoting high-level knowledge in a subject area, such as
“spatial imagination” and “abstract summarization” in mathematics.

min
B,U,E,V

∥W ⊙ (X−EU)∥2F + ∥Q⊙ (B−EV)∥2F

s.t. B ≥ 0,U ≥ 0,E ≥ 0,V ≥ 0,
(1)
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For the first term in problem (1), we use E and U to approximate X through the Frobenius norm and
introduce a weighted matrix W ∈ [0|1]N×M to focus on the observed entries in X via the Hadama
product (⊙). In the second term, considering that Q only stores the linkage between exercises
and knowledge concepts with either true or false relations (failing to uncover their strength), we
introduce the nonnegative matrix B ∈ RN×K, where Bnk is the degree to which exercise Exn
involves knowledge concept Kck, with larger values denoting stronger involvement of the knowledge
concept. Similarly, we use E and V to approximate B, where the sparsity is imposed by Q.

In problem (1), X and B share the matrix E, which bridges the gap between students and knowledge
concepts. In reality, given E, the approximation for X:m is a linear accumulation of the columns of E,
weighted by the components of U:m, and so does B:k: we project the two nonnegative vectors U:m

and V:k into the new basis E [4]. Since the latent factors are considered topic skills [27], we define
Utm as the topic knowledge of student Stm on t-th topic skill, as well as Vtk as the topic requirement
of Kck accordingly. Based on Utm and Vtk, we specify students’ knowledge proficiency via the
matrix A = V⊤U ∈ RK×M, where Akm is the cognitive level of Stm on Kck.

The decoder process. Recall that the matrix A specified by problem (1) does not give an off-the-
shelf diagnostic solution due to the ignorance of monotonic constraints. We remedy this void by
reconstructing the scoring matrix X. Specifically, we first assume that exercise Exn has an intrinsic
difficulty level µn ∈ R, which are stacked into a column vector M = [µ1, µ2, · · · , µN]

⊤. Armed
with A, B, and M, the probability that Stm answers Exn correctly is

Φ(∆nm) =

∫ ∆nm

−∞
N (t)dt =

1√
2π

∫ ∆nm

−∞
e−t2/2dt, (2)

where ∆nm = Bn:A:m + µn indicates that Stm’s response to Exn is generated by a linear accumu-
lation of required knowledge concepts. In addition, we use an inverse link function Φ(x), which is
often a response function in generalized linear models, to map ∆nm to the success probability of the
binary response Xnm. Φ(x) can be any monotonic differentiable function. Here, we focus on the
commonly used probit link function with the probability density of the standard Gaussian distribution.

Given Eq. (2), we can maximize the likelihood of the observed data Xnm as

Pr(Xnm) = Φ(∆nm)Xnm [1− Φ(∆nm)]
(1−Xnm)

, (3)

and the likelihood finally yields the following optimization problem

min
Bn:,A:m,µn:∀n,m

− ℓ+
γ

2

N∑
n=1

∥Bn:∥22, (4)

where ℓ =
∑

(n,m)∈Ωo
log Pr(Xnm) is the log-likelihood term, and Ωo ⊆ {1, · · · ,N}×{1, · · · ,M}

contains indices of the observed responses in X. In addition, since one can arbitrarily increase the
scale of the vector Bn: while decreasing the scale of the vector A:m (or V⊤U:m) accordingly (and
vice versa) without changing the likelihood, we gauge the vector Bn: using the regularization term∑N

n=1 ∥Bn:∥22 with the regularization parameter γ > 0. To illustrate the encoder-decoder process
further, we provide an example in Appendix A.

Objective function. By combining the encoder and decoder, the objective function (OAF) is

min
B,U,E,V,M

OAF = −ℓ+ ∥W ⊙ (X−EU)∥2F + ∥Q⊙ (B−EV)∥2F +
γ

2

N∑
n=1

∥Bn:∥22,

s.t. B ≥ 0,U ≥ 0,E ≥ 0,V ≥ 0.

(5)

It is worth taking a few moments to study the form of problem (5) as it enables the monotonicity
from two viewpoints. First, the monotonicity is achieved by the monotonic formulation in Eq. (2);
Second, the monotonicity is optimized by problem (4). They jointly guarantee that a large value of
knowledge proficiency corresponds to a better chance of success on related exercises.

3.2 Model Solution

In problem (5), the first term −ℓ is convex for the probit link function [28]. The second and third
terms are convex in either B, U, E, or V only, but they are not convex in all the variables together.
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Given the nonnegative constraints, we employ the projected gradient (PG) method [29]. Furthermore,
concerning blocks of Bn: and U:m, we apply the PG via a block coordinate descent (PG-BCD)
approach. Hence, problem (5) can be expressed in a block fashion as

min
B,U,E,V,M

OAF = −ℓ+
M∑

m=1

∥W:m ⊙ (X:m −EU:m)∥22 +
N∑

n=1

∥Qn: ⊙ (Bn: −En:V)∥22

+
γ

2

N∑
n=1

∥Bn:∥22, s.t. B ≥ 0,U ≥ 0,E ≥ 0,V ≥ 0.

Accordingly, the subproblems of Bn:, U:m, E, V, and µn constitute the iterations of PG-BCD for
AE-NMCF. Next, we show the parameter solution for Bn: in problem (6) below. For further details
on the remaining parameters, refer to Appendix B.

min
Bn::≥0

OAF(Bn:) =
∑
m

− log Pr(Xnm) +
γ

2
∥Bn:∥22 + ∥Qn: ⊙ (Bn: −En:V)∥22. (6)

To solve problem (6), we note that second-order methods do not scale well to high-dimensional
problems due to the necessary computation of the Hessian, making explicit calculation difficult for
the probit link function. Thus, we build our learning algorithm on first-order methods. To do so, we
first derive the gradients of OAF(Bn:) as

∇OAF(Bn:) = −
∑
m

Ξnm[Xnm − Φ(∆nm)]U⊤
:mV + 2[Qn:⊙Bn: −Qn:⊙(En:V)] + γBn:,

where Ξnm = N (∆nm)
Φ(∆nm)[1−Φ(∆nm)] , and we can employ the gradients above to search for the optimum

point. In each iteration l = 1, 2, · · · , the gradient step is

B(l+1)
n: ←

[
B(l)

n: − η
(l)
Bn:
∇O(l)

AF(Bn:)
]
+
, (7)

where the half-wave rectifier [x]+ = max(κ, x), κ = 10−15 ensures the nonnegativity [30], and
η
(l)
Bn:

is a suitable step size. For Eq. (7), a key issue is to choose the appropriate step size η
(l)
Bn:

,
and a simple strategy is “Armijo rule along the projection arc” [31]. Although the convergence
is guaranteed, it is time-consuming to search for feasible values. Motivated by Lan et al. [6], we
determine the appropriate step sizes by Lipschitz constants [32]. A common approach that guarantees
convergence of a function f is to set η(l) = 1/L, where L is the Lipschitz constant of∇f .

3.3 Algorithm and Theoretical Analysis

We start with Lemma 1 [6] to analyze the Lipschitz constant for problem (6). After that, we present
the parameter learning algorithm for problem (5) and conclude with its theoretical analysis.

Lemma 1. Let g(x) = Φ′(x)
Φ(x) , x ∈ R, where Φ(x) is the probit link function. Then, for y, z ∈ R, we

have |g(y)− g(x)| ≤ Lp|y − z|. Here, Lp = 1 is the scalar Lipschitz constant of g(x).

Since Eq. (3) can be rewritten as Pr(Xnm) = Φ
(
(2Xnm − 1)(Bn:V

⊤U:m + µn)
)

for Φ(·), we de-
rive the following theorem which serves as a bound on the (vector) Lipschitz constant for problem (6),
using the result in Lemma 1.
Theorem 1. For a given n, substituting Pr(Xnm) in problem (6) with the right hand side expression
above yields the following

OAF(Bn:) =
∑
m

− log Φ(Λnm) +
γ

2
∥Bn:∥22 + ∥Qn: ⊙ (Bn: −En:V)∥22,

where Λnm = (2Xnm − 1)(Bn:V
⊤U:m + µn). For any vectors y, z, we have

∥∇OAF(y)−∇OAF(z)∥2 ≤

Lpσ
2
1(U

⊤V) + 2

(
K∑

k=1

Q2
nk

) 1
2

+ γ

 ∥y − z∥2.
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To prove Theorem 1, we first derive the gradient of OAF(Bn:) based on the element-wise operation
of N (·) and Φ(·). After that, we establish the upper bound of the ℓ2-norm of the gradient difference
given two arbitrary points y and z. The derivation details refer to Appendix D. By comparing

with Theorem 1, we obtain the Lipschitz constant as Lpσ
2
1(U

⊤V) + 2
(∑K

k=1 Q
2
nk

) 1
2

+ γ, where
σ1(·) denotes the corresponding maximum singular value.

Armed with Eq. (7) with the step sizes determined by Theorem 1, Algorithm 1 outlines the opti-
mization process for AE-NMCF, named PG-BCD+Lipschitz. In Algorithm 1, we first initialize all
parameters with random entries (line 1) and then optimize OAF in an alternating fashion. Each outer
iteration solves the inner subproblems (lines 3 – 9). For each subproblem, we optimize the target
parameter and hold others constant. For example, we hold U, E, V, and M constant and separately op-
timize each block of variables in B. The update order in the block case is B1: → B2: → · · · → BN:.
The outer loop is terminated if the decrease in OAF is smaller than a threshold ϵ (lines 6 – 8).

Algorithm 1 PG-BCD+Lipschitz

Input: X, Q, and ϵ.
Output: Bn:, U:m, E, V, and µn (1≤n≤N, 1≤m≤M).

1: Initialize B
(0)
n: ≥ 0, U(0)

:m ≥ 0, E(0) ≥ 0, V(0) ≥ 0, and µ
(0)
n (1≤n≤N, 1≤m≤M).

2: Calculate O(0)
AF .

3: for l = 0, 1, · · · do
4: Update: B

(l+1)
n: (1≤n≤N); U

(l+1)
:m (1≤m≤M); E(l+1); V(l+1); µ

(l+1)
n (1≤n≤N).

5: Calculate O(l+1)
AF .

6: if |O(l+1)
AF −O(l)

AF| ≤ ϵ then
7: Return B

(l+1)
n: , U(l+1)

:m , E(l+1), V(l+1), and µ
(l+1)
n .

8: end if
9: end for

We now establish the convergence guarantees of PG-BCD+Lipschitz. In fact, the development of
rigorous statements for the convergence of B, U, E, V, and M to an optimum is not trivial, due to
the block multi-convex nature. Nevertheless, we can establish the convergence of PG-BCD+Lipschitz
based on a prior analysis of BCD for multiconvex optimization [33]. To achieve this, for the sake of
convenience, let Θ = (B,U,E,V,M), then we have the following theorem.

Theorem 2. Given any start point Θ(0), let {Θ(l)} be the sequence of the factors from PG-
BCD+Lipschitz, where l = 1, 2, · · · are the outer iteration numbers, then the sequence {Θ(l)}
converges to the finite the critical point of problem (5). In particular, if Θ(0) is close to the global
point of problem (5), PG-BCD+Lipschitz converges to the global optimum.

Since minimizing AE-NMCF follows multi-block coordinate descent solutions, which correspond
to BCDs with the update (1.3a) in [33], we can use the results laid by Xu and Yin [33, Lemma 2.6,
Corollary 2.7, and Theorem 2.8] to prove Theorem 2, and the proof details refer to Appendix E. Note
that we can not guarantee the global optimum convergence of PG-BCD+Lipschitz from an arbitrary
point due to the multi-convex, but the use of multiple randomized initialization attempts can increase
the change to reach the global optimal solution.

4 Experiments

Data set description. We use real-world students’ response data with different sparsities and
knowledge-exercise relations, which are from diversified academic subjects, including (a) Math
(FrcSub, Junyi-s, and Quanlang-s), (b) Biology (SLP-Bio-s), (c) History (SLP-His-s), and (d) English
(SLP-Eng). FrcSub comprises of the fraction subtraction problem scores of 536 middle school
students [10]. Junyi-s includes problem logs from an e-learning website based on the open-source
code released by Khan Academy [34]. The private Quanlang-s data set is collected from mathematical
exams given to junior schools supplied by QUANLANG education company. 2 Others include SLP-

2This data set was made available to us under an agreement with Quanlang education company
(https://www.quanlangedu.com) whose terms included informed consent, privacy protection, and fairness.
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Bio-s, -His-s, and -Eng, which provide unit test results of K-12 learners compiled by an online
learning platform (smart learning partner, SLP) [35]. Statistics of the data set are summarized
in Table III of Appendix F.

Baseline approaches. The baselines include data mining approaches and cognitive diagnosis models.
The former uses the well-known NMF [36], MCF [16], GNMF [37], NMMF [38], and the advanced
SNMCF [4]. For the latter, we consider the following competing models: (i) DINA [10], a classic
CDM that models students’ knowledge levels by a binary attribute vector with the slip and guess
factors of exercises; (ii) DIRT [11], an extended IRT model incorporating the deep learning technique
to enhance the diagnostic process; (iii) DeepCDF [12], a deep learning-based CDM that considers
the importance and relationships of knowledge concepts; and (iv) QRCDM [13], which integrates
the implicit knowledge-exercise relations into CDMs. DIRT and DeepCDF are modified by excluding
text information. Our code is available at https://github.com/ShenbaoYu/AE-NMCF.

4.1 Results

In this section, we evaluate the effectiveness of AE-NMCF in the two learning tasks. Additional
experiments, such as cognitive case studies, can be found in Appendix F.

We first compare student performance prediction. The evaluation metrics are the commonly
used ACC and RMSE [4], which are calculated based on the ground truth of students’ responses
to exercises and corresponding predicted ones. Table 1 shows the prediction results with the best
performances highlighted in boldface, the top 2 results are shaded, and we use ‘±’ to denote the
standard deviations. The last column lists the average ranks of all models from the Friedman test
(a rank-based method to validate the performance of multiple models on multiple datasets) [39].
In Table 1, we observe that the data mining methods (especially SNMCF and AE-NMCF) perform
well, and AE-NMCF lies in the top-2 performers on all data sets except for FrcSub and SLP-Eng in
terms of ACC and RMSE, respectively. Its rank of 1.33 on ACC and 1.67 on RMSE also confirm the
competitiveness of AE-NMCF. The results indicate that our model can not only handle the students’
response data that yields varied degrees of sparsity but also do so for diversified subject domains.

Table 1: Experimental results on student performance prediction
Metric Model Data set Rank

FrcSub Junyi-s Quanlang-s SLP-Bio-s SLP-His-s SLP-Eng

ACC ↑

NMF 0.7564±0.0093 0.6186±0.0223 0.6312±0.0075 0.6752±0.0103 0.7169±0.0094 0.7222±0.0114 5.83
MCF-Gra1 0.5727±0.0126 0.5046±0.0219 0.5679±0.0249 0.5515±0.0199 0.5828±0.0090 0.5640±0.0101 10.17
MCF-New2 0.7066±0.0076 0.5327±0.0174 0.5743±0.0093 0.5543±0.0096 0.5824±0.0043 0.5696±0.0083 9.17
GNMF 0.7516±0.0112 0.6429±0.0305 0.5894±0.0109 0.6090±0.0143 0.6209±0.0036 0.6034±0.0077 7.00
NMMF 0.7759±0.0085 0.6729±0.0264 0.6477±0.0194 0.6780±0.0084 0.7002±0.0041 0.7007±0.0176 4.83
SNMCF 0.8548±0.0043 0.6878±0.0192 0.7417±0.0051 0.7351±0.0108 0.8051±0.0032 0.7456±0.0091 1.83

DINA 0.8156±0.0037 0.5209±0.0078 0.6000±0.0143 0.4988±0.0066 0.5814±0.0051 0.5950±0.0123 8.50
DIRT 0.6154±0.0076 0.5741±0.0208 0.6420±0.0100 0.5226±0.0222 0.5992±0.0150 0.5823±0.0181 8.33
DeepCDF 0.8115±0.0081 0.4717±0.0055 0.6956±0.0189 0.6763±0.0069 0.7850±0.0022 0.6676±0.0113 5.67
QRCDM 0.8308±0.0079 0.6406±0.0226 0.6611±0.0133 0.6996±0.0091 0.8016±0.0035 0.7396±0.0208 3.33

AE-NMCF 0.8267±0.0048 0.7065±0.0285 0.7531±0.0064 0.7553±0.0101 0.8072±0.0019 0.7632±0.0062 1.33

RMSE ↓

NMF 0.4102±0.0057 0.5192±0.0105 0.4812±0.0052 0.4558±0.0099 0.4421±0.0068 0.4696±0.0093 5.67
MCF-Gra 0.5677±0.0016 0.6762±0.0339 0.5393±0.0096 0.5487±0.0110 0.6621±0.0263 0.6675±0.0179 10.50
MCF-New 0.4738±0.0128 0.5906±0.0421 0.5602±0.0128 0.5674±0.0038 0.5897±0.0138 0.6478±0.0097 9.83
GNMF 0.4153±0.0086 0.4980±0.0198 0.5012±0.0056 0.5175±0.0064 0.5294±0.0018 0.5468±0.0060 7.83
NMMF 0.3986±0.0032 0.4704±0.0402 0.4749±0.0076 0.4564±0.0083 0.4455±0.0062 0.4724±0.0226 5.33
SNMCF 0.3349±0.0029 0.4537±0.0189 0.4216±0.0076 0.4236±0.0082 0.3741±0.0069 0.5845±0.0867 3.17

DINA 0.3927±0.0035 0.6179±0.0055 0.5756±0.0119 0.5332±0.0040 0.5281±0.0029 0.5876±0.0105 8.67
DIRT 0.4811±0.0014 0.4912±0.0075 0.4704±0.0037 0.4983±0.0023 0.4872±0.0011 0.4797±0.0040 6.83
DeepCDF 0.3522±0.0025 0.3874±0.0036 0.4433±0.0064 0.4575±0.0040 0.3863±0.0012 0.3691±0.0075 3.00
QRCDM 0.3555±0.0036 0.4809±0.0099 0.4607±0.0036 0.4559±0.0030 0.3685±0.0013 0.4213±0.0136 3.50

AE-NMCF 0.3476±0.0088 0.4514±0.0193 0.4067±0.0047 0.3996±0.0060 0.3665±0.0024 0.4262±0.0034 1.67
1 The MCF model with the gradient-based method.
2 The MCF model with the Newton-Raphson method.

We proceed to discuss AE-NMCF’s ability to estimate students’ knowledge proficiency, which is
our major concern. Since the ground truth of students’ cognitive levels is unknown, we take cues
from the area under curve and use a ranking-based metric (knowledge-response consistency coefficient,
KRC) as an alternative way to evaluate the diagnostic results. Specifically, for knowledge concept
Kck, we first extract the pair set S = {(Exn,Stm), n ∈ [0,N],m ∈ [0,M]} from the testing set D.
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For each pair (Exn,Stm), we record student Stm’s proficiency level of Kck and the true response
score on exercise Exn. Then, the KRC result on Kck is KRC(Kck) =

(
χ− N+(N++1)

2

)
/(N+N−),

where χ =
∑

X∗
nm=1R(n,m), andR(n,m) is the reordered position of the pair (Exn,Stm) based

on the proficiency level. N+ (N−) denotes the number of records with correct (wrong) answers in
S. Finally, we average the KRC values of all the knowledge concepts and denote the average as rc.
Higher values of rc indicate better performance.

FrcSub Junyi-s Quanlang-s SLP-Bio-s SLP-His-s SLP-Eng

Data Set

0

0.2

0.4

0.6

0.8

1

1.2
r c

AE-NMCF SNMCF DINA DIRT DeepCDF QRCDM

Figure 3: Students’ knowledge proficiency estimations.

Figure 3 illustrates the results of estimating students’ knowledge proficiency. We exclude NMF, MCF,
GNMF, and NMMF due to their known poor capability of cognitive diagnosis. From the results,
we have: (a) the rc values in FrcSub surpass the other data sets as expected, which is mainly due
to the strong and consistent connection between exercises and knowledge concepts. (b) Regardless
of the relationship types, AE-NMCF delivers comparable or slightly improved performance w.r.t.
CDM-based approaches and rises well above SNMCF on all data sets. The resulting p-value given
by a Wilcoxon-signed rank test between AE-NMCF and SNMCF is 0.031, which also confirms the
improvement. (c) While QRCDM shows good diagnostic results, its predicting performance suffers
for multiple data sets (see Table 1). This is mainly due to the knowledge-exercise relationship being
one-to-one (or one-to-many), which may impede the discovery of implicit correlations.
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Figure 4: Model comparison in balancing the two learning tasks via bubble visualizations. The
x(y)-axis denotes the prediction (estimation) performance in terms of ACC (rc), and the bubble size
measures the harmonic mean of ACC and rc. The dash lines locate the models’ average performance.

Furthermore, Figure 4 compares the model performance in balancing the two learning tasks, where
we use a bubble’s horizontal (vertical) position to note the ACC (rc) value for a model. In spired by
F1 score, we further visualize the bubble size based on the harmonic mean of ACC and rc. Hence, the
closer to the upper right corner with a larger bubble size, the better the balance achieved. As shown
in Figure 4, SNMCF excels at student performance prediction but is inadequate in knowledge cognitive
estimation. In addition, the comparatively low prediction performance of QRCDM compromises
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its balance ability, especially on Junyi-s and Quanlang-s. AE-NMCF, in contrast, is well above the
model average (indicated by dash lines) on all data sets, which achieves the best balance between
prediction accuracy and diagnostic ability and works with multiple relation cases.

We close with the demonstration of the effectiveness of our encoder-decoder learning pipeline.
As shown in Table 2, we conduct the ablation study by the use of two variants of AE-NMCF, i.e.,
AE-NMCF w/o Decoder (Encoder) that removes the decoder (encoder) module. The optimization
approach is also PG-BCD with appropriate Lipschitz constants. According to Table 2, the ignorance
of the encoder (or decoder) process leads to a degradation in predicting and estimating performances,
and the performance losses of AE-NMCF w/o Encoder are lower than those of the variant that
removes the decoder. The positive results not only suggest the performance boost of the decoder
module but also prove the efficacy of the proposed encoder-decoder architecture, which aligns with
our expectations to achieve the monotonicity.

Table 2: Ablation analysis of AE-NMCF in student cognitive modeling

Metric Variant Data set

FrcSub Junyi-s Quanlang-s SLP-Bio-s SLP-His-s SLP-Eng

ACC ↑
AE-NMCF w/o Decoder 0.7523±0.0118 0.6261±0.0524 0.6187±0.0278 0.6582±0.0099 0.7224±0.0062 0.5511±0.0184
AE-NMCF w/o Encoder 0.8156±0.0060 0.6504±0.0141 0.7269±0.0066 0.7418±0.0040 0.7745±0.0011 0.7413±0.0126

AE-NMCF 0.8267±0.0048 0.7065±0.0285 0.7531±0.0064 0.7553±0.0101 0.8072±0.0019 0.7632±0.0062

RMSE ↓
AE-NMCF w/o Decoder 0.4197±0.0042 0.4953±0.0141 0.4782±0.0081 0.4585±0.0041 0.4243±0.0025 0.5608±0.0135
AE-NMCF w/o Encoder 0.3668±0.0061 0.5076±0.0138 0.4262±0.0070 0.4160±0.0021 0.4193±0.0014 0.4494±0.0145

AE-NMCF 0.3476±0.0088 0.4514±0.0193 0.4067±0.0047 0.3996±0.0060 0.3665±0.0024 0.4262±0.0034

rc ↑
AE-NMCF w/o Decoder 0.7202±0.0089 0.6362±0.0635 0.5594±0.0153 0.5730±0.0302 0.5439±0.0150 0.5279±0.0460
AE-NMCF w/o Encoder 0.8137±0.0140 0.6286±0.0828 0.5665±0.0563 0.5891±0.0171 0.5653±0.0091 0.4756±0.0225

AE-NMCF 0.8738±0.0147 0.7249±0.0380 0.6456±0.0167 0.6875±0.0109 0.6393±0.0116 0.7063±0.0578

4.2 Discussion on the Results

We summarize the key findings. First, AE-NMCF improves on competing approaches on two learning
tasks across subject domains, data sparsities, and knowledge-exercise relationships. Notably, the
better estimation accuracy of knowledge proficiency benefits from the explicit encoding of the
knowledge level for each student, which is then iteratively improved by the novel autoencoder
machine that guarantees that knowledge proficiency can cumulatively cause success in exercises.
Second, our purely data-driven model estimates interpretable factors to pinpoint a student’s strengths
and weaknesses, which is helpful for decision-making as we may tailor learning resources.

However, AE-NMCF’s improved prediction and estimation accuracy over the baselines (SNMCF in
particular) comes at a price of higher computational complexity (e.g., see Table VI in Appendix F).
Nevertheless, AE-NMCF is well-suited to scale-based tests, which are common scenarios in the real
world because students are often evaluated for a small set of knowledge concepts, and the need for
confidence statistics is one of the critical factors. In addition, we observe that the diagnostic results
for some knowledge concepts tend to be overoptimistic due to ignorance of the prerequisite structure
(e.g., see Figure VI in Appendix F), and one part of ongoing work is exploiting the knowledge
prerequisite structure for AE-NMCF to attenuate this problem.

5 Conclusion

This paper studies student cognitive modeling from a data mining perspective, in which students’
knowledge proficiency estimation is our primary concern. To tackle this problem, we propose the
AE-NMCF model. Specifically, we root monotonicity in a co-factorization via the carefully crafted
encoder-decoder framework. It achieves the assessment of students’ knowledge proficiency end-to-
end. Considering the nonconvex nature of the objective function with nonnegative constraints, we
develop a projected gradient method based on block coordinate descent with Lipschitz to facilitate
model learning, in which theoretical convergence is guaranteed. Experiments on real-world data
sets show that AE-NMCF embraces the merit of satisfactory ability to measure students’ knowledge
proficiency while retaining good performance prediction accuracy. The future work is two-fold:
(1) Considering the learning dependency of knowledge concepts; (2) Investigating other efficient
parameter learning methods and exploring their scalability.
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Appendix

A An Example of the Encoder-Decoder Process

Figure I provides an example of the encoder (Left) and decoder (Right) processes of AE-NMCF.
First, the encoder targets the specification of student St3’s knowledge proficiency vector (A:3). Here,
we omit matrix B for conciseness. Second, the decoder reconstructs St3’s response on exercise Ex3
(i.e., X33) via the specified knowledge proficiency. Thus, by explicitly encoding the knowledge level
for each student in the encoder, which is then iteratively improved by the decoder that guarantees
that knowledge proficiency can cumulatively cause success in related exercises, monotonicity can be
achieved.
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Figure I: An illustration of the encoder and decoder processes, where we highlight the target entries
in the color cells.

B Parameter Learning for AE-NMCF

The parameters of AE-NMCF include B, U, E, V, and M, where B = [B⊤
1:,B

⊤
2:, · · · ,B⊤

N:]
⊤,

U = [U:1,U:2, · · · ,U:M], and M = [µ1, µ2, · · · , µN]
⊤. Because of the nonnegative constraints on

B, U, E, and V, we employ the projected gradient via a block coordinate descent (PG-BCD) for the
parameters solution, and the subproblems of Bn:, U:m, E, V, and µn are

min
Bn::≥0

OAF(Bn:) =
∑
m

− log Pr(Xnm) +
γ

2
∥Bn:∥22 + ∥Qn: ⊙ (Bn: −En:V)∥22, (a)

min
U:m≥0

OAF(U:m) =
∑
n

− log Pr(Xnm) + ∥W:m ⊙ (X:m −EU:m)∥22, (b)

min
E≥0

OAF(E) = ∥W ⊙ (X−EU)∥2F + ∥Q⊙ (B−EV)∥2F, (c)

min
V≥0

OAF(V) =
∑
n,m

− log Pr(Xnm) + ∥Q⊙ (B−EV)∥2F, (d)

min
µn

OAF(µn) =
∑
m

− log Pr(Xnm), (e)

where Pr(Xnm) = Φ(∆nm)Xnm [1− Φ(∆nm)]
(1−Xnm), and ∆nm = Bn:A:m + µn. Considering

the computation burden of the Hessian and the calculation difficulty for the probit link function
when employing second-order approaches, we build our parameter learning algorithm on first-order
methods. Hence, the gradients for problems (a) – (e) are

∇OAF(Bn:) = −
∑
m

Ξnm[Xnm − Φ(∆nm)]U⊤
:mV + 2[Qn:⊙Bn: −Qn:⊙(En:V)] + γBn:,
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∇OAF(U:m) =−
∑
n

Ξnm[Xnm − Φ(∆nm)]VB⊤
n: + 2E⊤[W:m⊙(EU:m)−W:m⊙X:m],

∇OAF(E) = 2[W ⊙ (EU)−W ⊙X]U⊤ + 2[Q⊙ (EV)−Q⊙B]V⊤,

∇OAF(V) =−
∑
(n,m)

Ξnm[Xnm − Φ(∆nm)]U:mBn: + 2E⊤[Q⊙(EV)−Q⊙B],

∇OAF(µn) = −
∑
m

Ξnm[Xnm − Φ(∆nm)],

where Ξnm = N (∆nm)
Φ(∆nm)[1−Φ(∆nm)] . Based on the gradients above, searching for the optimum point is

easy. Taking Bn: as an example, in each iteration l = 1, 2, · · · , the gradient step is

B(l+1)
n: ←

[
B(l)

n: − η
(l)
Bn:
∇O(l)

AF(Bn:)
]
+
,

where we use a half-wave rectifier [x]+ = max(ϵ, x), ϵ = 10−15 to ensure the nonnegativity, and
η
(l)
Bn:

is a suitable step size for Bn:, which is determined by the Lipschitz constant in this paper.

C Complexity Analysis

This section discusses the time complexity of PG-BCD+Lipschitz. The analysis is based on the update
rules of Bn:, U:m, E, V, and µn: (1≤n≤N, 1≤m≤M). For simplicity of exposition, we consider
the case where the number of students is larger than that of knowledge concepts, which commonly
occurs. For each block Bn:, the Lipschitz constant takes O(MK2) operations, and the operations of
the gradient are bounded by O(MKT) for each iteration.3 Consequently, the cost of the variable B,
which contains N blocks, is bounded by O(MNK2). Other parameters can be analyzed similarly,
summarized in Table I. Hence, the overall cost is the number of iterations needed for convergence
times O(MNK2), where the latter term is the complexity of each iteration.

Table I: Computational operations (U,E,V,M) for each iteration
U E V M

O(MNKT) O(min(M,N)·MN) O(max(KT,min(M,N))·MN) O(MNKT)

D Proof of Theorem 1

To prove Theorem 1, we first introduce a scalar Lipschitz constant in Lemma i [6].

Lemma i. Let g(x) = Φ′(x)
Φ(x) , x ∈ R, where Φ(x) is the inverse probit function. Then, for y, z ∈ R,

we have
|g(y)− g(x)| ≤ Lp|y − z|,

where Lp = 1 is the scalar Lipschitz constant for g(x).

Next, we prove Theorem 1. For the sake of brevity, we assume that all entries in the student scoring
matrix X are observed, i.e., Ωo = {1, · · · ,N}×{1, · · · ,M}; the extension to the case with missing
entries in X is straightforward. In what follows, N (·) and Φ(·) are assumed to operate element-wise
on the vector or matrix. We start with the gradient of OAF(Bn:) in Theorem 1, as shown below

∇OAF(Bn:) =−
M∑

m=1

{
N (Λnm)

Φ(Λnm)
(2Xnm − 1)U⊤

:mV

}
︸ ︷︷ ︸

O(1)
AF (Bn:)

+2[Qn:⊙Bn: −Qn:⊙(En:V)] + γBn:,

3Since we focus on the computational time in terms of the size of the input data, the complexity of the probit
link function is omitted.
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where Λnm = (2Xnm − 1)(Bn:V
⊤U:m + µn). The first term O(1)

AF (Bn:) can be rearranged as

∇O(1)
AF (Bn:) =

N (Λn1)

Φ(Λn1)
(2Xn1 − 1)U⊤

:1V + · · ·+ N (ΛnM)

Φ(ΛnM)
(2XnM − 1)U⊤

:MV

=

[
N (Λn1)

Φ(Λn1)
, · · · , N (ΛnM)

Φ(ΛnM)

] (2Xn1 − 1)U⊤
:1V

...
(2XnM − 1)U⊤

:MV


=
N (Λn:)

Φ(Λn:)
C̃n,

where Λn: = [Λn1, · · · ,ΛnM], and we have

Λn: =[(2Xn1 − 1)(Bn:V
⊤U:1 + µn), · · · , (2XnM − 1)(Bn:V

⊤U:M + µn)]

=Bn:[(2Xn1 − 1)V⊤U:1, · · · , (2XnM − 1)V⊤U:M] + [(2Xn1 − 1)µn, · · · , (2XnM − 1)µn]

=Bn:C̃
⊤
n + X̃µn

n: .

Therefore, the gradient ∇OAF(Bn:) can be rewritten as

∇OAF(Bn:) =−
N (Bn:C̃

⊤
n + X̃µn

n: )

Φ(Bn:C̃⊤
n + X̃µn

n: )
C̃n + 2[Qn:⊙Bn: −Qn:⊙(En:V)] + γBn:.

We can now establish an upper bound of the l2-norm of the difference between the gradients at two
arbitrary points y and z of ∇OAF(Bn:) as follows

∥∇OAF(y)−∇OAF(z)∥2

=

∥∥∥∥∥−N (yC̃⊤
n + X̃µn

n: )

Φ(yC̃⊤
n + X̃µn

n: )
C̃n + 2[Qn:⊙y −Qn:⊙(En:V)]

+
N (zC̃⊤

n + X̃µn
n: )

Φ(zC̃⊤
n + X̃µn

n: )
C̃n − 2[Qn:⊙z−Qn:⊙(En:V)] + γy − γz

∥∥∥∥∥
2

≤ | − 1|

∥∥∥∥∥N (yC̃⊤
n + X̃µn

n: )

Φ(yC̃⊤
n + X̃µn

n: )
C̃n −

N (zC̃⊤
n + X̃µn

n: )

Φ(zC̃⊤
n + X̃µn

n: )
C̃n

∥∥∥∥∥
2

+ ∥2[Qn:⊙y −Qn:⊙(En:V)]− 2[Qn:⊙z−Qn:⊙(En:V)]∥2 + γ∥y − z∥2 (f)

≤ σ1(C̃n)

∥∥∥∥∥N (yC̃⊤
n + X̃µn

n: )

Φ(yC̃⊤
n + X̃µn

n: )
− N (zC̃⊤

n + X̃µn
n: )

Φ(zC̃⊤
n + X̃µn

n: )

∥∥∥∥∥
2

+ 2 ∥Qn:⊙y −Qn:⊙z∥2 + γ∥y − z∥2 (g)

≤ σ1(C̃n)Lp

∥∥∥(yC̃⊤
n + X̃µn

n: )− (zC̃⊤
n + X̃µn

n: )
∥∥∥
2
+ 2∥Qn:∥2∥y − z∥2 + γ∥y − z∥2 (h)

≤ Lpσ
2
1(C̃n)∥y − z∥2 + 2∥Qn:∥2∥y − z∥2 + γ∥y − z∥2 (i)

=

Lpσ
2
1(U

⊤V) + 2

(
K∑

k=1

Q2
nk

) 1
2

+ γ

 ∥y − z∥2.

Here, (f) uses the triangle inequality of a norm. (g) follows the Hölder inequality [40], and σ1(·)
denotes the corresponding maximum singular value. The bounds of (h) follow from Lemma i and the
inequality of Hadamard products (e.g., see [41, Section 5.5.1]). The final inequality (i) follows from
the fact that flipping the signs of the rows (or columns) of a matrix does not affect its singular values.

Note that this proof assumes that the scoring matrix X is fully populated. We can easily adapt to the
case of missing entries in X, by replacing the matrix C̃n to C̃I

n, which is the matrix containing the
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rows of C̃n corresponding to the observed entries indexed by the set I = {m : (n,m) ∈ Ωo}. We
omit the details for the sake of brevity.

The proofs for the remaining subproblems for U:m, E, V, and µn (1≤m≤M, 1≤n≤N) follow
analogously, and Table II summarizes the Lipschitz constants of all parameters, where 1M,N denotes
the M×N all-ones matrix.

Table II: The Lipschitz constants of parameters
Parameter The Lipschitz constant

Bn: Lpσ
2
1(U

⊤V) + 2
(∑K

k=1 Q
2
nk

) 1
2

+ γ

U:m Lpσ
2
1(VB⊤) + 2σ2

1(E)
(∑N

n=1 W
2
nm

) 1
2

E 2σ2
1(U)σ1(W) + 2σ2

1(V)σ1(Q)

V Lpσ
2
1(U)σ2

1(B)σ2
1(2X

⊤ − 1M,N) + 2σ2
1(E)σ1(Q)

µn Lp

∑M
m=1(2Xnm − 1)2

E Proof of Theorem 2

Since minimizing AE-NMCF follows the multi-block coordinate descent solution, and the subprob-
lems can correspond to BCDs with update (1.3a) in [33], we use the results laid by Xu and Yin [33,
Lemma 2.6, Corollary 2.7, and Theorem 2.8] to prove the convergence of PG-BCD+Lipschitz. To
this end, we show that the objective function of AE-NMCF, i.e., problem (j) meets all assumptions
needed for the convergence results in [33].

min
B,U,E,V,M

OAF = −ℓ+ ∥W ⊙ (X−EU)∥2F + ∥Q⊙ (B−EV)∥2F +
γ

2

N∑
n=1

∥Bn:∥22,

s.t. B ≥ 0,U ≥ 0,E ≥ 0,V ≥ 0.

(j)

We start by discussing Assumptions 1 and 2 in [33]. For Assumption 1, since all the terms in
problem (j) are nonnegative, we have OAF > −∞, which has a lower bound of 0. For Assumption 2,
by inspecting the form of the individual subproblems, we see that they are strongly convex. Therefore,
Assumptions 1 and 2 in [33] are met.

We then provide that problem (j) also meets the additional assumptions in [33, Lemma 2.6], which
requires (a) the Lipschitz continuous of the gradient of the block multi-convex function ∇f on
any bound set and (b) the Kurdyka-Łojasiewicz (KL) inequality [42]. To do so, for (a), let Θ =
(B,U,E,V,M), and we can rewrite the objective function of problem (j) as follows

OAF(Θ) = −ℓ+ ∥W ⊙ (X−EU)∥2F + ∥Q⊙ (B−EV)∥2F +
γ

2

N∑
n=1

∥Bn:∥22

+
∑

Θ(i)∈Θ

δ(Θ(i) < 0)

= Os
AF(Θ) +

∑
Θ(i)∈Θ

δ(Θ(i) < 0),

where Θ(i) denotes the i-th element of Θ. δ(z) is an indicator function, and we have δ(z) = ∞ if
z < 0 and 0 otherwise. We now show that the gradients of the smooth part ofOAF(Θ), i.e.,∇Os

AF(Θ),
is Lipschitz continuous in dom(Os

AF).
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Let Θy,Θz ∈ dom(Os
AF), we have

∥∇Os
AF(Θ

y)−∇Os
AF(Θ

z)∥2 =

 ∑
Θ(i)∈Θ

(
∇Os

AF(Θ
y
(i))−∇O

s
AF(Θ

z
(i))
)2

1
2

≤

 ∑
Θ(i)∈Θ

L2
Θ(i)
∥Θy

(i) −Θz
(i)∥

2
2


1
2

≤ (L′)
1
2 ∥Θy −Θz∥2,

where L′ = max{L2
Θ(i)
}, Θ(i) ∈ {B,U,E,V,M}. Recall that the bounds on the Lipschitz constant

corresponding to E and V are shown in Table II. For B, let B̄ = [B1:,B2:, · · · ,BN:]
⊤, we have

∥∇Os
AF(B̄

y)−∇Os
AF(B̄

z)∥2 =

{
N∑

n=1

(∇Os
AF(B

y
n:)−∇Os

AF(B
z
n:))

2

} 1
2

≤


N∑

n=1

Lpσ
2
1(U

⊤V) + 2

(
K∑

k=1

Q2
nk

) 1
2

+ γ

2

∥By
n: −Bz

n:∥22


1
2

≤
(
Lp∥U⊤V∥2F + 2∥Qn:∥2 + γ

)
∥B̄y − B̄z∥2,

where the last line states that the maximum singular value of a matrix is no greater than its Frobenius
norm. Similarly, the Lipschitz constants for U and M are Lp∥VB⊤∥2F + 2∥E∥22∥W:m∥2 and
Lp∥2Xn: − 11,M∥22, respectively. Therefore,∇Os

AF(Θ) is Lipschitz continuous in dom(Os
AF).

For (b), using [6, Lemma 7], the first term (i.e., the negative log-probit likelihood function −ℓ) of
OAF in problem (j) is real analytic, which is based on the fact that compositions of real analytic
functions are real analytic [43]. In addition, the second and third terms with Frobenius norms in OAF,
plus the regularizer, are all polynomial functions, therefore also real analytic. Hence, the objective
function OAF is real analytic and satisfies the KL inequality, a consequence of [33, Section 2.2].
By setting the extrapolation weight ωk

i = 0 in [33], we can conclude that the PG-BCD+Lipschitz
algorithm converges to a local minimum. Furthermore, PG-BCD+Lipschitz converges globally if the
initial point is close to the global minimum [33].

F Extended Details of Experiments

In this section, we conduct follow-up experiments to enhance the effectiveness of AE-NMCF. The
statistics of the data sets are summarized in Table III, and the implementation details are described
briefly below:

• We deploy the competing models using the best publicly available implementation with Python 3.8
on an Ubuntu server with a Core i9-1090K 3.7 GHz and 128 GB memory.

• For AE-NMCF, we set the number of iterations and the stopping threshold ϵ as 500 and 5 to
guarantee convergence. The hyperparameters T and γ are set in Section F.6.

• For each dataset, we reshape the response logs to the scoring matrix and utilize a 80%/20%
train/test split. All models’ performances are averaged over 5 repeated trials to ensure fairness.

F.1 Statistical Hypothesis Test

We first conduct the hypothesis test for the student performance prediction and the knowledge
proficiency estimation. Table IV shows the details of the paired t-test results, where each entry
denotes the p-value of the AE-NMCF with the baseline in terms of a given metric. According
to Table IV, AE-NMCF shows a significant difference at the 5% level with the baselines in most
cases. We can conclude that the prediction (estimation) performance of AE-NMCF is significantly
different from that of the competitive models.
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Table III: The statistics of data sets

Statistics Data Set

FrcSub Junyi-s Quanlang-s SLP-Bio-s SLP-His-s SLP-Eng

# Student 536 1,091 50 100 1057 360
# Exercise 20 9 107 129 326 362
# Knowledge concept 8 9 14 7 14 19
Subject Math Math Math Biology History English
Relations1 many-to-many one-to-one one-to-many one-to-many one-to-many one-to-many
Sparsity2 0% 75.03% 68.67% 54.92% 84.28% 96.92%

1 The relationships between knowledge concepts and exercises.
2 The sparsity of student scoring matrix.

Table IV: Paired t-test for the prediction (estimation) results of AE-NMCF with other methods

Metric Comparison Data set

FrcSub Junyi-s Quanlang-s SLP-Bio-s SLP-His-s SLP-Eng

ACC AE-NMCF vs.

NMF 0.000* 0.006* 0.000* 0.000* 0.000* 0.001*

MCF-Gra 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

MCF-New 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

GNMF 0.000* 0.008* 0.000* 0.000* 0.000* 0.000*

NMMF 0.000* 0.040* 0.000* 0.000* 0.000* 0.001*

SNMCF 0.002* 0.274 0.009* 0.001* 0.238 0.041*

DINA 0.023* 0.000* 0.000* 0.000* 0.000* 0.000*

DIRT 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

DeepCDF 0.001* 0.000* 0.002* 0.002* 0.000* 0.000*

QRCDM 0.140 0.009* 0.000* 0.000* 0.049* 0.047*

RMSE AE-NMCF vs.

NMF 0.000* 0.003* 0.000* 0.000* 0.000* 0.000*

MCF-Gra 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

MCF-New 0.000* 0.001* 0.000* 0.000* 0.000* 0.000*

GNMF 0.000* 0.003* 0.000* 0.000* 0.000* 0.000*

NMMF 0.000* 0.334 0.000* 0.000* 0.000* 0.012*

SNMCF 0.072 0.866 0.022* 0.001* 0.060 0.014*

DINA 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*

DIRT 0.000* 0.019* 0.000* 0.000* 0.000* 0.000*

DeepCDF 0.248 0.002* 0.000* 0.000* 0.000* 0.000*

QRCDM 0.060 0.020* 0.000* 0.000* 0.193 0.435

KRC (rc) AE-NMCF vs.

SNMCF 0.000* 0.000* 0.005* 0.000* 0.000* 0.000*

DINA 0.000* 0.000* 0.000* 0.000* 0.000* 0.441
DIRT 0.000* 0.008* 0.001* 0.000* 0.000* 0.001*

DeepCDF 0.000* 0.001* 0.010* 0.001* 0.000* 0.006*

QRCDM 0.009* 0.012* 0.226 0.023* 0.009* 0.141
* Significant difference at the 5% level.

F.2 Nemenyi Test

We conduct the Nemenyi test [39] to present the comparison of the proposed AE-NMCF model with
the baseline approaches. The Nemenyi test shows the differences between the average ranks among
all the compared methods, and any two of which are significantly different if their average ranks
differ by at least one crucial difference (5% in this paper). As illustrated in Figure II, it is obvious
that the AE-NMCF model performs the best in terms of ACC and RMSE, which demonstrates its
effectiveness in student performance prediction.

F.3 A Case Study for Diagnostic Comparison

To get a sense of diagnostic improvement of AE-NMCF for data mining techniques (compared with
SNMCF), we present the diagnostic results for case students on FrcSub, Quanlang-s, and Junyi-s,
which covers all typical knowledge-exercise relationships. 4

4The mastery degree of each knowledge concept is normalized to a range of [0, 1].
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Figure II: The CD diagrams of all the methods in terms of ACC and RMSE.
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Figure III: Case students’ cognitive diagnostic results (AE-NMCF vs. SNMCF) on FrcSub.

FrcSub. Figure III compares four case students’ diagnostic results from AE-NMCF and SNMCF,
respectively, where each numerical value is a student’s knowledge proficiency on a specific knowledge
concept. In addition, we show the corresponding scoring matrix in Table V. For student St108, we can
observe that both AE-NMCF and SNMCF give suitable diagnostic results since she answers all the
exercises correctly. However, for students St58 and St342, Table V shows that they only give the right
answer to Ex9 and fail in the remaining exercises, which means that St58 and St342 can not grasp all
knowledge concepts. The diagnostic result given by the AE-NMCF model confirms this fact, while
SNMCF gives a confusing result. In addition, the response log of St107 indicates that she needs to
continuously make progress on most of the knowledge concepts to improve proficiency levels, but
SNMCF argues that St107 has mastered most of the knowledge concepts, which does not square with
the facts. In summary, the diagnostic outputs provided by AE-NMCF align with our expectations.

Table V: The corresponding scoring matrix on FrcSub

Exercise Student Exercise Student

St58 St107 St108 St342 St58 St107 St108 St342
Ex1 0 1 1 0 Ex11 0 0 1 0
Ex2 0 1 1 0 Ex12 0 0 1 0
Ex3 0 1 1 0 Ex13 0 0 1 0
Ex4 0 1 1 0 Ex14 0 0 1 0
Ex5 0 0 1 0 Ex15 0 0 1 0
Ex6 0 1 1 0 Ex16 0 0 1 0
Ex7 0 0 1 0 Ex17 0 0 1 0
Ex8 0 1 1 0 Ex18 0 0 1 0
Ex9 1 0 1 1 Ex19 0 0 1 0
Ex10 0 0 1 0 Ex20 0 0 1 0

Quanlang-s. Figure IV shows three case students’ knowledge proficiency based on radar charts.
To facilitate comparison, we also label the student’s answer accuracy rates (the ratio of correctly
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Figure IV: Diagnosis results of three case students between AE-NMCF and SNMCF on Quanlang-s.

answering all exercises), e.g., 46.67% for student St50. Intuitively, the proficiency levels of St42
should be the highest because of the top accuracy rate, and St50 is at the lowest level accordingly.
However, SNMCF gives an extreme estimation, which overestimates the ability of St50 (or St33), and
consequently, the cognitive diagnostic ability is limited. Instead, the proposed model gives reasonable
results. We conclude that AE-NMCF provides richer information on the diagnosis than SNMCF.

Junyi-s. Different from FrcSub, there is substantial missing data in the scoring matrix for Junyi-s,
with only 24.97% of its entries observed. Given that the relationship between the knowledge concepts
and exercises is one-to-one, we show each knowledge proficiency (provided by AE-NMCF and
SNMCF, respectively) with its corresponding answer record of three case students in Figure V, where
each subgraph consists of two parts – the response (left) and the knowledge proficiency (right).
From Figure V, we have the following observations:
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Figure V: Case students’ cognitive diagnostic results and the corresponding answer record on Junyi-s.

• First, Figure Va and Figure Vd illustrate that both AE-NMCF and SNMCF provide reasonable
diagnostic results since student St718 has only a wrong answer record, which lacks far too much
information available for diagnosis.

• Second, it can be seen from Figure Vb and Figure Ve that although student St91 responds correctly
to the given exercises (i.e., Ex3, Ex4, and Ex7), there are still some exercises that St91 has never
answered before (e.g., Ex1). However, the SNMCF model asserts that the student has completely
mastered all knowledge concepts. In contrast, AE-NMCF makes more sense than SNMCF because
the new model considers the uncertainty of the missing values of the unanswered exercises.

• Finally, for student St511 (see Figure Vc and Figure Vf), we observe that the SNMCF model still
gives more illogical diagnostic results than AE-NMCF because the response log shows that St511
makes mistakes in some exercises (e.g., Ex4), which indicates that she needs to timely learn the
corresponding knowledge concepts (e.g., Kc4).
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F.4 Cognitive Diagnosis Visualization

We proceed to visualize and investigate the diagnostic results of a student as a case study, which
provides useful insight into the estimation outcomes of the proposed model. Figure VI displays
the student’s knowledge proficiency with the corresponding answers on Quanlang-s. As observed,
AE-NMCF gives interpretative and meaningful diagnostic results, based on which the student can
determine her strengths and shortcomings. For example, the student has a good grasp of all knowledge
concepts except for Kc12 (exponentiation of rational numbers). Observing her responses related to
Kc12, we notice that the student only tries very few relevant exercises. It suggests a timely study of
Kc12 for the student. Based on this visualization, AI-based tutoring systems could provide her with
personalized remedy plans for improvement.

However, we see that the diagnostic result of Kc9 is overoptimistic, not only because she made many
mistakes in the related exercises but also due to her low proficiency in the prerequisite knowledge
concepts (e.g., Kc7). Recognizing this limitation, an intuitive work-around is to exploit the knowledge
prerequisite structure for AE-NMCF to attenuate this problem.
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Figure VI: Diagnosis visualization of a case student on Quanlang-s via AE-NMCF. The bottom left
shows her responses to related exercises. The circles with green (red) colors represent right (wrong)
responses, and the hollow circles denote the absent responses.

F.5 Comparison of the Step-Size Search Methods

As noted earlier, the “Armijo rule along the projection arc” (Armijo rule) is another step-size solution.
In this section, we show the compared performance between the Lipschitz search and the Armijo search
on FrcSub, Junyi-s, and Quanlang-s, which covers all types of knowledge-exercise relationships. We
first check the convergence in Figure VII, which sees that both the search solutions converge to a
stationary point; however, the Armijo search at first quickly decreases the objective function value but
slows down in sequence, which takes more time to converge.
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Figure VII: The number of iterations vs. objective values for the Lipschitz search and Armijo search
on FrcSub, Junyi-s, and Quanlang-s.

Furthermore, we fix the number of iterations (the smallest one of the two strategies) and present the
compared performance in Table VI. We observe that all the methods exhibit similar performance for
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Table VI: The comparative results between the Lipschitz search and Armijo search

Dataset Strategy #iterations Time (minutes) Objective value ACC rc

FrcSub Armijo search 60 525.41 4496.3772 0.8307 0.8889
Lipschitz search 3.83 4100.9518 0.8344 0.8951

Junyi-s Armijo search 25 425.02 2134.1798 0.7477 0.6205
Lipschitz search 0.46 1215.7141 0.7383 0.7243

Quanlang-s Armijo search 45 172.70 3238.7009 0.7127 0.5942
Lipschitz search 0.73 2050.8577 0.7336 0.6438

student cognitive modeling, while given the same number of iterations, the Lipschitz search achieves
the fastest convergence while maintaining a relatively small objective function value.
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Figure VIII: Sensitivity analysis of parameter T on the data sets.
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Figure IX: Sensitivity analysis of parameter γ on the data sets.
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F.6 Parameter Sensitivity Analysis

Finally, there are two parameters in the AE-NMCF model: (1) the number of latent factors T (i.e.,
the rank of the nonnegative matrix co-factorization) and (2) the regularization parameter γ. Since T
leads a role in achieving the approximation effect, we begin by discussing T, followed by γ.

Effect of parameter T. We use the grid search rule to tune the value of parameter T =
min{N,M,K}, and consider the effect in terms of ACC and rc. The results are summarized
in Figure VIII. It can be seen from the figure that as the value of T increases, ACC and rc share a
similar decreasing tendency. Therefore, we choose the value that balances the two types of tasks,
i.e., we set T = 3, 3, 2, 1, 1, 1, for FrcSub, Junyi-s, Quanlang-s, SLP-Bio-s, SLP-His-s, and SLP-Eng
respectively as the tuning results.

Effect of parameter γ. Based on the best T value, we proceed to find the best value for γ, which
controls the degree of avoiding the ill-posed problem for B. For all the data sets, we perform the grid
search with the range of {1, 2, 3, 4, 5, 10, 15, 20, 25, 50}. By observing the results in Figure IXa, we
can see that the ACC (rc) leads a drop at the beginning, followed by a sharp rise after γ = 3 (γ = 4),
and then slightly fluctuates in the sequence. Therefore, we set γ = 10 for FrcSub. For Junyi-s and
Quanlang-s, considering the fluctuation for the rc value, we choose γ = 2, 4 respectively to avoid too
much regularization. Similarly, we use γ = 2, 1, 3 as the tuning result for SLP-Bio-s, SLP-His-s, and
SLP-Eng, respectively.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The research scope is clearly defined, and we list the main contributions at the
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations (see Section 4.2). In addition, since student cognitive
models have made diversified assumptions about how knowledge concepts contribute to
generating a student’s response to an exercise, including disjunctive, conjunctive, and
additive hypotheses, the choice of assumptions depends on the context and measurement
scenario, which is still an open question. This paper adopts the common additive hypothesis
(see the decoder process in Section 3.1).
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
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should reflect on how these assumptions might be violated in practice and what the
implications would be.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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• The answer NA means that the paper does not include theoretical results.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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the main claims of the paper.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: The new cognitive model will potentially improve the automated compre-
hensive understanding of students’ knowledge learning and benefit numerous intelligent
educational tools.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the data sets and baselines used in the paper are cited by listing the
references and websites.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: The paper describes the proposed new cognitive model in detail (see Section 3).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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