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Abstract

In this work, we tackle the following question: Can neural networks trained with1

gradient-based methods achieve the optimal statistical-computational tradeoff2

in learning Gaussian single-index models? Prior research has shown that any3

polynomial-time algorithm under the statistical query (SQ) framework requires4

Ω(ds
⋆/2∨d) samples, where s⋆ is the generative exponent representing the intrinsic5

difficulty of learning the underlying model. However, it remains unknown whether6

neural networks can achieve this sample complexity. Inspired by prior techniques7

such as label transformation and landscape smoothing for learning single-index8

models, we propose a unified gradient-based algorithm for training a two-layer9

neural network in polynomial time. Our method is adaptable to a variety of loss and10

activation functions, covering a broad class of existing approaches. We show that11

our algorithm learns a feature representation that strongly aligns with the unknown12

signal θ⋆, with sample complexity rO(ds
⋆/2 ∨ d), matching the SQ lower bound up13

to a polylogarithmic factor for all generative exponents s⋆ ≥ 1. Furthermore, we14

extend our approach to the setting where θ⋆ is k-sparse for k = o(
√
d) by introduc-15

ing a novel weight perturbation technique that leverages the sparsity structure. We16

derive a corresponding SQ lower bound of order rΩ(ks
⋆

), matched by our method17

up to a polylogarithmic factor. Our framework, especially the weight perturba-18

tion technique, is of independent interest, and suggests potential gradient-based19

solutions to other problems such as sparse tensor PCA.20

1 Introduction21

The success of neural networks is largely attributed to their remarkable ability to learn rich and22

useful features from data during gradient-based training (Girshick et al., 2014). This feature-learning23

capability allows them to outperform traditional methods like kernel-based approaches, which rely on24

predefined features (Allen-Zhu and Li, 2019; Ghorbani et al., 2019; Refinetti et al., 2021). However,25

when trained using (stochastic) gradient descent, neural networks can sometimes fall into a “kernel26

regime”, where their behavior resembles that of a fixed kernel method, constrained by their random27

initialization (Jacot et al., 2018; Chizat et al., 2019). In this regime, the ability of the network to learn28

complex representations is severely limited, undermining the primary advantage of deep learning.29

Therefore, it is crucial to understand when and how neural networks trained with gradient-based30

method can perform effective feature learning to unlock their full potential, particularly in scenarios31

where a balance between computational efficiency and statistical performance is essential.32

In this work, we approach this question in the context of Gaussian single-index models, a canonical33

class of problems in statistics and learning (MacCullagh and Nelder, 1989; Ichimura, 1993; Hristache34
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et al., 2001; Härdle et al., 2004). The model is defined as follows: for covariates z ∼ N (0, Id), the out-35

put y depends on the inner product ⟨θ⋆, z⟩ with an unknown signal θ⋆ ∈ Rd through a link distribution36

p, i.e., y ∼ p(· | ⟨θ⋆, z⟩). The goal is to recover θ⋆ using i.i.d. samples (z1, y1), . . . , (zn, yn) gener-37

ated by the underlying model. While n = Ω(d) samples suffice to recover θ⋆ information-theoretically38

(Bach, 2017; Damian et al., 2024), achieving this efficiently is difficult for polynomial-time algo-39

rithms, where the required sample size also depends on properties of the link distribution p, creating40

a computational-statistical gap. For example, when y is a polynomial of ⟨θ⋆, z⟩, it has been shown41

that two-layer neural networks with square loss need dΘ(q⋆) samples (Arous et al., 2021; Bietti et al.,42

2022; Damian et al., 2023), where q⋆ is the information exponent of the polynomial link function43

(Arous et al., 2021; Dudeja and Hsu, 2018). Such sample complexity is indeed inevitable under the44

correlational statistical query (CSQ) framework, leading to a computational-statistical gap for q⋆ ≥ 2.45

However, the CSQ framework does not capture the fundamental limits of all gradient-based algorithms.46

Recent works have shown that by leveraging higher-order terms in the gradient, neural networks can47

learn polynomials with as few as rO(d) samples (Lee et al., 2024; Arnaboldi et al., 2024). It turns out48

that the intrinsic learning difficulty is captured by another quantity called the generative exponent s⋆,49

which is at most 2 for polynomial link functions, and the corresponding SQ lower bound on the sample50

complexity is n = Ω(ds
⋆/2) (Damian et al., 2024). 1 Thus, there is no computational-statistical gap51

for learning polynomial single-index models using neural networks. However, for general single-index52

models with s⋆ ≥ 3, no gradient-based algorithm for neural networks has been shown to match the53

SQ lower bound, leaving it an open problem (Arnaboldi et al., 2024; Lee et al., 2024).54

Furthermore, learning the Gaussian single-index model can benefit from additional structures in the55

signal θ⋆, such as sparsity, which can significantly reduce the sample complexity compared to those56

depending on the ambient dimension d (Candès et al., 2006; Donoho et al., 2009; Raskutti et al., 2012).57

For example, in matrix PCA, the best rank-1 estimator achieves a near-optimal sample complexity58

of rO(d) due to the BBP transition (Baik et al., 2005; Choo and d’Orsi, 2021). However, under59

extreme sparsity, sparse estimators require rO(k2) samples using methods like diagonal thresholding60

(Johnstone and Lu, 2009) or semidefinite relaxation (d’Aspremont et al., 2004), which improves61

upon the rO(d) sample complexity but exhibits a unique computational-statistical gap from the62

information-theoretic lower bound Ω(k log d) (Wang et al., 2016). For sparse single-index models63

with information exponent q⋆ = 1, gradient descent on diagonal linear networks nearly achieves64

the information-theoretic lower bound thanks to its implicit regularization effect (Fan et al., 2023).65

Nonetheless, how to achieve the optimal sample complexity for general s⋆ ≥ 1 is also unknown66

under the sparse setting.67

Contributions. Towards characterizing the fundamental feature learning capability of neural networks68

in the Gaussian single-index model, our main contributions are as follows:69

1. We propose a unified recipe of gradient-based algorithms for training a two-layer neural network70

to learn the Gaussian single-index model. Our method integrates a general gradient oracle with71

a weight perturbation technique, carefully designed to exploit the underlying structure of the72

Gaussian single-index model. This allows the neural network to perform feature learning of the73

unknown signal θ⋆ in a computationally efficient manner. Our framework encompasses many74

existing approaches as special cases, such as batch reusing (Dandi et al., 2024; Lee et al., 2024),75

label transformation (Chen and Meka, 2020), and landscape smoothing (Damian et al., 2023).76

2. We show that for an unknown link distribution p with any generative exponent s⋆ ≥ 1, the77

weights of the neural network achieve strong recovery of the true signal θ⋆ after training by our78

algorithm using rO(ds
⋆/2 ∨ d) samples and polynomial running time. Our method achieves the SQ79

lower bound up to a polylogarithmic factor, and is the first gradient-based algorithm for training80

two-layer neural networks that attains the nearly optimal computational-statistical tradeoff for81

Gaussian single-index models with any s⋆ ≥ 1. Figure 1 (a) illustrates an example for s⋆ = 4.82

3. Furthermore, our method is able to take advantage of additional structural information of the true83

signal θ⋆. Specifically, we consider the case where θ⋆ is k-sparse for k = o(
√
d), and develop84

a novel weight perturbation procedure tailored to the sparsity of θ⋆. Equipped with this, we85

1This Ω(ds
⋆/2) sample complexity lower bound is essentially for the detection problem. Dudeja and Hsu

(2021) shows that there is an estimation-detection gap for tensor PCA under the SQ framework, though it is
unclear whether such gap exists universally. Throughout the paper, we always refer to the SQ lower bound as the
detection lower bound, since detection in general is assumed to be easier than estimation.
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Figure 1: (a) The contour plots of (log d, log n, acc(d, n)) for Algorithm 1 under model y =
⟨z, θ⋆⟩2 exp(−⟨z, θ⋆⟩2), which has generative exponent s⋆ = 4 (Example 2.2). Here acc(d, n)
is the average of the largest 8 values of the alignment between the neuron weights and the unknown
signal θ⋆. The slopes of these contour lines are all close to 2, indicating a sample complexity n ≈ d2
for s⋆ = 4. (b) The paradigm of sample complexity achieved by our algorithm for different generative
exponent s⋆ and sparsity level k, illustrating the success of achiving computational-statistical tradeoff.

show that the weights of the neural network can achieve strong recovery of the sparse signal θ⋆86

after training with rO(ks
⋆

) samples in polynomial time for any generative exponent s⋆ ≥ 1. This87

sample complexity is also nearly optimal according to the sample complexity lower bound we88

establish for SQ algorithms, which might be of independent interest. Also, our method suggests a89

new approach to achieve the computational-statistical tradeoff for sparse tensor PCA.90

In summary, our work provides a unified framework for training neural networks that can achieve91

the nearly optimal computational-statistical tradeoff for the Gaussian single-index model with any92

generative exponent s⋆ ≥ 1. Our method not only tackles the intrinsic difficulty of learning the under-93

lying model posed by the link distribution p, but also leverages the additional structural information94

of the true singal θ⋆ that benefits the learning process. Integrating these results, our method attains95

nearly optimal balance between computational efficienty and statistical performance across almost all96

regimes of sparsity levels and generative exponent s⋆ ≥ 1, as illustrated in Figure 1 (b).97

Related Works. Our work contributes to the recent research on the computation-statistical tradeoff98

in learning single-index models. The information-theoretic limit for estimating the latent signal is99

n = Ω(d) (Bach, 2017; Damian et al., 2024), but the sample complexity lower bound varies across100

computational models, potentially revealing a computational-statistical gap.101

The information exponent q⋆ (Dudeja and Hsu, 2018; Arous et al., 2021) governs the sample com-102

plexity for learning Gaussian single-index models in the CSQ framework (Chen et al., 2020; Bietti103

et al., 2022; Damian et al., 2022; Dandi et al., 2023; Abbe et al., 2023; Ba et al., 2023). Notably,104

Arous et al. (2021) show that online SGD has a sample complexity of n = rO(dq
⋆−1), which is worse105

than the CSQ lower bound n = Ω(dq
⋆/2) (Abbe et al., 2023; Damian et al., 2022). This gap can be106

closed by a loss landscape smoothing technique (Damian et al., 2023) originally developed for tensor107

PCA (Anandkumar et al., 2017; Biroli et al., 2020). Our work extends beyond the CSQ framework,108

aligning with more general SQ algorithms (Feldman et al., 2017; Feldman, 2017), where the sample109

complexity lower bound is Ω(ds
⋆/2), with s⋆ as the generative exponent (Damian et al., 2024). In110

this context, online SGD with batch reusing suffices for learning polynomial link functions (Dandi111

et al., 2024; Lee et al., 2024), while for s⋆ ≥ 3, only the partial trace estimator proposed by Damian112

et al. (2024) can match the SQ lower bound.113

In the sparse setting, including sparse linear models (Vaskevicius et al., 2019; Zhao et al., 2022;114

Gamarnik and Zadik, 2017), sparse PCA (Arous et al., 2020), and planted models (Bandeira et al.,115

2022), computational-statistical gaps also exist. Related to our work, Fan et al. (2023) provide a rO(k)116

sample complexity for learning single index models with q⋆ = 1 using diagonal linear networks, and117

Neykov et al. (2016) report a rO(k2) result for phase retrieval where q⋆ = 2. However, as previously118

noted, the information exponent does not fully characterize the intrinsic computational-statistical119
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tradeoff. Our work completes the picture by providing a gradient-based framework that simultaneously120

handles all sparsity levels and any generative exponent s⋆ ≥ 1.121

2 Problem Setup122

We begin by introducing the notation used in the paper, and then describe the problem setup. For a123

probability distribution P, we denote by L2(P) the space of square-integrable functions with respect to124

P, and
L2(P)
= means equality in L2(P). We denote the normalized probabilist’s Hermite polynomials by125

{hs(·)}s≥0, where each hs(x) :=
(−1)s√
s!
· ex2/2 · ds

dxs e
−x2/2. These polynomials form an orthonormal126

basis for L2(N (0, 1)), i.e., the space of square-integrable functions under the Gaussian measure.127

Gaussian single-index model. We study the following Gaussian single-index model: The environment128

first samples an unobservable signal θ⋆ ∼ π from some known prior π ∈P(Sd−1). Then i.i.d. data129

(z1, y1), . . . , (zn, yn) ∈ Rd × R are generated according to the following distribution Pθ⋆ given θ⋆:130

Pθ⋆ : z ∼ N (0, Id), y ∼ p(· | ⟨θ⋆, z⟩). (2.1)

Here p(· | ·) : R 7→P(R) is referred to as the link distribution. A canonical example is the additive131

model where y = p(⟨θ⋆, z⟩) + ϵ for some deterministic link function p : R→ R (with a slight abuse132

of notation) and random noise ϵ. See Damian et al. (2024) for more complicated examples.133

Generative exponent. The following discussion on the generative exponent is based on the work of134

Damian et al. (2024). We aim to learn (2.1) where the link distribution p has generative exponent135

s⋆ ≥ 1 , a measure of the computational-statistical gap for learning single-index models. We let136

x = ⟨θ⋆, z⟩. Notice that Pθ⋆(y, z) = P(y, x) · N (z⊥; 0, Id−1) where we use P to denote the joint137

distribution of (x, y) as this joint distribution is independent of θ⋆. As the marginal distribution138

of y is also independent of θ⋆, we define the null distribution Q(y, z) :=N (z; 0, Id) ⊗ Q(y) and139

denote Q(y, x) :=N (x; 0, 1) ⊗ Q(y) where Q(y) =
∫
R P(y, x)dx. It can be shown that under a140

square-integrable condition under Q, the likelihood ratio admits a Hermite expansion with coefficient141

functions {ζs(y)}s≥1, i.e.,142

Pθ⋆(y, z)
Q(y, z)

=
P(y, x)
Q(y, x)

L2(Q)
=

∞∑
s=0

ζs(y) · hs(x), where ζs(y) = EP[hs(x)|y], (2.2)

and EQ[ζs(y)
2] ≤ 1 for all s ≥ 1. Note that (2.2) makes sense only when we are working with the143

inner product of P/Q and a square-integrable function under the null distribution Q.144

Definition 2.1 (Generative exponent). For the Gaussian single-index model defined in (2.1), the145

generative exponent s⋆ of the link distribution p is defined as s⋆(p) :=min{s ≥ 1 : EQ[ζs(y)
2] > 0}.146

Example 2.2 (Example 2.7, Damian et al. (2024)). Consider the special case of the Gaussian single-147

index model (2.1) where y = p(⟨θ⋆, z⟩) for a deterministic link function p : R → R. When p is148

a polynomial function, it holds that s⋆(p) ≤ 2, and the equality holds if and only if p is an even149

polynomial. In particular, s⋆(hs) = 1 for odd s and s⋆(hs) = 2 for even s. While for the example of150

p(x) = x2 exp(−x2), which is not a polynomial, it has generative exponent s⋆(p) = 4.151

Two-layer neural networks. We consider using a two-layer neural network with M hidden neurons152

to learn the single-index model (2.1). The weight vector for each neuron m ∈ [M ] is θm ∈ Rd,153

and the weights of the second layer are a1, . . . , aM ∈ R. We collect all the weights and denote154

θ = (θ1, . . . , θM ) ∈ Rd×M , a = (a1, . . . , aM )⊤ ∈ RM . Now for any input z ∈ Rd, the output of155

the network is given by f(z;θ,a) :=
∑M
m=1 am · σ(⟨z, θm⟩), where σ : R→ R is the activation.156

3 Overview of techniques157

In this work, we apply gradient-based methods to learn Gaussian single-index models, with a focus158

on feature learning in neural networks and the corresponding computational-statistical tradeoff. To159

motivate the techniques involved, we begin by discussing an illustrative example that highlights such160

tradeoffs. For this overview, we focus on s⋆ > 2 and the uniform prior π = Unif(Sd−1). It has been161

shown that a gap exists between the information-theoretic lower bound Ω(d) and the SQ lower bound162

Ω(ds
⋆/2) under this setting when s⋆ > 2 (Bach, 2017; Damian et al., 2024).163
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For illustration, let us consider training a two-layer network with a single neuron under the population164

square loss. When the weight of the second layer is small, the reweighted negative gradient g satisfies165

g = −(2a)−1∇θ
(
f(z; θ, a)− y

)2
= −

(
a · σ(⟨z, θ⟩)− y

)
· σ′(⟨z, θ⟩) · z ≈ yσ′(⟨z, θ⟩) · z.

Taking expectation over (z, y) ∼ Pθ⋆ and using the likelihood ratio decomposition in (2.2), we have166

EPθ⋆
[g] ≈ EQ [y] · EQ [σ′(⟨z, θ⟩) · z]︸ ︷︷ ︸

bias

+
∑
s≥s⋆

EQ [yζs(y)] · EQ [hs(⟨θ⋆, z⟩) · σ′(⟨z, θ⟩) · z]︸ ︷︷ ︸
informative queries

, (3.1)

where we use the fact that y and z are independent under the null distribution Q. Note that the167

bias term does not contain any information about θ⋆, and it can be easily removed by a debiasing168

procedure, so we assume for simplicity that E[y] = 0.169

Failure of vanilla online minibatch SGD We first consider the vanilla online minibatch SGD, which170

updates the weight vector θ by θ ← θ−η
∑n
i=1 gi for a minibatch of size n. The sample complexity of171

gradient-based methods is determined by the signal-to-noise ratio (SNR) of the one-sample gradient,172

which in our case is defined as SNR :=E[⟨g, θ⋆⟩]2/E[∥g∥22]. This is the square of the alignment173

between g and θ⋆, governed primarily by the informative query corresponding to the lowest degree174

s⋆ in (3.1) assuming that EQ[yζs⋆(y)] ̸= 0. It can be shown that the inner product between the175

lowest-degree informative query in (3.1) and the signal θ⋆ satisfies (see Lemma H.1)176

EQ [hs⋆(⟨θ⋆, z⟩) · σ′(⟨z, θ⟩) · ⟨z, θ⋆⟩] ≈ s⋆ · pσs⋆ · ⟨θ⋆, θ⟩s
⋆−1 = pσs⋆ ·O(d−(s⋆−1)/2), (3.2)

where pσs⋆ is the s⋆-th coefficient in the Hermite expansion of σ. While for ∥g∥2, we have177

EPθ⋆

[
∥g∥22

]
≈ d · EQ

[
y2σ′(⟨z, θ⟩)2

]
= Ω(d),

where the high-order terms in the likelihood ratio decomposition are ignored and we come back to178

this point later. Now we can argue why vanilla online minibatch SGD has difficulty achieving the179

SQ lower bound for generative exponent s⋆ > 2: Suppose EQ[yζs⋆(y)] and pσs⋆ are both nonzero180

constants. Then the one-sample SNR is O(d−s
⋆

). For a minibatch with n samples, the SNR of the181

gradient averaged over the minibatch is roughly n times the one-sample SNR2, i.g., nd−s
⋆

. To ensure182

one update step achieves alignment, i.e., the square root of the n-sample SNR,
√
nd−s⋆ , exceeding183

the trivial d−1/2 threshold attained by a random vector, it requires at least ds
⋆−1 samples. Note that184

the sample complexity would become even worse if s⋆ < argmins≥s⋆{s : EQ[yζs(y)] ̸= 0}. This185

contrasts with the sample complexity O(ds
⋆/2) suggested by the SQ lower bound.186

The above failure of vanilla online minibatch SGD exposes three key challenges:187

(i) (Non-polynomial) How to handle the infinite sum of high-order terms in the likelihood ratio?188

(ii) (Low SNR) How to enhance the SNR to achieve the SQ lower bound?189

(iii) (Zero correlation) How to ensure that the algorithm still works if EQ[yζs⋆(y)] = 0?190

Below we discuss our techniques for addressing these challenges.191

Label transformation via general gradient oracle. The idea to fix the zero correlation problem192

is to apply a nonlinear transformation T : R→ R to y such that T (y) has nonzero correlation with193

ζs⋆(y). This label transformation technique has been widely used in the literature (Lu and Li, 2020;194

Mondelli and Montanari, 2018; Dudeja and Hsu, 2018; Chen and Meka, 2020; Damian et al., 2024).195

In particular, Lee et al. (2024) show that the label transformation can be automatically realized by196

running two gradient steps on the same batch, a technique termed as batch-reusing (Dandi et al.,197

2024; Arnaboldi et al., 2024). In this work, we study a more general class of gradient-based methods198

with gradient of form g = ψ(y, ⟨θ, z⟩)z, which is an abstract form of the transformed gradient199

T (y)σ′(⟨z, θ⟩)z. The desired condition becomes EQ[ pψs⋆−1(y)ζs⋆(y)] ̸= 0, where pψs(y) is the s-th200

Fourier coefficient function of ψ(y, x) in the Hermite basis of x. One particular way to obtain such a201

gradient is to use a modified loss function, similar to the approach in Joshi et al. (2024), while in our202

case the specific choice of ψ is also related to the other two challenges addressed as follows.203

Exploration by weight perturbation with high-pass activation. The low-SNR challenge corre-204

sponds to the fact that points on the equator of Sd−1 orthogonal to θ⋆ are all saddle points in terms of205

2This argument is not fully rigorous because EPθ⋆ [∥g∥
2
2] also includes “bias” ∥EPθ⋆ [g]∥

2
2 besides the

fluctuations, but it remains valid as long as ∥g∥22 is dominated by fluctuations from all d directions at initialization.
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Algorithm 1 Gradient-based Feature Learning for Uniform Signal Prior

1: Input: Initialization θ(0) = (θ
(0)
1 , . . . , θ

(0)
M ) ∈ Rd×M , where θ(0)m

i.i.d.∼ Unif(Sd−1), a = a ·1 ∈
RM , number of iterations T ∈ N, learning rate η > 0, batch size n ∈ N, polarization level
γ ∈ (0, 1), number of perturbation L ∈ N.

2: for iteration t = 0, 1, . . . , T − 1 do
3: Sample a fresh mini-batch of data {(z(t)i , y

(t)
i )}ni=1.

4: Perturb weights w(t)
m,l = (γθ

(t)
m + ξ

(t)
m,l)/∥γθ

(t)
m + ξ

(t)
m,l∥2, ξ(t)m,l

i.i.d.∼ Unif(Sd−1) for all m, l.

5: Compute the gradients g(t)m,l,i = (ψ(y
(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) + err

(t)
m,l,i) · z

(t)
i for all m, l, i.

6: Aggregate the gradients: g(t)m = (nL)−1
∑n
i=1

∑L
l=1(g

(t)
m,l,i − pψ1(y

(t)
i )w

(t)
m,l) for all m.

7: Normalize the update step: sg
(t)
m = g

(t)
m /∥g(t)m ∥2 for all m.

8: Update the weights θ(t+1)
m = (θ(t) + ηsg

(t)
m )/∥θ(t) + ηsg

(t)
m ∥2 for all m.

9: end for
10: Output: Final model weights θ(T ).

|⟨θ, θ⋆⟩|, and random initialization typically lies near this equator. To efficiently escape from such206

saddle points, we perform random weight perturbation, akin to the approach in Jin et al. (2017) for207

non-convex optimization. Specifically, suppose the activation σ is high-pass and has the lowest degree208

s⋆, i.e., σ(x) =
∑
s≥s⋆ pσshs(x), and consider for simplicity the case of odd s⋆. In the extreme case209

where θ is perturbed into i.i.d. pure noise θ1, . . . , θL ∼ Unif(Sd−1), we compute the gradient for210

each θl and aggregate them into g = L−1(g1 + · · ·+ gL). Using the properties of the Gaussian noise211

operator (see Appendix B for details), the second moment of this aggregated gradient satisfies212

E
[
∥g∥22

]
≈ d

L2

∑L
l,l′=1 EQ[y

2] · EQ[σ
′(⟨z, θl⟩)σ′(⟨z, θl′⟩)] ≈ d

∑
s≥s⋆ s · pσ2

s · Eθ,θ′ [⟨θ, θ′⟩s−1],

where θ, θ′ are drown independently from Unif(Sd−1). Since ⟨θ, θ′⟩ ≈ d−1/2, we have E[∥g∥22] ≈213

O(d−(s⋆−3)/2), yielding a higher one-sample SNR as the first moment remains unchanged and214

pushing the sample complexity towards the SQ lower bound. Moreover, we also see from the215

above calculation that the weight perturbation resolves the non-polynomial issue thanks to the near-216

orthogonality of the perturbed weights. The above heuristics can be made rigorous for polynomially217

large L, thereby handling non-polynomial link and activation functions.218

Our approach also draws inspiration from the landscape smoothing method in Damian et al. (2024),219

but in constrast to their problem setup, we do not require full knowledge of the link distribution in220

advance. Instead, it suffices to know the generative exponent s⋆ to construct a high-pass activation221

function as well as the gradient oracle ψ. See Example 4.6 for a detailed discussion on this.222

4 Gradient-based Algorithm for Uniform Prior223

We first present our method and results for the case of θ⋆ ∼ Unif(Sd−1), or equivalently, when224

there is no structural information on θ⋆. Motivated by the discussion in Section 3, we propose a225

gradient-based algorithm (Algorithm 1) that can train a two-layer neural netwok to learn the unknown226

signal θ⋆ with rO(ds
⋆/2 ∨ d) sample complexity, nearly matching the corresponding SQ lower bound.227

4.1 Gradient-based Training Algorithm (Algorithm 1)228

We initialize each neuron m with θ(0)m ∼ Unif(Sd−1), and we set a(t)m ≡ a for some sufficiently small229

a > 0 throughout the training. In each iteration t ∈ [T ], we sample a new data batch of size n.230

Weight perturbation. Before calculating the gradients, we first perturb the weights of each neuron to231

get L noisy replica, by injecting uniform noise from the sphere Sd−1 as in Line 4. There is a simple232

rule for choosing the polarization level γ. In the previous section, we discussed how EPθ⋆
[∥g∥22] in233

the one-sample SNR depends on the following quantity:234

El,l′⟨w(t)
m,l, w

(t)
m,l′⟩s

⋆−1 ≲
(
γ2∥θ(t)m ∥22

)s⋆−1
+ El,l′⟨ξ(t)m,l, ξ

(t)
m,l′⟩s

⋆−1 ≈ (γ2 ∨ d−1/2)s
⋆−1.
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In this context, γ2 represents the bias from the exploitation of the learned search direction, and d−1/2235

accounts for the variance from the exploration for the unknown signal. In fact, γ should be set as236

large as possible to maximize exploitation while still ensuring that the exploration noise dominates.237

This balance is necessary to fully gain the SNR enhancement from weight perturbation. This gives238

rise to the choice γ = rΘ(d−1/4). Moreover, it suffices to set L = rΩ(n/
√
d) as stated in Theorem 4.2.239

Gradient aggregation and debiasing. Then for each neuron m and its perturbed weights w(t)
m,l, we240

calculate the gradient g(t)m,l,i for every sample (Line 5). The gradient is expressed by decoupling the241

primary search direction ψ(yi, ⟨wm,l, zi⟩) · zi from the error term errm,l,i · zi (omitting the time242

index t). For two-layer neural networks, we discussed in the previous section an example where243

ψ(yi, ⟨wm,l, zi⟩) = T (yi)σ′(⟨wm,l, zi⟩) for some transformation T . While the error term, arising244

from neuron interactions during backpropagation, can be reduced by keeping the weights of the245

second layer sufficiently small. We provide the assumptions and more examples of ψ in Section 4.2.246

Next, we aggregate the gradients for each neuron m by averaging over the n samples and L perturba-247

tions to get g(t)m as shown in Line 6. Here we additionally subtract a term pψ1(y
(t)
i )w

(t)
m,l to debias the248

gradient, where pψ1(y) is the first coefficient function in the Hermite expansion of the oracle function249

ψ(y, x) with respect to x. Finally, we update θ(t)m according to Line 7 and Line 8.250

4.2 Feature Alignment and Statistical Complexity251

Assumption 4.1. For the Gaussian single-index model in (2.1) with generative exponent s⋆ ≥ 1, the252

oracle ψ : R× R→ R satisfies the following conditions:253

(a) (Quadruple-integrable under Q). Both ψ(y, x)2x2 and ψ(y, x)2 are square-integrable under254

the null distribution Q. Therefore, ψ ∈ L2(Q) admits an Hermite expansion ψ(y, x)
L2(Q)
=255 ∑∞

s=0
pψs(y) · hs(x), where pψs(y) is the s-th coefficient function and

∑∞
s=0 EQ[ pψs(y)

2] <∞.256

(b) (High-pass underQ). For all s = 1, . . . , s⋆−2, the s-th coefficient function is zero, i.e., pψs(y) ≡ 0.257

In addition, there exists a constant C > 0 such that |EQ[ζs⋆(y) · pψs⋆−1(y)]| ≥ C.258

(c) (Polynomial-like tail under P and Q). There exists a constant C > 0 such that for all r ≥ 1,259

max{EP [|ψ(y, x)|r] ,EQ [|ψ(y, x)|r]} ≤ C · rCr.260

The quadruple-integrability condition (Assumption 4.1(a)) ensures that the decomposition of the261

likelihood ratio in (2.2) is well defined for calculations involving the second moment, i.e.,262

EP
[
ψ(y, x)2x2

]
= EQ

[
ψ(y, x)2x2 · P(y,x)Q(y,x)

]
= EQ

[
ψ(y, x)2x2 ·

∑∞
s=0ζs(y)hs(x)

]
.

The high-pass condition (Assumption 4.1(b)) has been motivated in Section 3 and guarantees noise263

reduction for the second moment. The polynomial-like tail condition (Assumption 4.1(c)) is used264

for concentration arguments in the proof. Note that this condition is analogue to the Gaussian265

hypercontractivity property, where Ex∼N (0,1)[|f(x)|r] ≲ rDr/2 if f(x) is a polynomial of degree at266

most D. In particular, ψ can be constructed as ψ(y, x) = ℓ′(y)σ′(x), where ℓ is the loss function and267

σ is the activation in the two-layer network. It suffices to use a loss ℓ with bounded derivative and a268

polynomial activation σ for the polynomial-like tail condition (see Section 4.2.1 and 4.2.2).269

Now we are ready to state our first main result on the sample complexity of Algorithm 1 for uniform270

prior. See Appendix D for a proof sketch of the theorem and Appendix E for a detailed proof.271

Theorem 4.2 (Sample complexity for uniform prior). Under Assumption 4.1, set the initializa-272

tion of the weights as θ(0)1 , . . . , θ
(0)
M

i.i.d.∼ Unif(Sd−1). Suppose that the event E = {|err(t)m,l,i| ≤273

d−10s⋆ ,∀(m, l, i, t) ∈ [M ]× [L]× [n]× [T ]} holds with probability at least 1−O(d−c0) for some274

constant c0 > 0 with (M,L, n, T ) specified as follows. Set the learning rate η > 2, the polarization275

level γ = d−1/4(log d)1/4, and the number of neurons M = Θ(1). Suppose276

n = Θ
(
(ds

⋆/2(log d)1+s
⋆/2) ∨ d(log d)2

)
, L = Θ

(
d(s

⋆+1)/2 log d
)
.

Define τ = η−2/(1− η−1)2, and let ∆ = (log d)−1/2 if s⋆ ≤ 2 and ∆ = d−1/4(log d)1/4 if s⋆ ≥ 3.277

Then with probability at least 1− O(d−c) for some constant c > 0, after running Algorithm 1 for278
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T = O(log d + log(∆−1)/ log(τ−1)) steps, there are at least Ω(M) neurons having alignment279

|⟨θ(T )
m , θ⋆⟩| ≥ 1−O(

√
∆).280

Theorem 4.2 shows that the sample complexity of Algorithm 1 is nT = rΘ(ds
⋆/2 ∨ d), matching the281

SQ sample complexity lower bound for all s⋆ ≥ 1 established by Damian et al. (2024). Compared to282

the partial trace method in Damian et al. (2024), our algorithm does not require special warm-start283

initialization. Meanwhile, the computational complexity of Algorithm 1 isMLnT = rΘ(ds
⋆+1/2∨d2).284

So far the gradient oracle ψ is still an abstract object, and next we will instantiate the above general285

theorem with concrete examples of ψ that yield implementable algorithms.286

Remark 4.3 (Benefit of overparametrization). Algorithm 1 trains a two-layer neural network with287

constant width M , involving L times of perturbation for every neuron in each step. Indeed, this is288

equivalent to train a two-layer neural network with width LM = Θ
(
d(s

⋆−1)/2 ∨ (d log d)1/2
)
, where289

we divide the neurons into L groups, each havingM neurons. In each iteration we perturb the weights290

and compute the gradients, and then aggregate the gradients within each group of M neurons. This291

combination of weight perturbation and gradient sharing exploits the benefit of overparametrization.292

4.2.1 Online SGD with Batch Reusing293

The oracle function ψ can be specialized to two consecutive gradient descent steps on the same batch.294

Example 4.4 (Batch-reusing: ψ for polynomial link functions). Suppose that the link distribution is295

a polynomial of degree q. We consider ψ induced by batch-reusing on single neuron, i.e., ψ(y, x) =296

yσ′(x) + yσ′(x+ yσ′(x)) (see Section 4.2 of Lee et al. (2024) for deduction) and choose σ′(x) =297 ∑Cq

i=0 cihi(x) where Cq ∈ N is a constant depending only on q and each ci ∼ Unif([0, 1]).298

Corollary 4.5 (Batch-reusing for polynomial link function). Suppose that the link distribution is299

given by a polynomial link function. Under the same setups in Theorem 4.2 with the oracle ψ given by300

Example 4.4, the sample complexity of Algorithm 1 is rΘ(d), recovering the result of Lee et al. (2024).301

The proof is deferred to Appendix C.2.1. However, batch-reusing may not be optimal for s⋆ ≥ 3 due302

to violation of the high-pass condition, necessitating a more general approach to construct ψ.303

4.2.2 Label Transformation via Modified Loss304

We discuss another approach to construct ψ by modifying the loss function, a universal method for305

arbitrary generative exponent s⋆ ≥ 1. Additional details and proofs are postponed to Appendix C.2.2.306

Example 4.6 (ψ based on modified loss). Let ψ(y, x) = ℓ′(y)σ′(x) with ℓ(y) being certain loss307

function and σ(x) being some activation function. Such a form corresponds to the gradient of the308

loss ℓ(y − f(z;θ)) (assuming that a is fixed and has small entries), since309

a−1
m ∇θmℓ

(
y − f(z;θ)

)
= −ℓ′

(
y − f(z;θ)

)
· σ′(⟨θm, z⟩) · z = − ℓ′(y) · σ′(⟨θm, z⟩)︸ ︷︷ ︸

:=ψ(y,⟨θm,z⟩)

·z + errm · z,

where errm :=[ℓ′(y)− ℓ′(y− f(z;θ,a))] · σ′(⟨θm, z⟩) = O(f(z;θ,a)) · σ′(⟨θm, z⟩) denotes small310

error for sufficiently small a. In Appendix C.2.2, we provide specific choice of the activation function311

σ(x) (order-s⋆ Hermite polynomial) and the loss function ℓ(y) (a carefully designed random loss312

function), satisfying all the conditions in Assumption 4.1.313

Corollary 4.7 (Modified loss for general s⋆). The oracle ψ given by Example 4.6 satisfies all the314

assumptions of Theorem 4.2, thus the results of Theorem 4.2 hold for Algorithm 1 using this ψ.315

5 Exploiting the Structure: Algorithm for Sparse Prior316

We have seen that the sample complexity scales polynomially with the ambient dimension d when317

the prior on θ⋆ is uninformative, and our method achieves nearly optimal computational-statistical318

tradeoff under the SQ framework. It is natural to ask whether our method can benefit from extra319

structural information on θ⋆, one classic example being sparsity. Towards this end, we consider an320

extension of the framework in the previous section to the setting where θ⋆ is a k-sparse vector.321

Gaussian single-index model with sparse signal. Given sparsity level k = o(
√
d), we consider the322

Gaussian single-index model in (2.1) with θ⋆ drawn from a k-sparse prior:323

πk : θ⋆ |ϕ⋆ ∼ Unif
(
Sk−1(ϕ⋆)

)
, ϕ⋆ ∼ Unif(Sk), (5.1)
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where Sk :={ϕ ⊂ [d] : |ϕ| = k} is the collection of all k-sparse support sets, and Sk−1(ϕ) :={x ∈324

Rd :
∑
i∈ϕ x

2
i = 1, xj = 0,∀j /∈ ϕ} is the associated k-dimensional unit sphere for any ϕ ∈ Sk.325

5.1 Algorithm design: How to leverage sparsity?326

Note that Algorithm 1 can also learn the k-sparse Gaussian single-index model, albeit with rO(ds
⋆/2∨327

d) samples, which is apparently suboptimal in light of the classic example of sparse linear regression.328

Here the key challenge is support identification of ϕ⋆, and the issue of Algorithm 1 lies in the weight329

perturbation using noise ξ ∼ Unif(Sd−1), thus unaware of the sparsity of θ⋆. Below we discuss how330

to calibrate the weight perturbation with the sparse prior.331

Perturbation by replicating the prior is not enough. An intuitive first-cut attempt is to use perturba-332

tion noise from the same distribution as the sparse prior πk in (5.1), which turns out to be suboptimal333

as well. To illustrate this, we assume for simplicity a balanced θ⋆ where every nonzero entry of θ⋆ is334

equal to k−1/2, and consider i.i.d. ξ1, . . . , ξL ∼ πk. For each j ∈ ϕ⋆, consider the j-th entry of the335

lowest-degree informative query (analogous to (3.2)), whose first moment satisfies336

EPθ⋆
[gj ] ≈ EQ[yζs(y)] · s⋆pσs⋆ · 1

L

∑L
l=1⟨θ⋆, θl⟩s

⋆−1θj ≈
Eθ∼πk

[⟨θ⋆,θ⟩s
⋆−1]√

k
≃ k2

d ·
k−(s⋆−1)

√
k

,

where the last step follows from direct calculation for θ ∼ πk. Similarly, the second moment satisfies337

EPθ⋆
[g2j ] ≈

∑
s≥s⋆ s · (pσs)2 · Eθ,θ′∼πk

[⟨θ, θ′⟩s−1] ≃ k2

d · k
−(s⋆−1),

where θ and θ′ are drawn independently from the prior πk. This calculation implies that the fluctuation338

of each entry of the aggregated gradient is of order
√
k2/d · k−(s⋆−1)/2 · n−1/2 for batch size n. To339

successfully identify the true support ϕ⋆, the signal must be larger than the fluctuation for entries340

in ϕ⋆, resulting in a sample complexity of n = rO(ks
⋆ · d/k2). In comparison to the SQ lower341

bound in Theorem 5.4, this is suboptimal by a factor d/k2. However, for s⋆ = 1, we observe that342

EPθ⋆
[gj ] = Ω(k−1) for j ∈ ϕ⋆ and EPθ⋆

[g2j ] = O(1), indicating that the support ϕ⋆ can still be343

identified using rO(k) samples. The form of the perturbation does not matter here since both ⟨θ⋆, θ⟩344

and ⟨θ, θ′⟩ are degree zero in terms of k−1. Therefore, we conjecture that our algorithm succeeds for345

s⋆ = 1 even without weight perturbation as outlined in Conjecture 5.3.346

Perturbation by groups that cover the prior. The suboptimality of the previous stragety originates347

from the fact that ϕ⋆ is sampled from a uniform distribution over
(
d
k

)
different k-sparse support sets,348

making it unlikely for two independent sets to overlap (only with k2/d probability). Then how to349

perturb the weights in a way that guarantees a significant overlap with ϕ⋆? The solution is to construct350

a polynomial-size cover for the prior πk. Specifically, we divide Sk into d subsets, where the j-th351

subset is define as Sk,j := {ϕ ∈ Sk | j ∈ ϕ}, which contains all k-sparse support sets that include352

the j-th coordinate. Now suppose θ⋆ ∈ Sk,j , then for any perturbed weight θl with support from the353

same subset Sk,j , its support overlaps with ϕ⋆ almost surely, thereby eliminating the d/k2 factor.354

In particular, considering a two-layer neural network with width d, the above strategy can be carried355

out by perturbing each neuron m using θm,1, . . . , θm,L whose support sets are sampled from the356

same group Sk,m. As a result, at least k neurons will have one or more overlapping coordinates with357

the true signal θ⋆. For these neurons, the signal in the aggregated gradient would be strong enough358

for simple thresholding methods to correctly identify the true support ϕ⋆ with rO(k⋆) samples. We359

further refine this by first projecting the aggregated gradient for each neuron onto its top-k support,360

and then selecting the strongest projected gradient to update the weights.361

Combining these yields Algorithm 2 for the sparse case, where we define the support projection362

matrix Pϕ :=
∑
i∈ϕ eie

⊤
i and the top-k operator Topk(v) := argmaxϕ⊂Sk

∥Pϕ(v)∥1, which extracts363

the k-sparse support ϕ corresponding to the largest (in absolute value) k entries of v. We set the364

polarization level γ = k−1/2, following the same balance between exploitation and exploration as in365

the uniform case, since the exploration noise is now of order k−1.366

5.2 Sample Complexity Analysis for Sparse Prior367

Theorem 5.1 (Sample complexity for sparse prior). Under Assumption 4.1, consider the sparse prior368

in (5.1) with sparsity level k satisfying ω(dι) < k < o(
√
d) for a small ι > 0. Suppose that the369
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Algorithm 2 Gradient-based Feature Learning for Sparse Signal Prior

1: Input: Initialization θ(0) = (θ
(0)
1 , . . . , θ

(0)
M ) ∈ Rd×M , where θ(0)m = em, a = a · 1 ∈ RM with

number of neurons M = d, number of iterations T ∈ N, batch size n ∈ N, polarization level
γ ∈ (0, 1), number of perturbation L ∈ N.

2: for iteration t = 0, 1, . . . , T − 1 do
3: Sample a fresh mini-batch {(z(t)i , y

(t)
i )}ni=1.

4: Perturb as Line 4 in Algorithm 1 with ξ(t)m,l
i.i.d.∼ Unif(Sk−1(ϕm,l)) and ϕm,l

i.i.d.∼ Unif(Sk,m).

5: Compute and aggregate the gradients to get g(t)m , same as Line 5&6 in Algorithm 1.
6: Find the top-k support of g(t)m and project: ϕ(t)m = Topk(g

(t)
m ), rg

(t)
m = P

ϕ
(t)
m
(g

(t)
m ) for all m.

7: Locate the neuron with the largest ∥rg(t)m ∥2: pm = argmaxm∥rg
(t)
m ∥2.

8: Update weights by gradient sharing: θ(t+1)
m = rg

(t)
xm /∥rg(t)

xm ∥2 for all m.
9: end for

10: Output: Model weights θ(T ).

event E = {|err(t)m,l,i| ≤ d−10s⋆ ,∀(m, l, i, t) ∈ [M ]× [L]× [n]× [T ]} holds with probability at least370

1−O(d−c0) for some constant c0 > 0 with (M,L, n, T ) specified as follows. Let γ = k−1/2 and371

n = Ω
(
(k log3 k)s

⋆ · log d
)
, L = Ω

(
k(s

⋆+3)/2 · log(k)s⋆−1
)
.

Then with probability at least 1 − O(k−c) for some c > 0, after running Algorithm 2 with T = 2372

iterations, there are at least Ω(M) neurons that have alignment |⟨θ(T )
m , θ⋆⟩| ≥ 1 − O(∆), where373

∆ = k−1 ∨
(
k−(s⋆−1)/2 · log(k)−3/2

)
= o(1).374

Theorem 5.1 shows that the sample complexity of Algorithm 2 is n = rO(ks
⋆

), matching the SQ lower375

bound established in Theorem 5.4 which will be presented below. Here for simplicity, we essentially376

use an infinitely large learning rate when updating the weights in Line 8 of Algorithm 2, so it takes377

only two iterations to achieve strong alignment. This is equivalent to running the same algorithm with378

a finite learning rate but with a larger number of iterations, which is omitted for brevity.379

Remark 5.2 (Implication for sparse tensor PCA). The connection between the Gaussian single-index380

model and tensor PCA has been discussed in Damian et al. (2023), by showing that estimating381

θ⋆ corresponds to a tensor PCA problem defined over the empirical Hermite tensors. Our weight382

perturbation technique can be potentially applied to iteratively solve sparse tensor PCA problems.383

Next we present the conjecture on the success of our algorithm for s⋆ = 1 discussed in Section 5.1.384

Conjecture 5.3. For dι < k < o(d) with s⋆ = 1, Algorithm 2 succeeds with sample complexity385

n = rO(k). Furthermore, the same guarantee applies even without perturbing the weights.386

Finally, we present the following SQ lower bound for the sparse prior, complementing Theorem 5.1.387

Theorem 5.4 (SQ lower bound). Consider the Gaussian single-index model in (2.1) with generative388

exponent s⋆ ≥ 1. Suppose θ⋆ is k-sparse for ω((log d)2) ≤ k ≤ d/2. Take c > 2 as a constant. For389

any (stochastic) algorithm using exp(Ω((log d)c)) calls to the VSTAT(Pθ⋆ , n) oracle with sample390

size n, in order to achieve nontrivial alignment |⟨pθ, θ⋆⟩| > ρ with probability at least 2/3, it requires391

n ≳ ks
⋆

(log d)cs⋆
, where ρ = rω(k−1) if (log d)2 < k <

√
d(log d)c, (5.2)

n ≳ ds
⋆/2

(log d)cs⋆/2 , where ρ = rω(d−1/2) if
√
d(log d)c ≤ k ≤ d/2. (5.3)

In fact, the effective SQ lower bound should be no smaller than the information-theoretic lower392

bound Ω(k log(d/k)) (Neykov et al., 2016). For k = o(
√
d), running Algorithm 2 will succeed with393

rO(ks
⋆

) samples, matching the lower bound in (5.2) for every s⋆ ≥ 1. For k = Ω(
√
d), running394

Algorithm 1 will succeed with rO(ds
⋆/2) samples, matching the lower bound in (5.3) for s⋆ ≥ 2. In395

addition, for k = Ω(
√
d) with s⋆ = 1, we conjecture n = rO(k) samples to be sufficient, where the396

information-theoretic lower bound is Ω(k log(d/k)). This gives rise to the paradigm in Figure 1 (b).397
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A Numerical Experiments555

We conduct extensive simulation experiments to validate the sample complexity result established in556

Theorem 4.2. In specific, for a fixed Gaussian single-index model, we run Algorithm 1 extensively557

over a variety of problem instances with diverse scales and report the average accuracy in terms of558

the alignment. We lay out the details of the experiment setting as follows.559

• Gaussian single-index model. We focus on the Gaussian single-index model introduced in (2.1)560

with a deterministic link function p and Gaussian additive noise. Here we set p(x) = x2 ·exp(−x2)+ϵ561

where ϵ ∼ N (0, σ2) with σ2 = 0.5. As shown in Example 2.2, the generative exponent of the function562

p is s⋆(p) = 4. In addition, the signal parameter θ⋆ is uniformly sampled from the unit sphere in Rd.563

• Neural network architecture. We adopt the two-layer neural network introduced in Section 2 with564

M set to 15 and am = 1 for all m ∈ [M ] in all experiments. Since s⋆(p) = 4, we set the activation565

function as σ(x) = h4(x), i.e., the fourth-order Hermite polynomial.566

• Training using Algorithm 1. In Algorithm 1, we set ψ(x, y) = y · σ′(x), as stated in Example 4.6.567

Such a ψ is justified by considering the following alignment loss:568

L(θ) = 1− y · f(z;θ,a) = 1−
M∑
m=1

a · σ(⟨z, θm⟩) · y, (A.1)

where recall that each entry of a is equal to a. As a result, by (A.1) we have569

a−1 · ∇θmL(θ) = y · σ′(⟨z, θm⟩) · z = ψ(⟨z, θm⟩, y) · z.

As a result, we can alternatively interpret the gradients in Algorithm 1 as those with respect to the570

alignment loss L(θ). Thus, the choice of a does not matter in this case, and we set a = 1 for simplicity.571

Furthermore, other details of Algorithm 1 are specified as follows:572

• The parameters {θn}m∈[M ] are initialized as i.i.d. random vectors in Rd uniformly sampled573

from the unit sphere.574

• We fix M = 15, a = 1, η = 3, T = 24, and L = 500 throughout all experiments with575

different values of n and d.576

• We enumerate n and d over a grid with d ∈ [32, 499] and n ∈ [5× 103, 3× 106]. Note that577

log d ∈ (3, 7), our choice of T satisfies the requirement in Theorem 4.2.578

• Choices of (d, n). We select 40 different values of d and 30 different values of n within the ranges579

d ∈ [32, 499] and n ∈ [5× 103, 3× 106], respectively. These values form an evenly spaced grid in580

terms of log n and log d. See Figure 2 for an illustration.581

• Evaluation. We report the accuracy of Algorithm 1 based on 25 repeated experiments for every582

choice of (n, d). We report two types of accuracy metrics:583

(i) Average accuracy: We report M−1
∑M
m=1 |⟨θm, θ⋆⟩| in each experiment and then average584

over the 25 experiments.585
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Figure 2: Scatter plots of (d, n) and (log d, log n). In (a) we plot n against d and in (b) we plot log n
agains log d. As shown in (b), we choose n and d such that they form an evenly-spaced grid after
logarithm.

(ii) Top-8 accuracy: Given {θm}m∈[M ] returned by the algorithm, we sort the alignment values586

{|⟨θm, θ⋆⟩|}m∈[M ]. Then we report the average of the largest 8 numbers. The rationale is587

that if the top-8 accuracy is close to one, at least half of the neurons correctly find θ⋆.588

Contour plots. After calculating these two versions of accuracy for every (d, n) pair, we generate589

the contour plots based on (log d, log n, acc(d, n)), where acc(d, n) is one of the two versions of590

average accuracy introduced above. We report these two contour plots in Figure 3 and Figure 4, where591

in Figure 3 we zoom in to a smaller range of d for better visualization. In these plots, points with the592

same color indicate (log d, log n) with the same level of accuracy.593

Validate rΘ(ds
⋆/2) sample complexity. As shown in these figures, the average accuracy and the top-8594

accuracy clearly exhibit a linear relationship. That is, for a fixed accuracy level δ, (d, n) satisfying595

acc(d, n) = δ is a line segment. That is, log n = c1 · log d+ c2. To determine c1 and c2, we further596

fit linear models for (log d, log n) with the same accuracy level δ, where δ ∈ {0.6, 0.7, 0.8}. For both597

the average accuracy and the top-8 accuracy, the coefficient c1 in the linear models is close to 2. We598

report the linear models corresponding to different accuracy levels in Table 1. This finding indicates599

that n ∝ d2. Note that s⋆ = 4. Moreover, since we compute the accuracy for all (d, n) on the grid.600

The fact that c1 ≈ 2 indicates that the rΘ(ds
⋆/2) sample complexity is sharp.601
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Figure 3: The contour plots of (log d, log n, acc(d, n)), where acc(d, n) is either the average accuracy
and top-8 accuracy. Here we zoom in to a smaller subset of d’s for better visualization. We also plot
the lines containing (log d, log n) with the same accuracy level among {0.6, 0.7, 0.8}. The slopes
of these lines are all close to 2. This indicates that n ≈ d2 samples are sufficient and necessary for
accurate estimation.
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Figure 4: The contour plots of (log d, log n, acc(d, n)), where acc(d, n) is either the average accuracy
and top-8 accuracy. We also plot the lines containing (log d, log n) with the same accuracy level
among {0.6, 0.7, 0.8}. The slopes of these lines are all close to 2. This indicates that n ≈ d2 samples
are sufficient and necessary for accurate estimation.

Table 1: Fitted linear equations of the form log n = c1 · log d+ c2 for n, d with the desired accuracy
level. Notably, the slopes of these equations are all close to s⋆/2 = 2, which shows that n ∝ ds⋆/2.

Accuracy level Average accuracy Top-8 accuracy
0.8 log(n) = 1.9058 · log(d) + 4.4516 log(n) = 1.8201 · log(d) + 4.6218
0.7 log(n) = 1.9103 · log(d) + 4.3273 log(n) = 1.9343 · log(d) + 4.0790
0.6 log(n) = 1.9640 · log(d) + 4.0361 log(n) = 1.9653 · log(d) + 3.8901

B Notation and Preliminaries602

Notations. We use N to denote the set of positive integers and N0 to denote the set of nonnegative603

integers. For vector z ∈ Rd, we denote by Rn[z] the set of polynomials of degree at most n in z with604

real coefficients. For s ∈ N, we denote by Πs the symmetric group of all permutations of [s]. We605

denote by Nd(·) and N (·) the standard normal distribution in Rd and R, respectively.606

For two tensors S ∈ (Rd)⊗s and T ∈ (Rd)⊗t where s ≥ t,607

(S[T ])j1,...,js−t
:=

d∑
i1,...,it=1

Sj1,...,js−t,i1,...,itTi1,...,it .

Here, S[T ] produces a tensor of order s − t and dimension d. We also define the symmetrization608

operation for a tensor T ∈ (Rd)⊗t as609

Sym(T )i1,...,it :=
1

t!

∑
π∈Πt

Tiπ(1),...,iπ(t)
.

The followings are some notations for the relationship between two quantities (or matrices):610

a ≃ b: There exists a constant C = O(1) such that a ≤ Cb and b ≤ Ca. Note that a and b should611

have the same sign. a = Θ(b) also has the same meaning.612

a ≊ b: a ≤ polylog(d) · b and b ≤ polylog(d) · a, and the same for a = rΘ(b).613

a ≲ b: There exists a constant C = O(1) such that a ≤ Cb, and the same for a = Ω(b). The use of614

a ≳ b is similar.615

a ⪅ b: a ≤ polylog(d) · b, and the same for a = rO(b). The use of a ⪆ b and a = rΩ(b) is similar.616

a≪ b: a ≤ (polylog(d))−1 · b. The use of a≫ b is similar.617

In addition, we denote by a = b± ε, a ≃ b± ε, a ≊ b± ε that b− ε ≤ a ≤ b+ ε, a− ε ≲ b ≲ a+ ε,618

a− ε ⪅ b ⪅ a+ ε, respectively.619

For square matrices A and B, A ⪯ B means that B −A is positive semi-definite, and A ≾ B means620

that there exists a constant C = O(1) such that C ·B −A is positive semidefinite.621
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B.1 Background on Hermite Polynomials622

The probabilist’s Hermite polynomials satisfy the following recurrence relations623

hs(x)
′ =
√
s · hs−1(x), x · hs(x) =

√
s+ 1 · hs+1(x) +

√
s · hs−1(x), (B.1)

where we adopt the convention that h−1(x) ≡ 0.624

For any function f ∈ L2(N (0, 1)), its Hermite expansion is given by625

f(x) =

∞∑
s=0

pfs · hs(x),

where we denote by pfs the s-th coefficient of the Hermite expansion of f .626

Gaussian noise operator. For ρ ∈ [−1, 1], define the Gaussian noise operator as627

Uρf(x) = Ex′∼N (0,1)

[
f(ρx+

√
1− ρ2 · x′)

]
.

Proposition 11.37 of O’Donnell (2014) shows that the Hermite expansion of Uρf is given by628

Uρf(x)
L2(N (0,1))

=

∞∑
s=0

ρs · pfs · hs(x).

A direct implication of this identity is629

Ex∼N (0,1)[Uρf(x)g(x)] = Ex∼N (0,1)[f(x)Uρg(x)] =

∞∑
s=0

ρs pfspgs. (B.2)

As a result, for any fixed w, θ ∈ Sd−1, it holds that630

Ez∼N (0,Id) [f(⟨w, z⟩)hs(⟨θ, z⟩)] = Ex∼N (0,1) [Uρf · hs(x)] = ⟨w, θ⟩s · pfs. (B.3)

Hermite tensor. Corresponding to the Hermite polynomials defined for scalar variables, we define631

the Hermite tensors over z ∈ Rd:632

hs(z) :=
(−1)s√
s!
· e∥z∥

2
2/2 · ∇se−∥z∥2

2/2 ∈ (Rd)⊗s, for s ≥ 0.

The scalar-valued Hermite polynomials and the tensor-valued Hermite tensors are related as follows:633

hs(⟨θ, z⟩) = hs(z)[θ
⊗s], ∀θ ∈ Sd−1. (B.4)

Now let f : Rd → R be a s-times differentiable function such that for all k ≤ s, every component of634

∇kf belongs to L2(N (0, Id)). Then it follows from integration by parts that635

Ez∼N (0,Id) [f(z)hs(z)] =
1√
s!
· Ez∼N (0,Id) [∇

sf(z)] . (B.5)

This is a version of Stein’s lemma for tensor-valued functions.636

C Supplementary Proofs for the Main Context637

C.1 Proofs for Section 3638

In this section, we first argue why Ex∼N (0,1)[yζs⋆(y)] = 0 is the major difficulty for vanilla (stochas-639

tic) gradient descent to achieve the information-theoretical lower bound O(d) (the same for SQ lower640

bound) when the information exponent q⋆ is larger than 2. It has been shown by Damian et al. (2024)641

that the generative exponent s⋆ for polynomial model is either 1 or 2. Consider the information642

exponent q⋆ > 2. We have the following lemma saying that the correlation Ex∼N (0,1)[yζs(y)] = 0643

for any s < q⋆.644
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Lemma C.1. Recall that ζs is the coefficient function for degree s in the decomposition of the645

likelihood ratio P(x, y)/Q(x, y) in (2.2). For any q⋆ ≥ 2, consider the Gaussian single-index model646

given by y = β0 +
∑
p≥p⋆ βphp(x) with x ∼ N (0, 1). Then for any 1 ≤ s < p⋆, EQ[yζs(y)] = 0.647

Proof. The proof can be done by noting that ζs(y) = EQ[P(x, y)/Q(x, y) · hs(x) | y], and648

EQ[yζs(y)] = EQ

[
y · EQ

[ P(x, y)
Q(x, y)

· hs(x)
∣∣∣ y]] = EP [y · hs(x)]

= β0 · Ex∼N (0,1)[hs(x)] +
∑
i≥p⋆

βi · Ex∼N (0,1)[hi(x)hs(x)] = 0,

where the second equality follows from the independence between x and y under Q.649

Therefore, the first nonzero term in the informative queries of (3.1) is of order at least p⋆. This gives650

rise to sample complexity dp
⋆−1 for vanilla online SGD (Arous et al., 2021) and dp

⋆/2 for SGD after651

smoothing the landscape (Damian et al., 2023). This sample complexity dp
⋆/2 matches the correlated652

statistical query (CSQ) lower bound with gradient of the form yϕ(z) (Abbe et al., 2023; Damian653

et al., 2022).654

C.2 Proofs for Examples of Oracle Function655

Here we complete the discussions of the specific examples of ψ in Example 4.4 and Example 4.6.656

C.2.1 Batch-reusing for polynomial link function657

We consider a polynomial link function y = p(x) =
∑
q⋆≤q′≤q βq′hq′(x) for general q⋆ ∈ N and658

βq′ ∈ R, where q⋆ is the information exponent of the link function, and we also denote it by q⋆(p)659

in the sequel. For batch-reusing, we take ψ(y, x) = yσ′(x) + yσ′(x + yσ′(x)), where activation660

function σ(x) satisfies that661

σ(x) =

Cq∑
j=0

αj · hj(x), σ′(x) =

Cq∑
j=1

√
j · αj · hj−1(x). (C.1)

Here the degree Cq ∈ N+ only depends on the degree q of the link function and is specified later,662

and each coefficient αj ∼ Unif([0, 1]). The second equality in (C.1) follows from the property663

of Hermite polynomials in (B.1). The error term err
(t)
m,l,i now comes from the difference between664

ψ(y
(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) · z

(t)
i and the exact form of the update step obtained from two consecutive665

gradient descent steps on the same data under the square loss. More specifically, let us consider a666

single neuron whose weight is wm,l and a single data point (zi, yi). Here we omit the time index t667

for convenience. Then two gradient descent step on (zi, yi) gives668

−gRe
m,l(zi, yi) =

(
yi − f(zi; {wm,l}m∈[M ])

)
· σ′(⟨wm,l, zi⟩) · zi

+
(
yi − f(zi; {w+

m,l}m∈[M ])
)
· σ′(⟨w+

m,l, zi⟩) · zi, (C.2)

where w+
m,l = wm,l + ηRe

i · (yi− f(zi; {wm,l}m∈[M ])) · σ′(⟨wm,l, zi⟩) · zi. Here ηRe
i is the learning669

rate for batch reusing, different from the learning rate η in our algorithm. More specifically, to670

fit the gradient form (C.2) into our general framework with oracle function ψ(y, x), we take the671

batch-reusing learning rate ηRe
i = 1/∥zi∥22. Then the error term is given by672

errm,l,i = −gRe
m,l(zi, yi)− ψ(yi, ⟨wm,l, zi⟩) = errm,l,i,1 + errm,l,i,2 + errm,l,i,3, (C.3)

where errm,l,i,1, errm,l,i,2, and errm,l,i,3 are given by673

errm,l,i,1 = −f(zi; {wm,l}m∈[M ]) · σ′(⟨wm,l, zi⟩),
errm,l,i,2 = −f(zi; {w+

m,l}m∈[M ]) · σ′(⟨w+
m,l, zi⟩),

errm,l,i,3 = yiσ
′(⟨wm,l, zi⟩+ yiσ

′(⟨wm,l, zi⟩) + errm,l,i,1
)

− yiσ′(⟨wm,l, zi⟩+ yiσ
′(⟨wm,l, zi⟩)

)
. (C.4)
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Proof of Corollary 4.5. To prove Corollary 4.5, it suffices to show that (i) Assumption 4.1 holds, and674

(ii) the event E holds with the desired high probability. In the following, we first verify Assumption 4.1,675

and then check the event E .676

Verifying Assumption 4.1. Note that the fact of y = p(x) being a polynomial immediately implies677

that both the square-integrable condition (Assumption 4.1(a)) and the polynomial-like tail condition678

(Assumption 4.1(c)) are satisfied. It remains to check the high-pass condition (Assumption 4.1(b)).679

Since now s⋆ ≤ 2, we only need to check the condition that |EQ[ζs⋆(y) · pψs⋆−1(y)]| > 0.680

Case 1: s⋆ = 2. In this case, we have that681

pψ1(y) = Ex∼N

[
x ·
(
yσ′(x) + yσ′(x+ yσ′(x)

))]
= y · Ex∼N

[ Cq∑
j=1

√
j · αj · x · hj−1(x) +

Cq∑
j=1

√
j · αj · x · hj−1

(
x+ yσ′(x)

)]
(C.5)

For the first summation in (C.5), only the first summand is nonzero, so we obtain682

y · Ex∼N

[ Cq∑
j=1

√
j · αj · x · hj−1(x)

]
=
√
2α2 · y. (C.6)

For the second summation in (C.5), we have the following expansion,683

y · Ex∼N

[ Cq∑
j=1

j · αj · x · hj−1

(
x+ yσ′(x)

)]

= y · Ex∼N

[ Cq∑
j=1

j · αj · x ·
j−1∑
k=0

rj−1,k · hj−k−1(x) ·
(
yσ′(x)

)k]

=

Cq−1∑
k=0


Cq∑

j=k+1

j · αj · rj−1,k · Ex∼N

[
x · hj−k−1(x) ·

(
σ′(x)

)k]︸ ︷︷ ︸
:= ςk(α)

·yk+1. (C.7)

where ς0(α), . . . , ςCq−1(α) are just polynomials of α = (α1, · · · , αCq
) (recall the definition of σ′(x)684

in (C.1)) and each rj−1,k is a positive number. Combining (C.6) and (C.7), we get the following685

decomposition of pψ1(y):686

pψ1(y) =
√
2α2 · y +

Cq−1∑
k=0

ςk(α) · yk+1.

Further using y = p(x) and the definition of ζ2(y), we get687

EQ[ζ2(y) · pψ1(y)] = EP[h2(x) · pψ1(y)]

=
√
2α2 · Ex∼N [h2(x) · p(x)] +

Cq−1∑
k=0

ςk(α) · Ex∼N
[
h2(x) · p(x)k+1

]
.

According to Proposition 5 of Lee et al. (2024), we can set Cq ∈ N+ (only depending on q) such688

that there exists a smallest I ≤ Cq such that the information exponent q⋆(pI) ≤ 2. We notice that689

in this case s⋆(p) = 2, where we abuse the notation and let s⋆(p) be the generative exponent of the690

polynomial p. In fact, s⋆(p) = 1 means EP[T (y) · h1(x)] ≡ 0 for all label transformation T . Hence,691

the only possibility is that q⋆(pI) = 2 since pI is just a special case of label transformation and we692

cannot get any first-order term from pI . Therefore, we further simplify the target quantity as693

EQ[ζs⋆(y) · pψs⋆−1(y)] =
√
2α2 · Ex∼N [h2(x) · p(x)]︸ ︷︷ ︸

:= b1

+

Cq∑
k=I

ςk−1(α) · Ex∼N
[
h2(x) · p(x)k

]︸ ︷︷ ︸
:= bk
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= b1 ·
√
2α2 +

Cq∑
k=I

bk · ςk−1(α), (C.8)

where bI ̸= 0 according to the definition of I . Now we take a closer look at the polynomials694

{ςk(α1, · · · , αCq
)}Cq−1
k=I−1. We claim that: (i) they are different polynomials and are linearly indepen-695

dent, and (ii) especially, they are all nonzero. To see these, recall that696

ςk(α1, · · · , αCq
) =

Cq∑
j=k+1

√
j · αj · rj−1,k · Ex∼N

[
x · hj−k−1(x) ·

(
σ′(x)

)k]
,

where σ′(x) =
∑Cq

j=1

√
j · αj · hj−1(x). We can calculate that for k = 0, ς0(α1, · · · , αCq

) =
√
2α2697

which is a non-zero polynomial. For k = 1, we have that698

ς1(α1, · · · , αCq
) =

Cq∑
j=2

√
j · αj · rj−1,1 · Ex∼N [x · hj−2(x) · σ′(x)]

= 2r1,1 · α2
2 +

Cq∑
j=3

√
j · αj · rj−1,1 · Ex∼N [x · hj−2(x) · σ′(x)]

which is non-zero (since in the summation from j = 3 to Cq there would be no term in the form of699

c22) and is linearly independent of of ς0 because each terms in the summation here has degree exactly700

2. Now consider for k ≥ 2,701

ςk(α1, · · · , αCq
) =

√
2(k + 1)k · rk,k · αk−1

1 α2αk+1

+

Cq∑
j=k+2

√
jαjrj−1,k · Ex∼N

[
x · hj−k−1(x) ·

(
σ′(x)

)k]
.

Again, this polynomial is non-zero (since in the summation from j = k + 2 to Cq there would be no702

term in the form of αk−1
1 α2αk+1) and is linearly independent of ς0, · · · , ςk−1 due to the fact that the703

highest degree of these polynomials is no larger than k, and the order for each term in ςk is exactly704

k+1. Thus we have proved the two claims by induction. Now recall that we are aiming at proving the705

RHS of (C.8) is non-zero. By our two claims just proved, the RHS of (C.8) is a linear combination of706

Cq − I + 2 linearly independent and non-zero polynomials where at least one of the combination707

coefficient is non-zero (which is bI ). Thus we obtain that the RHS of (C.5) is a non-zero polynomial708

of (α1, · · · , αCq
) and its zeros form a zero-measure set. This proves that with probability 1 over the709

randomness of (α1, · · · , αCq ), the high-pass condition holds.710

Case 2: s⋆ = 1. For this case of s⋆ = 1, the proof is almost the same as that for s⋆ = 2, where we711

additionally utilize the fact that polynomial link function with generative exponent s⋆ = 1 can not be712

an even polynomial (Example 2.2) and thus there always exists some I ≤ Cq ∈ N+ such that the713

information exponent q⋆(pI) = 1 (see Proposition 5 of Lee et al. (2024)). With this fact, repeating714

the above argument can give the desired high-pass property.715

Verifying the event E . Now we verify that the desired event716

E =
{
|err(t)m,l,i| ≤ d

−10s⋆ ,∀(m, l, i, t) ∈ [M ]× [L]× [n]× [T ]
}

holds with probability at least 1−O(d−c0) for some constant c0 > 0 that we specify later. With (C.3)717

and (C.4), it suffices to look at each of the error terms err(t)m,l,i,1, err(t)m,l,i,2, and err
(t)
m,l,i,3 respectively.718

For err(t)m,l,i,1,719 ∣∣∣err(t)m,l,i,1∣∣∣ ≤ M∑
m′=1

|am′ | ·
∣∣∣σ(⟨w(t)

m′,l, zi⟩)
∣∣∣ · ∣∣∣σ′(⟨w(t)

m,l, zi⟩)
∣∣∣ (C.9)

Note that {⟨w(t)
m,l, zi⟩}m∈[M ] are standard Gaussians since {w(t)

m,l}m∈[M ] ⊂ Sd−1. Therefore, with720

probability at least 1− d−c0 for some constant c0 > 0, we have that |⟨wm,l, zi⟩| = rO(1). Meanwhile,721
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since that σ and σ′ are both polynomials with constant order and bounded coefficients, and that722

M = O(d), then by taking am = d−11s⋆ , we conclude from (C.9) that723 ∣∣err(t)m,l,i,1∣∣ ≤ rO(d−10s⋆). (C.10)

For the second error term err
(t)
m,l,i,2, similarly we have that724 ∣∣∣err(t)m,l,i,2∣∣∣ ≤ ∑
m′∈[M ]

|am′ | ·
∣∣∣σ(⟨(w(t)

m′,l)
+, zi⟩)

∣∣∣ · ∣∣∣σ′(⟨(w(t)
m,l)

+, zi⟩)
∣∣∣ . (C.11)

Note that the one-step updated weights satisfy that725 ∣∣∣⟨(w(t)
m,l)

+, zi⟩
∣∣∣ = ∣∣∣⟨w(t)

m,l, zi⟩+ yi · σ′(⟨w(t)
m,l, zi⟩) + err

(t)
m,l,i,1

∣∣∣ = rO(1), (C.12)

with probability at least 1− d−c0 since yi = p(⟨θ⋆, zi⟩) and p is also a polynomial of constant degree726

and coefficients. Therefore, with the choice of am’s, by (C.11), we conclude that727 ∣∣∣err(t)m,l,i,2∣∣∣ ≤ rO(d−10s⋆). (C.13)

Finally, regarding err
(t)
m,l,i,3, note that with the same argument as (C.12), we know that with probability728

at least 1− d−c0 , both ⟨w(t)
m,l, zi⟩+ yi ·σ′(⟨w(t)

m,l, zi⟩)+ err
(t)
m,l,i,1 and ⟨w(t)

m,l, zi⟩+ yi ·σ′(⟨w(t)
m,l, zi⟩)729

are rO(1). Since σ′ is a polynomial, it is rO(1)-Lipschitz continuous for inputs that are rO(1). Therefore,730

combined with (C.10) that we have proved, we can obtain that731 ∣∣err(t)m,l,i,3∣∣ ≤ |yi| · rO
(
|err(t)m,l,i,1|

)
= rO(d−10s⋆). (C.14)

Finally, combining (C.10), (C.13), and (C.14), we obtain that for given (m, l, i, t), with probability at732

least 1−O(d−c0), it holds that733 ∣∣err(t)m,l,i∣∣ = rO(d−10s⋆).

Finally, taking c0 as a constant that is larger than 2 and applying a union bound argument, we can734

obtain that735

Pr(E) ≥ 1−MLnT · rO(d−c0) ≥ 1− rΘ(d2) · rO(d−c0) ≥ 1− rO(d−c
′
0)

for some other constant c′0 > 0. Here we have applied our choice of (M,L, n, T ) in our algorithm736

(see Algorithm 1, Algorithm 2). Thus we verify the property of the event E , proving Corollary 4.5.737

C.2.2 Modified loss for general s⋆ ≥ 1738

Here we give a specific choice of the activation function σ and the loss function ℓ. We mainly focus on739

the situation where Qy has a continuous cumulative distribution function FQy
with bounded density740

fQy
. For the situation where Qy is a discrete distribution (e.g., classification task), we discuss them in741

the end of this section. For the activation function σ, we let σ(x) := (1/
√
s⋆) · hs⋆(x). Since then,742

pψs(y) = EQ[ψ(x, y) · hs(x) | y] = EQ[σ
′(x) · hs(x)] · ℓ′(y) = 0, ∀s < s⋆ − 1. (C.15)

Regarding the choice of the loss function ℓ, we remark that if one chooses a fixed loss function, there743

always exist instances such that the second assumption in the high-pass condition fails. To address744

this issue, we propose to construct a random loss function ℓ. To rule out pathological examples of the745

underlying distribution P, we make the following assumption on the coefficient function ζs⋆ .746

Assumption C.2. We assume that the expansion of rζs⋆ := ζs⋆ ◦ F−1
Qy

: [0, 1] 7→ R on the Fourier747

basis {φi(x)}i≥0 of [0, 1] has a non-zero coefficient of order at most D = O(1).748

We then choose the loss function ℓ as the following,749

ℓ′(y) =

D∑
i=0

αi · φi ◦ FQy
(y), αi ∼ Unif([0, 1]), ∀0 ≤ i ≤ D.
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Notice that FQy can be estimated from data using a one dimensional density estimator. Thus here we750

directly assume the accessibility of the function FQy . This further gives that751

EQ[ζs⋆(y) · pψs⋆−1(y)] = EQ[ζs⋆(y) · ℓ′(y)] =
D∑
i=0

αi · EUnif([0,1])

[
rζs⋆(ry) · φi(ry)

]
, (C.16)

which is a non-zero polynomial of the coefficients {αi}i≤D due to Assumption C.2.752

Proof of Corollary 4.7. To prove Corollary 4.7, it suffices to show that (i) Assumption 4.1 holds, and753

(ii) the event E holds with the desired high probability. In the following, we first verify Assumption 4.1,754

and then check the event E .755

Verifying Assumption 4.1. First, since σ′ is a polynomial and ℓ′ is bounded (the Fourier basis is756

bounded and D = O(1)), we know that both Assumption 4.1(a) and Assumption 4.1(c) are satisfied.757

Then, by the discussions before the proof, we know from (C.15) that the first condition in the high-pass758

assumption (Assumption 4.1(b)) is satisfied. Furthermore, according to (C.16) and Assumption C.2,759

EQ[ζs⋆(y) · pψs⋆−1(y)] is a non-zero polynomial of the coefficients {αi}i≤D and thus its zeros form760

a measure-zero set. This means that with probability 1 over the randomness of (α1, · · · , αD), the761

second condition in the high-pass assumption is also satisfied. This verifies Assumption 4.1.762

Verifying the event E . Recall our definition in Example 4.6, the error term is defined as763

err
(t)
m,l,i =

(
ℓ′(yi)− ℓ′

(
yi − f(zi; {w(t)

m,l}m∈[M ]})
))
· σ′(⟨w(t)

m,l, zi⟩).

First, since w(t)
m,l ∈ Sd−1, ⟨w(t)

m,l, zi⟩ is a standard Gaussian and therefore |⟨w(t)
m,l, zi⟩| = rO(1) with764

probability at least 1− d−c0 for some constant c0 > 0. Since σ′ is a polynomial of constant degree,765

we then obtain that |σ′(⟨w(t)
m,l, zi⟩)| = rO(1) with probability at least 1− d−c0 . Second, consider that766

the second derivative of the loss function ℓ′′(y) is given by767

ℓ′′(y) =

D∑
i=0

αi · φ′
i

(
FQy

(y)
)
· fQy

(y),

which satisfies |ℓ′′(y)| = O(1) since the derivative of the Fourier basis is still bounded and that the768

density of Qy is assumed to be bounded. Therefore, we have769

ℓ′(yi)− ℓ′
(
yi − f(zi; {w(t)

m,l}m∈[M ]})
)
= O

(∣∣∣f(zi; {w(t)
m,l}m∈[M ]})

∣∣∣)
= O

(
M∑
m=1

|am| ·
∣∣∣σ(⟨w(t)

m,l, zi⟩)
∣∣∣) .

Since σ is a polynomial of constant degree and ⟨w(t)
m,l, zi⟩ are all standard Gaussians, we have that770

|σ(⟨w(t)
m,l, zi⟩)| = rO(1) with probability at least 1−O(d−c0). Now given that M = O(d) and taking771

am = d−11s⋆ , we have that772

ℓ′(yi)− ℓ′
(
yi − f(zi; {w(t)

m,l}m∈[M ]})
)
= rO(d−10s⋆),

with probability at least 1−O(d−c0). Therefore, for any given (m, l, i, t), with probability at least773

1−O(d−c0), it holds that774 ∣∣err(t)m,l,i∣∣ = rO(d−10s⋆) · rO(1) = rO(d−10s⋆).

Finally, as in the proof of Corollary 4.5, we take c0 as a constant that is larger than s⋆ + 1, and apply775

a union bound argument, by which we can obtain that776

Pr(E) ≥ 1−MLnT · rO(d−c0) ≥ 1− rΘ(ds
⋆+1/2) · rO(d−c0) ≥ 1− rO(d−c

′
0)

for some other constant c′0 > 0. Thus we verify the property of the event E , proving Corollary 4.7.777
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Remark C.3 (Discrete labels). For the case of discrete label y that supports on a finite set Y (e.g.,778

classification tasks), the construction of ψ is somehow more direct. In this case, we can still consider779

an oracle function in the form of ψ(y, x) = σ′(x) · φ(y) for some function φ(y). The activation780

function σ(x) = (1/
√
s⋆) · hs⋆(x) and the function φ(y) is a random function given by781

φ(y) ∼ Unif([0, 1]), ∀y ∈ Y. (C.17)

On the one hand, we can directly conclude as in (C.15) that pψs(y) = 0 for all s < s⋆ − 1. On the782

other hand, we have that783

EQ[ζs⋆(y) · pψs⋆−1(y)] = EQ[ζs⋆(y) · φ(y)] =
∑
y∈Y

Qy(y) · ζs⋆(y) · φ(y).

By the definition of generative exponent (Definition 2.1), EQy
[ζs⋆(y)

2] > 0 and thus at least one of784

{Qy(y) · ζs⋆(y)}y∈Y is non-zero. Thus under (C.17), EQ[ζs⋆(y) · pψs⋆−1(y)] is non-zero with proba-785

bility 1 over the randomness in φ. Thus we have verified Assumption 4.1(b). Assumption 4.1(a) and786

Assumption 4.1(c) can be verified in the same way as for the continuous case, and thus Assumption 4.1787

is checked. Finally, we remark that in the discrete case we do not attempt to reduce the oracle function788

from certain loss derivative and thus we simply set the error terms err as zero. Thus all the conditions789

in Theorem 4.2 hold and Corollary 4.7 is proved.790

D Proof Sketch of the Main Theorem for Uniform Prior791

For simplicity, denote ρ(t)m := ⟨θ(t)m , θ⋆⟩, the alignment between the weights of neuron m and the792

signal θ⋆ at time t. Recall from Line 8 in Algorithm 1 that the update for neuron m at time step t is793

θ(t+1)
m =

θ
(t)
m + ηsg

(t)
m

∥θ(t)m + ηsg
(t)
m ∥2

. (D.1)

This implies that the alignment of the next iteration, ρ(t+1)
m , is a convex combination of the previous794

alignment ρ(t)m and the alignment of the update step ⟨sg(t)m , θ⋆⟩ = ⟨g(t)m , θ⋆⟩/∥g(t)m ∥2. Therefore, to795

show that the alignment improves after one iteration, we need to first analyze the scale of ⟨g(t)m , θ⋆⟩796

and ∥g(t)m ∥2; then we will be able to characterize the improvement of ρ(t)m across iterations.797

Alignment of the update step ⟨sg(t)m , θ⋆⟩. To this end, we calculate the first moment and and second798

moment of g(t)m over the randomness of the data {(z(t)i , y
(t)
i )}ni=1, and combining these leads to the799

concentration of ⟨g(t)m , θ⋆⟩/∥g(t)m ∥2. More specifically, for the first moment of g(t)m , we have800

⟨EPθ⋆
[g(t)m ], θ⋆⟩ ≈ ρ(t)m γ · (|ρ(t)m |γ + d−1/2)s

⋆−2,

while the magnitude of EPθ⋆
[g

(t)
m ] in any other direction orthogonal to θ⋆ is of strictly higher order. For801

the second moment of g(t)m , setting γ = rΘ(d−1/4), it can be shown that for any direction v ∈ Sd−1,802

EPθ⋆
[⟨g(t)m , v⟩2] = rO(d−(s⋆−1)/2). Now chooing n = rΩ(ds

⋆/2), it follows from Bernstein-type803

concentration inequality that the fluctuation of ⟨g(t)m , v⟩ is of the same order rO(d−s
⋆/2+1/4) for any804

direction v ∈ Sd−1. Therefore, with high probability,805

⟨g(t)m , θ⋆⟩ ≥ ρ(t)m γ · (|ρ(t)m |γ + d−1/2)s
⋆−2 − rO(d−s

⋆/2+1/4),

∥g(t)m ∥2 ≤ ρ(t)m γ · (|ρ(t)m |γ + d−1/2)s
⋆−2 + rO(d−s

⋆/2+3/4).
(D.2)

Phase 1: from d−1/2 to weak alignment. Due to random initialization, it holds with high prob-806

ability that ρ(0)m = O(d−1/2) for Ω(M) many neurons. Therefore, it suffices to consider a neuron807

with ρ(t)m = Ω(d−1/2). When Ω(d−1/2) ≤ ρ(t)m ≤ O(1), by choosing γ = rΘ(d−1/4), we can ensure808

that the first term in the lower bound for ⟨g(t)m , θ⋆⟩ in (D.2) dominates the rO(d−s
⋆/2+1/4) fluctuation.809

Based on this, we can leverage (D.2) to further show that ⟨sg(t)m , θ⋆⟩ = ⟨g(t)m , θ⋆⟩/∥g(t)m ∥2 ≥ (1+c)ρ
(t)
m810

for a constant c > 0. Consequently, it follows from (D.1) that811

ρ(t+1)
m ≥ (1 + c)ρ(t)m for some constant c > 0.
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Therefore, it takes O(log d) many steps for ρ(t)m to increase from d−1/2 to O(1). During this period,812

the dynamics will go through two phases separated by a critical alignment level ρ⋆ such that813

ρ(t)m γ · (|ρ(t)m |γ + d−1/2)s
⋆−2 ≈ rO(d−s

⋆/2+3/4),

which gives that ρ⋆ = rΘ(d−1/4). After the alignment ρ(t)m reaches ρ⋆, there is a short period where814

ρ
(t)
m grows rapidly as ρ(t+1)

m /ρ⋆ ≥ (ρ
(t)
m /ρ⋆)s

⋆−1, until the alignment reaches d−1/4+1/4(s⋆−1). The815

length of this period is very short compared to the other periods on the road to weak alignment.816

Phase 2: from weak to strong alignment. Finally, after ρ(t)m grows to a constant scale, we need to817

track the value of 1− ρ(t)m . Again using (D.2), we can show that 1− ρ(t+1)
m ≤ (1 + c)(1− ρ(t)m ) for818

some constant c > 0. Hence, it takes another O(log d) steps to eventually achieve strong alignment.819

E Proof of the Main Theorem for the Uniform Prior820

Now we present the proof for Theorem 4.2. We introduce a shorthand ρ = ⟨θ, θ⋆⟩ for the alignment821

between θ and θ⋆. This shorthand inherits the subscript and superscript of θ as well, i.e., ρ(t)m =822

⟨θ(t)m , θ⋆⟩.823

Recall from Algorithm 1 that at the t-th step, given the normalized gradient step g(t)m = g
(t)
m /∥g(t)m ∥2,824

the updated weight parameter is given by825

θ(t+1)
m =

θ
(t)
m + ηg

(t)
m /∥g(t)m ∥2∥∥θ(t)m + ηg
(t)
m /∥g(t)m ∥2

∥∥
2

.

Note that the alignment ⟨θ(t+1)
m , θ⋆⟩ depends on the alignment of the previous iterate ⟨θ(t)m , θ⋆⟩ and826

the alignment of the current update step ⟨g(t)m /∥g(t)m ∥, θ⋆⟩, so we first need to analyze the latter.827

Here, we stop to introduce an immediate result that is crucial in characterizing the alignment.828

Almost orthogonality of smoothing noise. Recall that the perturbated weights are w
(t)
m,l =829

(γθ
(t)
m + ξm,l)/∥γθ(t)m + ξm,l∥2, where ξm,l

i.i.d.∼ Unif(Sd−1). Due to the high dimensionality, ξm,l is830

almost orthogonal to any designated direction with high probability. In the context, we are primarily831

interested in the alignment with θ⋆. Correspondingly, we decompose g(t)m with respect to the following832

orthonormal basis833

{v(t)m,1 = θ⋆, v
(t)
m,2 = (1− ρ2)−1/2 · (θ(t)m − ⟨θ(t)m , θ⋆⟩ · θ⋆), v(t)m,3, . . . , v

(t)
m,d} (E.1)

We justify this property by defining the following nice event for ϵ > 0:834

E(t)m (ϵ) =
{

max
1≤i≤d

|⟨ξm,l, v(t)m,i⟩| < ϵ, ∀l ∈ [L]
}
.

This event helps in characterizing the alignment between the expected gradient EPθ⋆
[g

(t)
m ] and the835

signal θ⋆. Additionally, we define another event for rϵ > 0:836

rE(t)m (rϵ) =
{
|⟨ξm,l, ξm,l′⟩| < rϵ, ∀l, l′ ∈ [L] s.t. l ̸= l′

}
.

This event controls the correlation between the noise vectors, which helps in controlling the fluctuation837

of the gradient. The following lemma provides some direct benefits of these events.838

Lemma E.1 (Polarized weight on the nice event). For the orthonormal directions839

{θ⋆, v(t)m,2, . . . , v
(t)
m,d} defined in (E.1), suppose that the corresponding nice event E(t)m (ϵ) ∩ rE(t)m (rϵ)840

holds and the polarization level γ ∈ (0, 1/2). Then we have for any l ∈ [L] that841

|⟨w(t)
m,l, θ

⋆⟩| ≤ 2(γ|⟨θ(t)m , θ⋆⟩|+ ϵ), |⟨w(t)
m,l, vm,1⟩| ≤ 2

(
γ

√
1− ⟨θ(t)m , θ⋆⟩2 + ϵ

)
,

|⟨w(t)
m,l, v

(t)
m,i⟩| ≤ 2 · ϵ, 2 ≤ i ≤ d.

Additionally, for any l ̸= l′, we have that842

⟨w(t)
m,l, w

(t)
m,l′⟩ ≤ 4(γ2 + 2γϵ+ rϵ).

Proof of Lemma E.1. See Appendix E.3.843
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Characterizing ⟨g(t)m , θ⋆⟩. Note that g(t)m = n−1
∑
i g

(t)
m,i, where844

g
(t)
m,i =

1

L

L∑
l=1

(
ψ(y

(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) · z

(t)
i − pψ1(y

(t)
i ) · wm,l

)
.

We characterize the alignment ⟨g(t)m , θ⋆⟩/∥g(t)m ∥2 in Appendix E.1 with two steps, stated in two key845

propositions as follows:846

1. In Proposition E.3, we analyze the magnitude of EPθ⋆
[⟨g(t)m , θ⋆⟩] and ∥EPθ⋆

[P⊥
θ⋆⟨g

(t)
m , θ⋆⟩]∥.847

2. In Proposition E.4, we control the fluctuation of ⟨g(t)m , θ⋆⟩ around its expectation using the848

polynomial-tail like property in Assumption 4.1(c).849

Both propositions are established under the nice event E(t)m (ϵ) ∩ rE(t)m (rϵ). The proof of these propo-850

sitions is deferred to Appendix E.3. Finally, with these two propositions, we prove Theorem 4.2 in851

Appendix E.2.852

E.1 Properties of the Gradient Step853

In this part, we characterize the alignment of normalized update g(t)m /∥g(t)m ∥ with the signal θ⋆, given854

θ
(t)
m . Since we are focusing on the one step behavior for a fixed neuron m ∈ [M ], we omit the neuron855

index m and time index t in the sequel. To facilitate the presentation, we propose the following856

simplified setup that extract all the essential elements to describe the one-step behavior.857

Definition E.2. Fix θ and θ⋆ and let ρ = ⟨θ, θ⋆⟩. Suppose the data points (z1, y1), . . . , (zn, yn) are858

i.i.d. generated from Pθ⋆ . Define wl = (γθ + ξl)/∥γθ + ξl∥2 for l = 1, . . . , L, where ξ1, . . . ξL
i.i.d.∼859

Unif(Sd−1) are independent of {(zi, yi)}ni=1. Given the oracle ψ : R× R→ R, we define860

g =
1

nL

n∑
i=1

L∑
l=1

(
ψ(yi, ⟨wl, zi⟩) · zi − pψ1(yi) · wl

)
.

To describe the associated good event, we fix an orthonormal basis:861

v1 = θ⋆, v2 =
θ − ρθ⋆√
1− ρ2

, v3, . . . , vd,

and define862

E(ϵ) =
{
|⟨ξl, θ⋆⟩| < ϵ, max

2≤i≤d
|⟨ξl, vi⟩| < ϵ, ∀l ∈ [L]

}
;

rE(rϵ) = {|⟨ξl, ξl′⟩| < rϵ, ∀l, l′ ∈ [L] s.t. l ̸= l′} .

As mentioned in Appendix D, we can reduce this problem to first characterizing EPθ⋆
[g], and then863

control the fluctuation of g around its expectation. To this end, we first introduce a lemma that864

characterizes the first moment of the gradient step. This lemma is valid for both the non-sparse and865

sparse setting and is helpful in understanding the structure of the expected gradient.866

Lemma H.2 (Decomposition of the first moment). Suppose that we are working with the setting in867

Definition E.2, where the oracle function ψ follows Assumption 4.1. Then it holds that868

EPθ⋆
[g] =

∑
s≥s⋆

EQ[ζs(y) · pψs−1(y)] ·
√
s

L

L∑
l=1

⟨wl, θ⋆⟩s−1 · θ⋆

+
∑
s≥s⋆

EQ[ζs(y) · pψs+1(y)] ·
√
s+ 1

L

L∑
l=1

⟨wl, θ⋆⟩s · wl.

Proof of Lemma H.2. See Appendix H.869
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One can easily see that the first summation term corresponds to the signal, while the second corre-870

sponds to the resilience of current weight. The structure of wl guarantees ⟨wl, θ⋆⟩ is small, therefore871

only the leading term in the geometric series above is dominant. Also we note that the leading term872

from the signal is larger than the leading term from the resilience, which indicates that the expected873

gradient is highly aligned with the true signal. This is justified in the next proposition.874

Before stating it, we fix M to be a sufficiently large constant that does not scale with d and T =875

O(log d). The involvement of M,T here is merely for the union bound argument in Appendix E.2.876

Proposition E.3 (Alignment of expected gradient). Suppose that we are working with the setting in877

Definition E.2, where the oracle function ψ follows Assumption 4.1. Additionally, we set γ = o(1),878

L = Ω
(
(ϵ∨ γ)s⋆−1 · ds⋆/2 ∨ (d log d)

)
and ϵ = o(1) is chosen such that Pr(E(ϵ)) = 1−O(d−s

⋆/2).879

Then there exists a {ξl}l∈[L]-measurable event E1 with Pr(E1) ≥ 1− d−c(MT )−1, such that on the880

event E1 ∩ E(ϵ), it holds that881

⟨EPθ⋆
[g], θ⋆⟩ ≃

{
γρ · (γ|ρ|+ d−1/2)s

⋆−2 if s⋆ is even;
(γ|ρ|+ d−1/2)s

⋆−1 if s⋆ is odd,

and that882 ∣∣∥EPθ⋆
[g]∥2 − |⟨EPθ⋆

g, θ⋆⟩|
∣∣ ≲ (γ|ρ|+ d−1/2)s

⋆

,

as long as γ|ρ| = ω(d−1).883

Proof of Proposition E.3. See Appendix E.3.884

From this proposition, it is already clear that the expected gradient is highly aligned with the signal885

θ⋆ in the sense that ∥P⊥
θ⋆EPθ⋆

[g]∥2 < |⟨EPθ⋆
[g], θ⋆⟩| whenever γ|ρ| = ω(d−1). Later we will see886

that this is indeed the case during the trajectory of Algorithm 1.887

Proposition E.4 (Fluctuation of mini-batch gradient). Under the simplified setting introduced in888

Definition E.2 where ψ : R× R→ R follows Assumption 4.1. Suppose that we choose ϵ and rϵ such889

that890

ϵ2 ≤ rϵ≪ 1; 2γϵ ≤ rϵ.

Also, suppose that sample size891

n = Ω
((

(γ2 + rϵ)s
⋆−1 + L−1

)−1 · log(d)2Cp+2
)

where Cp is defined in Assumption 4.1(c). Then there exists a {(yi, zi)}i∈[n]-measurable event E2892

with Pr(E2c) ≤ d−c · (MT )−1. And it holds on E2 ∩ E(ϵ) ∩ rE(rϵ) that893

∣∣⟨g, θ⋆⟩ − ⟨EPθ⋆
[g], θ⋆⟩

∣∣ ≲
√(

(γ2 + rϵ)s⋆−1 + L−1
)
· log(d)

n
,

and that894

∥∥g − EPθ⋆
[g]
∥∥
2
≲

√(
(γ2 + rϵ)s⋆−1 + L−1

)
· d log(d)

n
.

Proof of Proposition E.4. See Appendix E.3.895

E.2 Proof of the Main Theorem for Uniform Prior896

Now we are ready to present the proof of Theorem 4.2.897

Proof of Theorem 4.2. We first establish the good events required for the proof, characterize the898

properties of the update step on these events, and then put things together to establish the alignment899

of the model weights with the signal.900

27



Preparations. To start with, we clarify the event we will work with by verifying that our configu-901

ration is compatible with the conditions in Proposition E.3 and Proposition E.4. Recall that we set902

L = Ω
(
d(s

⋆−1)/2 ∨ (d log d)1/2
)

and is at most polynomial in d, the scale of L clearly satisfy that903

L = Ω
(
(d1/2ϵ)s

⋆ ∨ (d log d)
)
. During our algorithm, γ = (d−1 · log d)1/4 = o(1) is fixed. Choosing904

ϵ = d−1/2 log d, we have by Lemma J.6 that for any t and m, it holds that905

1− Pr(E(t)m (ϵ)) ≤ Ld ·
(
exp(−d/16) + d− log d/4

)
,

which decays faster than any constant-degree polynomial in d. Therefore, for sufficiently large d, it906

holds that Pr
(
E(t)m (ϵ)

c)
= O(d−s

⋆/2). So far, we see that all the conditions in Proposition E.3 are907

satisfied and we denote the associated event as E(t)m,1.908

Next, we verify the conditions in Proposition E.4. We choose rϵ =
√
4
(
c+ logd(MTL2)

)
· d−1 log d,909

then it holds by Lemma J.6 that910

1− Pr
(

rE(t)m (rϵ)
)
≤ L2 ·

(
exp(−d/16) + d−rϵ2·log d/4) ≲ d−c/MT.

Additionally, we see that both ϵ2 ≤ rϵ≪ 1 and 2γϵ ≤ rϵ is satisfied for sufficiently large d. It is easily911

verified that our choice of L = Ω
(
d(s

⋆+1)/2 ∨ (d log d)
)

clearly meets the condition that912

L ≳ (ϵ ∨ γ)s
⋆−1 · ds

⋆/2 ∨ d log d

we have that the sample size threshold is now913

log(d)2Cp+2(
(γ2 + rϵ)s⋆−1 + L−1

) ≲ log(d)2Cp+2 · d(s
⋆−1)/2,

which is satisfied by our choice n = Θ
((

(d log d)s
⋆/2 ∨ d log d

)
log d

)
. Hence, all the conditions in914

Proposition E.4 are satisfied and we denote the associated event as E(t)m,2.915

Recalling that the gradient in Definition E.2 does not include the error term err
(t)
m,l,i, we additionally916

need an event that controls the norm of the inputs zi
(t)
2 , which helps to control ∥err(t)m,l,i · zi∥2. For917

this purpose, we define918

E(t)m,3 =

{
max
i∈[n]
∥z(t)i ∥2 ≤

√
d

}
.

By standard Bernstein’s inequality, we have that Pr
(
Ecm,3

(t)
)
≤ Ld · exp{−d/8} = O(exp{−C ′d})919

for some C ′ > 0. To put things together, we work on the following event:920

E =

M⋂
m=1

T⋂
t=1

(
E(t)m (ϵ) ∩ rE(t)m (rϵ) ∩ E(t)m,1 ∩ E

(t)
m,2 ∩ E

(t)
m,3

)
,

which is of Pr(E) ≥ 1−O(d−c) for some c > 0 by the union bound argument. Denote921

sg(t)m =
1

nL

n∑
i=1

L∑
l=1

(
ψ(y

(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) · z

(t)
i − pψ1(y

(t)
i ) · wm,l

)
,

then sg
(t)
m and the mini-batch data {(y(t)i , z

(t)
i )}i∈[n] match the definition in Definition E.2, which922

allows us to apply Proposition E.3 and Proposition E.4. Thanks to the event E(t)m,3, we always have for923

any v ∈ Sd−1 that924 ∣∣⟨g(t)m , v⟩ − ⟨sg(t)m , v⟩
∣∣ ≤ ∣∣∥g(t)m ∥2 − ∥sg(t)m ∥2∣∣
≤ d1/2 ·max

l,i
|err(t)m,l,i|

≤ d−9s⋆ . (E.2)
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In the sequel, we restrict our attention to neurons that have d−1/2/2 alignment, i.e., the index m such925

that |⟨θ(0)m , θ⋆⟩| ≥ d−1/2/2. From now on, we will drop the neuron index m and the iteration index926

(t) in the following analysis for simplicity. The updated weight parameter is denoted as θ′, and the927

alignment after the update is denoted as ρ′ = ⟨θ′, θ⋆⟩. Note that for large M ≫ 1, the number of928

neurons with initial alignment |ρ| ≥ d−1/2/2 is at least Ω(M). For our convenience, in the following929

we will denote by930

κ :=
n

(d log d)s⋆/2 ∨ d log d
· (log d)−1 = Ω(1).

Under the preceding configuration, Proposition E.4 and Eq. (E.2) together imply that the fluctuations931

of ⟨g, θ⋆⟩ can be further bounded by932

∣∣⟨g, θ⋆⟩ − EPθ⋆
[⟨sg, θ⋆⟩]

∣∣ ≲√ ((γ2 + rϵ)s⋆−1 + L−1) · log(d)
n

+
∣∣⟨sg, θ⋆⟩ − ⟨g, θ⋆⟩∣∣

≲

√
(d−1 log d)(s⋆−1)/2 · log(d)

n
+ d−9s⋆

=

{
d−(2s⋆−1)/4 · (log d)−1/4 · κ−1/2 if s⋆ ≥ 2,

d−1/2 · (log d)−1/2 · κ−1/2 if s⋆ = 1.
(E.3)

On the other hand, we have by Proposition E.3 and Eq. (E.2) that933

EPθ⋆
[⟨g, θ⋆⟩] ≳ EPθ⋆

[⟨sg, θ⋆⟩]−
∣∣⟨g, θ⋆⟩ − EPθ⋆

[⟨sg, θ⋆⟩]
∣∣

≥ |ρ|γ(|ρ|γ + d−1/2)s
⋆−2 − d−9s⋆

≥ d−(2s⋆−1)/4 · (log d)1/4,

whenever |ρ|γ = Ω(d−3/4). Therefore, when κ is sufficiently large, we have the fluctuations to be934

strictly bounded by half of the signal strength. Thus, we have935

|⟨g, θ⋆⟩| ≥ 1

2
· |⟨EPθ⋆

[sg], θ⋆⟩|.

For the norm of g, we have that936

∥g∥2 ≤
∣∣∥g∥2 − ∥sg∥2∣∣+ ∣∣∥sg∥2 − ∥EPθ⋆

[sg]∥2
∣∣

+
∣∣∥EPθ⋆

[sg]∥2 − EPθ⋆
[⟨sg, θ⋆⟩]

∣∣+ ∣∣EPθ⋆
[⟨sg, θ⋆⟩]

∣∣
≤ d−9s⋆ + ∥sg − EPθ⋆

[sg]∥2 +
∣∣∥EPθ⋆

[sg]∥2 − ⟨EPθ⋆
[sg], θ⋆⟩

∣∣+ |⟨EPθ⋆
[sg], θ⋆⟩]|

≲
∣∣EPθ⋆

[⟨sg, θ⋆⟩]
∣∣+ (γ|ρ|+ d−1/2)s

⋆

+

√
(d−1 log d)(s⋆−1)/2 · d log d

n
, (E.4)

where in the second inequality, we apply Eq. (E.2) and the triangular inequality that
∣∣∥sg∥ −937 ∥∥EPθ⋆

[sg]
∥∥∣∣ ≤ ∥∥sg − EPθ⋆

[sg]
∥∥. And the last inequality is deduced by combining the result Propo-938

sition E.3 and the fact that d−9s⋆ ≪ d−s
⋆/2. For the leading term, it holds by Proposition E.3939

that940

|⟨EPθ⋆
[sg], θ⋆⟩| ≃

{
(|ρ|γ + d−1/2)s

⋆−1 if s⋆ is odd,
|ρ|γ(|ρ|γ + d−1/2)s

⋆−2 if s⋆ is even.
(E.5)

Recall that the alignment admits the following iterative update rule:941

|⟨θ′, θ⋆⟩| =
∣∣∣∣〈 θ + ηG

∥θ + ηG∥2
, θ⋆
〉∣∣∣∣ ≥ |⟨G, θ⋆⟩| − η−1|⟨θ, θ⋆⟩|

1 + η−1
,

where G = g/∥g∥2. In the following, we will define ρ⋆ = d−1/4(log d)1/4 as a critical threshold942

before the weak alignment. Specifically, in the phase I of weak alignment, we assume that |ρ| ≤ ρ⋆.943

When the training process goes across this critical threshold, the dominant term in EPθ⋆
[⟨sg, θ⋆⟩] ≂944

(γρ)1{s
⋆ is even}(γρ+ d−1/2)⋆−1−1{s⋆ is even} becomes γρ instead of d−1/2.945
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Stage I of weak alignment. Case I: s⋆ ̸= 1, s⋆ is odd. Combining the results in Eq. (E.3), (E.4)946

and (E.5), we conclude that for s⋆ ≥ 3 being odd,947

|⟨g, θ⋆⟩| ≳ (|ρ| · (d log d)−1/4 + d−1/2)s
⋆−1,

∥g∥2 ≲ (|ρ| · (d log d)−1/4 + d−1/2)s
⋆−1 + d−(2s⋆−3)/4 · (log d)−1/4 · κ−1/2.

It is important to note that here “≳” and “≲” only hides constants that are independent of d and n.948

Combining these two inequalities, we have that949

|⟨g, θ⋆⟩|
∥g∥2

≳
(|ρ|d1/4(log d)−1/4 + 1)s

⋆−1

(|ρ|d1/4(log d)−1/4 + 1)s⋆−1 + d1/4(log d)−1/4 · κ−1/2

=
(|ρ|/ρ⋆ + 1)s

⋆−1

(|ρ|/ρ⋆ + 1)s⋆−1 + κ−1/2/ρ⋆
.

Thus, if |ρ| ≤ ρ⋆ and take κ to be a sufficiently large constant, after the first gradient update, the950

alignment will grow to at least ρ⋆ by noting that |⟨g, θ⋆⟩|/∥g∥2 ≳ ρ⋆κ1/2 and that951

|ρ′| ≳ ρ⋆κ1/2 − η−1|ρ|
1 + η−1

≥ ρ⋆ ·
√
κ− η−1

1 + η−1
≥ ρ⋆.

As a summary of Case I(a), with one step of gradient update, the alignment will grow to at least ρ⋆ if952

|ρ| ≤ ρ⋆.953

Stage I of weak alignment. Case II: s⋆ is even. In the case where s⋆ is even, we have by the954

previous arguments that955

|⟨g, θ⋆⟩| ≳ |ρ| · (d log d)−1/4 · (|ρ| · (d log d)−1/4 + d−1/2)s
⋆−2,

∥g∥2 ≲ |ρ| · (d log d)−1/4 · (|ρ| · (d log d)−1/4 + d−1/2)s
⋆−2

+ d−(2s⋆−3)/4 · (log d)−1/4 · κ−1/2

Here, we use the following fact that956

(|ρ|γ + d−1/2)s
⋆

≲ (|ρ|γ + d−1/2)s
⋆−2 · (ρ2γ2 + d−1) ≲ (|ρ|γ + d−1/2)s

⋆−2|ρ|γ,

where the last inequality holds since |ρ| ≥ d−1/2/2. Thus, we conclude that957

|⟨g, θ⋆⟩|
∥g∥2

≳
|ρ| · (|ρ|d1/4(log d)−1/4 + 1)s

⋆−2

|ρ| · (|ρ|d1/4(log d)−1/4 + 1)s⋆−2 + κ−1/2

=
|ρ| · (|ρ|/ρ⋆ + 1)s

⋆−2

|ρ| · (|ρ|/ρ⋆ + 1)s⋆−2 + κ−1/2
. (E.6)

Note that κ = Ω(1). Hence before the alignment reaches ρ⋆, κ−1/2 will dominate the denominator in958

Eq. (E.6), which gives us that |⟨g, θ⋆⟩|/∥g∥2 ≳ |ρ| ·
√
κ. Importantly, the “≳” hides constants that959

are independent of d and κ. Thus, by taking κ to be a sufficiently large constant, we can conclude that960

|ρ′| ≥ |ρ| ·
√
κ− η−1

1 + η−1
≥ 2|ρ|.

As a summary of Case II(a), before the alignment reaches ρ⋆, the alignment will grow exponentially961

fast, and this phase takes at most O
(
log(d)

)
steps. In the following, we consider the case when962

|ρ| ≥ ρ⋆ for both cases I and II.963

Stage II of weak alignment. Case I&II combined. Now we consider the case when |ρ| ≥ ρ⋆964

for both cases I and II, i.e., s⋆ ≥ 2. For this case, we have |ρ|/ρ⋆ + 1 ≃ |ρ|/ρ⋆. Let us define965

r = |ρ|/ρ⋆ ≥ 1 and r′ = |ρ′|/ρ⋆, and it follows that966

|⟨g, θ⋆⟩|
∥g∥2

≳
rs

⋆−1

rs⋆−1 + κ−1/2/ρ⋆
,
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and consequently:967

r′ ≳
rs

⋆−1 · (rs⋆−1ρ⋆ + κ−1/2)−1 − η−1r

1 + η−1

≥ (
√
κ · rs⋆−1) ∧ ρ⋆−1 − η−1r

1 + η−1

It can be noted that the maximal ratio r ≤ (ρ⋆)−1, and also
√
κ · rs⋆−1 ≥ 2η−1r given that κ is968

sufficiently large and r ≥ 1. Thus, we conclude that in this case969

r′ ≳ (
√
κ · rs

⋆−1) ∧ ρ⋆−1.

For this case, the growth of the alignment will be also at least exponentially fast, until it reaches970

Ω
(
(ρ⋆)−1

)
, i.e., |ρ| = C for some constant C. This phase takes at most O(log(d)) steps.971

Strong alignment. Case I&II combined. We need a more careful analysis for this case in order to972

achieve strong alignment. When the alignment is on a constant level, we can deduce from its original973

form that974

|⟨EPθ⋆
[sg], θ⋆⟩| = B(ρ, {ξl}l∈[L]) · (|ρ|γ)s

⋆−1 + E1,

where B(ρ, {ξl}l∈[L]) = Ω(1) is a constant that depends on ρ and the random perturbations {ξl}l∈[L]975

and the error term follows that |E| ≤ O(d−s
⋆

). . In the following, we will drop the dependency on ρ976

and {ξl}l∈[L] and use B for simplicity. We have by Eq. (E.3) that977

|⟨g, θ⋆⟩| ≥ B(|ρ|γ)s
⋆−1 −O

(
d−(2s⋆−1)/4 · (log d)−1/4 · κ−1/2

)
= B(|ρ|γ)s

⋆−1 −O
(
(d log d)−s

⋆/4 · γs
⋆−1 · κ−1/2

)
= γs

⋆−1 ·
(
B|ρ|s

⋆−1 − (d log d)−s
⋆/4 ·O(κ−1/2)

)
,

and also978

∥g∥2 ≤ B(|ρ|γ)s
⋆−1 +O

(
(|ρ|γ)s

⋆

+ d−(2s⋆−3)/4 · (log d)−1/4 · κ−1/2
)

≤ B(|ρ|γ)s
⋆−1 +O

(
(|ρ|γ)s

⋆

+ d−(s⋆−2)/4 · (log d)−s
⋆/4 · γs

⋆−1 · κ−1/2
)

≤ γs
⋆−1 · (B|ρ|s

⋆−1 +O(d−(s⋆−2)/4 · (log d)−s
⋆/4 · κ−1/2)).

Therefore, once the alignment reaches a constant level |ρ| ≥ O(1), we have979

|⟨G, θ⋆⟩| = |⟨g, θ
⋆⟩|

∥g∥2
≥ B|ρ|s⋆−1 −O(d−s

⋆/4)

B|ρ|s⋆−1 +O(d−1/4(log d)1/4)

≥ 1−O(d−1/4(log d)1/4)=: 1−∆.

Here, ∆ ≃ d−1/4(log d)1/4. Thus, as long as η > 2, after one step gradient,980

|ρ′|2 =
⟨G+ η−1θ, θ⋆⟩2

⟨G+ η−1θ, θ⋆⟩2 + ∥P⊥
θ⋆(G+ η−1θ)∥22

≥ (1−∆− η−1|ρ|)2

(1−∆− η−1|ρ|)2 + (
√
1− (1−∆)2 + η−1

√
1− ρ2)2

≥ (1− η−1 −∆)2

(1− η−1 −∆)2 + η−2(1− ρ2) + 2
√
2∆ + 2∆2

=
(1− η−1)2

(1− η−1)2 + η−2(1− ρ2)
−O(

√
∆).

Here, the first equality holds by the Pythagorean theorem, the first inequality holds by the triangle981

inequality, and in the last line, we separate the major term and the error term that scales with
√
∆,982

31



where we use the fact that 1− η−1 > 1/2 with η > 2. In addition, by letting τ = η−2/(1− η−1)2,983

we have984

1− (ρ′)2 = 1− (1− η−1)2

(1− η−1)2 + η−2(1− ρ2)
+O(

√
∆)

=
τ(1− ρ2)

1 + τ(1− ρ2)
+O(

√
∆)

≤ τ(1− ρ2) +O(
√
∆).

Therefore, we conclude that as long as τ < 1, i.e., η > 2, 1 − ρ2 will exponentially decrease to985

O((1− τ)−1 ·
√
∆), and achieves strong alignment in O((log∆−1)/(log τ−1)) steps.986

Weak & strong alignment. Case III: s⋆ = 1. In this case, we conclude from the previous987

arguments that regardless of the alignment level, it always holds that988

|⟨EPθ⋆
[sg], θ⋆⟩| = B = O(1),

which gives us989

|⟨g, θ⋆⟩| ≥ B −O(d−1/2 · (log d)−1/2 · κ−1/2),

and990

∥g∥2 ≤ B +O(d−1/4(log d)1/4 + (log d)−1/2 · κ−1/2),

where we use the fact that n = κ · d(log d)2. Therefore, we also have991

|⟨G, θ⋆⟩| = |⟨g, θ
⋆⟩|

∥g∥2
≥ 1−O((log d)−1/2 · κ−1/2) = 1−∆,

where in this case, we also have ∆ ≃ (log d)−1/2 just like s⋆ = 2 in the previous case, and the rest992

of the proof follows the same arguments as in the previous case for the strong alignment.993

E.3 Proof of Key Results994

Proof of Lemma E.1. We begin with proving the first part of the lemma. For conciseness, we drop the995

supscript (t) and simply denote θm as the present weight. We have the projection of wm,l onto θ⋆ as996

|⟨wm,l, θ⋆⟩| =
∣∣∣∣γ⟨θm, θ⋆⟩+ ⟨ξm,l, θ⋆⟩∥γθm + ξm,l∥2

∣∣∣∣ ≤ 2(γ|ρm|+ ϵ).

For direction vm,2, by definition we have997

|⟨wm,l, vm,2⟩| =
∣∣∣∣γ⟨θm, vm,2⟩+ ⟨ξm,l, vm,2⟩∥γθm + ξm,l∥2

∣∣∣∣
≤ 2 ·

(
γ

∣∣∣∣〈θm, θm − ρmθ⋆

∥θm − ρmθ⋆∥2

〉∣∣∣∣+ ϵ

)
= 2
(
γ
√
1− ρ2m + ϵ

)
.

For the remaining directions, we always have998

|⟨wm,l, vm,i⟩| =
∣∣∣∣γ⟨θm, vm,i⟩+ ⟨ξm,l, vm,i⟩∥γθm + ξm,l∥2

∣∣∣∣ ≤ 2 · ϵ,

where we use the fact that ⟨θm, vm,i⟩ = 0 for i ≥ 2. This completes the proof for the first part.999

On the joint nice event rEm(rϵ), we have that1000

|⟨wm,l, wm,l′⟩| ≤ 4 · ⟨γθm + ξm,l, γθm + ξm,l′⟩
≤ 4(γ2 + rϵ+ γ⟨θm, ξm, l⟩+ γ⟨θm, ξm,l′⟩).

On the other hand, it holds on the event Em(ϵ) that1001

|⟨θm, ξm,l⟩| = |⟨
√

1− ρ2 · vm,2 + ρvm,1, ξm,l⟩| ≤ (
√
1− ρ2 + |ρ|) · ϵ ≤ 2ϵ.

Therefore, we have for any l ̸= l′ that1002

|⟨wm,l, wm,l′⟩| ≤ 4(γ2 + 4ϵγ + rϵ).

1003

32



Proof of Proposition E.3. Invoking Lemma H.2 with the fact that ∥θ⋆∥2 = 1, we can decompose1004

⟨EPθ⋆
[g], θ⋆⟩ as1005

⟨EPθ⋆
[g], θ⋆⟩ =

∑
s≥s⋆

√
s+ 1

L

L∑
l=1

EQ[ζs(y) · pψs+1(y)] · ⟨wl, θ⋆⟩s+1

+
∑
s≥s⋆

√
s

L

L∑
l=1

EQ[ζs(y) · pψs−1(y)] · ⟨wl, θ⋆⟩s−1

= EQ[ζs⋆(y) · pψs⋆−1(y)] ·
√
s⋆

L

L∑
l=1

⟨wl, θ⋆⟩s
⋆−1 +R, (E.7)

where all the remainder terms are collected by R, defined as1006

R =
∑
s≥s⋆

√
s+ 1

L

L∑
l=1

(
EQ[ζs(y) · pψs+1(y)]⟨wl, θ⋆⟩+ EQ[ζs+1(y) · pψs(y)]

)
· ⟨wl, θ⋆⟩s.

Below we will analyze the scale of each term in Eq. (E.7), and show that the remainderR is negligible1007

compared to the first term in Eq. (E.7) with high probability over the randomness of the injected noise1008

ξ1, . . . , ξL.1009

Analysis for the remainder term R in Eq. (E.7). To bound |R|, we apply the triangle inequality1010

with the fact that |⟨wl, θ⋆⟩| ≤ 1 to get1011

|R| ≤
∑
s≥s⋆

√
s+ 1

L

L∑
l=1

EQ

[
|ζs(y) · pψs+1(y)|+ |ζs+1(y) · pψs(y)|

]
· |⟨wl, θ⋆⟩|s.

Since EQ[ζs+1(y)
2] ≤ 1 for all s ≥ 0 by the property of the decomposition of the likelihood ratio,1012

we have1013

EQ[|ζs+1(y) · pψs(y)|] ≤ EQ[ζs+1(y)
2]1/2 · EQ[ pψs(y)

2]1/2

≤ EQ[ pψs(y)
2]1/2

≤

√√√√ ∞∑
s=0

E[ pψs(y)2] = O(1),

and similarly for EQ[|ζs(y) · pψs+1(y)|]. It then suffices to bound
∑
s≥s⋆ (

√
s+ 1)/L ·1014 ∑L

l=1 |⟨wl, θ⋆⟩|s. Recall that we restrict ourselves to the following nice event1015

E(ϵ) :
{
|⟨ξl, θ⋆⟩| < ϵ, max

2≤i≤d
|⟨ξl, vi⟩| < ϵ, ∀l ∈ [L]

}
,

where {v1 = θ⋆, v2 = (θ − ρθ⋆)/
√

1− ρ2, v3, . . . vd} is an orthonormal basis. Since we assume1016

that γ = o(1), it follows from Lemma E.1 that |⟨wl, θ⋆⟩| < 1/2 for all l ∈ [L] on E(ϵ). Consequently,1017

it holds on E(ϵ) that1018 ∑
s≥s⋆

√
s+ 1

L

L∑
l=1

|⟨wl, θ⋆⟩|s ≤
∑
s≥s⋆

√
s+ 1 ·

(
1

2

)s−s⋆
· 1
L

L∑
l=1

|⟨wl, θ⋆⟩|s
⋆

≲
1

L

L∑
l=1

|⟨wl, θ⋆⟩|s
⋆

, (E.8)

where ≲ hides a constant that depends on s⋆. Now it reduces to upper bound the right hand side in1019

Eq. (E.8). To proceed, we define1020

rwl =

{
wl if supi |⟨wl, vi⟩| < ϵ;

0 otherwise.
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It can be easily verified that rwl = wl for any l ∈ [L] on E(ϵ), and { rwl}l∈[L] is a sequence of1021

independent and bounded random vectors. By Lemma E.1, we have that1022

|⟨ rwl, θ
⋆⟩| ≤ 2γ ∨ ϵ.

To find its second moment, we have by definition that1023

E
rwl
[⟨ rwl, θ

⋆⟩2s
⋆

] = Ewl

[
⟨wl, θ⋆⟩2s

⋆

· 1
{
sup
i
|⟨wl, vi⟩| ≤ ϵ

}]
≤ Ewl

[⟨wl, θ⋆⟩2s
⋆

]

≃ (|ρ|γ + d−1/2)2s
⋆

,

where the last line holds by Lemma H.4. Therefore, we can apply the Bernstein’s inequality1024

(Lemma J.1) to the right hand side of Eq. (E.8) restricted to E(ϵ). We deduce from it that there1025

exists a event E1,1 with Pr(E1,1) ≥ 1− d−c/(MT ), and it holds on E1,1 ∩ E(ϵ) that1026

1

L

L∑
l=1

|⟨wl, θ⋆⟩|s
⋆

=
1

L

L∑
l=1

|⟨ rwl, θ
⋆⟩|s

⋆

≲
(
1 +

√
L−1 log d

)
· (|ρ|γ + d−1/2)s

⋆

+
(ϵ ∨ γ)s⋆ log d

L

≲ (|ρ|γ + d−1/2)s
⋆

(E.9)
Here we use the fact that M and T are at most polynomial in d and the last line holds since we choose1027

L = Ω
((
d1/2 · (ϵ ∨ γ)

)s⋆ · log d ∨ log d
)

.1028

Analysis for the dominant term in Eq. (E.7). We then consider the major term1029

L−1
∑L
l=1⟨wl, θ⋆⟩s

⋆−1. By the definition of rwl, we can approximate its expectation as follows:1030

E
rwl
[⟨ rwl, θ

⋆⟩s
⋆−1] = Ewl

[
⟨wl, θ⋆⟩s

⋆−1 · 1
{
sup
i
|⟨wl, vi⟩| ≤ ϵ

}]
≃ Ewl

[⟨wl, θ⋆⟩s
⋆−1]± Pr

(
sup
i
|⟨wl, vi⟩| > ϵ

)
≃ Ewl

[⟨wl, θ⋆⟩s
⋆−1]± Pr

(
E(ϵ)c

)
,

where we use the fact that |⟨wl, θ⋆⟩|s
⋆−1 ≤ 1 and the event {supi |⟨wl, vi⟩| > ϵ} ⊂ E(ϵ)c. Again,1031

we have by Lemma H.4 that1032

Ewl
[⟨wl, θ⋆⟩s

⋆−1] ≃

{
(|ρ|γ + d−1/2)s

⋆−1 if s⋆ is odd;
ργ(|ρ|γ + d−1/2)s

⋆−2 if s⋆ is even.

Similarly, we have for the second moment that1033

E
rwl
[⟨ rwl, θ

⋆⟩2(s
⋆−1)] = Ewl

[
⟨wl, θ⋆⟩2(s

⋆−1) · 1
{
sup
i
|⟨wl, vi⟩| ≤ ϵ

}]
≤ Ewl

[⟨wl, θ⋆⟩2(s
⋆−1)]

≃ (|ρ|γ + d−1/2)2(s
⋆−1).

Given the boundedness on E(ϵ) and the second moment characterization, the Bernstein’s inequality1034

(Lemma J.1) implies that there exists E1,2 with Pr(E1,2) ≥ 1− d−c/(MT ). Furthermore, it holds on1035

E1,2 ∩ E(ϵ) that1036

1

L

L∑
l=1

⟨wl, θ⋆⟩s
⋆−1=

1

L

L∑
l=1

⟨ rwl, θ
⋆⟩s

⋆−1

=Ewl
[⟨wl, θ⋆⟩s

⋆−1] + E,

where the error term E is absolutely bounded as1037

|E| ≲ (|ρ|γ + d−1/2)s
⋆−1 ·

√
log d

L
+

(ϵ ∨ γ)s⋆−1 log d

L
+ Pr

(
E(ϵ)c

)
≲ (|ρ|γ + d−1/2)s

⋆

+ Pr(E(t)m (ϵ))

≲ (|ρ|γ + d−1/2)s
⋆

.
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Here, the second line holds because L = Ω
((

(ϵ ∨ γ)s⋆−1 · ds⋆/2
)
log d ∨ d log d

)
and the last line1038

holds because Pr(E(ϵ)) ≤ d−s⋆/2.1039

So far, we have obtained that on the event E(ϵ) ∩ E1,1 ∩ E1,2, the following holds:1040

EPθ⋆
[⟨g, θ⋆⟩] ≃ Ewl

[⟨wl, θ⋆⟩s
⋆−1] + E +R,

where |E|+ |R| ≲ (|ρ|γ + d−1/2)s
⋆

given our configuration of L and Pr(E(ϵ)c). On the other hand,1041

provided that |ρ|γ ≫ d−1, we have that1042

(|ρ|γ + d−1/2)s
⋆

= (|ρ|γ + d−1/2)s
⋆−2 ·

(
(|ρ|γ)2 + d−1 + 2 · |ρ|γ · d−1/2

)
= (|ρ|γ + d−1/2)s

⋆−2 · |ρ|γ · (|ρ|γ + d−1 · (|ρ|γ)−1 + 2d−1/2)

≪ (|ρ|γ + d−1/2)s
⋆−2 · |ρ|γ.

Therefore, EPθ⋆
[⟨g, θ⋆⟩] is always the major term no matter whether s⋆ is even or odd, and we have1043

that1044

EPθ⋆
[⟨g, θ⋆⟩] ≃

{
γρ · (γ|ρ|+ d−1/2)s

⋆−2 if s⋆ is even;
(γ|ρ|+ d−1/2)s

⋆−1 if s⋆ is odd.

We now turn to the norm of EPθ⋆
[g]. We have already shown the projection of EPθ⋆

[g] onto θ⋆. Next,1045

define P⊥
θ⋆ = I − θ⋆θ⋆⊤ as the projection matrix onto the orthogonal complement of the space1046

spanned by θ⋆. Now, it follows from Eq. (H.6) that1047

∥P⊥
θ⋆EPθ⋆

[g]∥2 ≤
∑
s≥s⋆
|EQ[ζs(y) · pψs+1(y)]| ·

∥∥∥∥∥
√
s+ 1

L

L∑
l=1

⟨wl, θ⋆⟩s · wl

∥∥∥∥∥
2

≲
∑
s≥s⋆

√
s+ 1

L

L∑
l=1

|⟨wl, θ⋆⟩|s.

Here, the first inequality holds by noting that the second term in Eq. (H.6) lies exactly along the1048

direction of θ⋆ and thus does not contribute to the norm of P⊥
θ⋆EPθ⋆

[g], while for the first term in1049

Eq. (H.6), we use the triangle inequality and the fact that ∥P⊥
θ⋆v∥2 ≤ ∥v∥2 for any v ∈ Rd. In the1050

second inequality, we also use the triangle inequality and the fact that ∥wl∥2 = 1 for all l ∈ [L]. Here,1051

the “≲” hides a constant that depends on the boundedness of EQ[ζs(y) · pψs+1(y)] as we have shown1052

in the previous analysis.1053

Note that the term
∑
s≥s⋆

√
s+1
L

∑L
l=1 |⟨wl, θ⋆⟩|s is already handled in Eq. (E.8) and (E.9) under the1054

success of event E(ϵ) ∩ E1,1, on which we have1055

∣∣∥EPθ⋆
[g]∥2 − |⟨EPθ⋆

[g], θ⋆⟩|
∣∣ ≲ ∑

s≥s⋆

√
s+ 1

L

L∑
l=1

|⟨wl, θ⋆⟩|s ≲ (|ρ|γ + d−1/2)s
⋆

.

Setting E1 = E1,1 ∩ E1,2 gives the desired event.1056

1057

Proof of Proposition E.4. The polynomial-tail property allows us to control the fluctuation of the1058

gradient estimator g in each direction at the level that is determined by the sample size n and the1059

corresponding variance. To this end, we begin with calculating the variance of g along each direction.1060

Calculating the second moment. Given θ and θ⋆, recall that we consider the following d orthonor-1061

mal directions:1062

θ⋆, v2, v3, . . . , vd,

where we set v2 = (θ − ⟨θ, θ⋆⟩θ⋆)/∥θ − ⟨θ, θ⋆⟩θ⋆∥2 and vi for i ≥ 3 are orthogonal to θ⋆ and v2.1063

Our goal is to show that g has small variance on each of these directions.1064
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As each sample (zi, yi) is independently drawn from Pθ⋆ , we just need to consider the variance of1065

g1 =
1

L

L∑
l=1

(
ψ(y1, ⟨wl, z1⟩) · z1 − pψ1(y1) · wl

)
in the direction of v for v ∈ {θ⋆, v1, . . . , vd−1} as1066

VarPθ⋆
[⟨g1, v⟩] = EPθ⋆

[⟨g1, v⟩2]− EPθ⋆
[⟨g1, v⟩]2

≤ EPθ⋆
[⟨g1, v⟩2].

From this we see that it suffices to bound the second moment of ⟨g1, v⟩, which is given by1067

EPθ⋆
[⟨g1, v⟩2] ≲

1

L2

L∑
l,l′=1

EPθ⋆

[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl′ , z⟩)⟨z, v⟩2

]
+

1

L2

L∑
l,l′=1

EPθ⋆

[
pψ1(y)

2⟨wl, v⟩⟨wl′ , v⟩
]

=
1

L2

∑
l ̸=l′

EQ

[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl′ , z⟩)⟨z, v⟩2 ·

(
1 +

∑
s≥s⋆

ζs(y)hs(⟨θ⋆, z⟩)
)]

+
1

L2

L∑
l=1

EQ
[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl, z⟩)⟨z, v⟩2

]
+

1

L2

∑
l ̸=l′

EQ[ pψ1(y)
2]⟨wl, v⟩⟨wl′ , v⟩

+
1

L2

L∑
l=1

EQ[ pψ1(y)
2]⟨wl, v⟩2.

As ψ(y, z)z is quadruple-integrable by Assumption 4.1, the above integral is well-defined. We split1068

the summation into two parts: l = l′ and l ̸= l′. For l = l′, we directly have an O(L−1) bound for1069

each direction θ⋆, v2, . . . , vd thanks to the polynomial-like tail property of ψ in Assumption 4.1.1070

For l ̸= l′, Lemma E.1 implies that we have on the nice event rE(rϵ) that1071

|⟨wl, wl′⟩| ≤ 4(γ2 + 2γϵ+ rϵ)

≤ 8(γ2 + rϵ) := ϵ2.

Invoking Lemma H.3, for any v ∈ {θ⋆, v2, . . . , vd}, it holds on rE(rϵ) that1072

EQ

[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl′ , z⟩)⟨z, v⟩2 ·

(
1 +

∑
s≥s⋆

ζs(y)hs(⟨θ⋆, z⟩)
)]

≲ ϵs
⋆−1

2 ·

(
1 +

ϵ21
ϵ2

+

(
ϵ21
ϵ2

)s⋆−1

· ϵ+ 1(v ⊥ θ⋆) ·
(
ϵ21
ϵ2

)s⋆−2

· ϵ
2
0

ϵ2
· (ϵ21 + ϵ1 · 1(s⋆ ≥ 4))

)
(E.10)

where we also define ϵ1 :=max{|⟨wl, θ⋆⟩|, |⟨wl′ , θ⋆⟩|}, ϵ0 :=max{|⟨wl, v⟩|, |⟨wl′ , v⟩|}. If the nice1073

event E(ϵ) also holds, on which the following holds for all l ∈ [L]:1074

|⟨ξl, θ⋆⟩| < ϵ, max
2≤i≤d

|⟨ξl, vi⟩| < ϵ,

then we have by Lemma E.1 that1075

|⟨wl, θ⋆⟩| ≲ γ|ρ|+ ϵ, |⟨wl, v2⟩| ≲
√
1− ρ2γ + ϵ, |⟨wl, vi⟩| ≲ ϵ, ∀i ≥ 3, ∀l ∈ [L].

Consequently, we can set ϵ1 ≃ γ|ρ|+ ϵ = o(1) and1076

ϵ0 ≃


γ|ρ|+ ϵ, if v = θ⋆,

γ
√
1− ρ2 + ϵ, if v = v2,

ϵ, otherwise.

Therefore, we have the ratio1077

ϵ21
ϵ2
≃ (γ|ρ|+ ϵ)2

4(γ2 + rϵ)
≃ γ2|ρ|2 + ϵ2

γ2 + rϵ
,

ϵ20
ϵ2
≃


(γ|ρ|+ϵ)2
8(γ2+rϵ) ≃

γ2|ρ|2+ϵ2
γ2+rϵ , if v = θ⋆,

(γ
√

1−ρ2+ϵ)2

8(γ2+rϵ) ≃ γ2(1−ρ2)+ϵ2
γ2+rϵ , if v = v2,

ϵ2

4(γ2+rϵ) ≃
ϵ2

γ2+rϵ , otherwise.

36



Since ϵ2 ≤ rϵ, we can conclude that ϵ21/ϵ2 ≲ 1 and ϵ20/ϵ2 ≲ 1. Hence, the right-hand side of Eq. (E.10)1078

is bounded by ϵs
⋆−1

2 ≃ (γ2 + rϵ)s
⋆−1 for all v ∈ {θ⋆, v2, . . . , vd}.1079

Similarly, let us consider the term L−2 ·
∑
l ̸=l′ EQ[ pψ1(y)

2]⟨wl, v⟩⟨wl′ , v⟩. On the good event E(ϵ),1080

we have1081

1

L2
·
∑
l ̸=l′

EQ[ pψ1(y)
2]⟨wl, v⟩⟨wl′ , v⟩ ≲ ϵ20 · 1{s⋆ ≤ 2}

≲ ϵ2 1(s
⋆ ≤ 2)

≲ (γ2 + rϵ)s
⋆−1 · 1{s⋆ ≤ 2}.

The first inequality holds because pψ1(y) = 0 whenever s⋆ ≥ 2 because of Assumption 4.1(b) and the1082

second inequality holds due to the condition that ϵ2 ≤ rϵ1083

Lastly for all the terms that take a single summation over l ∈ [L], we have them bounded by 1/L as1084

each term in the summation can be upper bounded by 1. Combining the results for l = l′ and l ̸= l′,1085

we have on the event E(ϵ) ∩ rE(rϵ) that1086

VarPθ⋆
[⟨g1, v⟩] ≤ EPθ⋆

[⟨g1, v⟩2]≲(γ2 + rϵ)s
⋆−1 +

1

L
, ∀v ∈ {θ⋆, v2, . . . , vd}.

Concentration. The first thing is to control the variation of g in the direction of θ⋆, where we need1087

to upper bound the Lr(Pθ⋆)-norm of ⟨g1, v⟩. To this end, we define G : (R× R)× R→ R as1088

G(z, y, w) = |ψ(y, ⟨w, z, )⟩ · ⟨z, v⟩|+ | pψ1(y) · ⟨w, v⟩|.

Also we define the empirical measure dµ(w) = L−1
∑
l δ(wl), then it holds by integral Minkowski’s1089

inequality that1090

EPθ⋆
[⟨g1, v⟩r]1/r ≤

(∫
dPθ⋆(y, z)

(∫
dµ(w) ·G(z, y, w)

)r)1/r
≤
∫

dµ(w)
(∫

dPθ⋆(y, z) ·G(z, y, w)r
)1/r

≲
1

L

∑
l

EPθ⋆

[
|ψ(y, ⟨wl, z⟩) · ⟨z, v⟩|r

]1/r
+

1

L

∑
l

|⟨wl, v⟩|. (E.11)

For the second term, we have on E(ϵ) that |⟨wl, v⟩| ≤ 2γ + 2ϵ ≤ 1. Applying the Cauchy-Schwarz1091

inequality, we have for the summand of the first term in Eq. (E.11) that1092

EPθ⋆
[|ψ(y, ⟨wl, z⟩) · ⟨wl, z⟩|r]1/r ≤ EPθ⋆

[|ψ(y, ⟨wl, z⟩)|2r]1/2r · EPθ⋆
[|⟨wl, z⟩|2r]1/2r.

Note thatEPθ⋆
[|⟨wl, z⟩|2r]1/2r ≤ (2r−1)!!1/(2r) ≲ r1/2, it suffices to deal withEPθ⋆

[|⟨wl, z⟩|2r]1/2r.1093

To proceed, we can decompose ⟨wl, z⟩ to components that are correlated and independent with y as1094

⟨wl, z⟩ = ⟨wl − ⟨wl, θ⋆⟩θ⋆, z⟩+ ⟨wl, θ⋆⟩⟨θ⋆, z⟩

=
√

1− ⟨wl, θ⋆⟩2 · x′ + ⟨wl, θ⋆⟩x′

where x = ⟨θ⋆, z⟩ ∼ N (0, 1) is independent to x′ = (1 − ⟨wl, θ⋆⟩2)−1/2 · ⟨wl − ⟨wl, θ⋆⟩θ⋆, z⟩ ∼1095

N (0, 1) . Therefore, we define a Gaussian noise operator as Uρψ(y, x) = Ex′∼N (0,1)[ψ(y, ρx +1096 √
1− ρ2x′)]. And it holds that1097

EPθ⋆
[ψ(y, ⟨wl, z⟩)2r] = EP[U⟨θ⋆,wl⟩ψ(y, x)

2r]

= EQ

[
U⟨θ⋆,wl⟩ψ(y, x)

2r · P(x, y)
Q(x, y)

]
= EQ

[
ψ(y, x)2r ·U⟨θ⋆,wl⟩

(
P(x, y)
Q(x, y)

)]

≤

(
EQ[ψ(y, x)

4r] · EQ

[(
U⟨θ⋆,wl⟩

( P(x, y)
Q(x, y)

))2
])1/2

, (E.12)
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where the second line follows from the property of the Gaussian noise operator in (B.2). By assumption1098

of the tail bound in Assumption 4.1, we have that EQ[ψ(y, x)
4r] ≤ Cp(4r)4Cpr. For the second term,1099

we have by the Parseval’s identity that1100

EQ

[(
U⟨θ⋆,wl⟩

( P(x, y)
Q(x, y)

))2
]
= 1 +

∑
s≥s⋆
⟨θ⋆, wl⟩2 · EQ

[
ζs(y)

2
]
≤2.

where we use the property that on the good event E(ϵ) we have |⟨wl, θ⋆⟩| ≤ γ|ρ|+ ϵ ≤ γ + ϵ < 1/21101

and also EQ[ζs(y)
2] ≤ 1. And in conclusion, we get for the first term in Eq. (E.11) that1102

1

L

∑
l

EPθ⋆
[|ψ(y, ⟨wl, z⟩) · ⟨wl, z⟩|r]1/r ≲ rCp+1/2.

Combining everything, we have1103

EPθ⋆
[|⟨g1, v⟩|r]1/r ≲ rCp+1/2, ∀v ∈ {θ⋆, v2, . . . , vd}.

Thus, by Lemma J.3, there exists a {(zi, yi)}i∈[n]-measurable event E2,1 with Pr(E2,1) ≥ 1 −1104

d−c/(MT ) and it holds on E2 that1105

|⟨g, θ⋆⟩ − EPθ⋆
[⟨g, θ⋆⟩]|

≲

√
EPθ⋆

[⟨g1, θ⋆⟩2] · log(dcMT )

n
+

log(dcMT ) · log(dcMTn)Cp+1/2

n

≲

√
((γ2 + rϵ)s⋆−1 + L−1) · log(d)

n
+

log(d)Cp+3/2

n
, ∀v ∈ {θ⋆, v1, . . . , vd−1}. (E.13)

where we utilize the fact T,M, n all have polynomial dependency on d. Moreover, since we assume1106

that1107

n = Ω
((

(γ2 + rϵ)s
⋆−1 + L−1

)−1 · log(d)2Cp+1
)
,

we have that the first term in Eq. (E.13) dominates, which further implies that1108

|⟨g, θ⋆⟩ − EPθ⋆
[⟨g, θ⋆⟩]| ≲

√
((γ2 + rϵ)s⋆−1 + L−1) · log(d)

n
.

Meanwhile, for the ℓ2-norm of g, we have by the Jensen’s inequality that for any r ≥ 1,1109

EPθ⋆
[∥g1∥r2]1/r =

(
EPθ⋆

[ ∑
v∈{θ⋆,v2,...,vd}

⟨g1, v⟩2
]r/2)1/r

≤
√
d ·
(
1

d
·

∑
v∈{θ⋆,v2,...,vd}

EPθ⋆
[|⟨g1, v⟩|r]

)1/r

≲
√
d · (r)Cp+1/2.

This polynomial tail bound enables us to apply Lemma J.3 for the ℓ2-norm of g, which implies that1110

there exists some event E2,2 with Pr(E2,2) ≥ 1− d−c/(MT ), and it holds on E2,2 that1111

∥∥g − EPθ⋆
[g]
∥∥
2
≲

√(
(γ2 + rϵ)s⋆−1 + L−1

)
· d · log(d)

n
.

Setting E2 = E2,1 ∩ E2,2 gives the desired event. This concludes the proof of Proposition E.4.1112

F Proof of the Main Theorem for the Sparse Prior1113

F.1 Proof Outline and Preliminaries1114

In this section, we provide a detailed proof for Theorem 5.1. We begin with some good events that1115

we will work with.1116

38



Signal concentration. We begin with a good event on which the signal spreads almost evenly1117

within its support. Define a series of event:1118

E0,r := {∥θ∥rr ≤ Cr · k1−r/2};
E0,∞ := {∥θ⋆∥∞ ≤ C∞ · k−1/2 log(k)1/2};

E0,♯ :=
{ ∑
j∈[d]

1
{
|θ⋆j | ≥

1√
2k

}
≥ k

4

}
.

The following lemma guarantees that the all the events above hold with high probability.1119

Lemma F.1 (Good signal). Suppose that k is sufficiently large such that k/ log(k) ≥ 32c(r ∨ 1),1120

k/ logr+2 k ≥
√
2c+ 2, then it holds that1121

Pr(E0,r) ∧ Pr(E0,∞) ≥ 1−O
(
k−c0,1

)
;

Pr(E0,♯) ≥ 1−O
(
exp{−c0,2k}

)
,

for some constants c0,1, c0,2 > 0.1122

Proof of Lemma F.1. See Appendix F.5.1123

For fixed s⋆, we collect all the indices r such that the corresponding nice event E0,r will be involved1124

in the coming analysis. Define S(s⋆) =
{
s⋆ − 1, s⋆ − 1{s⋆ odd}, 2s⋆, 4s⋆

}
. And we will stick to1125

the following high probability event1126

E0 := E0,∞ ∩ E0,♯ ∩ (∩r∈S(s⋆)E0,r).

With Lemma F.1, we have that Pr(E0) ≥ 1−O(k−c0) for some constant c0 > 0.1127

Preparation for characterizing one-step gradient. Following the same manner as the proof for1128

the non-sparse case, we first characterize the alignment of the gradient step (without adversarial error1129

term err
(t)
m,l,i). We begin with the definition of a minimal setup, that collects all the essential elements1130

to form the one-step gradient. The following definition is the sparse analogue of Definition E.2.1131

Apart from the method of generating the noise, in the sparse case, we will analyze the gradient in a1132

coordinate-wise manner to adapt to the sparse structure.1133

Definition F.2. Fix k-sparse vectors θ, θ⋆ ⊂ Sd−1 with ϕ = supp(θ) and ϕ⋆ = supp(θ⋆). Let1134

ρ = ⟨θ, θ⋆⟩. Suppose that a single batch of data {(zi, yi)}i∈[n] is i.i.d. generated from Pθ⋆ . We1135

fix the index m as the current neuron. We first sample ϕm,1, ϕm,2, . . . ϕm,L
i.i.d.∼ Unif(Sk,m), i.e.,1136

uniform distribution over all k-sparse supports with m-th index always included. Given these random1137

supports, we sample independent noises ξm,l ∼ Unif(Sk−1(ϕm,l)) for l ∈ [L]. Now, for each l ∈ [L]1138

and γ = o(1), we define wm,l = (γθ + ξm,l)/∥γθ + ξm,l∥2. Then our target is1139

sgm =
1

nL

n∑
i=1

L∑
l=1

(
ψ(yi, ⟨wm,l, zi⟩) · zi − pψ1(yi) · wm,l

)
. (F.1)

The associated good event is defined as1140

Em(ϵ) = {sup
l,j
|⟨ξm,l, ej⟩| ≤ ϵ}; (F.2)

rEm =
{
max

{
sup
l ̸=l′
|ϕm,l ∩ ϕm,l′ |, sup

l
|ϕm,l ∩ ϕ⋆|, sup

l
|ϕm,l ∩ ϕ|

}
≤ log k

}
. (F.3)

Almost orthogonality. Recall that our perturbation noise ξm,l is sampled from Unif(Sk−1(ϕm,l)),1141

which is approximately isotropic. One can presume that each ξm,l is evenly distributed among different1142

coordinates. Additionally, we expect that (ξm,l, ϕm,l) and (ξm,l′ , ϕm,l′) should have a negligible1143

overlap. These two qualitative properties, which can help simplify the analysis, are captured by1144

Eq. (F.2) and Eq. (F.3) in Definition F.2. The following lemma characterizes the property of the1145

perturbated weights wm,l on the nice event Em(ϵ) ∩ rE .1146
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Lemma F.3 (Polarized weight on nice event, sparse case). Consider the setting in Definition F.2 with1147

γ < 1/2. Suppose that the nice event Em(ϵ) ∩ rEm holds and ∥θ⋆∥∞ ≤ 1/ log k, then we have that1148

sup
l,j
|⟨wm,l, ej⟩| ≤ 2(γ|θj |+ ϵ);

sup
l
|⟨wm,l, θ⋆⟩| ≤ 2(γ|ρ|+ ϵ).

Additionally, we have that1149

sup
l ̸=l′
|⟨wm,l, wm,l′⟩| ≤ 4(γ2 + ϵ2 log k).

Proof of Lemma F.3. See Appendix F.5.1150

This lemma, serving as the counterpart of Lemma E.1, controls the behavior of the perturbated weight1151

wm,l in its coordinates and alignment with θ⋆. Additionally, they are approximately orthogonal with1152

each other, which allows for good characterization to the second moment of the gradient.1153

One may notice that the definition of rE differs from the non-sparse case, where we explicitly bound1154

the correlation between different ξm,l. This is the benefit of the sparse structure, as two randomly1155

sampled k-sparse supports are naturally of low overlap.1156

Before delving into the component-wise analysis, we begin with a proposition that will be frequently1157

used to calculate the average contribution of each term in the gradient. This proposition serves as the1158

counterpart of Lemma H.4 in the sparse case.1159

Proposition F.4. Suppose that the polarization level γ = o(1) and the noise (ξm,l, ϕm,l) ∼1160

Unif
(
Sk−1(ϕm,l)

)
⊗Unif(Sk,m). Let ρ = ⟨θ, θ⋆⟩ where θ is the polarized direction in wm,l. Assume1161

that the event E0,s−1{s odd} holds. Then we have that1162

Ewm,l
[⟨wm,l, θ⋆⟩s] ≃

{
γρ ·

(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs−1)

s−1 if s odd;
(γ|ρ|+ k−1/2|θ⋆m|+ k−1δs)

s if s even,

where δs = (k2/d)1/s = o(1) for any s = O(1).1163

Proof of Proposition F.4. See Appendix F.5.1164

Recall that we define the good event over the signal as E0 = E0,∞ ∩ E0,♯ ∩
⋂
r∈S(s⋆) E0,r, where1165

S(s⋆) = {s⋆ − 1, s⋆ − 1{s⋆ odd}, 2s⋆, 4s⋆}. This definition facilitates our defered analysis where1166

we need to control multiple moments of different orders and we collect all the necessary good events1167

in E0 in the first place.1168

F.2 Properties of the Gradient Step1169

In this section, we preview some properties regarding the gradient defined in Eq. (F.1). The following1170

proposition deals with the first moment.1171

Proposition F.5 (First-order moment of the gradient). Suppose that θ⋆ is fixed such that the nice1172

event E0 holds. Under Definition F.2, we choose γ ≤ ϵ = o(1) such that Pr
(
Em(ϵ)

c) ≤ O(k−s
⋆

)1173

and1174

L = Ω
(
log(d) ·

(
k ∨ (ϵs

⋆−1 · ks
⋆+1)

))
.

Then there exists a {ξm,l}l∈[L]-measurable event Em,1 with Pr(Em,1) ≥ 1 − O(k−c1) for some1175

constant c1 > 0, such that on Em,1 ∩ Em(ϵ) ∩ rEm, it holds for any j ∈ [d] that1176

⟨EPθ⋆
[sgm], ej⟩ = EQ[ζs⋆(y) · pψs⋆−1(y)] ·

√
s⋆ · E

rwm,l
[⟨ rwm,l, θ

⋆⟩s
⋆−1]θ⋆j +Rm,j ,

where the expectation1177

E
rwm,l

[⟨ rwm,l, θ
⋆⟩s

⋆−1] ≃

{
γρ ·

(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−2

)s⋆−2 · θ⋆j if s⋆ is even;(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−1

)s⋆−1 · θ⋆j if s⋆ is odd,
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and Rm,j is the remainder that can be bounded by1178

|Rm,j | ≲
((
k−1 ∨ (γ|ρ|+ k−1/2|θ⋆m|)

)
·
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆−1
+ k−s

⋆
)
· |θ⋆j |

+ (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)
s⋆ · (γ|θj |+ k−1/2 · (k/d)1{j ̸=m}/2) + k−(s⋆+1).

Proof of Proposition F.5. See Appendix F.4.1179

The statement of this proposition clarifies the leading term explicitly, which enables us to track the1180

leading term in the strong alignment more precisely. To complete this section, we provide a proposition1181

that characterizes the fluctuation of the gradient, serving as the counterpart of Proposition E.4.1182

Proposition F.6 (Fluctuation of mini-batch gradient). Under the simplified setting Definition F.21183

where ψ follows Assumption 4.1. Additionally, suppose that the sample size1184

n = Ω
((

(γ2 + ϵ2 log k)s
⋆−1 + L−1

)−1 · log(d)2Cp+2
)
,

where Cp is the order of the polynomial tail in Assumption 4.1(c). Then there exists a {(zi, yi)}i∈[n]-1185

measurable event Em,2 with Pr(Em,2) ≥ 1 − O(d−(c+1)/T ), such that on Em,2 ∩ Em(ϵ) ∩ rEm, it1186

holds that1187 ∣∣⟨sgm, ej⟩ − ⟨EPθ⋆
[sgm], ej⟩

∣∣ ≤
√(

(γ2 + ϵ2 log k)s⋆−1 + L−1
)
· log(d)

n
,

for any v ∈ {e1, e2, . . . , ed}1188

Proof of Proposition F.6. See Appendix F.4.1189

With these propositions, we have completed the preparation for the analysis of the gradient step and1190

are ready to move on to the proof of the main theorem.1191

F.3 Proof of the Main Theorem1192

Proof of Theorem 5.1.1193

Preparations. We first clarify the final good event that we will use throughout the proof. We first1194

fix ϵ = k−1/2 · log k, then it holds by Lemma J.6 that for each m and t, we have1195

Pr
(
E(t)m (ϵ)

c
)
≤ Ld ·O(exp{−ck}+ k− log k/4).

Since L and d are at most polynomials in k, we see that for sufficiently large k, it holds that1196

Pr
(
E(t)m (ϵ)

c)
≤ k−s

⋆

. Additionally, we see that γ = k−1/2 is fixed and our parameter config-1197

uration1198

n = Ω
(
(k log3 k)s

⋆

· log d
)
, L = Ω(k(s

⋆+3)/2 · log(k)s
⋆−1)

are clearly compatible with the conditions in Proposition F.5 and Proposition F.6. At the t-th step, the1199

mini-batch {(z(t)i , y
(t)
i )}i∈[n], θ = θ

(t)
m and the error-free gradient1200

sg(t)m =
1

nL

L∑
l=1

n∑
i=1

(
ψ(y

(t)
i , ⟨w(t)

m,l, z
(t)
i ⟩) · z

(t)
i − pψ1(y

(t)
i ) · w(t)

m,l

)
(F.4)

together form an instance of Definition F.2, for which we can find the event E(t)m,1 and E(t)m,2, both with1201

probability at least 1 − O(d−c−1/T ), such that on E(t)m,1 ∩ E
(t)
m,2 the results in Proposition F.5 and1202

Proposition F.6 hold.1203

The gradient we use in the algorithm differs from Eq. (F.4) by the error term err
(t)
m,l,i · z

(t)
i . To control1204

this difference, we define1205

E(t)m,3 =
{
sup
i
∥z(t)i ∥ ≤

√
d
}
.
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Given our specification on supm,l,i,t err
(t)
m,l,i, it holds on E(t)m,3 that for any v ∈ Sd−1:1206 ∣∣∥g(t)m ∥2 + ∥sg(t)m ∥2∣∣ ∨ |⟨g(t)m , v⟩ − ⟨sg(t)m , v⟩| ≤ ∥g(t)m − sg(t)m ∥2

≤ sup
i
∥z(t)i ∥ · sup

l
∥err(t)m,l,i∥2

≤ d−9s⋆ . (F.5)

Our final event is fixed to be1207

E = E0 ∩
⋂
m∈[d]

T⋂
t=1

(
E(t)m (ϵ) ∩ rEm ∩ E(t)m,1 ∩ E

(t)
m,2 ∩ E

(t)
m,3

)
.

With union bound, we have that Pr(E) ≥ 1−O(d−c) for some constant c > 0.1208

To avoid confusion, we denote for each m that qg
(t)
m = EPθ⋆

[sg
(t)
m ]. Later we will encounter some data1209

dependent index pm and using qg
(t)
xm avoids the ambiguity of the expectation. With our choice of n and1210

L, Proposition F.6 guarantees that for any m, t, j, it holds that1211 ∣∣
sg
(t)
m,j − qg

(t)
m,j

∣∣ ≲ k−(s⋆−1/2) · log−3/2 k. (F.6)

In the sequel, we will drop the superscript t whenever there is no ambiguity. We will frequently1212

involve rg
(t)
m = P

Topk(g
(t)
m )

(g
(t)
m ).1213

Weak alignment. The proof towards the weak alignment in the initial step comprises three parts. In1214

the first place, we will show that the index of the gradient we choose pm guarantees that |θ⋆
xm| ≳ k−1/2.1215

Thereby, the corresponding gradient exhibits good alignment towards the signal. Based on this, we1216

can show that the support we choose Topk(gxm) is of considerable quality by successfully identifying1217

ϕ⋆⋆ = {j : |θ⋆j | ≥ 1/
√
2k}. Combining these elements, we can show that the gradient rg

xm is1218

well-aligned with the signal θ⋆.1219

We begin with analyzing the quality of g
xm where pm = argmaxm∥rgm∥2. With this objective in mind,1220

we first work on deriving a signal-dependent upper bound for ∥rg
xm∥. Note that ρm = ⟨θm, θ⋆⟩ = |θ⋆m|,1221

where θm = em is the initial weight. Applying Proposition F.5, we have for any ϕ, |ϕ| = k that1222 ∑
j∈ϕ

|qg
xm,j |2 ≲ (k−1/2|θ⋆

xm||)
2 1{s⋆ even} ·

(
k−1/2|θ⋆

xm|+ k−1δ+
)2(s⋆−1−1{s even}) ·

∑
j∈ϕ

θ⋆j
2

+
(
k−2 ∨ (k−1/2|θ⋆

xm|)
2 · (k−1/2|θ⋆

xm|+ k−1δ+)
2(s⋆−1) + k−2s⋆

)∑
j∈ϕ

θ⋆j
2

+ (k−1/2|θ⋆
xm|+ k−1δ+)

2s⋆ · k−1
∑
j∈ϕ

(
θ2j + ·(k/d)1{j ̸=m}

)
+ k−(2s⋆+1)

Note that we have ∥θ⋆∥∞ ≲ k−1/2 · log k, it holds that1223

k−2 ∨ (k−1 · |θ⋆
xm|

2) · (k−1/2|θ⋆
xm|+ k−1δ+)

2(s⋆−1) ≲ k−2s⋆ · log(k)2s
⋆

.

For any ϕ such that |ϕ| = k, we have
∑
j∈ϕ θ

2
j ≤ 1 for any θ such that ∥θ∥0 = k. Therefore, we can1224

further upper bound this quantity by1225

sup
|ϕ|=k

∑
j∈ϕ

|qg
xm,j |2 ≲ (k−1/2|θ⋆

xm|+ k−1δ+)
2s⋆−2 + k−2s⋆ · log(k)2s

⋆

+ (k−1/2|θ⋆
xm|+ k−1δ+)

2s⋆ · k−1

≲ (k−1/2|θ⋆
xm|+ k−1δ+)

2s⋆−2

+ k−2s⋆ · logs
⋆/2 k + k−2s⋆ · log(k)2s

⋆

. (F.7)

Now we combined Eq. (F.7), Eq. (F.6) and Eq. (F.5) to conclude that1226

sup
|ϕ|=k

∑
j∈ϕ

|g
xm,j |2 ≲ k · sup

j
|g

xm,j − sg
xm,j |2 + k · sup

j
|sg

xm,j − qg
xm,j |2 + sup

|ϕ|=k

∑
j∈ϕ

|qg
xm,j |2

≲ k−(s⋆−1) · (|θ⋆
xm|+ k−1/2δ+)

2s⋆−2 + k−2s⋆ · log(k)2s
⋆

.
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By definition of rgm, we can further conclude that1227

∥rg
xm∥22 = sup

|ϕ|=k

∑
j∈ϕ

|⟨g
xm, ej⟩|2

≲ k−(s⋆−1) · |θ⋆
xm|

2(s⋆−1) + o
(
k−2(s⋆−1)

)
. (F.8)

On the other hand, for m ∈ ϕ⋆⋆, we have (γ|ρ| + k−1/2|θ⋆m| + k−1δ+)
r ≳ k−r. Then it holds by1228

Proposition F.5 that1229 ∑
j∈ϕ⋆

|qgm,j |2 ≳ k−2(s⋆−1) − rO(k−2s⋆),

and by Eq. (F.6) and (F.5), we have that1230

∥rgm∥22 ≳ k−2(s⋆−1) − rO(k−2s⋆). (F.9)

Now, combinig Eq. (F.9) with Eq. (F.8) by the definition of pm, we have that1231

k−(s⋆−1)|θ⋆
xm|

2(s⋆−1) + o
(
k−2(s⋆−1)

)
≳ k−2(s⋆−1) − rO(k−2s⋆).

We conclude the first step from the last inequality that there exists a global constant c1 > 0 such that1232

for sufficiently large k:1233

|θ⋆
xm| ≥

(
c1 ·

(
1− o(1)

)
· k−2(s⋆−1) · ks

⋆−1
)1/2(s⋆−1)

≥ c′1k−1/2. (F.10)

Now we move on to the support identification. We have shown that |θ⋆
xm| ≳ k−1/2. To establish1234

ϕ⋆⋆ ⊂ pϕ = Topk(gxm), it is sufficient to demonstrate that1235

sup
j /∈ϕ⋆

|g
xm,j | ≤ inf

j∈ϕ⋆
|g

xm,j |. (F.11)

In the following, we will bound each side separately. Consider j /∈ ϕ⋆, we have by Proposition F.51236

that1237

|qg
xm,j | ≲

(
k−1/2|θ⋆

xm|+ k−1δ+
)s⋆ · (k−1/2|θj |+ (k/d)−1/2

)
+ k−(s⋆+1).

Combining this upper bound with Eq. (F.10) and Eq. (F.6) gives us that1238

|g
xm,j | ≤ |gxm,j − sg

xm,j |+ |sgxm,j − qg
xm,j |+ |qgxm,j |

≲ (k−1/2 · |θ⋆
xm|+ k−1δ+)

s⋆ ·
(
k−1/2|θj |+ (k/d)−1/2

)
+ k−(s⋆+1)

+ d−9s⋆ + k−(s⋆−1/2) · log−3/2 k

≲ k−(s⋆−1/2) · log−3/2 k + rO(k−(s⋆+1)). (F.12)

On the other hand, for j ∈ ϕ⋆⋆, we have that1239

|qg
xm,j | ≳ |k−1/2θ⋆

xm + k−1δ+|s
⋆−1 · |θ⋆j |

≳ k−(s⋆−1/2)

Similarly, it holds that1240

|g
xm,j | ≳ |qgxm,j | − |gxm,j − sg

xm,j | − |sgxm,j − qg
xm,j |

≳ k−(s⋆−1/2) − o(k−(s⋆−1/2)). (F.13)

Comparing Eq. (F.12) and Eq. (F.13), we successfully validate Eq. (F.11) holds, and consequently1241

ϕ⋆⋆ ⊂ pϕ.1242

We complete our proof of weak alignment by analyzing the inner product between rg
xm and θ⋆ and the1243

norm of rg
xm respectively. Since |θ⋆

xm| ≳ k−1/2, we have that1244

(γ|ρ
xm|+ k−1/2 · |θ⋆

xm|+ k−1δ+)
s⋆−1 ∧ (γ|ρ

xm|+ k−1/2 · |θ⋆
xm|+ k−1δ+)

s⋆−2 · |γρm| ≳ k−(s⋆−1)/2 · |θ⋆
xm|
s⋆−1
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For the inner product, we apply Proposition F.5 for pm and each j ∈ ϕ⋆⋆ and get that1245

g
xm,j · θ⋆j ≃ θ⋆j

2 · k−(s⋆−1)/2 · |θ⋆
xm|
s⋆−1 · sign(θ⋆

xm)

−
(
|R

xm,j |+ |gxm,j − sg
xm,j |+ |sgxm,j − qg

xm,j |
)
· |θ⋆j |. (F.14)

Since ϕ⋆⋆ ⊂ pϕ1, we can lower bound the summation of the leading term as1246 ∑
j∈pϕ1

θ⋆j
2 · k−(s⋆−1)/2 · |θ⋆

xm|
s⋆−1 ≳

∑
j∈pϕ⋆⋆

θ⋆j
2 · k−(s⋆−1)/2 · |θ⋆

xm|
s⋆−1

≳ k−(s⋆−1)/2 · |θ⋆
xm|
s⋆−1 · k−1 · |ϕ⋆⋆|

≥ k−(s⋆−1)/2 · |θ⋆
xm|
s⋆−1, (F.15)

where the last line holds by the definition of E0,♯ ⊂ E0. For the term associated with R
xm,j , we have1247

by the characterization in Proposition F.5 that1248 ∑
j∈pϕ1

|Rm,j | · |θ⋆j | ≲ (k−s
⋆

· log(k)s
⋆

+ k−s
⋆

) ·
∑
j∈ϕ⋆

|θ⋆j |2

+ k−s
⋆

· log(k)s
⋆

· k−1/2 ·
( ∑
j∈pϕ1

|θj | · |θ⋆j |+ |θ⋆j | · (k/d)1{j ̸=m}
)

+ k−(s⋆+1) ·
∑
j∈pϕ1

|θ⋆j |.

Applying the Cauchy-Schwarz inequality, we have that1249 ∑
j∈pϕ1

|θ⋆j | ·
(
|θ⋆j |+ (k/d)1{j ̸=m}) ≤ (

∑
j∈[d]

|θ⋆j |2)1/2 ·
(
(
∑
j∈[d]

|θj |2)1/2 + (1 + k3/d2)1/2
)

= O(1). (F.16)

And therefore1250 ∑
j∈pϕ1

|Rm,j | · |θ⋆j | ≲ k−s
⋆

· log(k)s
⋆

+ k−s
⋆

+ rO(k−(s⋆+1/2)). (F.17)

For the rest of the error terms, we have by Eq. (F.6) and Eq. (F.5) that1251 ∑
j∈pϕ1

(
|g

xm,j − sg
xm,j |+ |sgxm,j − qg

xm,j |
)
· |θ⋆j | ≲

∑
j∈ϕ⋆

|θ⋆j | · k−(s⋆−1/2) · log(k)−3/2

≤ k−(s⋆−1) · log(k)−3/2. (F.18)

Combining Eq. (F.14), Eq. (F.15), Eq. (F.17) and Eq. (F.18), we have that1252

|⟨rg
xm, θ

⋆⟩| ≳ k−(s⋆−1)/2 · |θ⋆
xm|
s⋆−1 − o(k−(s⋆−1)).

For the norm, we already have in Eq. (F.8) that1253

∥rg
xm∥2 ≲ k−(s⋆−1)/2 · |θ⋆

xm|
(s⋆−1) + o(k−(s⋆−1)).

Combining last two inequalities, we concludes that1254

|⟨P
pϕ1
g

xm, θ
⋆⟩|

∥P
pϕ1
g

xm∥
≳
|θ⋆

xm|
s⋆−1 − o(k−(s⋆−1)/2)

|θ⋆
xm|s

⋆−1 + o(k−(s⋆−1)/2)
= Θ(1),

given that |θ⋆
xm| ≥ c

′
1k

−1/2 for some constant c′1 > 0. This concludes the proof of weak alignment.1255
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Strong Alignment. Starting from the second step, we have by Algorithm 2 that all the neurons1256

share the same weight parameter. Let θ be the weight parameter in any step after the first step and we1257

suppose that ρ = ⟨θ, θ⋆⟩ = Θ(1). From Proposition F.5, we see that now the choice of the gradient1258

should not change the quality of the gradient significantly, as γ|ρ| ≫ k−1/2|θ⋆m| for any m ∈ [d].1259

Therefore, we start by analyzing the alignment increment using any gm. This alteration does not1260

affect the alignment increment, but substantially simplifies the analysis.1261

We additionally define a support ϕ† = {j ∈ [d] : |θ⋆j | ≥ k−1}. In the following, we fix an arbitrary1262

m ∈ [d]. We begin with analyzing the magnitude of gm,j for j ∈ ϕ† \ {m}. Since |ρ| = Ω(1), it1263

holds that1264

(γ|ρ|+ k−1/2 · |θ⋆m|+ k−1δs⋆−1)
s⋆−1 ≃ (γ|ρ|+ k−1/2 · |θ⋆m|+ k−1δs⋆−2)

s⋆−2 · (γ|ρ|) ≃ k−(s⋆−1)/2.

With triangle inequality, Proposition F.5 indicates that, for j ∈ ϕ†:1265

|gm,j | ≥ |qgm,j | − |sgm,j − qgm,j | − |sgm,j − gm,j |
≥ k−(s⋆−1)/2 · |θ⋆j | − k−s

⋆/2 · |θ⋆j |

− k−(s⋆+1)/2 · (|θj |+ (k/d)1{j ̸=m}/2)− rO(k−(s⋆−1/2)).

Similarly, we have for j /∈ ϕ⋆ that1266

|gm,j | ≤ |qgm,j |+ |sgm,j − qgm,j |+ |sgm,j − gm,j |
≲ k−(s⋆+1)/2 · (|θj |+ (k/d)1{j ̸=m}/2) + rO(k−(s⋆−1/2)).

Comparing last two inequalities, we have that |θj | > k−1 implies that |gm,j | ≥ maxj /∈ϕ⋆ |gm,j | for1267

sufficiently large k, and therefore1268

min
j∈ϕ†
|gm,j | > max

j /∈ϕ⋆
|gm,j |,

which means that ϕ† ⊂ pϕm = Topk(θm). Thereby, we have1269 ∑
j∈pϕm

|θ⋆j |2 ≥ 1−
∑
j /∈ϕ†

|θ⋆j |2 ≥ 1− k−1.

We then move on to the alignment analysis. Retreat to Eq. (F.23), we define1270

βm(ρ, {ξm,l}l∈[L], θ
⋆, θ) =

EQ[ζs⋆(y) · pψs⋆−1(y)] ·
√
s⋆ · E

rwm,l
[⟨wm, l, θ⋆⟩s

⋆−1]

sign(ρ)1{s⋆ even} · (γ|ρ|)s⋆−1
;

rm,j(ρ, {ξm,l}l∈[L], θ
⋆, θ) = EPθ⋆

[⟨sgm, ej⟩]− θ⋆j · (γ|ρ|)s
⋆−1 · sign(ρ)1{s

⋆ even} · βm. (F.19)
Then it follows from Proposition F.5 that whenever |ρ| = Ω(1), we have that βm > 0 and1271

βm ∨ β−1
m < B

|rm,j | ≤ ram,j + rbm,j ,

where1272

ram,j ≤ Cak−(s⋆+1)/2 ·
(
|θj |+ (k/d)1{j ̸=m}/2);

rbm,j ≤ Cb · |θ⋆j | · (γ|ρ|)s
⋆

(F.20)
with some global positive constantB,Ca and C0, whenever the designated parameters are compatible1273

with the definition of our nice event. With this representation, we can deduce by Eq. (F.6) and Eq. (F.5)1274

that1275

|⟨rgm, θ⋆⟩| =
∣∣∣ ∑
j∈pϕm

⟨qgm, ej⟩ · θ⋆j
∣∣∣+ ∑

j∈pϕm

(
|⟨gm, ej⟩ − ⟨sgm, ej⟩|+ |⟨sgm, ej⟩ − ⟨qgm, ej⟩|

)
· |θ⋆j |

≥
∣∣∣ ∑
j∈pϕm

⟨qgm, ej⟩ · θ⋆j
∣∣∣−∑

j∈ϕ⋆

|θ⋆j | ·O(k−(s⋆−1/2) · log−3/2 k)

≥ βm · (γ|ρ|)s
⋆−1 ·

∑
j∈pϕm

|θ⋆j |2 −
∑
j∈ϕ⋆

|rm,j | · |θ⋆j | −O(k−(s⋆−1) · log−3/2 k)

≥
(
βm · (γ|ρ|)s

⋆−1 − Cb · (γ|ρ|)s
⋆)
·
∑
j∈pϕm

|θ⋆j |2 − 2Ca · k−(s⋆+1)/2 −O(k−(s⋆−1) · log−3/2 k).

(F.21)
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where the last inequality holds by Eq. (F.16). To complete the analysis, we need an upper bound for1276

∥rgm∥2. Note that by the triangle inequality and Eq. (F.19), we have that1277

∥rgm∥ ≤ ∥Ppϕm
qgm∥+ ∥Ppϕm

sgm − Ppϕm
qgm∥+ ∥Ppϕm

sgm − Ppϕm
gm∥

≤ ∥βm(γ|ρ|)s
⋆−1 · P

pϕm
θ⋆∥+ ∥P

pϕm
ram∥+ ∥Ppϕm

rbm∥

+O(k−(s⋆−1) · log−3/2 k),

where ram = (rm,1, . . . , r
a
m,d) ∈ Rd and rbm = (rm,1, . . . , r

b
m,d) ∈ Rd. To proceed, note that by1278

Eq. (F.20) and Eq. (F.6), we have that1279

∥P
pϕr
a
m∥ ≤ Cak−(s⋆+1)/2 · (∥θ∥2 +

√
1 + k2/d)

≤ 3Cak
−(s⋆+1)/2;

∥P
pϕr
b
m∥ ≤ Cb · (γ|ρ|)s

⋆

·
(∑
j∈pϕm

|θ⋆j |2
)1/2

.

Putting these upper bounds together, we have that1280

∥P
pϕgm∥2 ≤

(
βm · (γ|ρ|)s

⋆−1 + Cb(γ|ρ|)s
⋆)
·
(∑
j∈pϕm

|θ⋆j |2
)1/2

+ 3Cak
−(s⋆+1)/2 +O(k−(s⋆−1) · log−3/2 k). (F.22)

Note that for any a1 ∧ a2 > b > 0, it holds that1281

a1 − b
a2 + b

=
(a1 − b) · (a2 − b)

a22 − b2
≥ (a1/a2 − b/a2) · (1− b/a2).

Setting ∆ = ·k−1 + k−(s⋆−1)/2 · log−3/2 k ∨ k−1 = o(1), we get by combining Eq. (F.21) and1282

Eq. (F.22) that1283

⟨rgm, θ⋆⟩
∥rgm∥

≥
(βm − Cb · γ|ρ|) ·

(∑
j∈pϕm

θ⋆j
2
)
− 3Ca · k−1 −O(k−(s⋆−1)/2 · log−3/2 k)(

βm + Cb · γ|ρ|
)
·
(∑

j∈pϕm
θ⋆j

2
)1/2

+ 3Ca · k−1 +O(k−(s⋆−1)/2 · log−3/2 k)

≥
(
1−O(∆)

)−1 ·
(1− Cbβ−1

m γ|ρ|
1 + Cbβ

−1
m γ|ρ|

· (
∑
j∈pϕm

θ⋆j
2)1/2 −O(∆)

)
≥ 1− C · k−1 −O(∆)

where the last line holds because (1 − Ck−1)r ≥ 1 − rC · k−1 for any C, r > 0 and sufficiently1284

large k. Note that k−1 = O(∆), we see that1285

⟨rgm, θ⋆⟩
∥rgm∥

≥ 1−O(∆).

This concludes the proof of Theorem 5.1.1286

1287

F.4 Proof of the Key Results1288

Proof of Proposition F.5. First, by Lemma H.2, we have for each j ∈ [d] that1289

⟨EPθ⋆
[sgm], ej⟩ =

∑
s≥s⋆

EQ[ζs(y) · pψs+1(y)] ·
√
s+ 1

L

L∑
l=1

⟨wm,l, θ⋆⟩s · ⟨wm,l, ej⟩

+
∑
s≥s⋆

EQ[ζs(y) · pψs−1(y)] ·
√
s

L
·
L∑
l=1

⟨wm,l, θ⋆⟩s−1 · ⟨θ⋆, ej⟩.

= EQ[ζs⋆(y) · pψs⋆−1(y)] ·
√
s⋆

L

L∑
l=1

⟨wm,l, θ⋆⟩s
⋆−1 · ⟨θ⋆, ej⟩

+R1 +R2, (F.23)
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where the remainders R1, R2 are defined as1290

R1 =
∑
s≥s⋆

EQ[ζs+1(y) · pψs(y)] ·
√
s+ 1

L

L∑
l=1

⟨wm,l, θ⋆⟩s · ⟨θ⋆, ej⟩;

R2 =
∑
s≥s⋆

EQ[ζs(y) · pψs+1(y)] ·
√
s+ 1

L
·
L∑
l=1

⟨wm,l, θ⋆⟩s · ⟨wm,l, ej⟩.

We also denote the leading signal term as1291

S = EQ[ζs⋆(y) · pψs⋆−1(y)] ·
√
s⋆

L

L∑
l=1

⟨wm,l, θ⋆⟩s
⋆−1 · ⟨θ⋆, ej⟩.

By definition R1 collects the higher order term that aligns with the signal and the R2 collects all the1292

terms in the expected gradient that are parallel to wm,l. In comparison to the non-sparse case, here we1293

are analyzing the gradient coordinate-wisely. Therefore, R1 and R2 need to be controlled separately.1294

Analysis for the dominant term S in Eq. (F.23). We first define1295

rwm,l = wm,l · 1{| sup
j
⟨ξm,l, ej⟩| ≤ ϵ}.

By definition of rwm,l, we have that rwm,l, l ∈ [L] are independent to each other and rwm,l = wm,l on1296

event Em(ϵ). We can approximate the expectation of the ⟨wm,l, θ⋆⟩ as1297

E
rwm,l

[⟨ rwm,l, θ
⋆⟩s

⋆−1] = Ewm,l

[
⟨wm,l, θ⋆⟩s

⋆−1 · 1
{
sup
j
|⟨ξm,l, ej⟩| ≤ ϵ

}]
≃ Ewm,l

[⟨wm,l, θ⋆⟩s
⋆−1]± Pr

(
sup
j
|⟨ξm,l, ej⟩| > ϵ

)
≃ Ewm,l

[⟨wm,l, θ⋆⟩s
⋆−1]± Pr(Em(ϵ)

c
).

Here the last line holds because Em(ϵ)
c
= ∪l{supj |⟨ξm,l, ej⟩| > ϵ}. For the first term, it holds by1298

Proposition F.4, we have that on E0,s⋆−1−1{s⋆ even}1299

Ewm,l
[⟨wm,l, θ⋆⟩s

⋆−1] ≃

{
γρ ·

(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−2

)s⋆−2
if s⋆ even;

(γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−1)
s⋆−1 if s⋆ odd.

For the second moment that is involved in the Bernstein’s inequality, we have that on E0,2s⋆−21300

E[⟨ rwm,l, θ
⋆⟩2s

⋆−2] = E[⟨wm,l, θ⋆⟩2s
⋆−2 1{sup

j
|⟨wm,l, ej⟩| ≤ ϵ}]

≤ E[⟨wm,l, θ⋆⟩2s
⋆−2]

≃ (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ2s⋆−2)
2s⋆−2

To proceed, we have by Bernstein’s inequality (Lemma J.1) that there exists an event Em,11 with1301

Pr(Em,11) ≥ 1−O(d−cb,11). And it holds on Em,11 ∩ Em(ϵ) that1302

1

L

∑
l

⟨wm,l, θ⋆⟩s
⋆−1 =

1

L

∑
l

⟨ rwm,l, θ
⋆⟩s

⋆−1

≃ Ewm,l
[⟨wm,l, θ⋆⟩s

⋆−1] + E,

where the error term E can be bounded by1303

|E| ≤
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ2s⋆−2

)s⋆−1 ·
√

log(d)

L
+
ϵs

⋆−1 log(d)

L
+ Pr

(
Ecm(ϵ)

)
.

Moreover, the assumption that1304

L ≳ log d ·
(
k2 ∨

(
ϵs

⋆−1 · ks
⋆
))

; Pr(Em(ϵ)
c
) ≤ k−s

⋆

;

allows us to simplify the upper bound for E, since1305

|E| ≲ k−1 ·
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ2s⋆−2

)s⋆−1
+ k−s

⋆

. (F.24)

In conclusion, we have on Em,11 ∩ Em(ϵ) that1306

S ≃ (Ewm,l
[⟨wm,l, θ⋆⟩s

⋆−1] + E) · ⟨θ⋆, ej⟩.
We remain this form for further simplification.1307
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Analysis for the first remainder R1 in Eq. (F.23). For any s, s′, it holds by the property of1308

likelihood ratio decomposition that1309

EQ[|ζs(y) · pψs′(y)|] ≤ EQ[ζs(y)
2]1/2 · EQ[ pψs′(y)

2]1/2

≤
√∑
s′≥0

EQ[ pψs′(y)2],

and the last quantity is a constant that is independent to s, s′. To bound the summation for s ≥ s⋆, we1310

have on by Lemma F.3 that |⟨wm,l, θ⋆⟩| ≤ γ|ρ|+ ϵ < 1/2 on1311

∑
s≥s⋆

√
s+ 1

L

L∑
l=1

|⟨wm,l, θ⋆⟩|s ≲
∑
s≥s⋆

√
s+ 1 ·

(1
2

)s−s⋆
· 1
L

L∑
l=1

|⟨wm,l, θ⋆⟩|s
⋆

≲
1

L

L∑
l=1

|⟨wm,l, θ⋆⟩|s
⋆

. (F.25)

Now it reduces to bound the right-hand side of Eq. (F.25). Note that on Em(ϵ), rwm,l = wm,l. We can1312

first track the first and second moment of ⟨wm,l, θ⋆⟩ as1313

E
rwm,l

[|⟨ rwm,l, θ
⋆⟩|s

⋆

] ≤ Ewm,l
[|⟨wm,l, θ⋆⟩|s

⋆

]

≤ Ewm,l
[⟨wm,l, θ⋆⟩2s

⋆

]1/2.

To bound the last quantity, we see that given E0,2s⋆ , Proposition F.4 reads1314

Ewm,l
[⟨wm,l, θ⋆⟩2s

⋆

] ≤ (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)
2s⋆ .

By Bernstein’s inequality, there exists a event Em,12 with Pr(Em,12) ≥ 1−O(d−cb,12) such that on1315

Em,12 ∩ Em(ϵ), it holds that1316

1

L

L∑
l=1

|⟨wm,l, θ⋆⟩|s
⋆

≲
(
1 +

√
log d

L

)
· (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)

s⋆ +
ϵs

⋆

log(d)

L
,

Given that L ≳ log(d) ·
(
k ∨ (ϵs

⋆ · ks⋆)
)
, it further holds that1317

1

L

L∑
l=1

|⟨wm,l, θ⋆⟩|s
⋆

≲ (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)
s⋆ + k−s

⋆

.

In conclusion, it holds on Em,12 ∩ Em(ϵ) that1318

R1 ≲
(
(γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)

s⋆−1 + k−s
⋆
)
· |⟨θ⋆, ej⟩|.

Analysis for the second remainder R2 in Eq. (F.23). Similar to Eq. (F.25), we can first upper1319

bound R2 as1320

|R2| ≲
1

L

L∑
l=1

|⟨wm,l, θ⋆⟩|s
⋆

· |⟨wm,l, ej⟩|

=
1

L

L∑
l=1

|⟨ rwm,l, θ
⋆⟩|s

⋆

· |⟨ rwm,l, ej⟩|,

where the last line holds by the definition of Em(ϵ). We decouple the product with the Cauchy-Schwarz1321

inequality as follows:1322

E
rwm,l

[|⟨ rwm,l, θ
⋆⟩|s

⋆

· |⟨ rwm,l, ej⟩|] ≤ Ewm,l
[|⟨wm,l, θ⋆⟩|s

⋆

· |⟨wm,l, ej⟩|]

≤ Ewm,l
[|⟨wm,l, θ⋆⟩|2s

⋆

]1/2 · Ewm,l
[|⟨wm,l, ej⟩|2]1/2
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The first term in the upper bound can be tackled with Proposition F.4. For the second term, we have1323

that1324

Ewm,l
[⟨wm,l, ej⟩2] ≲ E[(⟨ξm,l, ej⟩+ γ · ⟨θ, ej⟩)2]

≲ E[⟨ξm,l, ej⟩2] + γ2θ2j

= γ2θ2j + E[1{j ∈ ϕm,l} · ξ2m,l,j ]

≲ γ2θ2j + k−1 · (k/d)1{j ̸=m}.

Here, the first line holds because ∥γθ + ξ∥2 ≥ 1/2. The last line holds by applying Lemma I.5 and1325

that P(j ∈ ϕm,l) ≤ k/d for j ̸= m. Note that each term in the summation of is bounded by ϵ log(k)1326

up to a constant on Em(ϵ). We have by Bernstein’s inequality (Lemma J.1) that, there exists an event1327

Em,13 with Pr(Em,13) ≥ 1−O(d−cb,13). And it holds on Em,13 ∩ Em(ϵ) that1328

|R2|≲

(
1 +

√
log(d)

L

)
·
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆
·
(
γ|θj |+ k−1/2(k/d)1{j ̸=m}/2)

+
ϵs

⋆+1 log(d)

L
.

Given that1329

L ≳ log(d) ·
(
k ∨ (ϵs

⋆+1 · ks
⋆+1)

)
,

we conclude that it holds on Em,13 ∩ Em(ϵ) that1330

|R2|≲
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆
·
(
γ|θj |+ k−1/2(k/d)1{j ̸=m}/2)+ k−(s⋆+1).

Summary of first-order moment. We now merge previous results to summarize the results for the1331

first-order moment. Note that it is sufficient to set1332

L = Ω
(
log(d) ·

(
k ∨ ϵs

⋆−1(k · log k)s
⋆+1
))

Define the final event as Em,1 = Em,11 ∩ Em,12 ∩ Em,13, which is {wm,l}l∈[L] measurable. By1333

previous analysis, it holds on this event that1334

S ≃ θ⋆j · (γρ)1{s
⋆ even} ·

(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−1−1{s⋆ even}

)s⋆−1−1{s⋆ even}
+ θ⋆j · E;

R1 ≲
((
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆
+ k−s

⋆
)
· |θ⋆j |;

R2 ≲
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆
· (γ|θj |+ k−1/2 · (k/d)1{j ̸=m}/2) + k−(s⋆+1).

Following the error term E in Eq. (F.24), we define R = R1 +R2 + E, which be bounded by d1335

|R| ≲
(
k−1 ∨ (γ|ρ|+ k−1/2|θ⋆m|) · (γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+)

s⋆−1 + k−s
⋆
)
· |θ⋆j |

+
(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δ+

)s⋆
· (γ|θj |+ k−1/2 · (k/d)1{j ̸=m}/2) + k−(s⋆+1).

(F.26)

And we summarize the first moment on Em,1 ∩ Em(ϵ) as1336

EPθ⋆
[⟨sgm, ej⟩] ≃ θ⋆j · (γρ)1{s even} ·

(
γ|ρ|+ k−1/2|θ⋆m|+ k−1δs⋆−1−1{s⋆ even}

)s⋆−1−1{s even}
+R,

where R is upper bounded in Eq. (F.26).1337

Proof of Proposition F.6. Similar to the proof of Proposition E.4, the proof of this proposition com-1338

prises two parts. To begin with, we calculate the variance of each coordinate of sgm.1339
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Second moment calculation. It suffices to consider the variance of the first sample. To this end,1340

we define1341

sgm,1 =
1

L

L∑
l=1

(
ψ(y1, ⟨wm,l, z1⟩) · z1 − pψ1(y1) · wm,l

)
.

For any v ∈ {e1, e2, . . . , ed}, it holds by the definition of sgm,1 that1342

EPθ⋆
[⟨sgm,1, v⟩2] ≲

1

L2

L∑
l,l′=1

EPθ⋆

[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl′ , z⟩)⟨z, v⟩2

]
+

1

L2

L∑
l,l′=1

EPθ⋆

[
pψ1(y)

2⟨wl, v⟩⟨wl′ , v⟩
]

=
1

L2

∑
l ̸=l′

EQ

[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl′ , z⟩)⟨z, v⟩2 ·

(
1 +

∑
s≥s⋆

ζs(y)hs(⟨θ⋆, z⟩)
)]

+
1

L2

L∑
l=1

EQ
[
ψ(y, ⟨wl, z⟩)ψ(y, ⟨wl, z⟩)⟨z, v⟩2

]
+

1

L2

∑
l ̸=l′

EQ[ pψ1(y)
2]⟨wl, v⟩⟨wl′ , v⟩

+
1

L2

L∑
l=1

EQ[ pψ1(y)
2]⟨wl, v⟩2. (F.27)

In the same manner as the non-sparse case, we can derive a O(1/L) upper bound for the second and1343

the last summation, which traverse through all l = l′. Recalling Eq. Lemma F.3, we already have that1344

sup
l,j
|⟨wm,l, ej⟩| ≲ γ + ϵ;

sup
l
|⟨wm,l, θ⋆⟩| ≲ γ|ρ|+ ϵ.

sup
l ̸=l′
|⟨wm,l, wm,l′⟩| ≲ γ2 + ϵ2 log(k).

To incorporate with the notations in Lemma H.3, we denote the upper bounds of the ⟨wm,l, ej⟩,1345

⟨wm,l, θ⋆⟩ and ⟨wm,l, wm,l′⟩ (l ̸= l′) as1346

ϵ0 = γ + ϵ; ϵ1 = γ|ρ|+ ϵ; ϵ2 = γ2 + ϵ2 log(k),

respectively. By the virtue of Lemma H.3, the desired expectation is behaving nicely if the ratio1347

(ϵ20 ∨ ϵ21)/ϵ2 is a constant term. To validate this fact, we note that1348

ϵ20
ϵ2
≃ γ2 + ϵ2

γ2 + ϵ2 log(k)
,

ϵ21
ϵ2
≃ γ2ρ2 + ϵ2

γ2 + ϵ2 log(k)
.

Since ϵ≪ 1≪ log(k)1/2 , we conclude that ϵ20 ∨ ϵ21/ϵ2 ≲ 1 for sufficiently large k. Therefore, we1349

have by Lemma H.3 that1350

1

L2

∑
l ̸=l′

EQ

[
ψ(y1, ⟨wm,l, z1⟩) · ψ(y1, ⟨wm,l′ , z1⟩) · ⟨z1, v⟩2 ·

(
1 +

∞∑
s=s⋆

ζs(y)hs(⟨θ⋆, z⟩)
)]

≲ ϵs
⋆−1

2 .

On the other hand, we have for the third term in Eq. (F.27) that1351

1

L2

∑
l ̸=l′

EQ[ pψ1(y)
2]⟨wm,l, v⟩ · ⟨wm,l′ , v⟩ ≲ sup

l
|⟨wm,l′ , v⟩|2 · 1{s⋆ ≤ 2}

≲ ϵ20 · 1{s⋆ ≤ 2}
≲ ϵ2 · 1{s⋆ ≤ 2},

where the first line holds by Lemma F.3.1352

In summary, we have on the event Em(ϵ) ∩ rEm that1353

sup
v∈{e1,e2,...,ed}

nVarPθ⋆
[⟨gm, v⟩] ≲ ϵs

⋆−1
2 +

1

L
=
(
γ2 + ϵ2 log(k)

)s⋆−1
+

1

L
.
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Concentration . We now turn to validate the condition of Lemma J.3. For any v ∈ {e1, e2, . . . , ed},1354

we set G(z, y, w) = |ψ(y, ⟨w, z⟩) · ⟨z, v⟩| + | pψ1(y) · ⟨w, v⟩| with the domain measure defined as1355

dPθ⋆(z1, y1)× dµ(w), where dµ(w) = L−1
∑
l δwm,l

, the integral Minkowski’s inequality implies1356

that1357

EPθ⋆
[|⟨gm,1, v⟩|r]1/r =

(∫
dPθ⋆(y, z)

(∫
dµ(w)|G(z, y, w)|

)r)1/r
≤
∫

dµ(w)
(∫

dPθ⋆(y, z)|G(z, y, w)|r
)1/r

=
1

L

L∑
l=1

EPθ⋆
[|ψ(yi, ⟨wm,l, zi⟩) · ⟨zi, v⟩|r]1/r +

1

L

∑
l

|⟨wm,l, v⟩|. (F.28)

To proceed, we leverage Cauchy-Schwarz inequality to decouple the average of the product in the1358

first term, which reads1359

1

L

L∑
l=1

EPθ⋆
[|ψ(yi, ⟨wm,l, zi⟩) · ⟨zi, v⟩|r]1/r ≤

1

L

L∑
l=1

EPθ⋆
[|ψ(yi, ⟨wm,l, zi⟩)|2r]1/2r · EPθ⋆

[|⟨zi, v⟩|2r]1/2r.

Similar to the proof of Proposition E.4, we have that1360

EPθ⋆
[ψ(y, ⟨wm,lz, )⟩2r] ≤ EQ[U⟨θ⋆,wm,l⟩

( P(x, y)
Q(x, y)

)2
]1/2 · EQ[ψ(y, x)

4r]1/2 ≲ rCp4r,

where the first inequality exactly repeats Eq. (E.12) and the second inequality holds by Assump-1361

tion 4.1(c). On the other hand, we have that EPθ⋆
[⟨zi, v⟩2r]1/2r ≤ r1/2. Since the second term in1362

Eq. (F.28) is bounded by O(1), we conclude that1363

EPθ⋆
[|⟨gm,1, v⟩|r]1/r ≲ rCp+1/2.

Thus, Lemma J.3 implies that there exists a {(zi, yi)}i∈[n]-measurable event Em,2 with probability at1364

least 1−O(d−c−1/T ), on which for any v ∈ {e1, e2, . . . , ed}, it holds that1365

∣∣⟨gm, v⟩ − EPθ⋆
[⟨gm, v⟩]

∣∣≲√EPθ⋆
[⟨gm,1, v⟩2] · log(dc+1T )

n
+

log(dc+1T ) · log(dc+1Tn)Cp+1/2

n

≲

√((
γ2 + ϵ2 log(k)

)s⋆−1
+ L−1

)
· log(d)

n
+

log(d)Cp+3/2

n
,

given that T, n are at most of polynomial rate in d. Since we assume that1366

n = Ω
((

(γ2 + ϵ2 log(k))s
⋆−1 + L−1

)−1 · log(d)2Cp+2
)
,

the above inequality can be further simplified as1367

∣∣⟨gm, v⟩ − EPθ⋆
[⟨gm, v⟩]

∣∣≲
√((

γ2 + ϵ2 log(k)
)s⋆−1

+ L−1
)
· log(d)

n
.

Additionally, Em,2 is the desired event. This concludes the proof of Proposition F.6.1368

F.5 Proofs for Technical Results in the Sparse Case1369

Proof of Lemma F.1. With slighly abuse of notation, we assume that θ⋆ ∼ Unif(Sk−1). We first1370

consider the event E0,∞ = {∥θ⋆∥∞ ≤ C · k−1/2 log(k)1/2}. From the proof of Lemma J.6, we see1371

that1372

P(∥θ⋆∥∞ ≥ t) ≤ 2k · P(θ⋆1 ≥ t) ≤ 2k exp(−k/16) + 2k exp(−t2k/4).

Take t = C · k−1/2 log(k)1/2, we have that the failure probability is upper bounded by1373

2k exp(−k/16) + 2k1−C
2/4.1374
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For the r-norm, we leverage the property that θ⋆ d.
= Z/∥Z∥2 where Z ∼ N (0, Ik). Now,1375

∥Z∥22 =
∑
i≤k Z

2
i , where Z2

i − E[Z2
i ] ≥ −1. Applying one-sided Bernstein’s inequality with1376

failure probability k−c0 , we have that1377

∥Z∥22 ≤ k +
√
2c0k log(k) + c0 log(k)/3.

On the other hand, note that we have for c1 > 2 that1378

P(max
i≤k
|Zi| >

√
2c1 log k) ≤ k · P(|Z1| >

√
2c1 log k) ≤ k exp{−c log k} = k1−c1 ,

To apply Bernstein’s inequality, we note that1379

E[|Zi|r · 1{|Z1| ≤
√
2c1 log k}] ≤ E[|Zi|2r]1/2;

E[|Zi|2r · 1{|Z1| ≤
√
2c1 log k}] ≤ E[|Zi|2r],

where E[Z2r
i ] = (2r − 1)!!. Therefore, it holds by truncated Bernstein’s inequality that1380

P
(
∥Z∥rr > (k +

√
2c2k log(k)) · E[|Z1|2r]1/2 +

(√
2C log(k)

)r · c2 log(k)/3) ≤ k1−c1 + k−c2

Combining the two bounds, we conclude that with probability 1−O(k1−c0∨c1∨c2), it holds that1381

∥θ⋆∥rr
d.
=
∥Z∥rr
∥Z∥r2

≲
k +
√
k log k + (log k)1+r/2

(k +
√
k log k + log k)r/2

≲ k1−r/2,

with probability at least 1−O(k−c) for some constant c > 0.1382

We now move on to consider the event E0,♯ =
{∑

i≤k 1{|θ⋆i | ≥ 1/
√
2k} ≥ k/4

}
. First, it holds by1383

the Hoeffding’s inequality that1384

P
(∣∣∣∑

i≤k

1{Z2
i ≥ 1/2} − kp

∣∣∣ ≤ kp

2

)
≥ 1− 2 exp(−2p2k),

where p = P(Z2
1 ≥ 3/4) > 0.5. Denote above event as A1. On the other hand, we have by the1385

Bernstein’s inequality that1386

P
(∣∣∣k−1

∑
i≤k

Z2
i − 1

∣∣∣ ≤ 1/2
)
≥ 1− 2 exp{−k/32}.

Denote above event as A2. Then on the event A1 ∩ A2, we have that1387 ∑
i≤k

1
{ Z1

∥Z∥
>

1√
2k

}
=
∑
i≤k

1
{
Z2
i >

1

2k

∑
i≤k

Z2
i

}
A2

≥
∑
i≤k

1{Z2
i >

3

4
}

A1

≥ kp

2
> k/4.

In conclusion we have that P(|{i : |θ⋆i | > 1/
√
2k}| > k/4) ≥ P(A1 ∩ A2) ≥ 1− exp{−c3k} for1388

some constant c3 > 0.1389

1390

Proof of Lemma F.3. Clearly, it holds that1391

∥γθ + ξm,l∥2 ≥ ∥ξm,l∥2 − γ · ∥ξm,l∥2 ≥ 1/2.

Bu substituting this lower bound for the denominator, we have for any j, l that1392

|⟨wm,l, ej⟩| ≤ 2(γ|θj |+ |⟨ξm,l, ej⟩|)
≤ 2(γ|θj |+ ϵ).
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The last line holds by the definition of Em(ϵ). On the other hand, we have for any l that1393

|⟨wm,l, θ⋆⟩| ≤ 2(γ|ρ|+
∑
j∈[d]

ξm,l,j · θ⋆j · 1{j ∈ ϕ⋆ ∩ ϕm,l})

≤ 2γ|ρ|+ 2
(∑

j

ξ2m,l,j · 1{j ∈ ϕ⋆ ∩ ϕm,l}
)1/2 · (∑

j

θ⋆j
2 · 1{j ∈ ϕ⋆ ∩ ϕm,l}

)1/2
≤ 2γ|ρ|+ 2 sup

j
|ξm,l,j | · ∥θ⋆∥∞ · |ϕ⋆ ∩ ϕm,l|

To proceed, note that on the event rEm∩Em(ϵ), it holds that |ϕ⋆∩ϕm,l| ≤ log k and that supj |ξm,l,j | ≤1394

ϵ. Since we assume that ∥θ⋆∥∞ ≤ 1/ log k, it holds that1395

|⟨wm,l, θ⋆⟩| ≤ 2(γ|ρ|+ ϵ).

Now we turn to consider the correlation between wm,l and wm,l′ .1396

|⟨wm,l, wm,l′⟩| ≤ 2
(
γ2 +

∑
j

|ξm,l,j | · |ξm,l′,j | · 1{j ∈ ϕm,l ∩ ϕm,l′}

+ γ
∑
j

|θj | · |ξm,l,j | · 1{j ∈ ϕm,l ∩ supp(θ)}

+ γ
∑
j

|θj | · |ξm,l′,j | · 1{j ∈ ϕm,l′ ∩ supp(θ)}
)
.

For the second term, we have with the definition of Em(ϵ) that1397 ∑
j

|ξm,l,j | · |ξm,l′,j | · 1{j ∈ ϕm,l ∩ ϕm,l′} ≤ max
j,l
|ξm,l,j |2 · |ϕm,l ∩ ϕm,l′ |

≤ ϵ2 log k.
For the third term, applying the Cauchy-Schwarz inequality, we have that1398

γ
∑
j

|θj | · |ξm,l′,j | · 1{j ∈ ϕm,l ∩ ϕm,l′} ≤ γ∥θ∥2 · ϵ
√

log k =≤ γ2 + ϵ2 log k.

Putting them together, we have that1399

|⟨wm,l, wm,l′⟩| ≤ 4(γ2 + ϵ2 log k).

This concludes the proof of Lemma F.3.1400

Proof of Proposition F.4. For conciseness, we momentarily drop the subscript m, l in the following1401

analysis. Conditioning on fixed ϕ, we have that1402

Ew[⟨w, θ⋆⟩s] = Ew
[
∥γθ + ξ∥−s2 ·

(
γ⟨θ, θ⋆⟩+ ⟨ξ, θ⋆⟩

)s]
= Eϕ

[
Ew
[
∥γθ + ξ∥−s2 ·

(
γρ+ ⟨ξ, Pϕθ⋆⟩

)s ∣∣ϕ]]. (F.29)

Given the polarization level γ = o(1), we see that ∥γθ+ ξ∥s+1
2 ≃ 1± o(1), and it suffices to evaluate1403

Ew
[(
γρ+ ⟨ξ, Pϕθ⋆⟩

)s ∣∣ϕ]. Without loss of generality, we assume that 1 ∈ ϕ and we can translate1404

Pϕθ
⋆ into the first coordinate by the isotropy of ξ over Sk−1(ϕ). To this end, we can characterize the1405

first term as follows:1406

E
[(
γρ+ ⟨ξ, Pϕθ⋆⟩

)s ∣∣ϕ] = E
[(
γρ+ ⟨ξ, ∥Pϕθ⋆∥2 · e1⟩

)s ∣∣ϕ]
=

s∑
r=0

(
2⌊s/2⌋
r

)
(γρ)s−r · ∥Pϕθ⋆∥r2 · E

[
ξr1
∣∣ϕ] · 1{r even}

(i)
≃

⌊s/2⌋∑
r=0

(
2⌊s/2⌋
2r

)
(γρ)2⌊s/2⌋−2r · ∥Pϕθ⋆∥2r2 · k−r · (γρ)1{s odd}

= (γρ)1{s odd} ·
(
(γρ+ k−1/2∥Pϕθ⋆∥2)2⌊s/2⌋ + (γρ− k−1/2∥Pϕθ⋆∥2)2⌊s/2⌋

)
/2

≃ (γρ)1{s odd} · (γ|ρ|+ k−1/2∥Pϕθ⋆∥2)2⌊s/2⌋. (F.30)
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Here, (i) holds by applying Lemma I.5 and ≃ denotes the equality that is up to a s-dependent1407

multiplicative constant.1408

Putting together Eq. (F.29) and (F.30), we conclude that1409

Ew[⟨w, θ⋆⟩s |ϕ] ≃ (γρ)1{s odd}(γ|ρ|+ k−1/2∥Pϕθ⋆∥2)s−1{s odd}. (F.31)

In the sequel, we consider averaging over ϕ. From Eq. (F.31), we see that it suffices to consider1410

Eϕ[(γ|ρ| + k−1/2∥Pϕθ⋆∥2)r] for some r ≥ 2. We alter the notation to facilitate some deferred1411

calculation. Consider m ⊂ [d] with constant size |m| = O(1) that does not scale with k or d. Now1412

define ϕm ∼ Unif{Sk,m}, where Sk,m = {S ⊂ [d] : |S| = k,m ⊂ S}. It is easily seen that this1413

definition covers previous definition of Sk,m by setting m = {m}. We characterize the magnitude of1414

Eϕm [∥Pϕmθ
⋆∥r2] from both sides as follows. For the lower bound, we have that1415

Eϕm [∥Pϕmθ
⋆∥r2] = Eϕm

[(
∥θ⋆m∥22 +

∑
j /∈m

|θ⋆j |2 1{j ∈ ϕm}
)r/2]

≥ Eϕm

[
∥θ⋆m∥rr +

∑
j /∈m

|θ⋆j |r 1{j ∈ ϕm}
]

(i)
≃ (1− k/d) · ∥θ⋆m∥rr +

k

d
· ∥θ⋆∥rr

(ii)

≳ ∥θ⋆m∥rr +
k

d
· k1−r/2 · ∥θ⋆∥r/22

= ∥θ⋆m∥rr +
k2

d
· k−r/2.

Here (i) holds by the fact that E[1{j ∈ ϕm}] ≃ k/d for j /∈m, and (ii) is a consequence of Jensen’s1416

inequality. For the upper bound, we have that1417

Eϕm [∥Pϕθ⋆∥r2] = Eϕm

[(
∥θ⋆m∥22 +

∑
j /∈m

|θ⋆j |2 · 1{j ∈ ϕm}
)r/2]

≲ Eϕm

[
∥θ⋆m∥rr +

( ∑
j /∈m

|θ⋆j |2 · 1{j ∈ ϕm}︸ ︷︷ ︸
|(ϕm∩ϕ⋆)\{m}| nonzero summands

)r/2]

Jensen
≲ ∥θ⋆m∥rr + Eϕm

[
|(ϕm ∩ ϕ⋆) \m|r/2−1 ·

(∑
j /∈m

|θ⋆j |r · 1{j ∈ ϕm}
)]
. (F.32)

Next, we apply Cauchy-Schwarz inequality as follows:1418

(F.32) = ∥θ⋆m∥rr + Eϕm

[∑
j /∈m

|θ⋆j |r · 1{j ∈ ϕm}2 · |(ϕm ∩ ϕ⋆) \m|r/2−1
]

≤ ∥θ⋆m∥rr + Eϕm

[∑
j /∈m

|θ⋆j |2r · 1{j ∈ ϕm}
]1/2
· Eϕm

[∑
j /∈m

1{j ∈ ϕm} · |(ϕm ∩ ϕ⋆) \m|r−2
]1/2

= ∥θ⋆m∥rr +
(k
d
·
∑
j /∈m

|θ⋆j |2r
)1/2

· Eϕm

[
|(ϕm ∩ ϕ⋆) \m|r−1

]1/2
(i)

≲ ∥θ⋆m∥rr +
(k
d
· k1−r

)1/2
·
(k2
d

)(r−1)/2

= ∥θ⋆m∥rr +
k2

d
· k−r/2,

where (i) holds by E0,2r and Lemma J.7. In conclusion, we have that Eϕm [∥Pϕθ⋆∥r2] ≃ ∥θ⋆m∥rr +1419

k−r/2 · δ given that k = o(
√
d). Combining this result with Eq. (F.31), we obtain that1420

Ew[⟨w, θ⋆⟩s] ≃ (γρ)1{s odd}(γ|ρ|+ k−1/2|θ⋆m|+ k−1δ1/(s−1{s odd}))
s−1{s odd}

where δ = k2/d = o(1) and δr = δ1/r.1421
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G Statistical Query Lower Bound for Sparse Signal Recovery1422

In this section, we provide a ks
⋆

sample complexity lower bound for the single index model with1423

k-sparse signal when querying a VSTAT oracle. The statistical query (SQ) framework was developed1424

in Feldman et al. (2017) and for completeness, we present essential definition and results here.1425

Definition G.1 (VSTAT Oracle). Let D⋆ be the input distribution over domain X . For a sample size1426

parameter n > 0, VSTAT(D⋆, n) oracle is the oracle that for any query function h : X → [0, 1],1427

returns a value v ∈ [p− τ, p+ τ ], where p = Ex∼D⋆ [h(x)] and τ = max{t−1,
√
p(1− p)/n}.1428

To define a key concept statistical query dimension, we first introduce the following notation.1429

Definition G.2 (Relative Pairwise Correlation). Given two distributions D1, D2 ∈ ∆(X ) and a1430

reference distribution D ∈ ∆(X ),1431

χD(D1, D2) = Ex∼D
[
D1(x)

D(x)
· D2(x)

D(x)

]
− 1.

Definition G.3 (Statistical Dimension). For sγ > 0, η ∈ (0, 1), domain X , a set of distributions D1432

over X , the statistical dimension SDA(D, sγ, η) of D with average correlation sγ and solution set1433

bound η is defined as the largest value m′ such that there exists a reference distribution D ∈ ∆(X )1434

and a finite set of distributions DD ⊆ D which can depend on the reference D with the following1435

property: for any solution D⋆ ∈ D,1436

(i) |DD \ {D⋆}| ≥ (1− η)|DD|;1437

(ii) for any subset D′
D ⊆ DD \ {D⋆} such that |D′

D| ≥ |DD \ {D⋆}|/m′,1438

1

|D′
D|2

∑
Di,Dj∈D′

D

χD(Di, Dj) ≤ sγ.

The above definition of the statistical dimension is a speical case of the original Definition 3.1 in1439

Feldman et al. (2017) where we consider a search problem of exact recovery of the ground truth D⋆.1440

Definition G.4 ((γ, β)-correlated Distributions). We say that a set of m distributions D =
{D1, . . . , Dm} over X is (γ, β)-correlated relative to a reference distribution D ∈ ∆(X ) if:

χD(Di, Dj) ≤
{
β for i = j ∈ [m]

γ for i ̸= j ∈ [m].

The following lemma borrowed from Lemma 3.10 of Feldman et al. (2017) provides a lower bound on1441

the statistical dimension in terms of the (γ, β)-correlation property of the set of candidate distributions.1442

Lemma G.5. Given a set of candidate distributions D that are (γ, β)-correlated with respect to a1443

reference distribution D, then for any γ′ > 0 and η > |D|−1,1444

SDA(D, γ + γ′, η) ≥ (|D| − 1)γ′

β − γ
.

The main result in the SQ framework is the following statement that relates the number of queries1445

required to the statistical dimension, which is borrowed from Theorem 3.2 of Feldman et al. (2017).1446

Lemma G.6. Let X be a domain and D be a set of candidate distributions over X . For any sγ > 01447

and η ∈ (0, 1), Any randomized SQ algorithm that solves the problem of finding the input distribution1448

D⋆ ∈ D with probability at least α > η requires at least (α − η)/(1 − η) · SDA(D, sγ, η) calls to1449

the VSTAT(D⋆, (3sγ)−1) oracle.1450

Our strategy for proving the lower bound is to first construct a set of candidate distributions D that1451

are (ω(k−1), β)-correlated with respect to reference distribution Q with β = Dχ2(Pθ⋆ ∥Q) and1452

|D| exponentially large. Then by Lemma G.5 and Lemma G.6, we can derive the desired hardness1453

result. It remains to construct the set of candidate distributions D that are (ω(k−1), β)-correlated1454

with respect to Q. To this end, we introduce the following result on the packing number of k-sparse1455

vectors.1456
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Lemma G.7 (Packing Number for k-Sparse Vectors). Define ρ(u, v) = |⟨u, v⟩|. Let packing number1457

Mρ(d, k, t) be the maximal cardinality of the set of k-sparse vectors in Sd−1 such that ρ(u, v) < t1458

for any u ̸= v in the set. We have for any t ∈ (1/k, 1) that1459

Mρ(d, k, t) ≥
1

2
· exp

(
min

{
(d− k)t2 , 3kt

}
8

)
.

With all these ingredients in place, we are ready to prove the main theorem.1460

Proof of Theorem 5.4. Let us pick parameter κd ∈ ((log d)2, k/4) that scales with d and set1461

t ≥ max

{√
κd
d− k

,
κd
3k

}
∈ (1/k, 1/2). (G.1)

Note that t ∈ (1/k, 1/2) is able to hold by our choice of κd and condition that ω((log d)2) ≤ k ≤ d/2.1462

In this vein, we can pick D to be the maximal set of distributions Pθ for some k-sparse vectors1463

θ ∈ Sd−1 satisfying ρ(θ, θ′) < t for any θ ̸= θ′ in the set. It follows from plugging (G.1) into1464

Lemma G.7 that |D| ≥ exp(κd/8)/2, which is super polynomially large in d for our choice of κd.1465

Next, we configure the remaining parameters in Lemma G.5 and Lemma G.6. We choose the reference1466

distribution to be Q, in which the covariate z is independent of the output y. For β, we note that1467

χQ(Pθ,Pθ) = Dχ2(Pθ ∥Q) = O(1),

which is a constant independent of θ due to the rotational invariance of the likelihood ratio with1468

respect to θ. Thus, we define this quantity as B can just set β = Dχ2(Pθ⋆ ∥Q) = B. For γ, we note1469

that for any two Pθ,Pθ′ in D for θ ̸= θ′,1470

|χQ(Pθ,Pθ′)| =
∣∣∣∣Ex∼Q

[
Pθ(x)
Q(x)

· Pθ
′(x)

Q(x)

]
− 1

∣∣∣∣
=

∣∣∣∣∣∣Ex∼Q

[(
1 +

∑
s≥s⋆

ζs(y)hs(⟨θ, z⟩)
)
·
(
1 +

∑
s′≥s⋆

ζs′(y)hs′(⟨θ′, z⟩)
)]
− 1

∣∣∣∣∣∣
=
∑
s≥s⋆

EQ[ζs(y)
2] · |⟨θ, θ′⟩|s ≤

∑
s≥s⋆

EQ[ζs(y)
2] · ts ≤ EQ[ζs⋆(y)

2] · ts
⋆

+
ts

⋆+1

1− t
.

Here, the third equality follows from the fact that only when s = s′, the cross term1471

EQ[hs(⟨θ, z⟩)hs(⟨θ′, z⟩)] is non-zero. In particular, by the property of the Gaussian noise opera-1472

tor introduced in (B.3), we have that EQ[hs(⟨θ, z⟩)hs(⟨θ′, z⟩)] = ⟨θ, θ′⟩s < ts. For the last inequality1473

above, we simply use the fact that EQ[ζs(y)
2] ≤ 1 for any s (Damian et al., 2024) and t < 1. Now,1474

we conclude that1475

|χQ(Pθ,Pθ′)| ≤
(
EQ[ζs⋆(y)

2] +
t

1− t

)
· ts

⋆

≤
(
EQ[ζs⋆(y)

2] + 1
)
· ts

⋆

.

We thus set γ′ = γ =
(
EQ[ζs⋆(y)

2] + 1
)
· ts⋆ = Θ(ts

⋆

). Finally, we set η = 1/3 and α = 2/3. Then1476

all the conditions in both Lemma G.5 and Lemma G.6 are satisfied and we have1477

SDA(D, 2γ, 1/3) ≥ (|D| − 1)γ

β − γ
≥ |D|γ

2β
≥ γ exp(κd/8)

4β
.

Lastly, recall that we have |⟨θ, θ′⟩| ≤ t for any θ ̸= θ′ in D, which means that in order to achieve1478

alignment at least 2t with the true signal θ⋆, we need to exactly identify the distribution Pθ⋆ . Con-1479

sequently, by Lemma G.6, we have that any randomized SQ algorithm that solves the problem of1480

achieving alignment 2t with probability at least 2/3 requires at least γ exp(κd/8)/(8B) calls to the1481

VSTAT(Pθ⋆ , (6γ)−1) oracle.1482

Simplification of the lower bound. To simplify the lower bound, let us take κd = (log d)c/2 for1483

some constant c > 2. Thus, the alignment 2t is upper bounded by1484

2t ≤
{

rω(k−1) if k <
√
d

rω(d−1/2) if k ≥
√
d
,
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where rω(·) hides some poly-logarithmic factors. The number of queries is still super polynomially1485

large in d. Following from (G.1), we can safely set1486

t =

{
(log d)c/k if (log d)2 < k <

√
d(log d)c√

(log d)c/d if
√
d(log d)c ≤ k ≤ d/2

,

Hence, the number of sample1487

(6γ)−1 =
t−s

⋆

6
≃

 ks
⋆

(log d)cs⋆
if (log d)2 < k <

√
d(log d)c

ds
⋆/2

6(log d)cs⋆/2 if
√
d(log d)c ≤ k ≤ d/2

.

Hence, we have established the desired lower bound on the sample complexity.1488

Proof of Lemma G.7. We use the probability method to prove the existence of a set of k-sparse vectors1489

in Sd−1 with the desired property. We i.i.d. sample m vectors ω(1), . . . , ω(m) from the following1490

distribution:1491

ω : ϕ ∼ Unif(Sk), ωj =


1√
k
, w.p. 1

2 if j ∈ ϕ
− 1√

k
, w.p. 1

2 if j ∈ ϕ
0, j /∈ ϕ.

, j ∈ [d].

where we recall that Sk is the set of all size-k subsets in [d]. Since each ω(i) is i.i.d. sampled, we can1492

equivalently view ⟨ω(i), ω(j)⟩ for i ̸= j as a random variable sampled from the following distribution:1493

⟨ω(i), ω(j)⟩ d= RX
k
, where RX = r1 + . . . , rX , X ∼ Hypergeometric(d, k, k), (G.2)

where r1, r2, . . . are i.i.d. Rademacher random variables. Let us consider random variable W dis-1494

tributed as1495

W
d
=
RY
k
, where RY = r1 + . . .+ rY , Y ∼ Binomial

(
k,

k

d− k

)
. (G.3)

We will invoke the following fact on the tail probability regarding the above two random variables.1496

Proposition G.8. For RX and RY defined in (G.2) and (G.3), respectively, we have that P(RX ≥1497

t) ≤ 2P(RY ≥ t) for any t > 1.1498

The proof of the proposition is deferred to the end of the proof. Thus, it suffices to study the tail1499

probability of W . Note that W d
=
∑k
j=1 wj where wj are i.i.d. sampled from1500

wj =


1
k , w.p. k

2(d−k)
− 1
k , w.p. k

2(d−k)
0, w.p. 1− k

d−k

, j ∈ [k].

where E[wj ] = 0 and E[w2
j ] = (k(d− k))−1. Hence, we can apply the Bernstein inequality to obtain1501

that for any t > 1/k,1502

P(⟨ω(i), ω(j)⟩ ≥ t) ≤ 2P(W ≥ t) ≤ 2 exp

(
− k(t/k)2/2

(k(d− k))−1 + t/(3k2)

)
= 2 exp

(
− k2t2

2k2/(d− k) + 2kt/3

)
≤ 2 exp

(
−min

{
(d− k)t2

4
,
3kt

4

})
.

Suppose we randomly sample m i.i.d. ω(i) from the same distribution. Then the probability that all1503

such pair |⟨ω(i), ω(j)⟩| < t for t > 1/k is lower bounded by1504

P
(
|⟨ω(i), ω(j)⟩| < t,∀i ̸= j

)
≥ 1−m2 · 2P(⟨ω(i), ω(j)⟩ ≥ t)

≥ 1− 4m2 · exp
(
−min

{
(d− k)t2

4
,
3kt

4

})
.
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Ensuring that the probability is nonzero will give us a valid construction of the setD. Therefore, there1505

must exist a D satisfying |⟨ω(i), ω(j)⟩| < t for any i ̸= j and with size1506

|D| ≥ 1

2
· exp

(
min

{
(d− k)t2 , 3kt

}
8

)
.

Hence, we complete the proof.1507

Next, we aim to present the proof of Proposition G.8. To proceed, let us introduce the definition of1508

stochastic dominance.1509

Definition G.9 (Stochastic Dominance). For any real-valued random variable X and Y , we say that1510

X is stochastically dominated by Y , denoted by X
s.t.
≤ Y , if P(X ≥ t) ≤ P(Y ≥ t) for every t.1511

The following result is from Theorem A, Chapter 2 of Szekli (2012).1512

Proposition G.10. We have X
s.t.
≤ Y if and only if there exists a coupling ( pX, pY ) with law( pX) =1513

law(X) and law(pY ) = law(Y ) such that pX ≤ pY almost surely.1514

Proposition G.11 (Theorem 1.1, Klenke and Mattner (2010)). Hypergeometric(d, k, k)
s.t.
≤1515

Binomial(k, k/(d− k)).1516

Another way to think of the problem is that Hypergeometric(d, k, k) corresponds to the number of1517

times a black ball is drawn when sampling for k times from an urn with d− k white ball and k black1518

ball without replacement, while Binomial(k, k/(d−k)) corresponds to sampling in the same urn but1519

with replacement. We claim the following fact on the tail probability of sum of Rademacher random1520

variables.1521

Proposition G.12 (Sum of Rademacher Random Variables). Let r1, r2, . . . be i.i.d. Rademacher1522

random variables. Let Rl = r1 + . . .+ rl for l = 1, 2, . . .. Let pl(·) be the probability mass function1523

of Bl. Then the following holds for any l = 1, 2, . . .:1524

1. pl is symmetric and supported on the set of odd integers if l is odd, and supported on the set1525

of even integers if l is even.1526

2. For i ∈ supp(pl) and i ≥ 0, pl(i) is a non-increasing function of i.1527

3. P(Rl ≥ t) ≤ P(Rl+2 ≥ t) for any t > 1.1528

4. P(Rl ≥ t) ≤ 2P(Rl+1 ≥ t) for any t > 1.1529

5. P(Rl ≥ t) ≤ 2P(Rl+l′ ≥ t) for any l ≥ 1 and l′ ≥ 1.1530

Proof of Proposition G.12. The first claim is immediate from the symmetry of the Rademacher1531

random variables and the fact that the sum of an odd number of Rademacher random variables is odd,1532

while the sum of an even number of Rademacher random variables is even. For the second claim, we1533

note that1534

pl(i) = 2−l ·
(

l

(i+ l)/2

)
, i ∈ supp(pl),

which is a non-increasing function for i ≥ 0. For the third claim, we let t⋆ = 2⌈t/2⌉ if l is even and1535

t⋆ = 2⌈(t− 1)/2⌉+ 1 if l is odd. In other words, t⋆ = min{τ ∈ supp(pl) : τ ≥ t}. Then we have1536

that1537

P(Rl+2 ≥ t) = P(Rl ≥ t⋆ + 2) + P(Rl = t⋆) · P(rl+1 + rl+2 ≥ 0)

+ P(Rl = t⋆ − 2) · P(rl+1 + rl+2 = 2)

= P(Rl ≥ t⋆) + (P(Rl = t⋆ − 2)− P(Rl = t⋆)) · P(rl+1 + rl+2 = 2)

≥ P(Rl ≥ t⋆) = P(Rl ≥ t).

where in the first equality we use the fact that rl+1 + rl+2 is supported on {−2, 0, 2} and in the1538

second equality we use the symmetric property of the distribution of rl+1 + rl+2. The last inequality1539
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follows from the monotonicity of the probability mass function of Rl for t⋆ − 2 ≥ 0 when t > 1. For1540

the forth claim, we similarly have that1541

P(Rl+1 ≥ t) ≥ P(Rl ≥ t⋆)− P(Rl = t⋆) · P(rl+1 = −1) ≥ 1

2
P(Rl ≥ t⋆) =

1

2
P(Rl ≥ t).

The last claim follows from a combination of the third and forth claims where1542

P(Rl+l′ ≥ t) ≥
1

2
P(Rl+2⌊l′/2⌋ ≥ t) ≥

1

2
P(Rl+2⌊l′/2⌋−2 ≥ t) ≥ . . . ≥

1

2
P(Rl ≥ t).

Hence, the proof is complete.1543

Next, we proceed to the proof of Proposition G.8.1544

Proof of Proposition G.8. By Proposition G.11 and Proposition G.10, there exists a coupling pX, pY1545

with law( pX) = law(X) and law(pY ) = law(Y ) such that pX ≤ pY almost surely where X ∼1546

Hypergeometric(d, k, k) and Y ∼ Binomial(k, k/(d− k)).1547

Consider i.i.d. Rademacher random variables r1, r2, . . . , rk. Let Rl = r1 + . . .+ rl for l = 1, 2, . . ..1548

Since R
xX

= r1 + . . . + r
xX
| pX

d
= 2Binomial( pX, 1/2) − L and R

pY = r1 + . . . + r
pY | pY

d
=1549

2Binomial(pY , 1/2)− L for the coupling ( pX, pY ) with pX ≤ pY , we consider the conditional random1550

variable1551

r
xX+i
| (R

xX+i−1
, pX, pY ) = r

xX+i
=

{
1, w.p. 1/2
−1, w.p. 1/2

, i = 1, 2, . . . , pY − pX

The equality holds by the i.i.d. property of these Rademacher random variables. From the distributional1552

perspective, the distribution of R
pY is obtained by conducting convolution with the Rademacher1553

distribution for pY − pX times on the distribution of R
xX

. Invoking Proposition G.12, we directly1554

conclude that P(R
pY ≥ t | pX, pY ) ≥ P(R

xX
≥ t | pX, pY )/2 for any t > 1 and pY ≥ pX . As pY ≥ pX1555

holds almost surely, by the law of total probability, we arrive at the conclusion that P(R
pY ≥ t) ≥1556

P(R
xX
≥ t)/2 for any t > 1.1557

H Supporting Lemmas on Moment Calculations1558

Lemma H.1 (First moment). Under Assumption 4.1, for any s ≥ 0, it holds for any y ∈ R and1559

w, θ ∈ Sd−1 that1560

Ez∼Nd

[
ψ(y, ⟨w, z⟩)z · hs(⟨θ, z⟩)

]
=
√
s+ 1 · pψs+1(y) · ⟨w, θ⟩sw +

√
s · pψs−1(y) · ⟨w, θ⟩s−1θ,

in the L2 sense over the marginal distribution of y under Q.1561

Proof of Lemma H.1. For convenience, we denote ρ := ⟨w, θ⋆⟩. We claim the following identities:1562

Ez∼Nd
[ψ(y, w⊤z)z · hs(θ⋆⊤z)]

= Ez∼Nd

[
ψ(y, w⊤z) · θ⋆⊤z · hs(θ⋆⊤z)

]
· θ⋆ + Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · P⊥

θ⋆z
]

(H.1)

= Ez∼Nd

[
ψ(y, w⊤z) · θ⋆⊤z · hs(θ⋆⊤z)

]
︸ ︷︷ ︸

(I)

·θ
⋆ − ρw
1− ρ2

+ Ez∼Nd

[
ψ(y, w⊤z) · w⊤z · hs(θ⋆⊤z)

]
︸ ︷︷ ︸

(II)

·w − ρθ
⋆

1− ρ2
.

Here, in the first identity, we project z in the direction of θ⋆ and the orthogonal complement of θ⋆,1563

where P⊥
θ⋆ = I − θ⋆θ⋆⊤ is the projection operator onto the orthogonal complement of θ⋆. To see how1564

the second identity holds, we first look at the second term Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · P⊥

θ⋆z
]
.1565

For each direction v orthogonal to both θ⋆ and w, we have1566

Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · ⟨P⊥

θ⋆z, v⟩
]
= Ez∼Nd,x∼N

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · x

]
= 0.
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Also, by projection P⊥
θ⋆z is always orthogonal to θ⋆. Thus, the only direction left for consideration is1567

v = (w − ρθ⋆)/
√
1− ρ2, for which we have1568

Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · ⟨P⊥

θ⋆z, v⟩
]
· v

= Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) ·

w⊤z − ρθ⋆⊤z√
1− ρ2

]
· w − ρθ

⋆√
1− ρ2

= Ez∼Nd

[
ψ(y, w⊤z) · hs(θ⋆⊤z) · (w⊤z − ρθ⋆⊤z)

]
· w − ρθ

⋆

1− ρ2
. (H.2)

Plugging Eq. (H.2) into the second term of line 2 in Eq. (H.1), we thus have the last identity in1569

Eq. (H.1). Next, we analyze terms (I) and (II) in Eq. (H.1). For our convenience, we define Uρ as the1570

Gaussian noise operator such that1571

Uρψ(y, x) = Ex′∼N

[
ψ(y, ρx+

√
1− ρ2x′)

]
.

For term (I), we have by the definition of Uρ that1572

(I) = Ex∼N [Uρψ(y, x) · x · hs(x)]
= Ez∼Nd

[√
s+ 1 ·Uρψ(y, x) · hs+1(x) +

√
s ·Uρψ(y, x) · hs−1(x)·

]
L2(Q)
=
√
s+ 1 · pψs+1(y) · ρs+1 +

√
s · pψs−1(y) · ρs−1. (H.3)

where the second line follows from the recurrence relation of the Hermite polynomials in Eq. (B.1),1573

and the last line follows from the property of the Gaussian noise operator in Eq. (B.3). Similarly for1574

term (II), we have1575

(II) = Ex∼N [Uρ (ψ(y, x)x) · hs(x)]
L2(Q)
= ρs · Ex∼N [ψ(y, x) · x · hs(x)]

L2(Q)
= ρs ·

(√
s+ 1 · pψs+1(y) +

√
s · pψs−1(y)

)
, (H.4)

where in the last line we borrow the calculation in Eq. (H.3) by letting ρ = 1. Plugging Eq. (H.3)1576

and (H.4) into Eq. (H.1), we hence have1577

(H.1)
L2(Q)
=

(√
s+ 1 · pψs+1(y) · ρs+1 +

√
s · pψs−1(y) · ρs−1

)
· θ

⋆ − ρw
1− ρ2

+ ρs ·
(√

s+ 1 · pψs+1(y) +
√
s · pψs−1(y)

)
· w − ρθ

⋆

1− ρ2

=
√
s+ 1 · pψs+1(y) · ρsw +

√
s · pψs−1(y) · ρs−1θ⋆,

which completes the proof.1578

An implication of the previous lemma is that1579

EQ[hs⋆(⟨θ⋆, z⟩) · σ′(⟨z, θ⟩) · ⟨z, θ⋆⟩] = s · pσ(s⋆) · ⟨θ⋆, θ⟩s
⋆−1 +

√
(s+ 1)(s+ 2) · pσ(s⋆+2) · ⟨θ⋆, θ⟩s

⋆+1,

where we take pσ(s) as the s-th normalized Hermite coefficient of σ. Here, we take ψ(y, x) as σ′(x)1580

and thus pψs(y) =
√
s+ 1 · pσ(s+1).1581

Lemma H.2 (Decomposition of first order moment). Suppose that ψ follows Assumption 4.1 and1582

g =
1

nL

n∑
i=1

L∑
l=1

(
ψ(yi, ⟨wl, zi⟩) · zi − pψ1(yi) · wl

)
,

where (zi, yi)
i.i.d.∼ Pθ⋆ and {wl}l≤L is fixed. Then it holds that1583

EPθ⋆
[g] =

∑
s≥s⋆

EQ[ζs(y) · pψs−1(y)] ·
√
s

L

L∑
l=1

⟨wl, θ⋆⟩s−1 · θ⋆

+
∑
s≥s⋆

EQ[ζs(y) · pψs+1(y)] ·
√
s+ 1

L

L∑
l=1

⟨wl, θ⋆⟩s · wl.
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Proof of Lemma H.2. Applying a change of measure from Pθ⋆ to Q and invoking Eq. (2.2), we get1584

EPθ⋆
[g] =

1

L

L∑
l=1

EPθ⋆

[
ψ(y, ⟨wl, z⟩) · z − pψ1(y) · wl

]
=

1

L

L∑
l=1

EQ

[
ψ(y, ⟨wl, z⟩)z ·

(
1 +

∑
s≥s⋆

ζs(y)hs(⟨θ⋆, z⟩)
)
− pψ1(y)wl

]
, (H.5)

Note that for s = 0, we have for the first term in the summation of Eq. (H.5) that1585

L−1
L∑
l=1

EQ[ψ(y, ⟨wl, z⟩)z] = EQ[ pψ1(y)] ·
1

L

L∑
l=1

wl,

which is cancelled out by the debiasing term in the algorithm. Applying the result of Lemma H.1 to1586

the remaining terms in Eq. (H.5) yields1587

EPθ⋆
[g] =

∑
s≥s⋆

EQ[ζs(y) · pψs+1(y)] ·
√
s+ 1

L

L∑
l=1

⟨wl, θ⋆⟩s · wl

+
∑
s≥s⋆

EQ[ζs(y) · pψs−1(y)] ·
√
s

L

L∑
l=1

⟨wl, θ⋆⟩s−1 · θ⋆, (H.6)

where the EQ[ pψ1(y)] · 1L
∑L
l=1 wl term from Lemma H.1 with s = 0 is cancelled out by the debiasing1588

term in the algorithm.1589

Lemma H.3 (Second moment on nice event). Suppose ψ : R × R → R satisfies the quadruple-1590

integrable and high-pass assumptions in Assumption 4.1. Let s⋆ be the generative exponent defined1591

in Definition 2.1. Suppose EQ[ζs(y)
2] ≤ C for some universal C = O(1) and for all s ≥ s⋆. For any1592

w,w′, θ⋆, v ∈ Sd−1 where either v = θ⋆ or ⟨v, θ⋆⟩ = 0 in the non-sparse case, and either v = ej for1593

j ∈ supp(θ⋆) or v = ej for j /∈ supp(θ⋆) in the sparse case, suppose that1594

max{|⟨v, w⟩|, |⟨v, w′⟩|} ≤ ϵ0, max{|⟨θ⋆, w⟩|, |⟨θ⋆, w′⟩|} ≤ ϵ, |⟨w,w′⟩| ≤ ϵ1
for some ϵ, ϵ0, ϵ1 such that 4es⋆ϵ < 1/2. Then, we have for s⋆ ≥ 2 that1595

EQ

[
ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)⟨v, z⟩2 ·

(
1 +

∞∑
s=s⋆

ζs(y)hs(⟨θ⋆, z⟩)

)]

≲ ϵs
⋆−1

1 ·

(
1 +

ϵ2

ϵ1
+

(
ϵ2

ϵ1

)s⋆−1

· ϵ+ 1(v ⊥ θ⋆) ·
(
ϵ2

ϵ1

)s⋆−2

· ϵ
2
0

ϵ1
· (ϵ2 + ϵ · 1(s⋆ ≥ 4))

)
,

and for s⋆ = 1, the bound is O(1). Here, ≲ hides constants that only depend on s⋆, EQ[ψ(x, y)4]1596

and C.1597

Proof. Using the results from Proposition I.1, we have that1598

hs(⟨θ⋆, z⟩)⟨v, z⟩2 =
√

(s+ 2)(s+ 1) · hs+2(z)[(θ
⋆)⊗s ⊗ v⊗2] + hs(z)[(θ

⋆)⊗s] (H.7)

+ 2s · hs(z)[(θ⋆)⊗s−1 ⊗ v]⊤ · ⟨θ⋆, v⟩+
√
s(s− 1) · hs−2(z)[(θ

⋆)⊗s−2] · ⟨θ⋆, v⟩2.

Thus, we only need to focus on these degree terms in ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩). Our goal is to1599

compute the following quantity, which we denoted by F :1600

F = EQ

[
ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)⟨v, z⟩2 ·

(
1 +

∞∑
s=s⋆

ζs(y)hs(⟨θ⋆, z⟩)

)]
= EQ

[
ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)⟨v, z⟩2

]
+

∞∑
s=s⋆

∣∣EQ
[
ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)⟨v, z⟩2hs(⟨θ⋆, z⟩)

]∣∣ . (H.8)
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Here, for the term corresponding to s = 0 in Eq. (H.8), we plug in Eq. (H.7) and have by Lemma I.31601

that1602 ∣∣EQ
[
ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)⟨v, z⟩2

]∣∣
=
∣∣∣EQ

[
ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)(

√
2 · h2(z)[v

⊗2] + 1)
]∣∣∣

≲ ϵ
(s⋆−2)∨0
1 · ϵ2∧c00 · ϵ(2−c0)∨0 + ϵs

⋆−1
1 ≲ ϵ

(s⋆−2)∨0
1 · ϵ20 + ϵs

⋆−1
1 ≲ 1(s⋆ = 1) + ϵs

⋆−2
1 ϵ20 + ϵs

⋆−1
1 .

Here, to use Lemma I.3, for h2(z)[v
⊗2] we take test tensor T2 = v⊗2 and set c0 = 2. The last line1603

also holds by using the Cauchy-Schwarz inequality for EQ[|ζs(y)| · ψ(y, x)2] ≤ EQ[|ζs(y)|2]1/2 ·1604

EQ[ψ(y, x)
4]1/2 ≤ EQ[ψ(y, x)

4]1/2 = O(1). As for the case s⋆ = 1, we already have a constant1605

outside, and noting that the second moment is at most O(1) due to the quadruple-integrable as-1606

sumption, it suffices to consider in the following s⋆ ≥ 2. For the second part of Eq. (H.8), we1607

can split the expectation according to Eq. (H.7). For the first term in Eq. (H.7) which corresponds1608

to
√

(s+ 2)(s+ 1) · hs+2(z)[(θ
⋆)⊗s ⊗ v⊗2], we take test tensor Ts = v⊗2 ⊗ (θ⋆)⊗(s−2) with1609

c0 = 2, s0 = s⋆ + 2 and have by Proposition I.4 that1610 ∣∣∣∣∣
∞∑
s=s⋆

√
(s+ 2)(s+ 1) · EQ

[
ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs+2(z)[(θ

⋆)⊗s ⊗ v⊗2]
]∣∣∣∣∣

≲ 1(s0 ≤ c0) ·
(
ϵ
s⋆−1−⌊s0/2⌋
1 · ϵs00 + ϵ

s⋆−1−⌊c0/2⌋
1 · ϵc00

)
+ ϵc00 · ϵ(2s

⋆)∨s0−c0

+ 1(s0 ≤ 2(s⋆ − 1)) ·
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)

≲ ϵ20 · ϵ2s
⋆−2 + 1(s⋆ ≥ 4) ·

(
ϵs

⋆−2
1 · ϵ20 · ϵ+ ϵ20 · ϵ2s

⋆−3
)
.

For the second term hs(z)[(θ
⋆)⊗s], we take test tensor Ts = (θ⋆)⊗s with c0 = 0, s0 = s⋆ and have1611

by Proposition I.4 that1612 ∣∣∣∣∣
∞∑
s=s⋆

EQ
[
ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs(z)[(θ⋆)⊗s]

]∣∣∣∣∣
≲ ϵc00 · ϵ(2s

⋆)∨s0−c0 +
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)

≲ ϵ2s
⋆

+ ϵs
⋆−1

1 · ϵ+ ϵ2s
⋆−1 ≲ ϵs

⋆−1
1 · ϵ+ ϵ2s

⋆−1.

For the third term 2s · hs(z)[(θ⋆)⊗s−1 ⊗ v]⊤ · ⟨θ⋆, v⟩, we take test tensor Ts = v ⊗ (θ⋆)⊗s−1 with1613

c0 = 1, s0 = s⋆ and have by Proposition I.4 that1614 ∣∣∣∣∣
∞∑
s=s⋆

2s · EQ
[
ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs(z)[(θ⋆)⊗s−1 ⊗ v]⊤

]∣∣∣∣∣
≲ ϵc00 · ϵ(2s

⋆)∨s0−c0 +
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)

≲ ϵ0 · ϵ2s
⋆−1 + ϵs

⋆−2
1 · ϵ0 · ϵ+ ϵ0 · ϵ2s

⋆−2 ≲ ϵs
⋆−2

1 · ϵ0 · ϵ+ ϵ0 · ϵ2s
⋆−2.

For the last term
√
s(s− 1) · hs−2(z)[(θ

⋆)⊗s−2] · ⟨θ⋆, v⟩2, we take test tensor Ts = (θ⋆)⊗s with1615

c0 = 0, s0 = s⋆ − 2 and have by Proposition I.4 that1616 ∣∣∣∣∣
∞∑
s=s⋆

√
s(s− 1) · EQ

[
ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs−2(z)[(θ

⋆)⊗s−2] · ⟨θ⋆, v⟩2
]∣∣∣∣∣

≲ 1(s⋆ = 2) ·
(
ϵ
s⋆−1−⌊s0/2⌋
1 · ϵs00 + ϵ

s⋆−1−⌊c0/2⌋
1 · ϵc00

)
+ ϵc00 · ϵ(2s

⋆)∨s0−c0

+
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)

≲ 1(s⋆ = 2)ϵ1 + ϵ2s
⋆

+ ϵs
⋆−1

1 · ϵ+ ϵ2s
⋆−1 ≲ 1(s⋆ = 2)ϵ1 + ϵs

⋆−1
1 · ϵ+ ϵ2s

⋆−1.
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Summing up the above terms, we have that for s⋆ ≥ 2,1617

F ≲
(
ϵs

⋆−2
1 ϵ20 + ϵs

⋆−1
1

)
+
(
ϵ20 · ϵ2s

⋆−2 + 1(s⋆ ≥ 4) ·
(
ϵs

⋆−2
1 · ϵ20 · ϵ+ ϵ20 · ϵ2s

⋆−3
))

+
(
ϵs

⋆−1
1 · ϵ+ ϵ2s

⋆−1
)
+
(
ϵs

⋆−2
1 · ϵ0 · ϵ+ ϵ0 · ϵ2s

⋆−2 + 1(s⋆ = 2)ϵ1 + ϵs
⋆−1

1 · ϵ+ ϵ2s
⋆−1
)
1(v = θ⋆)

≲ ϵs
⋆−2

1 ϵ20 + ϵs
⋆−1

1 + ϵ20 · ϵ2s
⋆−2 + 1(s⋆ ≥ 4) · ϵ20 · ϵ2s

⋆−3 + ϵ2s
⋆−1

+
(
ϵs

⋆−2
1 · ϵ0 · ϵ+ ϵ0 · ϵ2s

⋆−2
)
1(v = θ⋆).

If v = θ⋆, then we additionally have ϵ0 = ϵ, which simplifies the above bound to1618

F | s⋆≥2,v=θ⋆ ≲ ϵs
⋆−2

1 ϵ2 + ϵs
⋆−1

1 + ϵ2s
⋆−1 = ϵs

⋆−1
1 ·

(
1 +

ϵ2

ϵ1
+

(
ϵ2

ϵ1

)s⋆−1

· ϵ

)
.

For v ⊥ θ⋆, we have that1619

F | s⋆≥2,v⊥θ⋆ ≲ ϵs
⋆−2

1 ϵ20 + ϵs
⋆−1

1 + ϵ20 · ϵ2s
⋆−2 + 1(s⋆ ≥ 4) · ϵ20 · ϵ2s

⋆−3 + ϵ2s
⋆−1

≲ ϵs
⋆−1

1 ·

(
1 +

ϵ2

ϵ1
+

(
ϵ2

ϵ1

)s⋆−1

· ϵ+
(
ϵ2

ϵ1

)s⋆−2

· ϵ
2
0

ϵ1
· (ϵ2 + ϵ · 1(s⋆ ≥ 4))

)
.

Where for s⋆ = 1, we have F |s⋆=1 ≲ 1. Hence, we complete the proof.1620

Lemma H.4. For polarization level γ = o(1), take the polarized random vector1621

w =
γe1 + ξ

∥γe1 + ξ∥2
, where ξ ∼ Unif(Sd−1),

where e1 = (1, 0, . . . , 0)⊤ is the first standard basis vector in Rd. Let θ⋆ = (ρ,
√

1− ρ2, 0, . . . , 0) ∈1622

Sd−1 be a fixed direction. Then, we have that1623

E[⟨θ⋆, w⟩s] ≃


(
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)s
if s is even

ργ
(
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)s−1

if s is odd.

Proof of Lemma H.4. For w, we have by Lemma I.9 that the first moment is given by1624

E[w] = C(e1, γ) · γ · e1 ≃ γe1,
and the second moment is controlled by1625

E[ww⊤] =


C(2e1, γ) · (γ + d−1/2)2 0 · · · 0

0
...
0

C(2e2, γ)d
−1 · Id−1

 ≾


(γ + d−1/2)2 0 · · · 0

0
...
0

d−1 · Id−1

.
For ⟨θ⋆, w⟩s · w, we look at coordinate τ of w, and the first moment is given by1626

E [⟨θ⋆, w⟩s · wτ ] = E
[
(ρw1 +

√
1− ρ2w2)

swτ

]
.

Note that if τ ̸= 1, 2, then the expectation is zero. For more generality, let us take r1, r2 ∈ N. We1627

study the following expectation:1628

E [⟨θ⋆, w⟩s · wr11 w
r2
2 ]

=

s∑
j=0

(
s

j

)
ρj
√
1− ρ2

s−j
E
[
wj+r11 ws−j+r22

]
· 1(s− j + r2 even)

=



⌊s/2⌋∑
j=0

(
s

2j

)
ρ2j
√

1− ρ2
s−2j

E
[
w2j+r1

1 ws−2j+r2
2

]
if s+ r2 is even,

⌊(s−1)/2⌋∑
j=0

(
s

2j + 1

)
ρ2j+1

√
1− ρ2

s−2j−1
E
[
w2j+1+r1

1 ws−2j−1+r2
2

]
if s+ r2 is odd.
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Here, the first equality holds by noting that each term in the sum is zero if the degree on w2 is odd1629

due to the symmetry in the distribution of w2. Next, we invoke Lemma I.9 for the moment as1630

E [⟨θ⋆, w⟩s · wr11 w
r2
2 ]

≃



if s+ r2 is even:
⌊s/2⌋∑
j=0

(
s

2j

)
ρ2j
√

1− ρ2
s−2j

γ1(r1 odd)
(
γ + d−1/2

)2j+2⌊r1/2⌋ (
d−1/2

)s−2j+r2

if s+ r2 is odd:
⌊(s−1)/2⌋∑

j=0

(
s

2j + 1

)
ρ2j+1

√
1− ρ2

s−2j−1
γ1(r1 even)

(
γ + d−1/2

)2j+2⌊ r1+1
2 ⌋ (

d−1/2
)s−2j−1+r2

≃



if s+ r2 is even:√
1− ρ2

1(s odd)
γ1(r1 odd)

(
γ +

1√
d

)2⌊ r1
2 ⌋(

1√
d

)r2+1(s odd) (
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)2⌊ s
2 ⌋

if s+ r2 is odd:

ρ
√
1− ρ2

1(s even)
γ1(r1 even)

(
γ +

1√
d

)2⌊ r1+1
2 ⌋(

1√
d

)r2+1(s even) (
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)2⌊ s−1
2 ⌋

Here, the symbol ≃ conceals some constant factors that are governed by upper and lower bounds1631

dependent on s only. Using the above calculation, we have We can specialize the above results to the1632

case r1 = r2 = 0 and obtain1633

E[⟨θ⋆, w⟩s] ≃


(
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)s
if s is even

ργ
(
|ρ|(γ + d−1/2) +

√
1− ρ2d−1/2

)s−1

if s is odd,

which completes the proof.1634

I Technical Results1635

I.1 Technical Results for Hermite Tensor1636

Proposition I.1. Let s ∈ N0. For any z ∈ Rd, we have1637

zizjhs(z) = Sym
(√

(s+ 2)(s+ 1) · hs+2(z)[ei ⊗ ej ] + δijhs(z) + s · hs(z)[ej ]⊗ ei
+ s · hs(z)[ei]⊗ ej +

√
s(s− 1) · hs−2(z)⊗ ei ⊗ ej

)
,

where we define h−1(z) and h−2(z) to be all zero tensors of any conformable shape.1638

Proof of Proposition I.1. Note that each element of hs(θ⋆⊤z)zz⊤ must lie in the polynomial space1639

with degree at most s+ 2, i.e., Rs+2[z]. We take a test function F : Rd → R such that R ∈ Rs+2[z].1640

Thus, we can write down the inner product of F and hs(θ⋆⊤z)zizj for i, j ∈ [d] as1641

Ez∼Nd
[F (z)hs(θ

⋆⊤z)zizj ] = Ez∼Nd
[F (z)zizj · hs(z)[(θ⋆)⊗s]],

where in the equation, we use (B.4) to rewrite the Hermite polynomial in terms of the Hermite tensor.1642

It suffices to understand the tensor F (z)zizjhs(z). Note that F is differentiable to any order, and the1643

tensor obtained by differentiating F to any order is square-integrable with respect to the standard1644

normal distribution. By the Stein’s lemma for Hermite tensor (B.5), we have1645
√
s! · Ez∼Nd

[F (z)zizjhs(z)] = Ez∼Nd
[∇s(F (z)zizj)]

= Sym

(
Ez∼Nd

[∇sF (z)zizj ] + sEz∼Nd
[∇s−1F (z)∇(zizj)] +

s(s− 1)

2
Ez∼Nd

[∇s−2F (z)∇2(zizj)]

)
= Sym

(
Ez∼Nd

[∇sF (z)δij ] + Ez∼Nd
[∇s+2F (z)[ei ⊗ ej ]] + sEz∼Nd

[∇sF (z)[ej ]⊗ ei]
+ sEz∼Nd

[∇sF (z)[ei]⊗ ej ] + s(s− 1)Ez∼Nd
[∇s−2F (z)⊗ ei ⊗ ej ]

)
.

(I.1)

64



Here, the “Sym” operation symmetrizes the tensor in the parentheses. The last equality holds by the1646

following calculations. For Ez∼Nd
[∇sF (z)zizj ], we have1647

Ez∼Nd
[∇sF (z)zizj ] = Sym

(
Ez∼Nd

[∇sF (z)δij ] + Ez∼Nd
[∇s+1F (z)[ej ]zi]

)
= Sym

(
Ez∼Nd

[∇sF (z)δij ] + Ez∼Nd
[∇s+2F (z)[ei ⊗ ej ]]

)
,

where we use the Stein’s lemma for both equalities. For Ez∼Nd
[∇s−2F (z)∇2(zizj)], we have1648

Sym
(
Ez∼Nd

[∇s−1F (z)∇(zizj)]
)
= Sym

(
Ez∼Nd

[zj∇s−1F (z)⊗ ei + zi∇s−1F (z)⊗ ej ]
)

= Sym (Ez∼Nd
[∇sF (z)[ej ]⊗ ei] + Ez∼Nd

[∇sF (z)[ei]⊗ ej ]) .
Now, for each derivative of F in (I.1), we have by the Stein’s lemma stated in (B.5) that1649

Ez∼Nd
[∇sF (z)] =

√
s! · Ez∼Nd

[F (z)hs(z)], which gives us1650

Ez∼Nd
[F (z)zizjhs(z)] = Ez∼Nd

[
F (z) · Sym

(
δijhs(z) +

√
(s+ 2)(s+ 1) · hs+2(z)[ei ⊗ ej ]

+ s · hs(z)[ej ]⊗ ei + s · hs(z)[ei]⊗ ej +
√
s(s− 1) · hs−2(z)⊗ ei ⊗ ej

)]
.

Since F ∈ Rs+2[z] is arbitrary, we conclude that1651

zizjhs(z) = Sym
(√

(s+ 2)(s+ 1) · hs+2(z)[ei ⊗ ej ] + δijhs(z) + s · hs(z)[ej ]⊗ ei
+ s · hs(z)[ei]⊗ ej +

√
s(s− 1) · hs−2(z)⊗ ei ⊗ ej

)
.

The proof is completed by further taking the tensor inner product operation with respect to (θ⋆)⊗s on1652

both side.1653

Proposition I.2. Let w,w′ ∈ Sd−1 and s ∈ N0. We have1654

E [hi(⟨w, z⟩)hj(⟨w′, z⟩) · hs(z)]

=

s∑
τ=0

1(j = i+ s− 2τ, i ≥ τ) ·
(
s

τ

)√
i!j!

s!((i− τ)!)2
· ⟨w,w′⟩i−τ · Sym

(
w⊗τ ⊗ w′⊗s−τ).

The above term is equal to1655 (
s

(i− j + s)/2

)
·
√
i!j!

s!
· ⟨w,w

′⟩(i+j−s)/2

((i+ j − s)/2)!
· Sym

(
w⊗(i−j+s)/2 ⊗ w′⊗(j−i+s)/2)

.

if |i− j| ≤ s ≤ i+ j and s ≡ i− j mod 2. Otherwise the expectation gives the zero tensor.1656

Proof of Proposition I.2. By the Stein’s lemma for the Hermite tensor (B.5), we have1657

E [hi(⟨w, z⟩)hj(⟨w′, z⟩) · hs(z)] =
1√
s!
· E [∇s(hi(⟨w, z⟩)hj(⟨w′, z⟩))]

=
1√
s!
·
s∑

τ=0

(
s

τ

)
E
[
Sym

(
∇τhi(⟨w, z⟩)⊗∇s−τhj(⟨w′, z⟩)

)]
=

1√
s!
·
s∑

τ=0

(
s

τ

)√
i!j!

(i− τ)!(j − s+ τ)!
E
[
hi−τ (⟨w, z⟩)⊗ hj−s+τ (⟨w′, z⟩) · Sym

(
w⊗τ ⊗ w′⊗s−τ)]

=

s∑
τ=0

1(j = i+ s− 2τ, i ≥ τ) ·
(
s
τ

)
(i− τ)!

√
i!j!

s!
⟨w,w′⟩i−τSym

(
w⊗τ ⊗ w′⊗s−τ).

the condition can be translated into |i− j| ≤ s ≤ i+ j and s ≡ i− j mod 2. Then, we can take1658

τ = (i− j + s)/2, s− τ = (j − i+ s)/2, i− τ = (i+ j − s)/2 to obtain the desired result.1659

Lemma I.3. Let ψ : R → R such that ψ2 ∈ L2(N ). Suppose that ψ is high-pass in the sense1660

that pψi = 0 for any i < s⋆ − 1 for some s⋆ ∈ N0. For w,w′ ∈ Sd−1, take a series of test tensor1661

{Ts = v1 ⊗ v2 ⊗ . . . ⊗ vs ∈ (Rd)⊗s}∞s=0 such that supi>c0{|⟨w, vi⟩| ∨ |⟨w
′, vi⟩|} ≤ ϵ for some1662

ϵ ∈ (0, 1/2) and integer c0 ∈ N0. Let1663

ϵ0 := max
1≤i≤c0

{|⟨w, vi⟩| ∨ |⟨w′, vi⟩|}.
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Suppose that |⟨w,w′⟩| ≤ ϵ1. Then we have for any s ∈ N0 that1664 ∣∣Ez∼Nd

[
ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)[Ts]

]∣∣ ≤ 4∥ψ∥22 (4es⋆)
s/2√

s+ s⋆ · ϵ(s
⋆−1−⌊s/2⌋)∨0

1 · ϵs∧c00 · ϵ(s−c0)∨0,

where ∥ψ∥22 = Ex∼N [ψ2(x)].1665

Proof of Lemma I.3. As ψ(x)ψ(x′) is also square-integrable, we are able to extract the s-th tensor1666

coefficient of the Hermite expansion of ψ(x)ψ(x′) as1667

Ez∼Nd
[ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)]

= Ez∼Nd

 ∞∑
i=0

∞∑
j=0

pψi pψjhi(⟨w, z⟩)hj(⟨w′, z⟩) · hs(z)


=

∞∑
i=0

∞∑
j=0

s∑
τ=0

1(j = i+ s− 2τ, i ≥ τ) ·
(
s

τ

)√
i!j!

s!((i− τ)!)2
pψi pψj · ⟨w,w′⟩i−τ · Sym

(
w⊗τ ⊗ w′⊗s−τ)

=

∞∑
i=0

s∑
τ=0

1(i ≥ τ)
(
s

τ

)√
1

s!

√
i!(i+ s− 2τ)!

((i− τ)!)2
pψi pψi+s−2τ · ⟨w,w′⟩i−τ · Sym

(
w⊗τ ⊗ w′⊗(s−τ))

,

where the last second identity follows from Proposition I.2, and in the last line we restrict the condition1668

j = i+ s− 2τ . Note that the double sums are interchangeable only if the series converges for each τ .1669

However, by our condition that ⟨w,w′⟩ ≤ 1− ϵ for some ϵ > 0, then for each τ , we have for any test1670

tensor T = v1 ⊗ v2 ⊗ . . .⊗ vs with ∥vi∥2 = 1 that1671 ∣∣∣∣∣
∞∑
i=τ

√
i!(i+ s− 2τ)!

((i− τ)!)2
pψi pψi+s−2τ · ⟨w,w′⟩i−τ · Sym

(
w⊗τ ⊗ w′⊗(s−τ))

[T ]

∣∣∣∣∣
≤

∞∑
i=τ

(i+ s)s/2 ·
∣∣∣ pψi pψi+s−2τ

∣∣∣ · (1− ϵ)i−τ <∞,
where we note that 1− ϵ will dominate the polynomial growth of (i+ s)s/2, and also using the fact1672

that pψi pψi+s−2τ is uniformly bounded by
∑∞
i=0

pψ2
i <∞. Now, we interchange the double sum and1673

apply the high-pass assumption and have that1674

Ez∼Nd
[ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)[T ]]

=

s∑
τ=0

(
s

τ

)√
1

s!

∞∑
i=i0

√
i!(i+ s− 2τ)!

((i− τ)!)2
pψi pψi+s−2τ · ⟨w,w′⟩i−τ︸ ︷︷ ︸
(I)

·Sym
(
w⊗τ ⊗ w′⊗(s−τ))

[T ].

where we define1675

i0 = max {(s⋆ − 1), (s⋆ − 1 + 2τ − s), τ}
Note that the tensor product part is independent of i. Hence, we pull out term (I) and have1676

(I) =

√
i0!(i0 + s− 2τ)!

((i0 − τ)!)2
pψi0

pψi0+s−2τ ⟨w,w′⟩i0−τ

± ∥ψ∥22 · ⟨w,w′⟩i0−τ+1

 ∞∑
j=0

(j + s+ s⋆)(j + s+ s⋆ − 1) · · · (j + s⋆ + ⌈(s+ 1)/2⌉)|⟨w,w′⟩|j
 .

Here, the first term is given by splitting out the term with i = i0 from the summation, and the second1677

term is for i ≥ i0 + 1. For the second term, we have the following argument:1678

max{i0, i0 + s− 2τ} = (s⋆ − 1) ∨ (s⋆ − 1 + 2τ − s) ∨ τ ∨ (s⋆ − 1 + s− 2τ) ∨ (s⋆ − 1) ∨ (s− τ)
= (s⋆ − 1 + 2τ − s) ∨ (s⋆ − 1 + s− 2τ) ∨ τ ∨ (s− τ)
= (s⋆ − 1 + |2τ − s|) ∨ (|τ − s/2|+ s/2) ≤ s⋆ + s− 1.
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Hence, we then have that for any i ≥ i0 + 1 with j = i− (i0 + 1) that1679

max{i, i+ s− 2τ} ≤ s⋆ + s+ j.

Therefore, for any i ≥ i0 + 1, we have1680 √
i!(i+ s− 2τ)!

((i− τ)!)2
=
√
i(i− 1) · · · (i− τ + 1) ·

√
(i+ s− 2τ)(i+ s− 2τ − 1) · · · (i− τ + 1)

≤
√

(j + s⋆ + s)(j + s⋆ + s− 1) · · · (j + s⋆ + 1)

≤ (j + s⋆ + s)(j + s⋆ + s− 1) · · · (j + s⋆ + ⌈(s+ 1)/2⌉).
To characterize the second term, we use Proposition J.5 where we have conditions |⟨w,w′⟩| < 1/21681

and s⋆ + s ≥ 2⌊(s+ 1)/2⌋ − 1 satisfied, which gives us1682

∞∑
j=0

(j + s+ s⋆)(j + s+ s⋆ − 1) · · · (j + s⋆ + ⌈(s+ 1)/2⌉)|⟨w,w′⟩|j

≤ 2(s+ s⋆) · · · (s⋆ + ⌈(s+ 1)/2⌉) · 1

1− |⟨w,w′⟩|
≤ 4(s+ s⋆) · · · (s⋆ + ⌈(s+ 1)/2⌉).

Combining these results, we have for (I) that1683

(I) =

√
i0!(i0 + s− 2τ)!

((i0 − τ)!)2
pψi0

pψi0+s−2τ ⟨w,w′⟩i0−τ ± ∥ψ∥22 · 4(s+ s⋆) · · · (s⋆ + ⌈(s+ 1)/2⌉) · ⟨w,w′⟩i0−τ+1

= C(s⋆, s, τ, ⟨w,w′⟩) · ⟨w,w′⟩i0−τ ,

where we define C(s⋆, s, τ, ⟨w,w′⟩) = (I)/⟨w,w′⟩i0−τ as the coefficient, which is given by1684

C(s⋆, s, τ, ⟨w,w′⟩) =

√
i0!(i0 + s− 2τ)!

((i0 − τ)!)2
pψi0

pψi0+s−2τ ± ∥ψ∥22 · 4(s+ s⋆) · · · (s⋆ + ⌈(s+ 1)/2⌉) · |⟨w,w′⟩|,

and also enjoys the following upper bound1685

|C(s⋆, s, τ, ⟨w,w′⟩)| ≤ ∥ψ∥22 · 4(s+ s⋆ − 1) · · · (s⋆ − 1 + ⌈(s+ 1)/2⌉). (I.2)

Here, the upper bound can be obtained by noting that the previous upper bound for terms i ≥ i0 + 11686

can be also applied to i ≥ i0.1687

Case s ≥ 1. Let us plug in test tensor Ts into the expression, which gives us1688

|Ez∼Nd
[ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)[Ts]]|

≤
s∑

τ=0

(
s

τ

)√
1

s!
|C(s⋆, s, τ, ⟨w,w′⟩)| · |⟨w,w′⟩|i0−τ ·

∣∣∣Sym(w⊗τ ⊗ w′⊗(s−τ))
[Ts]
∣∣∣

≤
s∑

τ=0

(
s

τ

)√
1

s!
|C(s⋆, s, τ, ⟨w,w′⟩)| · |⟨w,w′⟩|i0−τ ·

 1

s!

∑
π∈Πs

τ∏
i=1

|⟨w, vπ(i)⟩|
s∏

j=τ+1

|⟨w′, vπ(j)⟩|

 ,

where Πs denotes the set of all permutations of s elements. We further have this term bounded by1689

|Ez∼Nd
[ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)[Ts]]| (I.3)

≤
s∑

τ=0

(
s

τ

)√
1

s!
max
0≤τ≤s

|C(s⋆, s, τ, ⟨w,w′⟩)| · |⟨w,w′⟩|i0−τ · ϵs∧c00 · ϵ(s−c0)∨0

≤ 2s√
s!

max
0≤τ≤s

|C(s⋆, s, τ, ⟨w,w′⟩)| · |⟨w,w′⟩|(s
⋆−1−⌊s/2⌋)∨0 · ϵs∧c00 · ϵ(s−c0)∨0.

where the last inequality follows from the following fact1690

i0 − τ = (s⋆ − 1− τ) ∨ (s⋆ − 1 + τ − s) ∨ 0 = (s⋆ − 1− s/2 + |τ − s/2|) ∨ 0

≥ (s⋆ − 1− s/2 + 1(s odd)/2) ∨ 0 = (s⋆ − 1− ⌊s/2⌋) ∨ 0.

67



Plugging (I.2) into (I.3), and by noting that |⟨w, vi⟩| ∨ |⟨w′, vi⟩| ≤ ϵ for any vi ∈ {θ⋆, v} and1691

|⟨w,w′⟩| ≤ ϵ, we have that1692

|Ez∼Nd
[ψ(⟨w, z⟩)ψ(⟨w′, z⟩) · hs(z)[Ts]]|

≤ 2s√
s!
∥ψ∥22 · 4(s+ s⋆ − 1) · · · (s⋆ − 1 + ⌈(s+ 1)/2⌉) · ϵ(s

⋆−1−⌊s/2⌋)∨0
1 · ϵs∧c00 · ϵ(s−c0)∨0

≤
(
4e(s+ s⋆ − 1)

s

)s/2
·
√
s+ s⋆ − 1 · 4∥ψ∥22 · ϵ

(s⋆−1−⌊s/2⌋)∨0
1 · ϵs∧c00 · ϵ(s−c0)∨0

≤ (4es⋆)
s/2 ·
√
s+ s⋆ · 4∥ψ∥22 · ϵ

(s⋆−1−⌊s/2⌋)∨0
1 · ϵs∧c00 · ϵ(s−c0)∨0.

Here, the second inequality follows from the Stirling’s approximation, and the last inequality holds1693

because s ≥ 1.1694

Case s = 0. For the case s = 0, we have that1695

|Ez∼Nd
[ψ(⟨w, z⟩)ψ(⟨w′, z⟩)]| =

∣∣∣C(s⋆, 0, 0, ⟨w,w′⟩) · ⟨w,w′⟩s
⋆−1
∣∣∣ ≤ 4∥ψ∥22ϵs

⋆−1
1 ,

which can also be upper bounded by the quantity derived for the case s ≥ 1. Hence, the proof is1696

completed.1697

Proposition I.4. Let ψ(·, ·)2 satisfies the quadratic integrability condition and high-pass condition1698

in Assumption 4.1 with s⋆ being the generative exponent. Suppose the remaining definitions (c0,1699

{Ts}∞s=0, ϵ, ϵ0, ϵ1) and conditions are the same as in Lemma I.3. Suppose c0 ∈ {0, 1, 2} and s0 ∈ N0.1700

Take function series {ζs(·)}∞s=0 satisfying EQ[ζs(y)
2] < C,∀s ∈ N0 for some universal C = O(1).1701

Suppose 4eϵ2 < 1/2. If s⋆ = 1, then we have that1702 ∑
s≥s0

(s+ 2) · |EQ [ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs(z)[Ts]]| ≲ ϵs00 + ϵc00 ϵ
(s0−c0)∨0.

If s⋆ ≥ 2, then we have that1703 ∑
s≥s0

(s+ 2) · |EQ [ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs(z)[Ts]]|

≲ 1(s0 ≤ c0) ·
(
ϵ
s⋆−1−⌊s0/2⌋
1 · ϵs00 + ϵ

s⋆−1−⌊c0/2⌋
1 · ϵc00

)
+ ϵc00 · ϵ(2s

⋆)∨s0−c0

+ 1(s0 ≤ 2(s⋆ − 1)) ·
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)
.

Here, ≲ hides constants that depend on s0, c0, C,EQ[ψ(y, x)
4].1704

Proof of Proposition I.4. Let F denote the target quantity. Invoking Lemma I.3 for each degree s, we1705

have that1706

F ≤
∑
s≥s0

√
s(s+ 1) · Ey∼Q |Ez∼Nd

[ζs(y)ψ(y, ⟨w, z⟩)ψ(y, ⟨w′, z⟩)hs(z)[Ts]]|

≤
∑
s≥s0

√
s(s+ 1) · Ey∼Q

[
4|ζs(y)|Ex∼N [ψ(y, x)2]

]
(4es⋆)

s/2√
s+ s⋆ϵ

(s⋆−1−⌊s/2⌋)∨0
1 ϵs∧c00 ϵ(s−c0)∨0

≤
∑
s≥s0

√
s(s+ 1) · 4

√
EQ[ζs(y)2]EQ[ψ(y, x)4] (4es

⋆)
s/2√

s+ s⋆ϵ
(s⋆−1−⌊s/2⌋)∨0
1 ϵs∧c00 ϵ(s−c0)∨0,

where the last inequality follows from the Cauchy-Schwarz inequality. Noting that by our assumptions,1707

EQ[ζs(y)
2]EQ[ψ(y, x)

4] = O(1) uniformly over s, which gives us1708

F ≲
∑
s≥s0

√
s(s+ 1)(s+ s⋆) (4es⋆)

s/2
ϵ
(s⋆−1−⌊s/2⌋)∨0
1 ϵs∧c00 ϵ(s−c0)∨0.
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For the case s⋆ = 1, we have the above term controlled by1709

F | s⋆=1 ≲
∑
s≥s0

√
s(s+ 1)2 (4e)

s/2
ϵs∧c00 ϵ(s−c0)∨0

≲ 1(c0 > s0) · sup
s0≤s≤c0−1

ϵs0 +
∑

s≥c0∨s0

√
s(s+ 1)2 (4e)

s/2
ϵc00 ϵ

s−c0

≲ 1(c0 > s0) · ϵs00 + ϵc00 ϵ
(s0−c0)∨0

∑
s≥c0∨s0

√
s(s+ 1)2

(
4eϵ2

)(s−c0∨s0)/2
≲ 1(s0 < c0) · ϵs00 + ϵc00 ϵ

(s0−c0)∨0 ≲ ϵc0∧s00 ϵ(s0−c0)∨0,

where ≲ only hides constants that depend on s0, c0. The last second inequality holds by noting that1710

4eϵ2 < 1/2.1711

For the case s⋆ ≥ 2, we note that c0 ≤ 2 ≤ 2(s⋆ − 1), and we have1712

F | s⋆≥2 ≲
∑
s≥s0

√
s(s+ 1)(s+ s⋆) (4es⋆)

s/2
ϵ
(s⋆−1−⌊s/2⌋)∨0
1 ϵs∧c00 ϵ(s−c0)∨0

≲ 1(s0 ≤ c0) · max
s0≤s≤c0

ϵ
s⋆−1−⌊s/2⌋
1 · ϵs0

+ 1(s0 ≤ 2(s⋆ − 1)) · max
c0+1≤s≤2(s⋆−1)+1

ϵ
s⋆−1−⌊s/2⌋
1 · ϵc00 · ϵs−c0

+
∑

s≥(2(s⋆−1)+2)∨s0

√
s(s+ 1)(s+ s⋆) (4es⋆)

s/2
ϵc00 ϵ

s−c0

≲ 1(s0 ≤ c0) ·
(
ϵ
s⋆−1−⌊s0/2⌋
1 · ϵs00 + ϵ

s⋆−1−⌊c0/2⌋
1 · ϵc00

)
+ ϵc00 · ϵ(2(s

⋆−1)+2)∨s0−c0

+ 1(s0 ≤ 2(s⋆ − 1)) ·
(
ϵ
s⋆−1−⌊(c0+1)/2⌋
1 · ϵc00 · ϵ+ ϵc00 · ϵ2(s

⋆−1)+1−c0
)
.

Thus, we complete the proof.1713

I.2 Technical Results for Uniform Distribution on the Sphere1714

Lemma I.5 (Moment of polynomial on a sphere, adapted from Folland (2001)). Let ξ =1715

(ξ1, ξ2, . . . , ξd) ∼ Unif(Sd−1) and s1, s2, . . . , sd ∈ N0. Let s =
∑d
i=1 si. Then we have1716

Eξ

[
d∏
i=1

ξsii

]
=


0 if some si is odd,
d∏
i=1

Γ((si + 1)/2)

Γ(1/2)
· Γ(d/2)

Γ((s+ d)/2)
if all si are even,

To evaluate this moment, we provide the following bound.1717

Fact I.6. Take even degrees s1, s2, . . . , sd ∈ N0 and s =
∑d
i=1 si. Then we have1718 (

1

d

)s/2
≤

d∏
i=1

Γ((si + 1)/2)

Γ(1/2)
· Γ(d/2)

Γ((s+ d)/2)
≤
( s
d

)s/2
,

where we define (0)0 = 1.1719

Proof of Fact I.6. Note that we can rewrite the product as1720

d∏
i=1

Γ((si + 1)/2)

Γ(1/2)
· Γ(d/2)

Γ((s+ d)/2)
=

∏d
i=1(si − 1)!!

(s+ d− 2) · (s+ d− 4) · · · d
.

Using the fact that a/b ≥ (a− 1)/(b− 1) for 2 ≤ a ≤ b, we can recursively apply this inequality to1721

the factorial until it gives us the desired lower bound of (1/d)s/2. For the upper bound, we can lower1722

bound the denominator by ds/2 and upper bound the numerator by ss/2. We thus have the desired1723

result.1724

69



Note that the second moment E[ξ2i ] ≍ d−1, thus Fact I.6 can be viewed as some kind of reverse1725

Holder’s inequality where we use lower moment to control higher moment. Notably, the reverse1726

inequality gives a dimension-free bound for the moments of the polynomial on the sphere. The1727

following proposition formalizes this intuition.1728

Proposition I.7. Suppose ξ = (ξ1, ξ2, . . . , ξd) ∼ Unif(Sd−1). Let f : Rd → R be a function such1729

that E[(f(ξ)− 1)2] ≤ ε2. Take nonnegative degree s = (s1, s2, . . . , sd) with ∥s∥1 = s, and suppose1730

each si is even for i ∈ [d]. We then have1731

(1− (2s)s/2ε) ·
(
1

d

)s/2
≤ E

[
f(ξ) ·

d∏
i=1

ξsii

]
≤ (1 + 2s/2ε) ·

( s
d

)s/2
.

Proof of Proposition I.7. By the Cauchy-Schwarz inequality, we have for any j = 0, 1, . . . , s1/2,1732 ∣∣∣∣∣E
[
(f(ξ)− 1) ·

d∏
i=1

ξsii

]∣∣∣∣∣ ≤√E[(f(ξ)− 1)2] ·

√√√√E

[
d∏
i=1

ξ2sii

]
≤ ε ·

(
2s

d

)s/2
,

where we use Lemma I.5 and the upper bound in Fact I.6 for the second inequality. Additionally, note1733

that each si is even, we use the same argument to have1734 (
1

d

)s/2
≤ E

[
d∏
i=1

ξsii

]
≤
( s
d

)s/2
.

Combining these two inequalities, we conclude the proof.1735

Proposition I.8. Let ξ = (ξ1, ξ2, . . . , ξd) ∼ Unif(Sd−1), γ > 0 be a fixed parameter, and s =1736

(s1, s2, . . . , sd) be a nonnegative integer vector with ∥s∥1 = s. It then holds that1737

G(s) :=E

[
(ξ1 + γ)

s1 ·
d∏
i=2

ξsii

]
= E

⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j · ξ2j1 ·

d∏
i=2

ξsii


=

0, if some si is odd for i = 2, 3, . . . , d,

C(s, γ) ·
(
γ + 1√

d

)2⌊s1/2⌋
· γ1(s1 odd) ·

(
1√
d

)s−s1
, otherwise,

where 1/5 ≤ C(s, γ) ≤ ss/2.1738

Proof of Proposition I.8. Note that1739

G(s) = E

[
(ξ1 + γ)

s1 ·
d∏
i=2

ξsii

]
= E

 s1∑
j=0

(
s1
j

)
ξj1γ

s1−j ·
d∏
i=2

ξsii

 .
Note that if there exists any odd degree si for i ≥ 2, then G(s) = 0. For s2, s3, . . . , sd being even,1740

we have1741

G(s) = E

⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j · ξ2j1 ·

d∏
i=2

ξsii


=

⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j · Γ(j + 1/2)

Γ(1/2)
·
d∏
i=2

Γ((si + 1)/2)

Γ(1/2)
· Γ(d/2)

Γ((s− s1 + 2j + d)/2)

=

⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j ·

(2j − 1)!! ·
∏d
i=2(si − 1)!!

(s− s1 + 2j + d− 2) · (s− s1 + 2j + d− 4) · · · d︸ ︷︷ ︸
(I)

,

where for the second identity, we use Lemma I.5 to compute the moments of the polynomial on the1742

sphere. Now, we compute the lower and upper bounds of G(s).1743
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Lower Bound. For the lower bound, we have1744

G(s) ≥
⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j · d−j−(s2+s3+···+sd)/2

≥ 1

5
· 5

⌊s1/2⌋∑
j=0

(
2⌊s1/2⌋

2j

)
· γ2⌊s1/2⌋−2j

(
1√
d

)2j

· d−(s2+s3+···+sd)/2 · γ1(s1 odd)

≥ 1

5
·
2⌊s1/2⌋∑
j=0

(
2⌊s1/2⌋

j

)
· γ2⌊s1/2⌋−j

(
1√
d

)j
· d−(s2+s3+···+sd)/2 · γ1(s1 odd).

Here in the first inequality, we use the fact that a/b ≥ (a− 1)/(b− 1) for 2 ≤ a ≤ b and apply it1745

recursively to the factorial (I) until it gives us d−j−(s2+s3+···+sd)/2. For the second inequality, we1746

first rearrange the terms in the summation and lower bound the binomial coefficients by changing s11747

to 2⌊s1/2⌋. For the last inequality, let us define1748

Aj =

(
2⌊s1/2⌋

j

)
· γ2⌊s1/2⌋−j

(
1√
d

)j
.

We invoke Lemma J.4 and have that for each odd j, we have that1749

Aj ≤ 2(Aj−1 +Aj+1), j = 1, 3, . . . , 2⌊s1/2⌋ − 1.

Therefore, the summation of all the odd terms is upper bounded by 4 times the summation of all the1750

even terms, which gives us the last inequality. Therefore, the lower bound of G(s) is1751

G(s) ≥ 1

5
·
(
γ +

1√
d

)2⌊s1/2⌋

· γ1(s1 odd) ·
(

1√
d

)(s−s1)

.

Upper Bound. For the upper bound, we have1752

G(s) ≤
⌊s1/2⌋∑
j=0

(
s1
2j

)
γs1−2j · d−j−(s2+s3+···+sd)/2 · ss/2

≤
2⌊s1/2⌋∑
j=0

(
2⌊s1/2⌋

j

)
· γ2⌊s1/2⌋−j

(
1√
d

)j
· d−(s2+s3+···+sd)/2 · γ1(s1 odd) · ss/2

= ss/2 ·
(
γ +

1√
d

)2⌊s1/2⌋

· γ1(s1 odd) ·
(

1√
d

)−(s−s1)

,

where in the first line, we lower bound the denominator in the factorial (I) by dj+(s2+s3+···+sd)/21753

and upper bound the numerator by ss/2. For the second inequality, we use the nonnegativity of each1754

terms and append the terms with j being odd to the summation.1755

Combining the lower and upper bounds, we have that1756

G(s) =

0, if some si is odd for i = 2, 3, . . . , d,

C(s, γ) ·
(
γ + 1√

d

)2⌊s1/2⌋
· γ1(s1 odd) ·

(
1√
d

)−(s−s1)
, otherwise,

for 1/5 ≤ C(s, γ) ≤ ss/2. Hence, the proof is complete.1757

I.3 Technical Results on Polarized Random Vectors1758

Lemma I.9 (Moments of weakly polarized random vector). Suppose ξ = (ξ1, ξ2, . . . , ξd) ∼1759

Unif(Sd−1) and define the polarized vector w as1760

w =
ξ + γe1
∥ξ + γe1∥2

,
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where γ = o(1) > 0 is a parameter that describes the polarization strength, and e1 = (1, 0, . . . , 0)1761

is the first standard basis vector. Take nonnegative integer degree s = (s1, s2, . . . , sd) with ∥s∥1 =1762

s = O(1) < (2
√
eγ)−1 − 2. Then we have1763

Ew

[
d∏
i=1

wsii

]
=


0, if some si is odd for i = 2, 3, . . . , d,

C(s, γ) ·
(
γ + 1√

d

)s1
·
(

1√
d

)s−s1
, if s1 is even, s2, . . . , sd are even,

C(s, γ) · γ ·
(
γ + 1√

d

)s1−1

·
(

1√
d

)s−s1
, if s1 is odd, s2, . . . , sd are even,

where 1/5−O(γ) ≤ C(s, γ) ≤ s(s+1)/2 +O(γ).1764

Proof of Lemma I.9. Let r = ∥ξ + γe1∥2. We reformulate the moment as1765

E

[
d∏
i=1

wsii

]
= E

[
(ξ1 + γ)

s1

rs
·
d∏
i=2

ξsii

]
.

By symmetry, we have the moment equal zero if some si is odd for i = 2, 3, . . . , d. Hence, we only1766

need to consider s2, s3, . . . , sd being even. In the following, we study the case for s1 being even and1767

odd separately.1768

Case 1: s1 is even. We first look at the simpler case where s1 is even. We note by weak polarization1769

in the sense of ∥ξ∥2 ≫ ∥γe1∥2, we can approximate 1/rs as 1 with approximation error1770 ∣∣∣∣∣E
[
d∏
i=1

wsii

]
− E

[
(ξ1 + γ)

si ·
d∏
i=2

ξsii

]∣∣∣∣∣ ≤√E [(1− r−s)2] ·

√√√√E

[
(ξ1 + γ)

2s1 ·
d∏
i=2

ξ2sii

]

≤ esγ ·

√√√√E

[
(ξ1 + γ)

2s1 ·
d∏
i=2

ξ2sii

]
, (I.4)

where we use the Cauchy-Schwarz inequality in the first line and for the second line, we use the fact1771

|1− r−s| ≤ 1

(1− γ)s
− 1 =

(
1 +

γ

1− γ

)s
− 1 ≤ exp

(
sγ

1− γ

)
− 1 ≤ esγ (I.5)

for s < (2
√
eγ)−1. Define1772

G(s) :=E

[
(ξ1 + γ)

si ·
d∏
i=2

ξsii

]
.

By Proposition I.8, we have that for even s1, s2, . . . , sd,1773

G(s) = C ′(s, γ) ·
(
γ +

1√
d

)s1
·
(

1√
d

)s−s1
,

with 1/5 ≤ C ′(s, γ) ≤ ss/2. Plugging the form of G(s) into (I.4), we have that1774

Ew

[
d∏
i=1

wsii

]
=M(s)± esγ ·

√
M(2s)

=
(
C ′(s, γ)± esγ

√
C ′(2s, γ)

)
·
(
γ +

1√
d

)s1
·
(

1√
d

)s−s1
=
(
C ′(s, γ)± esγ(2s)s/2

)
·
(
γ +

1√
d

)s1
·
(

1√
d

)s−s1
.

Here, C ′(s, γ)− esγ(2s)s/2 ≥ 1/5− esγ(2s)s/2 and C ′(s, γ) + esγ(2s)s/2 ≤ ss/2 + esγ(2s)s/2.1775
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Case 2: s1 is odd. We now consider the more complicated case where s1 is odd. In the following1776

proof, we will frequently invoke the following proposition, whose proof is deferred to Proposition I.71777

of Appendix H.1778

Proposition I.7 (Restated). Suppose ξ = (ξ1, ξ2, . . . , ξd) ∼ Unif(Sd−1). Let f : Rd → R be a1779

function such that E[(f(ξ)− 1)2] ≤ ε2. Take nonnegative degree s = (s1, s2, . . . , sd) with ∥s∥1 = s,1780

and suppose each si is even for i ∈ [d]. We then have1781

(1− (2s)s/2ε) ·
(
1

d

)s/2
≤ E

[
f(ξ) ·

d∏
i=1

ξsii

]
≤ (1 + 2s/2ε) ·

( s
d

)s/2
.

We first rewrite the moment as1782

E

[
d∏
i=1

wsii

]
= E

[
(ξ1 + γ)

s1

rs
·
d∏
i=2

ξsii

]
(I.6)

=

(s1−1)/2∑
j=0

(
s1
2j

)
γs1−2j · E

[
ξ2j1
rs
·
d∏
i=2

ξsii

]
︸ ︷︷ ︸

(I) even terms

+

(s1−1)/2∑
j=0

(
s1

2j + 1

)
γs1−2j−1 · E

[
ξ2j+1
1

rs
·
d∏
i=2

ξsii

]
︸ ︷︷ ︸

(II) odd terms

.

Let us look at the odd terms of (I.6). Let r+ = ∥ξ + γe1∥2 and r− = ∥−ξ + γe1∥2. By symmetry,1783

we have for the expectation within the odd terms that1784

E

[
ξ2j+1
1

rs
·
d∏
i=2

ξsii

]
=

1

2
· E

[(
1

rs+
− 1

rs−

)
· ξ2j+1

1 ·
d∏
i=2

ξsii

]

=
1

2
· E

 (r2− − r2+)
(∑s−1

l=0 r
l
−r

s−1−l
+

)
rs+ · rs− · (r+ + r−)

· ξ2j+1
1 ·

d∏
i=2

ξsii


= −γ · E

[
2 ·
∑s−1
l=0 r

l
−r

s−1−l
+

rs+ · rs− · (r+ + r−)
· ξ2j+2

1 ·
d∏
i=2

ξsii .

]

Here, the last identity holds by noting that r2− − r2+ = −4γξ1. Note that1785

sup
ξ∈Sd−1

∣∣∣∣∣ 2 ·
∑s−1
l=0 r

l
−r

s−1−l
+

rs+ · rs− · (r+ + r−)
− 1

∣∣∣∣∣ ≤
(

1

1− γ

)s+2

− 1 ≤ eγ(s+ 2).

Hence, we have for the odd terms (II) that1786

−(II) = E

 2 ·
∑s−1
l=0 r

l
−r

s−1−l
+

rs+ · rs− · (r+ + r−)
·
(s1−1)/2∑
j=0

(
s1

2j + 1

)
γs1−2j · ξ2j+2

1 ·
d∏
i=2

ξsii


≤

(s1−1)/2∑
j=0

(
s1

2j + 1

)
γs1−2j · (1 + 2(s+2)/2eγ(s+ 2)) ·

(
s+ 2

d

)(s−s1+2j+2)/2

≤ s1 · (1 + 2(s+2)/2eγ(s+ 2)) ·
(
s+ 2

d

)(s−s1+2)/2

· γ ·
s1−1∑
j=0

(
s1 − 1

j

)
· γs1−1−j ·

(√
s+ 2

d

)j
,

where the first inequality holds by Proposition I.7 and the second inequality holds by
(
s1

2j+1

)
/
(
s1−1
2j

)
=1787

s1/(2j + 1) ≤ s1 and also appending the odd terms to the summation. Thus, we have1788

−(II) ≤ s1 · (1 + 2(s+2)/2eγ(s+ 2)) · γ ·

(
γ +

√
s+ 2

d

)s1−1

·

(√
s+ 2

d

)s−s1+2

.

73



Next, we study the even terms (I) in (I.6). Using Proposition I.7 with the uniform bound in (I.5), we1789

have (I) upper bounded by1790

(I) =
(s1−1)/2∑
j=0

(
s1
2j

)
γs1−2j · E

[
ξ2j1
rs
·
d∏
i=2

ξsii

]

≤ (1 + 2s/2esγ) ·
(s1−1)/2∑
j=0

(
s1
2j

)
γs1−2j ·

(√
s

d

)s−s1+2j

≤ (1 + 2s/2esγ) · s1 ·
s1−1∑
j=0

(
s1 − 1

j

)
· γs1−1−j ·

(√
s

d

)j
·
(√

s

d

)s−s1
· γ

= s1 · (1 + 2s/2esγ) · γ ·
(
γ +

√
s

d

)s1−1

·
(√

s

d

)s−s1
.

Similarly, we have the lower bound for (I) as1791

(I) =
(s1−1)/2∑
j=0

(
s1
2j

)
γs1−2j · E

[
ξ2j1
rs
·
d∏
i=2

ξsii

]

≥ (1− (2s)s/2esγ) ·
(s1−1)/2∑
j=0

(
s1
2j

)
γs1−2j ·

(√
1

d

)s−s1+2j

≥ 1

5
(1− (2s)s/2esγ) ·

s1−1∑
j=0

(
s1 − 1

j

)
γs1−1−j ·

(√
1

d

)j
·

(√
1

d

)s−s1
· γ

=
1

5
(1− (2s)s/2esγ) · γ ·

(
γ +

√
1

d

)s1−1

·

(√
1

d

)s−s1
.

Combining these upper and lower bounds for (I) together with the upper bound for (II), we have1792

E

[
d∏
i=1

wsii

]
≥
(
1

5
(1− (2s)s/2esγ)− s1 · (1 + 2(s+2)/2eγ(s+ 2)) · (s+ 2)(s+2)/2

d

)

· γ ·

(
γ +

√
1

d

)s1−1

·

(√
1

d

)s−s1
,

and1793

E

[
d∏
i=1

wsii

]
≤ (1 + 2s/2esγ) · s(s+1)/2 · γ ·

(
γ +

√
1

d

)s1−1

·

(√
1

d

)s−s1
.

Hence, we complete our proof.1794

J Auxiliary Lemmas1795

Lemma J.1 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables with |Xi −1796

E[Xi]| ≤ C for all i ∈ [n]. Then for any t > 0, it holds that1797

P
(∣∣∣∣ 1n

n∑
i=1

Xi −
1

n

n∑
i=1

EXi

∣∣∣∣ ≥ t) ≤ 2 exp

(
− nt2/2

n−1 ·
∑n
i=1 Var[Xi] + Ct/3

)
,

or equivalently, for any δ ∈ (0, 1),1798

P
(∣∣∣∣ 1n

n∑
i=1

Xi − EXi

∣∣∣∣ ≤
√

2 · n−1
∑n
i=1 Var[Xi] · log δ−1

n
+
C log δ−1

3n

)
≥ 1− δ.
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For the vector case, by a union bound over all the coordinates, we have the following corollary.1799

Corollary J.2 (Vector version of Bernstein’s inequality). Let X1, . . . , Xn be independent random1800

vectors in Rd with ∥Xi − E[Xi]∥∞ ≤ C for all i ∈ [n]. Then for any δ ∈ (0, 1), it holds with1801

probability at least 1− δ that1802 ∥∥∥∥ 1n
n∑
i=1

Xi

∥∥∥∥
2

≲

∥∥∥∥E[ 1n
n∑
i=1

Xi

]∥∥∥∥
2

+

√
n−1

∑n
i=1 Tr(Cov[Xi]) · log(dδ−1)

n
+

√
dC log(dδ−1)

n
.

Lemma J.3 (Lemma I.3. in Damian et al. (2024)). Let X1, . . . , Xn ∈ Rd be independent mean-zero1803

random vectors such that for all p ≥ 2, E[∥Xi∥p]1/p ≤ Cpk/2 for some constants k,C ≥ 0 and1804

vector norm ∥·∥. Define σ2 := n−1
∑n
i=1 E[∥Xi∥2] and Y := n−1 ·

∑n
i=1Xi. Then with probability1805

at least 1− 2δ,1806

∥Y ∥ ≲ σ ·
√

log(1/δ)

n
+
C log(1/δ) log(n/δ)k/2

n
.

where ≲ only hides constant that depends on k.1807

Lemma J.4 (Ratio bound of binomial expansion). For real numbers a, b > 0 and integer s ≥ 2,1808

define1809

Aj :=

(
s

j

)
· as−j · bj , for j = 0, 1, . . . , s.

Then for all j = 1, 2, . . . , s− 1, it holds that Aj ≤ 2(Aj−1 +Aj+1).1810

Proof of Lemma J.4. By the definition of Aj ,1811

min

{
Aj
Aj−1

,
Aj
Aj+1

}
= min

{
b

a
· s− j + 1

j
,
a

b
· j + 1

s− j

}
≤

√
b

a
· s− j + 1

j
· a
b
· j + 1

s− j

≤

√(
1 +

1

s− j

)(
1 +

1

j

)
≤ 2.

Hence, the proof is complete by the nonnegativity of Aj .1812

Proposition J.5. For ϵ ∈ [0, 1/2) and s, r ∈ N0 with s ≥ 2r − 1, it holds that1813

∞∑
j=0

(j + s)(j + s− 1) · · · (j + s− r + 1) · ϵj ≤ 2s · (s− 1) · · · (s− r + 1) · 1

1− ϵ
.

Proof of Proposition J.5. Denote F (x) =
∑∞
j=0(j+s)(j+s−1) · · · (j+s−r+1)xj for x ∈ (0, 1).1814

The desired quantity on the left-hand side of the inequality is simply F (ϵ). It can be verified using1815

the expansion of 1/(1− x) =
∑∞
j=0 x

j for x ∈ (0, 1) that1816

F (x) =
dr

dxr

( xs

1− x

)
· x−(s−r).

Expanding this expression, we have1817

F (x) =

r∑
τ=0

(
r

τ

)
dτ

dxτ
(xs) · dr−τ

dxr−τ

(
1

1− x

)
· x−(s−r)

=

r∑
τ=0

(
r

τ

)
s(s− 1) · · · (s− τ + 1) · xs−τ · (−1)

r−τ (r − τ)!
(1− x)r−τ+1

· x−(s−r)

=

r∑
τ=0

(r · (r − 1) · · · (τ + 1)) · (s · (s− 1) · · · (s− τ + 1)) · (−1)r−τ · xr−τ

(1− x)r−τ+1
.
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Write the above summation as F (x) =
∑r
τ=0 Fτ (x), where Fτ (x) is the τ -th term in the summation.1818

Then for each τ = 0, . . . , r − 1, when x ∈ (0, 1), we have1819

Fτ (x)

Fτ+1(x)
= −s− τ

τ + 1
· 1− x

x
< −1.

Note that Fr(x) is positive, and for each k = 1, . . . , ⌊r/2⌋, Fr−2k+1(x) < −Fr−2k(x) < 0. Since1820

F (x) is positive, it is then upper bounded by Fτ (x) + |F0(x)|, i.e.,1821

F (x) ≤ s · (s− 1) · · · (s− r + 1) · 1

1− x
+ r! · xr

(1− x)r+1
≤ 2s · (s− 1) · · · (s− r + 1) · 1

1− x
.

The proof is complete by setting x = ϵ.1822

Lemma J.6 (Gaussian-like tail bound for spherical coordinate). Suppose ξ ∼ Unif(Sd−1). Then the1823

first coordinate of ξ, denoted by ξ1, satisfies that for any t ≥ 0,1824

Pr(ξ1 ≥
√
Cd−1 log d) ≤ exp(−d/16) + d−C/4,

where C > 0 is a constant.1825

Proof of Lemma J.6. Consider z ∼ N (0, Id), and it holds that ξ1
d
= z1/∥z∥2, where z1 is the first1826

coordinate of z. Note that ∥z∥22 ∼ χ2
d, and by a standard tail bound for the χ2

d distribution, we have1827

Pr(∥z∥22 ≤ d− 2
√
dx) ≤ exp(−x), for any x ≥ 0.

By taking x = d/16, we get Pr(∥z∥22 ≤ d/2) ≤ exp(−d/16). Thus, applying a union bound,1828

Pr(ξ1 ≥ t) = Pr
( z1
∥z∥2

≥ t
)
≤ Pr

(
∥z∥22 ≤ d/2

)
+ Pr(z1 ≥ t

√
d/2)

≤ exp(−d/16) + exp(−t2d/4).

The proof is complete by taking t =
√
Cd−1 log d.1829

Lemma J.7 (Hypergeometric behavior). Consider random variable X ∼ Hypergeometric(d, k, k)1830

with probability mass1831

Pr(X = x) =

(
k
x

)(
d−k
k−x
)(

d
k

) , for x = 1, 2, . . . k.

Suppose k = o(
√
d), then for any constant s > 0, it holds that E[Xs] ≃ k2/d. In addition, the1832

following tail bound holds:1833

Pr(X ≥ log k) ≲ (k2/d)log k.

Proof of Lemma J.7. We first notice that for x ≥ k2/d, since k = o(
√
d),1834

Pr(X = x+ 1)

Pr(X = x)
=

(k − x)2

(x+ 1)(d− 2k − x+ 1)
=
(
1− k

d

)2/( d
k2

+ o
( d
k2

))
≲
k2

d
. (J.1)

This immediately implies the tail bound:1835

Pr(X ≥ log k) ≤
k∑

j=⌈log k⌉

Pr(X = j) ≲
(k2
d

)log k
.

Next, for the moment E[Xs], we first study the magnitude of P(X = 0), which, by Stirling’s1836

approximation, is given by1837

Pr(X = 0) =
((d− k)!)2

d! · (d− 2k)!
≃ (d− k)2(d−k)+1 · e−2(d−k)

dd+1/2 · (d− 2k)(d−2k)+1/2 · e−2(d−k)

=
(1− 2k/d+ k2/d2)d−k+1/2

(1− 2k/d)d−2k+1/2

=

(
1 +

1

(1− 2k/d) · d2/k2

)d−k+1/2(
1− 2k

d

)k
.
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Since k = o(
√
d), we have (1− 2k/d)k ≃ 1. Further applying the fact that (1 + 1/m)m = Θ(1),1838

Pr(X = 0) ≃
(
1 +

1

(1− 2k/d) · d2/k2

)(1−2k/d)·d2/k2·k2/d

= Θ(1).

As a consequence, using the first equality in (J.1), we can lower bound the expectation of Xs by1839

E[Xs] ≥ Pr(X = 1) = Pr(X = 0) · k2

d− 2k + 1
≳
k2

d
.

For the upper bound, we again use the first equality in (J.1) to get1840

Pr(X = x+ 1) ≤ k2

(x+ 1)(d− 2k − x+ 1)
· Pr(X = x) ≲

Pr(X = x)

x+ 1
· k

2

d
.

Recursive application of this inequality yields that P(X = x) ≲ P(X = 0) · (k2/d)x/x!, and thus1841

E[Xs] =

k∑
x=1

xs · Pr(X = x) ≤ Pr(X = 0) ·
k∑
x=1

xs

x!

(k2
d

)x
≲
k2

d
.

Therefore, we conclude that E[Xs] ≃ k2/d. This completes the proof.1842
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