
Towards Holistic Evaluation of Large Audio-Language Models: A
Comprehensive Survey

Anonymous ACL submission

Abstract001

With advancements in large audio-language002
models (LALMs), which enhance large lan-003
guage models (LLMs) with auditory capabil-004
ities, these models are expected to demon-005
strate universal proficiency across various audi-006
tory tasks. While numerous benchmarks have007
emerged to assess LALMs’ performance, they008
remain fragmented and lack a structured tax-009
onomy. To bridge this gap, we conduct a com-010
prehensive survey and propose a systematic011
taxonomy for LALM evaluations, categoriz-012
ing them into four dimensions based on their013
objectives: (1) General Auditory Awareness014
and Processing, (2) Knowledge and Reasoning,015
(3) Dialogue-oriented Ability, and (4) Fairness,016
Safety, and Trustworthiness. We provide de-017
tailed overviews within each category and high-018
light challenges in this field, offering insights019
into promising future directions. To the best of020
our knowledge, this is the first survey specif-021
ically focused on the evaluations of LALMs,022
providing clear guidelines for the community.023

1 Introduction024

Recent advancements in large language models025

(LLMs) (Zhao et al., 2023; Grattafiori et al., 2024;026

Hurst et al., 2024) have expanded their impact be-027

yond natural language processing (NLP) to mul-028

timodal domains (Yin et al., 2024; Team et al.,029

2024). Among these, large audio-language mod-030

els (LALMs) (Lakhotia et al., 2021; Tang et al.,031

2024; Chu et al., 2024; Lu et al., 2024; Défossez032

et al., 2024; Fang et al., 2025) have attracted signif-033

icant attention in the auditory-processing commu-034

nity. LALMs are multimodal LLMs that process035

auditory and/or textual input, such as speech, audio,036

and music, and generate textual and/or auditory out-037

put. They can be trained from scratch or fine-tuned038

from text LLM backbones with auditory modali-039

ties inserted. By integrating auditory modalities040

with language understanding, they show potential041

Figure 1: LALMs’ diverse capabilities and modalities
covered. Icons from https://www.flaticon.com.

in auditory processing (Huang et al., 2024a), multi- 042

modal reasoning (Sakshi et al., 2025), and human- 043

computer interaction (Lin et al., 2024a). 044

As LALMs evolve, expectations for their capa- 045

bilities have expanded from basic tasks like speech 046

recognition to more complex ones such as audio- 047

grounded reasoning (Sakshi et al., 2025) and inter- 048

active dialogue (Lin et al., 2025a). Figure 1 illus- 049

trates this multifaceted nature, emphasizing the di- 050

verse input and output modalities involved and the 051

wide range of abilities these models are expected to 052

demonstrate. To evaluate these capabilities, a vari- 053

ety of benchmarks have been developed (Lin et al., 054

2025a; Yang et al., 2024c; Cheng et al., 2025). 055

However, the evaluation landscape remains frag- 056

mented and lacks systematic organization. Existing 057

surveys (Wu et al., 2024a; Peng et al., 2024; Cui 058

et al., 2024; Arora et al., 2025a) focus primarily 059

on model architectures and training methodologies, 060

with less emphasis on the equally important role of 061

evaluation in assessing LALMs’ capabilities. This 062
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gap makes it challenging for researchers to find suit-063

able benchmarks for their models or to pinpoint the064

field’s progress. Therefore, a structured overview065

of LALM evaluation frameworks is needed.066

This paper presents a comprehensive survey of067

LALM evaluation frameworks and introduces a tax-068

onomy categorizing evaluation dimensions. To the069

best of our knowledge, this is the first in-depth sur-070

vey and taxonomy specifically focused on LALM071

evaluation. We organize the frameworks into four072

primary categories: General Auditory Aware-073

ness and Processing (§3), Knowledge and Rea-074

soning (§4), Dialogue-oriented Ability (§5), and075

Fairness, Safety, and Trustworthiness (§6). We076

also highlight challenges in LALM evaluation (§7),077

such as data contamination and insufficient con-078

sideration of human diversity, while suggesting079

promising future directions.080

Overall, our contributions are threefold: (1) pre-081

senting the first comprehensive survey of LALM082

evaluations, (2) proposing a structured taxonomy083

for LALM evaluation that offers clear guidelines084

for researchers, and (3) identifying key challenges085

and future directions to improve evaluation cover-086

age and robustness.087

2 Taxonomy of Evaluation Frameworks088

for Large Audio-Language Models089

As LALMs integrate multimodal understanding,090

they tackle tasks across speech, audio, and music.091

Despite numerous benchmarks for LALMs emerg-092

ing, the evaluation landscape remains fragmented.093

To address this, we present the first structured tax-094

onomy of LALM evaluations.095

Figure 2 shows our taxonomy, with some works096

included1. The full categorization of the surveyed097

works is in Appendix A. We organize the surveyed098

works into four categories by evaluation objectives:099

• General Auditory Awareness and Process-100

ing evaluates the auditory awareness and fun-101

damental processing tasks, e.g., speech recog-102

nition and audio captioning.103

• Knowledge and Reasoning assesses LALMs’104

knowledge acquisition and advanced reason-105

ing skills, examining their intelligence.106

• Dialogue-oriented Ability focuses on natural107

conversational skills, including affective and108

contextual interaction, dialogue management,109

and instruction following.110

1Some span many categories due to their complexity.

• Fairness, Safety and Trustworthiness exam- 111

ines bias, toxicity, and reliability for ethical, 112

safe, and trustworthy deployment. 113

Each category is further divided into subcate- 114

gories, as shown in Figure 2. The following sec- 115

tions provide a detailed overview, highlighting the 116

current progress, limitations, and future directions. 117

3 General Auditory Awareness and 118

Processing 119

A distinctive strength of LALMs over cascaded 120

systems (Huang et al., 2024c; Kuan et al., 2024b) 121

is their inherent ability to directly interpret audi- 122

tory signals, capturing crucial non-verbal cues such 123

as speaker identity, emotion, and ambient context, 124

without relying on separate components like speech 125

recognition or emotion recognition systems con- 126

nected to an LLM. This section reviews works eval- 127

uating both acoustic awareness and foundational 128

auditory processing, emphasizing these core capa- 129

bilities that set LALMs apart from LLMs. 130

3.1 Auditory Awareness 131

Benchmarks for auditory awareness examine how 132

effectively LALMs realize acoustic cues like 133

emotion, prosody, and environmental sounds. 134

SALMon (Maimon et al., 2025) specifically eval- 135

uates sensitivity to acoustic inconsistencies (e.g., 136

sudden speaker or emotional changes) and mis- 137

alignments between acoustic signals and semantic 138

content (e.g., conveying sad content with a cheer- 139

ful tone). These evaluations reveal significant gaps 140

between LALMs and human-level perception. 141

EmphAssess (Seyssel et al., 2024) measures 142

LALMs’ awareness of prosodic emphasis by re- 143

quiring speech-to-speech paraphrasing or transla- 144

tion that accurately preserves and transfers empha- 145

sis on specific parts of the input utterance. This 146

evaluates LALMs’ ability to capture and maintain 147

fine-grained prosodic features. 148

These benchmarks highlight challenges in fine- 149

grained auditory awareness among current models, 150

underscoring the need for improved modeling of 151

subtle acoustic and paralinguistic information (Mai- 152

mon et al., 2025; Seyssel et al., 2024). 153

3.2 Auditory Processing 154

Building on auditory awareness, LALMs must also 155

excel in fundamental auditory tasks, such as speech 156

recognition, audio classification, and music anal- 157

ysis, to support advanced real-world applications. 158
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Taxonomy

General Auditory Awareness
and Processing (§3)

Awareness (§3.1) SALMon (Maimon et al., 2025); EmphAssess (Seyssel et al., 2024)

Processing (§3.2)

Dynamic-SUPERB (Huang et al., 2024a);
Dynamic-SUPERB Phase-2 (Huang et al., 2025a);
AIR-Bench (Yang et al., 2024c); AudioBench (Wang et al., 2025a);
MuChoMusic (Weck et al., 2024)

Knowledge and Reasoning (§4)

Linguistic Knowledge
(§4.1)

ZeroSpeech 2021 (Nguyen et al., 2020); CSZS (Huang et al., 2024b);
sStoryCloze (Hassid et al., 2023); tStoryCloze (Hassid et al., 2023)

World Knowledge
Assessment (§4.2)

MMAU (Sakshi et al., 2025); Audiopedia (Penamakuri et al., 2025);
VoiceBench (Chen et al., 2024c); VoxEval (Cui et al., 2025)

Reasoning (§4.3)
CompA (Ghosh et al., 2024b); MMAU (Sakshi et al., 2025);
SAKURA (Yang et al., 2025a); URO-Bench (Yan et al., 2025);
Audio Entailment (Deshmukh et al., 2025a); Wang et al. (2025d)

Dialogue-oriented Ability (§5)

Conversational Ability
(§5.1)

StyleTalk (Lin et al., 2024a); SD-Eval (Ao et al., 2024);
VoxDialogue (Cheng et al., 2025); Talking Turns (Arora et al., 2025b);
Full-Duplex-Bench (Lin et al., 2025a)

Instruction Following
(§5.2)

VoiceBench (Chen et al., 2024c); URO-Bench (Yan et al., 2025);
Speech-IFeval (Lu et al., 2025)

Fairness, Safety, and
Trustworthiness (§6)

Fairness and Bias (§6.1) Lin et al. (2024c); Spoken Stereoset (Lin et al., 2024b)

Safety (§6.2) VoiceBench (Chen et al., 2024c); Yang et al. (2025b); Roh et al. (2025)

Hallucination (§6.3) Kuan et al. (2024a); CMM (Leng et al., 2024)

Figure 2: The taxonomy of LALM evaluation frameworks, including selected works as representative examples.
The complete version is in Appendix A.

A list of commonly evaluated tasks and their cor-159

responding datasets is provided in Appendix B for160

reference. Initially driven by representation learn-161

ing models (Baevski et al., 2020; Hsu et al., 2021;162

Li et al., 2022), enriched datasets (Pratap et al.,163

2020; Piczak, 2015a; Hawthorne et al., 2019), and164

existing benchmarks (Yang et al., 2021; Turian165

et al., 2022; Yuan et al., 2023), recent works adapt166

these resources into instruction-oriented evaluation167

frameworks tailored for LALMs.168

Dynamic-SUPERB (Huang et al., 2024a) initi-169

ated this direction, constructing 55 multiple-choice170

question-answering (QA) tasks spanning speech,171

audio, and music modalities. Subsequent efforts,172

such as AIR-Bench (Yang et al., 2024c) and Au-173

dioBench (Wang et al., 2025a), extend to open-174

ended QA formats. MuChoMusic (Weck et al.,175

2024) specifically emphasizes music-related tasks,176

while Dynamic-SUPERB Phase-2 (Huang et al.,177

2025a) significantly enlarges the benchmark to178

180 tasks, forming the largest evaluation suite for179

LALMs’ general processing abilities to date.180

Given the task diversity, various evaluation met-181

rics are adopted depending on the task specificity,182

such as word error rate for speech recognition and183

BLEU score (Papineni et al., 2002) for translation.184

There is also an emerging trend that includes LLM-185

as-a-judge (Gu et al., 2024) for scalable, automatic186

evaluation of open-ended responses (Huang et al.,187

2025a; Yang et al., 2024c; Wang et al., 2025a).188

Despite achieving promising results in certain189

areas, these benchmarks demonstrate that current 190

LALMs still fall short of universally robust per- 191

formance across auditory-processing tasks (Huang 192

et al., 2025a), highlighting substantial room for im- 193

provement toward truly auditory foundation mod- 194

els. 195

4 Knowledge and Reasoning 196

Intelligent LALMs should demonstrate extensive 197

knowledge and advanced reasoning to tackle com- 198

plex real-world tasks. Current evaluations empha- 199

size these abilities through three categories: Lin- 200

guistic Knowledge, World Knowledge Assess- 201

ment, and Reasoning. Each category targets dis- 202

tinct but complementary skills, collectively provid- 203

ing a comprehensive evaluation. These assessments 204

reveal key challenges LALMs face in mastering 205

knowledge and reasoning for advanced tasks. 206

4.1 Linguistic Knowledge 207

Linguistic knowledge refers to understanding 208

and effectively using spoken language. Evaluat- 209

ing LALMs’ linguistic proficiency typically use 210

likelihood-based benchmarks where models choose 211

the more linguistically plausible option from paired 212

speech samples. These tests cover lexical knowl- 213

edge, syntax, and semantic coherence. 214

Representative works include the ZeroSpeech 215

2021 benchmark (Nguyen et al., 2020), which con- 216

sists of multiple tracks for evaluating linguistic 217

capabilities. The lexical-level assessment track, 218
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sWUGGY, tests models’ ability to distinguish be-219

tween real words and phonotactically similar non-220

words, while the syntactic sensitivity evaluation221

track, sBLIMP, focuses on differentiating grammat-222

ical from ungrammatical sentences. CSZS (Huang223

et al., 2024b) extends syntactic evaluation to mul-224

tilingual and code-switched scenarios. Narrative225

and semantic coherence are evaluated by tasks like226

sStoryCloze and tStoryCloze (Hassid et al., 2023),227

where models are tasked with selecting semanti-228

cally appropriate continuations to spoken stories.229

4.2 World Knowledge Assessment230

Real-world tasks often demand integrating external231

knowledge beyond basic auditory understanding.232

World knowledge assessment evaluates LALMs233

on two main aspects: (1) auditory expertise like234

music structure and medical sound diagnosis, and235

(2) general commonsense and factual knowledge.236

Benchmarks that evaluate auditory expertise237

include MuChoMusic (Weck et al., 2024) and238

MMAU (Sakshi et al., 2025), which focus on musi-239

cal understanding, such as melodic structure, har-240

mony, instrument identification, and contextual mu-241

sic interpretation. Additionally, SAGI (Bu et al.,242

2024) assesses medical expertise, such as recogniz-243

ing illnesses from audio cues like coughing.244

Commonsense and factual knowledge evalua-245

tions often convert established text benchmarks246

into spoken form using text-to-speech (TTS). Vox-247

Eval (Cui et al., 2025) and VoiceBench serve as248

spoken counterparts to MMLU (Hendrycks et al.,249

2021) and MMLU-Pro (Wang et al., 2024), test-250

ing models across diverse factual domains like so-251

cial science and humanities. Audiopedia (Pena-252

makuri et al., 2025) uses knowledge graphs from253

Wikidata (Vrandečić and Krötzsch, 2014) to create254

audio-based, knowledge-intensive QA tasks that255

evaluate models’ knowledge of well-known enti-256

ties, such as brands, mentioned in audio.257

These benchmarks thoroughly assess LALMs’258

knowledge acquisition, revealing challenges such259

as limited auditory expertise (Weck et al., 2024)260

and inconsistent performance across domains. Dif-261

ferent LALMs excel in different domains, each262

with their own strengths, but their performance263

often noticeably declines outside their own special-264

ized areas (Cui et al., 2025). Overall, there remains265

substantial room to improve LALMs’ auditory ex-266

pertise and factual knowledge.267

4.3 Reasoning 268

Reasoning over auditory inputs falls into two types. 269

Content-based reasoning tests a model’s ability to 270

understand spoken semantic content and answer 271

questions. Acoustic-based reasoning requires uti- 272

lizing acoustic features like speaker traits and envi- 273

ronmental sounds beyond semantics. We provide 274

an overview of these two evaluation paradigms. 275

4.3.1 Content-based Reasoning 276

Content-based reasoning assesses LALMs’ abil- 277

ity to reason over the semantic content of audi- 278

tory queries. Current benchmarks for this capa- 279

bility typically transform NLP reasoning bench- 280

marks into spoken questions via TTS and require 281

LALMs to provide answers. For instance, Vox- 282

Eval (Cui et al., 2025), URO-Bench (Yan et al., 283

2025), and ADU-Bench (Gao et al., 2024) convert 284

NLP datasets like GSM8K (Cobbe et al., 2021) 285

and MMLU (Hendrycks et al., 2021) into speech, 286

evaluating LALMs’ mathematical reasoning based 287

on spoken questions. During synthesis, various 288

speaking styles (e.g., mispronunciation, disfluen- 289

cies, and accents) may be introduced to test models’ 290

robustness (Cui et al., 2025). 291

These benchmarks reveal gaps in current 292

LALMs’ content-based reasoning abilities, even 293

with chain-of-thought (Wei et al., 2022; Kojima 294

et al., 2022). Moreover, model performance varies 295

significantly across speaking styles (Cui et al., 296

2025), indicating instability in their reasoning. 297

4.3.2 Acoustic-based Reasoning 298

Acoustic-based reasoning requires LALMs to infer 299

from acoustic cues in auditory input, often involv- 300

ing reasoning across multiple auditory modalities 301

or combining auditory understanding with cogni- 302

tive skills such as compositional, temporal, logical, 303

and multi-hop reasoning. 304

Cross-auditory Modality Reasoning demands 305

joint reasoning over multiple auditory modalities, 306

like speech and non-speech sounds. Wang et al. 307

(2025d) propose an open-ended QA benchmark as- 308

sessing co-reasoning on speech and environmental 309

sounds, requiring reasoning over cues from dis- 310

tinct auditory sources to infer speakers’ activities. 311

Their findings show that current LALMs frequently 312

neglect non-speech cues, leading to failures. 313

Compositional and Temporal Reasoning in- 314

volves comprehending structured acoustic events, 315

their temporal relationships, and attribute bind- 316

ing. Benchmarks like CompA (Ghosh et al., 317
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2024b) evaluate these abilities through specific318

tasks: CompA-order challenges models to identify319

correct event sequences or align audio temporal320

structures with textual descriptions, while CompA-321

attribute focuses on associating sound events with322

their sources and attributes. MMAU (Sakshi et al.,323

2025) assesses temporal reasoning via event count-324

ing and duration comparison.325

Logical reasoning covers structured inference,326

including deductive and causal reasoning. De-327

ductive reasoning can be tested by Audio Entail-328

ment (Deshmukh et al., 2025a), which evaluates329

whether a textual hypothesis logically follows from330

auditory input based on acoustic attributes like331

sound sources. MMAU (Sakshi et al., 2025) exam-332

ines LALMs’ causal reasoning on cause-and-effect333

relationships of events.334

Multi-hop reasoning is the ability to recall and335

integrate multiple information to answer complex336

queries, enabling models to connect stored knowl-337

edge without explicit reasoning steps (Yang et al.,338

2024d,e; Biran et al., 2024). SAKURA (Yang et al.,339

2025a) evaluates LALMs’ multi-hop reasoning by340

requiring integration of auditory attributes (e.g.,341

speaker gender and emotion) with stored knowl-342

edge. Results show that LALMs struggle to com-343

bine auditory information with stored knowledge344

for reasoning, even when both types of information345

are extracted and known by the models.346

5 Dialogue-oriented Ability347

While foundational skills such as auditory aware-348

ness (§3.1), fundamental processing (§3.2),349

language proficiency (§4.1), advanced knowl-350

edge (§4.2), and reasoning (§4.3) are essential for351

LALMs, natural human-AI interactions addition-352

ally require affective and contextual interaction, flu-353

ent dialogue management, and precise instruction354

following. This category targets these integrative355

skills, focusing on naturalness and controllability,356

which we group as Conversational Ability and357

Instruction Following.358

5.1 Conversational Ability359

Effective conversational ability in LALMs relies on360

generating contextually appropriate responses and361

smoothly managing dialogues in real time. Current362

evaluations address this via two complementary363

frameworks: affective and contextual interaction,364

and full-duplex dialogue management.365

5.1.1 Affective and Contextual Interaction 366

Evaluations of affective and contextual interac- 367

tion typically adopt half-duplex settings, focus- 368

ing on fully turn-by-turn conversations without 369

speaker overlaps. These benchmarks emphasize 370

LALMs’ ability to respond using both content and 371

non-content cues such as emotional tone, speak- 372

ing style, and speaker traits. StyleTalk (Lin et al., 373

2024a) presents models with a dialogue history 374

and the user’s current speech segment, intention- 375

ally leaving the user’s intent underspecified when 376

relying solely on the content. Consequently, mod- 377

els are required to leverage paralinguistic cues to 378

respond appropriately. Subsequent works, such as 379

SD-Eval (Ao et al., 2024) and VoxDialogue (Cheng 380

et al., 2025), broaden the evaluation by incorpo- 381

rating more acoustic and contextual variables, in- 382

cluding speaker age, accent, and environmental 383

conditions. These benchmarks combine objec- 384

tive metrics (e.g., ROUGE-L (Lin, 2004), ME- 385

TEOR (Banerjee and Lavie, 2005)), LLM-based 386

judgment (Gu et al., 2024), and human evaluation 387

for comprehensive assessment. 388

While these benchmarks rely on static data, Li 389

et al. (2025) proposes an interactive framework 390

inspired by Chatbot Arena (Chiang et al., 2024), 391

where real users converse with models on topics 392

of their choice and provide pairwise model prefer- 393

ences, enabling dynamic, user-centered evaluation. 394

5.1.2 Full-duplex Dialogue Management 395

Full-duplex evaluation examines LALMs in real- 396

time, dynamic dialogues with complex behav- 397

iors like turn-taking (Duncan, 1972; Gravano 398

and Hirschberg, 2011), backchanneling (Sche- 399

gloff, 1982), and speaker interruptions and over- 400

laps (Gravano and Hirschberg, 2012; Schegloff, 401

2000). These behaviors are detailed in Appendix C. 402

Representative works, such as Talking 403

Turns (Arora et al., 2025b) and Full-Duplex- 404

Bench (Lin et al., 2025a), commonly evaluate four 405

key dimensions: 406

• Timing for speaking up or interrupting: As- 407

sesses LALMs’ ability to distinguish meaning- 408

ful pauses from turn-yielding moments, avoid- 409

ing undesired interruptions and taking over 410

turns appropriately. 411

• Backchanneling: Evaluates whether LALMs 412

backchannel at proper moments with suitable 413

frequency, reflecting their active listening. 414
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• Turn taking: Examines whether LALMs tran-415

sition smoothly between turns by recognizing416

boundaries, managing latency, and signaling417

their intent to maintain or yield the floor.418

• User interruption handling: Assesses419

LALMs’ handling of interruption, e.g., paus-420

ing and smoothly resuming the conversation.421

Both use automatic evaluation metrics. Talking422

Turns uses supervised models trained on human di-423

alogues (Godfrey et al., 1992) as a reference, while424

Full-Duplex-Bench uses metrics like response la-425

tency. However, these methods often rely on heuris-426

tics, which may be inaccurate in some cases.427

Their results show that LALMs struggle with428

full-duplex management, especially with interrup-429

tions (Arora et al., 2025b) and seamless turn transi-430

tions (Lin et al., 2025a), highlighting current limi-431

tations in dynamic spoken interaction.432

5.2 Instruction Following433

Instruction following is the ability to follow user-434

specified instructions, e.g., requirements for per-435

forming particular actions, adhering to constraints,436

and adjusting response styles. Effective instruction437

following is essential for model controllability.438

LALM instruction-following evaluations typi-439

cally involve three approaches: (1) adding con-440

straints to existing LALM benchmarks not orig-441

inally for instruction following, (2) synthesiz-442

ing LLM instruction-following benchmarks into443

speech, or (3) creating new dedicated datasets.444

For instance, Speech-IFeval (Lu et al., 2025)445

introduces constraints into LALM benchmarks446

such as Dynamic-SUPERB Phase-2 (Huang et al.,447

2025a); VoiceBench (Chen et al., 2024c) synthe-448

sizes IFEval (Zhou et al., 2023a), a text-based LLM449

instruction-following benchmark, into speech; and450

URO-Bench (Yan et al., 2025) creates custom eval-451

uation datasets.452

Evaluating instruction adherence helps distin-453

guish limitations in following instructions and defi-454

ciencies in auditory understanding or knowledge.455

Common evaluated constraints include length (e.g.,456

a minimum number of words), format (e.g., re-457

sponses in JSON or all caps), action (e.g., chain-458

of-thought reasoning (Wei et al., 2022)), style (e.g.,459

responses in a humorous tone), and content (e.g.,460

including a specific word). During evaluation,461

instruction-following rates, i.e., the frequency with462

which instructions are correctly followed, are mea-463

sured with rule-based (Zhou et al., 2023a) or LLM- 464

as-a-judge methods (Gu et al., 2024). 465

Benchmark results reveal significant gaps in 466

LALMs compared to their LLM backbones in in- 467

struction following (Lu et al., 2025), indicating 468

catastrophic forgetting when adapting LLMs to au- 469

ditory modalities. 470

6 Fairness, Safety, and Trustworthiness 471

Despite the advancements of LALMs, their real- 472

world deployment may pose social risks, such as 473

perpetuating biases, generating harmful content, or 474

spreading misinformation, if not properly evalu- 475

ated and regulated. Therefore, fairness, safety, and 476

trustworthiness must be thoroughly assessed. This 477

section reviews works that quantify these risks to 478

ensure the responsible and ethical use of LALMs. 479

6.1 Fairness and Bias 480

Fairness and bias are key ethical concerns for 481

LALMs, ensuring they do not reinforce societal 482

inequalities, discrimination, stereotypes, or biases. 483

Such issues can be triggered by either the speech 484

content or its non-content acoustic cues. For exam- 485

ple, content-triggered bias may arise when LALMs 486

translate occupation-related terms in the speech 487

content into stereotypical gendered terms, inde- 488

pendent of acoustic characteristics. In contrast, 489

acoustic-triggered bias may arise when vocal cues 490

lead the model to associate a speaker’s gender with 491

certain occupations. 492

Lin et al. (2024c) quantifies LALMs’ content- 493

triggered gender biases via four tasks: speech-to- 494

text translation, coreference resolution, sentence 495

continuation, and question answering. In each task, 496

gender biases and stereotypes are measured based 497

on the models’ responses. 498

Conversely, Spoken Stereoset (Lin et al., 2024b) 499

assesses acoustic-triggered bias on speakers’ gen- 500

der and age. The authors sampled sentences from 501

NLP datasets like Stereoset (Nadeem et al., 2021) 502

and BBQ (Parrish et al., 2022), which were then 503

rewritten in the first-person perspective with ex- 504

plicit gender or age indicators (e.g., “mother”) 505

removed to ensure bias would be triggered by 506

speaker characteristics rather than content. The 507

modified sentences were synthesized into speech 508

using TTS with voices of different genders and 509

ages. These spoken sentences served as the con- 510

text, and LALMs were tasked with selecting contin- 511

uations from options that were stereotypical, anti- 512
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stereotypical, or unrelated to the context.513

These works highlight LALMs’ social biases,514

which may be inherited from their training data515

or LLM backbones. Additionally, since social bi-516

ases are multifaceted, current benchmarks cannot517

include all possible societal factors, emphasizing518

the need for further research into both model devel-519

opment and benchmarks to enhance fairness.520

6.2 Safety521

Unlike fairness and bias, which expose societal522

prejudices in LALMs, safety concerns focus on523

preventing harmful or unsafe outputs that may524

negatively impact individuals or society, includ-525

ing user discomfort or illegal activities. Current526

studies typically use NLP datasets with malicious527

queries and convert them into speech via TTS.528

For example, VoiceBench (Chen et al., 2024c)529

and Roh et al. (2025) synthesize datasets like Ad-530

vBench (Zou et al., 2023) into spoken queries, eval-531

uating LALMs on their ability to reject them.532

During evaluation, jailbreaking techniques may533

be employed to test models’ resistance to adversar-534

ial inputs. These include modifying speech con-535

tent by inserting fictional scenarios (Shen et al.,536

2024) and applying auditory manipulations such537

as silence (Yang et al., 2025b), noise (Yang et al.,538

2025b; Xiao et al., 2025), accents (Roh et al., 2025;539

Xiao et al., 2025), and audio edits (Xiao et al.,540

2025; Gupta et al., 2025). Ideally, LALMs should541

remain robust to adversarially modified inputs and542

consistently reject malicious requests.543

However, evaluations show that LALMs often544

accept malicious spoken inputs even when they545

can refuse similar textual ones (Chen et al., 2024c).546

Moreover, LALMs show considerable safety degra-547

dation compared to their LLM backbones (Yang548

et al., 2025b). Several jailbreaking methods can549

easily bypass these models (Roh et al., 2025; Xiao550

et al., 2025), highlighting the need for better multi-551

modal safety alignment.552

6.3 Hallucination553

Hallucination occurs when a model generates non-554

factual or unsupported outputs, reducing reliability555

and misleading users. In LALMs, hallucinations556

can originate from both auditory and textual modal-557

ities. While textual hallucinations can be assessed558

with NLP benchmarks (Li et al., 2023; Chen et al.,559

2024a; Bang et al., 2025), we focus on auditory-560

induced hallucinations.561

Kuan et al. (2024a) explores LALMs’ object 562

hallucination, where the models falsely identify 563

objects or events absent from the auditory input. 564

They evaluate this via two tasks: a discriminative 565

task where LALMs determine whether a specified 566

object exists in the audio, and a generative task 567

where LALMs generate captions describing the au- 568

dio. These captions are then evaluated for accuracy 569

in reflecting the actual content of the audio. De- 570

spite generating accurate captions, LALMs strug- 571

gle with object identification in the discriminative 572

task, revealing challenges in object hallucination 573

for question-answering tasks. 574

Leng et al. (2024) further analyzes object hallu- 575

cination using the CMM benchmark, showing that 576

overrepresented objects or events in the training 577

data can lead LALMs to incorrectly predict their 578

presence, even when they are absent. Additionally, 579

the frequent co-occurrence of objects and events 580

during training exacerbates these hallucinations. 581

These works highlight hallucination challenges 582

in LALMs and call for improved training, model- 583

ing, and data handling to enhance trustworthiness. 584

7 Challenges and Future Directions 585

7.1 Data Leakage and Contamination 586

Creating and curating high-quality auditory data 587

is far more difficult than for text. Consequently, 588

many LALM benchmarks rely on existing audi- 589

tory corpora (Panayotov et al., 2015a; Kim et al., 590

2019; Gemmeke et al., 2017) rather than collecting 591

new data. This raises concerns about data leakage, 592

since models may have seen these datasets during 593

training (Deng et al., 2024; Zhou et al., 2023b; Ja- 594

covi et al., 2023), undermining evaluation reliabil- 595

ity. The risk grows when large-scale web-crawled 596

data (Radford et al., 2023; He et al., 2024) are used 597

for training without rigorous filtering. 598

Thus, alongside creating or collecting custom 599

data, developing methods to detect and miti- 600

gate contamination (Golchin and Surdeanu, 2024; 601

Samuel et al., 2025) will be a crucial direction for 602

more reliable LALM evaluations. 603

7.2 Inclusive Evaluation Across Linguistic, 604

Cultural, and Communication Diversity 605

While current benchmarks cover major languages 606

like English and Mandarin (Huang et al., 2025a; 607

Yan et al., 2025), many overlook crucial aspects 608

such as low-resource languages (Magueresse et al., 609

2020) and code-switching (Doğruöz et al., 2021; 610

7



Sitaram et al., 2019). Although these have been611

explored in traditional speech technologies (Khare612

et al., 2021; Bhogale et al., 2024; Liu et al., 2024;613

Yang et al., 2024b), they remain underexamined in614

LALMs. This limited coverage fails to capture the615

full linguistic diversity of human communication,616

as different languages possess unique characteris-617

tics (Evans and Levinson, 2009; Bickel, 2014).618

Cultural factors, shaped by historical and so-619

cial contexts, influence dimensions like moral620

norms (Graham et al., 2016; Saucier, 2018) and621

are essential for evaluation. As LALMs extend to622

diverse cultures (Yang et al., 2024a; Wang et al.,623

2025b), evaluation frameworks must also expand.624

Along with language and culture, communica-625

tion patterns also matter. While some work covers626

speech variations like accents, underrepresented627

groups such as people with speech disorders (e.g.,628

dysarthria (Kent et al., 1999; Kim et al., 2008)) are629

often overlooked, as current LALMs have limited630

familiarity with their unique speech patterns, which631

affects fair and accurate understanding.632

To develop fair and broadly applicable LALMs,633

future evaluations should carefully consider linguis-634

tic, cultural, and communicative diversity.635

7.3 Safety Evaluation Unique to Auditory636

Modalities637

Current LALM safety evaluations (§6.2) mainly638

target harmful content in model outputs, often over-639

looking risks inherent to auditory modalities. Audi-640

tory cues such as tone, emotion, and voice quality641

can also influence user experience and raise con-642

cerns if uncontrolled. For instance, even harmless643

content can discomfort users if spoken harshly or644

sarcastically, and the presence of annoying noises645

can also cause irritation. Thus, safety should cover646

auditory comfort, not just content harmlessness.647

Most benchmarks focus on content toxicity but648

seldom assess auditory-specific safety. Addressing649

these issues is vital for applications like voice as-650

sistants (Pias et al., 2024; Mari et al., 2024), where651

vocal manner greatly affects user trust and comfort.652

Future work should jointly consider vocal tone,653

noise, and other paralinguistic factors to ensure654

safe, user-friendly interactions.655

7.4 Unified Evaluation of Harmlessness and656

Helpfulness657

Harmlessness and helpfulness in LALMs refer to658

safety and fairness, and the ability to assist users,659

respectively. Ideally, these two properties should660

be enhanced together; however, in practice, they of- 661

ten conflict (Bai et al., 2022). For example, a model 662

that always refuses to answer is safe but unhelpful, 663

as it fails to assist users. A recent study (Lin et al., 664

2025b) shows that post-training aimed at enhanc- 665

ing harmlessness can reduce helpfulness, causing 666

models to reject queries even when no safety or pri- 667

vacy issues exist. This tension highlights the need 668

for a unified evaluation framework that considers 669

both aspects simultaneously. 670

Existing harmlessness benchmarks (§6) rarely 671

include helpfulness, limiting understanding of their 672

trade-offs and offering limited guidance for bal- 673

ancing them effectively. Thus, developing a joint 674

evaluation framework is a key future direction. 675

7.5 Personalization Evaluation 676

Personalization enables models to adapt to individ- 677

ual users by incorporating private information like 678

users’ voices and preferences, supporting applica- 679

tions such as personalized voice assistants. 680

While traditional speech technologies have ex- 681

plored personalization (Lee et al., 2024; Joseph 682

and Baby, 2024), it remains underdeveloped for 683

LALMs. Unlike recent progress in LLM personal- 684

ization (Tan et al., 2024, 2025; Zhang et al., 2024), 685

LALM personalization is more complex due to the 686

auditory dimension: LALMs must adapt to user- 687

specific knowledge, as text LLMs do, but also be- 688

come familiar with users’ voice characteristics and 689

speaking habits, and adjust their own speaking style 690

to match user preferences. Such complexity neces- 691

sitates the development of specialized evaluations 692

to fully assess LALM personalization, making it a 693

valuable area for future investigation. 694

8 Conclusion 695

Holistic evaluation of LALMs is as crucial as mod- 696

eling and training in advancing the field. This sur- 697

vey reviews existing evaluation frameworks and 698

proposes a taxonomy categorizing current progress 699

into four important research areas, reflecting the 700

diverse expectations of LALM capabilities. We 701

present a thorough overview of the literature, high- 702

lighting challenges and future directions, such as 703

data contamination, inclusivity, auditory-specific 704

safety, and personalization. We hope this survey 705

provides clear guidelines for researchers and stim- 706

ulates further advancements in LALM evaluation. 707
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Limitations708

We acknowledge a few limitations in this paper.709

First, the scope of our taxonomy is based on exist-710

ing evaluation frameworks and benchmarks, mean-711

ing it does not cover all possible real-world audi-712

tory tasks. The auditory modalities are inherently713

complex, with a wide range of tasks and appli-714

cations that cannot be exhaustively covered. As715

LALMs continue to evolve, new capabilities and716

applications will emerge, leading to growing ex-717

pectations for these models. Consequently, the718

evaluation landscape will likely expand and shift,719

requiring our taxonomy to be updated and adapted720

to include these new tasks and applications. We721

will continue to follow the advancements in this722

field and adjust our taxonomy accordingly to reflect723

these developments.724

Second, this survey primarily focuses on cur-725

rent benchmarks used to evaluate LALMs’ per-726

formance across various aspects. As a result, it727

does not put much emphasis on more basic or tra-728

ditional evaluation methods, such as subjective as-729

sessments of speech generation quality (e.g., Mean730

Opinion Score), which are commonly used to eval-731

uate model-generated audio. While these methods732

are valuable in certain applications, they fall out-733

side the scope of this paper, which aims to provide734

a comprehensive overview of more advanced and735

specialized benchmarks.736
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Figure 3: The complete categorization of the surveyed papers based on the proposed taxonomy.

for fundamental auditory processing tasks, such1709

as speech recognition and audio captioning, are1710

excluded from this categorization due to the ex-1711

tremely large number of such resources. Including1712

them would make the figure overly detailed and1713

cumbersome. For reference, we provide examples1714

of these fundamental tasks and their corresponding1715

resources in Appendix B.1716

From Figure 3, it is evident that the current fo-1717

cus of LALM evaluations predominantly centers1718

on auditory processing tasks (§3.2), underscoring1719

their importance to the research community. While1720

these tasks are undeniably valuable, they should not1721

be seen as the sole consideration when evaluating1722

models for real-world applications. A more diverse1723

and comprehensive evaluation scope is crucial to1724

ensure a fuller understanding of their potential and1725

shortcomings. 1726

B Examples of General Auditory 1727

Processing Tasks 1728

Table 1 lists representative auditory processing 1729

tasks and their associated resources. As founda- 1730

tional components of auditory processing, these 1731

tasks are well-suited for adaptation in LALM eval- 1732

uation, as discussed in (§3.2). 1733

C Dynamics in Full-Duplex Dialogues 1734

In this section, we briefly introduce the dynamics 1735

discussed in (§5.1.2). Turn-taking (Sacks et al., 1736

1974) is a fundamental aspect of conversational or- 1737

ganization, where speakers alternate turns to speak, 1738

ensuring only one person talks at a time. This pro- 1739

cess is complex, involving various behaviors that 1740
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Auditory Tasks Common Datasets

Audio Tasks

Audio Captioning AudioCaps (Kim et al., 2019)
Clotho (Drossos et al., 2020)

Audio Classification ESC-50 (Piczak, 2015b)
AudioSet (Gemmeke et al., 2017)

Vocal Sound Classification VocalSound (Gong et al., 2022)

Speech Tasks

Automatic Speech Recognition
LibriSpeech (Panayotov et al., 2015b)

AISHELL-1 (Bu et al., 2017)
Common Voice (Ardila et al., 2020)

Speaker Identification VoxCeleb2 (Chung et al., 2018)
CN-Celeb (Fan et al., 2020)

Text-to-Speech
LJSpeech (Ito and Johnson, 2017)

VCTK (Veaux et al., 2017)
LibriTTS (Zen et al., 2019)

Speech Emotion Recognition IEMOCAP (Busso et al., 2008)
CREMA-D (Cao et al., 2014)

Language Identification VoxLingua107 (Valk and Alumäe, 2021)
FLEURS (Conneau et al., 2023)

Speech Translation CoVoST 2 (Wang et al., 2021)
MuST-C (Di Gangi et al., 2019)

Speech Diarization LibriMix (Cosentino et al., 2020)

Keyword Spotting Speech Command (Warden, 2018)

Music Tasks

Music Captioning
Text-to-Music

MusicCaps (Agostinelli et al., 2023)
Song Describer Dataset (Manco et al., 2023)

MidiCaps (Melechovsky et al., 2024)

Music Transcription MAESTRO (Hawthorne et al., 2019)

Instrument Classification NSynth (Engel et al., 2017)

Genre Classification FMA (Defferrard et al., 2017)
GTZAN (Tzanetakis and Cook, 2002)

Table 1: Commonly used datasets for various auditory
tasks. This overview covers key tasks in audio, speech,
and music processing and the datasets that are widely
adopted in academic and industrial research.

help facilitate smooth transitions between speakers.1741

For example, speakers often signal the end of their1742

turn through clear cues, allowing the listener to1743

recognize when they are yielding the floor (Dun-1744

can, 1972; Duncan and Fiske, 2015). Furthermore,1745

turn-taking conventions may be shaped by cultural1746

factors (Sidnell, 2007), which influence how and1747

when speakers take their turns due to linguistic and1748

social differences. Understanding and modeling1749

these behaviors are essential steps toward achiev-1750

ing natural and effective communication in both1751

human-human and human-AI interactions.1752

Backchanneling involves the listener’s use of1753

phatic expressions that signal active listening and1754

attentiveness to the speaker (Fujie et al., 2005).1755

These brief verbal cues, such as “yeah,” “I see,”1756

or “uh-huh,” along with non-verbal cues like nod-1757

ding, serve as feedback, demonstrating sympathy,1758

agreement, or understanding. By offering such1759

responses, listeners help maintain the flow of con-1760

versation without interrupting the speaker. This1761

behavior not only fosters a sense of connection but 1762

also enhances the speaker’s feeling of being heard 1763

and understood, contributing to a more interactive 1764

and supportive dialogue. As such, backchannel- 1765

ing plays a crucial role in sustaining conversation 1766

dynamics and promoting positive communicative 1767

exchanges. 1768

Speaker overlap refers to the simultaneous 1769

speech of multiple speakers, while speaker inter- 1770

ruption occurs when one speaker interjects dur- 1771

ing another’s turn, which breaks the turn-taking 1772

principles (Gravano and Hirschberg, 2012). These 1773

phenomena are complex: they can be competitive, 1774

reflecting hostility or dominance (West, 1979; Or- 1775

cutt and Harvey, 1985), or they can be neutral or 1776

supportive, helping to maintain and coordinate the 1777

flow of dialogue (Goldberg, 1990; Jefferson, 1986; 1778

Gervits and Scheutz, 2018). Despite their varying 1779

forms, both overlap and interruption are natural 1780

components of human conversation. 1781

D Input/Output Modalities of the 1782

Surveyed Works 1783

Our proposed taxonomy (§2) is organized by the 1784

evaluation objectives of the surveyed works rather 1785

than by the modalities they cover. Nevertheless, 1786

modality information is essential for researchers 1787

seeking benchmarks suited to models specialized 1788

in particular modalities. Thus, we provide the 1789

input/output modality details in Tables 2, 3, 4, 1790

and 5, corresponding to the categories of General 1791

Auditory Awareness and Processing (§3), Knowl- 1792

edge and Reasoning (§4), Dialogue-oriented Abil- 1793

ity (§5), and Fairness, Safety, and Trustworthi- 1794

ness (§6), respectively. These tables are compiled 1795

based on the original papers of the surveyed bench- 1796

marks. 1797

Please note that due to unique evaluation designs, 1798

some benchmarks do not produce explicit “outputs” 1799

but instead rely on input likelihood comparisons or 1800

similarity measures with specific instances. This 1801

absence of outputs is clearly indicated in the tables. 1802

E Information of AI Assistance in 1803

Revision 1804

We acknowledge the assistance of GPT-4.1-mini in 1805

refining the paper and improving its clarity. 1806
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General Auditory Awareness and Processing

Benchmark Input Modalities Output Modalities
Text Audio Speech Music Text Audio Speech Music

SALMon (Maimon et al., 2025) ✓ ✓ Likelihood-based evaluation.
No output modality.

Wu et al. (2024b) ✓ ✓ ✓

ADU-Bench (Gao et al., 2024) ✓ ✓ ✓

EmphAssess (Seyssel et al., 2024) ✓ ✓

Deshmukh et al. (2025b) ✓ ✓ ✓ ✓

Dynamic-SUPERB (Huang et al., 2024a) ✓ ✓ ✓ ✓ ✓

Dynamic-SUPERB Phase-2 (Huang et al., 2025a) ✓ ✓ ✓ ✓ ✓

AIR-Bench (Yang et al., 2024c) ✓ ✓ ✓ ✓ ✓

AudioBench (Wang et al., 2025a) ✓ ✓ ✓ ✓

MuChoMusic (Weck et al., 2024) ✓ ✓ ✓

FinAudio (Cao et al., 2025) ✓ ✓ ✓

SAGI (Bu et al., 2024) ✓ ✓ ✓ ✓ ✓

MAE (Chen et al., 2024b) ✓ ✓ ✓ ✓

RUListening (Zang et al., 2025) ✓ ✓ ✓

OpenMU-Bench (Zhao et al., 2024) ✓ ✓ ✓

Wang et al. (2025b) ✓ ✓ ✓

Gong et al. (2024a) ✓ ✓ ✓ ✓ ✓

Audio-FLAN (Xue et al., 2025) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

QualiSpeech (Wang et al., 2025c) ✓ ✓ ✓

EvalSIFT (Pandey et al., 2025) ✓ ✓ ✓ ✓

OpenAQA (Gong et al., 2024b) ✓ ✓ ✓

Clotho-AQA (Lipping et al., 2022) ✓ ✓ ✓

SpeechCaps (Huang et al., 2025b) ✓ ✓ ✓

ASR-EC (Wei et al., 2024) ✓ ✓ ✓

SLU-GLUE (Li et al., 2024) ✓ ✓ ✓

BEANS-Zero (Robinson et al., 2025) ✓ ✓ ✓

Table 2: Input and output modalities of benchmarks in the General Auditory Awareness and Processing category
shown in Figure 3.
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Knowledge and Reasoning
Benchmark Input Modalities Output Modalities

Text Audio Speech Music Text Audio Speech Music

ZeroSpeech 2021 (Nguyen et al., 2020) ✓ Likelihood-based evaluation.
No output modality.

CSZS (Huang et al., 2024b) ✓ Likelihood-based evaluation.
No output modality.

sStoryCloze (Hassid et al., 2023) ✓ Likelihood-based evaluation.
No output modality.

tStoryCloze (Hassid et al., 2023) ✓ Likelihood-based evaluation.
No output modality.

BabySLM (Lavechin et al., 2023) ✓ ✓ Likelihood-based evaluation.
No output modality.

CompA (Ghosh et al., 2024b) ✓ ✓ Similarity-based evaluation on
text and audio inputs.

MMAU (Sakshi et al., 2025) ✓ ✓ ✓ ✓ ✓

Audiopedia (Penamakuri et al., 2025) ✓ ✓ ✓

VoiceBench (Chen et al., 2024c) ✓ ✓ ✓

VoxEval (Cui et al., 2025) ✓ ✓

SAKURA (Yang et al., 2025a) ✓ ✓ ✓ ✓

URO-Bench (Yan et al., 2025) ✓ ✓ ✓ ✓

Audio Entailment (Deshmukh et al., 2025a) ✓ ✓ ✓

ADU-Bench (Gao et al., 2024) ✓ ✓ ✓

SAGI (Bu et al., 2024) ✓ ✓ ✓ ✓ ✓

MuChoMusic (Weck et al., 2024) ✓ ✓ ✓

RUListening (Zang et al., 2025) ✓ ✓ ✓

OpenMU-Bench (Zhao et al., 2024) ✓ ✓ ✓

Gong et al. (2024a) ✓ ✓ ✓ ✓ ✓

CompA-R (Ghosh et al., 2024a) ✓ ✓ ✓

OpenAQA (Gong et al., 2024b) ✓ ✓ ✓

Clotho-AQA (Lipping et al., 2022) ✓ ✓ ✓

SLU-GLUE (Li et al., 2024) ✓ ✓ ✓

SpeechCaps (Huang et al., 2025b) ✓ ✓ ✓

Wang et al. (2025d) ✓ ✓ ✓ ✓

Deshmukh et al. (2025b) ✓ ✓ ✓ ✓

Table 3: Input and output modalities of benchmarks in the Knowledge and Reasoning category shown in Figure 3.
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Dialogue-oriented Ability
Benchmark Input Modalities Output Modalities

Text Audio Speech Music Text Audio Speech Music

StyleTalk (Lin et al., 2024a) ✓ ✓ ✓

SD-Eval (Ao et al., 2024) ✓ ✓ ✓ ✓

VoxDialogue (Cheng et al., 2025) ✓ ✓ ✓ ✓

Talking Turns (Arora et al., 2025b) ✓ ✓

Full-Duplex-Bench (Lin et al., 2025a) ✓ ✓

Li et al. (2025) ✓ ✓

ContextDialog (Kim et al., 2025) ✓ ✓ ✓

ADU-Bench (Gao et al., 2024) ✓ ✓ ✓

VoiceBench (Chen et al., 2024c) ✓ ✓ ✓

URO-Bench (Yan et al., 2025) ✓ ✓ ✓ ✓

Speech-IFeval (Lu et al., 2025) ✓ ✓ ✓

S2S-Arena (Jiang et al., 2025) ✓ ✓

EvalSIFT (Pandey et al., 2025) ✓ ✓ ✓ ✓

Table 4: Input and output modalities of benchmarks in the Dialogue-oriented Ability category shown in Figure 3.

Fairness, Safety, and Trustworthiness
Benchmark Input Modalities Output Modalities

Text Audio Speech Music Text Audio Speech Music

Lin et al. (2024c) ✓ ✓ ✓

Spoken Stereoset (Lin et al., 2024b) ✓ ✓ ✓

VoiceBench (Chen et al., 2024c) ✓ ✓ ✓

Yang et al. (2025b) ✓ ✓ ✓ ✓

Roh et al. (2025) ✓ ✓ ✓

AdvBench-Audio (Kang et al., 2025) ✓ ✓ ✓

Xiao et al. (2025) ✓ ✓ ✓

Gupta et al. (2025) ✓ ✓ ✓

Hughes et al. (2024) ✓ ✓ ✓

URO-Bench (Yan et al., 2025) ✓ ✓ ✓ ✓

Kuan et al. (2024a) ✓ ✓ ✓ ✓

CMM (Leng et al., 2024) ✓ ✓ ✓

Kuan and Lee (2025) ✓ ✓ ✓

Table 5: Input and output modalities of benchmarks in the Fairness, Safety, and Trustworthiness category shown
in Figure 3.
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