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ABSTRACT

Supervised learning models are challenged by the intrinsic complexities of train-
ing data such as outliers and minority subpopulations and intentional attacks at
inference time with adversarial samples. While traditional robust learning methods
and the recent adversarial training approaches are designed to handle each of the
two challenges, to date, no work has been done to develop models that are robust
with regard to the low-quality training data and the potential adversarial attack
at inference time simultaneously. It is for this reason that we introduce Outlier
Robust Adversarial Training (ORAT) in this work. ORAT is based on a bi-level
optimization formulation of adversarial training with a robust rank-based loss
function. Theoretically, we show that the learning objective of ORAT satisfies the
H-consistency (Awasthi et al., 2021) in binary classification, which establishes it as
a proper surrogate to adversarial 0/1 loss. Furthermore, we analyze its generaliza-
tion ability and provide uniform convergence rates in high probability. ORAT can be
optimized with a simple algorithm. Experimental evaluations on three benchmark
datasets demonstrate the effectiveness and robustness of ORAT in handling outliers
and adversarial attacks.

1 INTRODUCTION

In supervised learning, we obtain a parametric model fθ(x) to predict the label (discrete or continuous)
y from an input x. The optimal value of the parameter θ is obtained with a set of labeled training data
{(xi, yi)}ni=1, by minimizing a loss function. However, supervised learning algorithms are challenged
by two types of data degradation. First, the quality of training data is affected by erroneous samples
due to mistakes in data collection or labeling (often known as the outliers) or isolated sub-populations
of actual samples (Sukhbaatar et al., 2015). In addition, at inference time, an input data point x
could be intentionally modified to create an adversarial sample that misleads fθ(x) to make a wrong
prediction (Goodfellow et al., 2015).

To date, the resilience of supervised learning models with regard to unintentional non-ideal training
data or intentional adversarial attacks has been studied separately in machine learning. The former
is the topic of robust learning methods (Wang et al., 2018; Hu et al., 2020; Zhai et al., 2021), and
the latter is addressed with adversarial training (AT) (Madry et al., 2018; Wang et al., 2020; Zhang
et al., 2021). However, in practice, the two issues can occur in tandem. This has been noticed in
Sanyal et al. (2021) and Zhu et al. (2021). They have demonstrated that the outlier problem (i.e.,
label noise) exists in AT and found the model performance degrades with the increase in noise level
because outliers hurt the quality of training data. Only Zhu et al. (2021) provide a heuristic algorithm
based on a label correction strategy to correct the noise label. However, their approach may introduce
more extra noisy labels due to the imperfect classifier and cannot handle outliers with true labels that
do not belong to the existing label list.

To reduce the influence of the outliers in AT, one may think of adapting the self-learning (Han et al.,
2019) approach (i.e., a robust learning algorithm) to remove examples that are most likely outliers
(e.g., examples with larger loss) from data before training and then conducting AT on the cleaner
set. However, there are two drawbacks to this simple scheme. First, it is not an end-to-end approach,
which will increase the training cost. Second, it is hard to remove outliers precisely, and an imperfect
strategy may drop examples of clean data points. This may hurt the final model performance in the
AT phase. An alternative solution is that combine robust learning and AT by using robust losses
(e.g., Huber loss (Hastie et al., 2009), symmetric cross entropy loss (Wang et al., 2019), etc.) in
AT. However, most existing robust losses cannot eliminate the influence of outliers. In addition,
constructing the theoretical guarantee is a challenge for using a robust loss in AT, especially for
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Figure 1: Illustrative examples of standard training (ST), adversarial training (AT), and ORAT for binary
classification on a balanced but multi-modal synthetic dataset (left panel) with two outliers and an imbalanced
synthetic dataset (right panel) with one outlier. outliers in the blue and red classes are shown in × and ◦,
respectively. The yellow squares around data samples represent the samples are perturbed within a l∞ ball. The
dash lines are the decision boundaries. Note that there are no decision boundaries in the right figures when
using ST and AT because these two training strategies cannot obtain a classifier that can separate two classes.

H-calibration and H-consistency properties (Awasthi et al., 2021; Steinwart, 2007) of the designed
adversarial loss with respect to the adversarial 0/1 loss in classification.

In this work, we introduce Outlier Robust Adversarial Training (ORAT) to combine robust learning
and adversarial training. Specifically, we develop an effective adversarial training algorithm for a
rank-based learning objective that can exclude the influence of outliers from the training procedure.
Figure 1 shows several illustrative examples. The learning objective in ORAT lends itself to an
efficient numerical algorithm based on gradient descent methods after reformulation that removes the
explicit ranking operation. To verify whether the optimal minimizers of the ORAT loss are close to
or exactly the optimal minimizers of the adversarial 0/1 loss, we show that the ORAT loss satisfies
the H-calibration and consistency properties for classification under some moderate conditions,
which establishes it as a proper surrogate to adversarial 0/1 loss. The notion of consistency has
been studied in Awasthi et al. (2021). However, the ORAT loss is the first adversarial surrogate loss
proven to satisfy H-consistency and evaluated on real-world datasets. It encourages the applicability
of the H-consistent adversarial surrogate loss in real tasks. We further provide a quantitative error
bound of the generalization gap between the training and testing performance of ORAT. Experimental
evaluations on three benchmark datasets demonstrate the effectiveness and robustness of ORAT in
handling outliers and adversarial attacks. Our contributions can be summarized as follows:

• We present outlier robust adversarial training (ORAT), which can handle outliers in adversarial
training jointly.
• We show ORAT loss satisfies H-calibration and H-consistency. To the best of our knowledge, the
ORAT loss is the first H-consistent adversarial surrogate loss that is evaluated on real-world datasets.
• We provide a detailed theoretical analysis on the generalization error of training with ORAT loss.

2 BACKGROUND

Robust Learning. Training accurate machine learning models in the presence of outliers is of
great practical importance. To combat outliers, the traditional methods are designed based on label
correction (Wang et al., 2018), loss correction (Han et al., 2020), and refined training strategies (Yu
et al., 2019). However, they require an extra clean dataset or potentially expensive detection process
to estimate the outliers. A recent work (Hu et al., 2020) proposed the average of ranked range (AoRR)
loss, which can eliminate the influence of the outliers if their proportion in training data is known. Let
X denote the input feature space, x ∈ X is a training sample, y ∈ Y = {1, · · · , C} is its associated
label, and C ≥ 2. fθ(·) : X → RC is the logits output of the predictor, and ℓ : RC × Y → R is a
loss function. ℓ[i](fθ(xj), yj)

n
j=1 represents the i-th largest loss among the training sample set. For

two integers k and m, 0 ≤ m < k ≤ n, the AoRR loss is defined as follows,

min
θ

1

k −m

k∑
i=m+1

ℓ[i](fθ(xj), yj)
n
j=1. (1)

The AoRR loss excludes training samples with the top m-largest loss value, as well as samples with
small losses. This is to reduce the influence of the outliers (larger losses) and to enhance the effect of
the minority subgroup of the data because the samples with small loss values are most likely from the
majority subgroup in the training set.

Adversarial Training. Recent studies have shown some surprising vulnerabilities of advanced
supervised learning models, especially those based on deep neural networks, to specially designed
adversarial samples (Goodfellow et al., 2015; Carlini & Wagner, 2017). To mitigate this issue,
adversarial training (AT) (Madry et al., 2018) is proposed as a training approach against adversarial
attacks. Let Bϵ(x) = {x′ ∈ X |∥x − x′∥p ≤ ϵ} be the closed ball of radius ϵ > 0 centered at x,
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where p is usually chosen as 1, 2, or ∞. Given a training dataset S = {(xi, yi)}ni=1 independently
drawn from a distribution D, where xi ∈ X and yi ∈ Y . The objective function of AT is then

min
θ

1

n

n∑
i=1

[
max

x̃i∈Bϵ(x)
ℓ(fθ(x̃i), yi)

]
, (2)

where x̃ is the most extreme adversarial sample within the ϵ-ball centered at x. To generate adversarial
data, The original AT applies projected gradient descent (PGD) using a fixed number of iterations P
as a stopping criterion, namely the PGDP algorithm, to approximately solve the inner maximization
problem of the Eq.(2). Other methods can also generate adversarial data, e.g., the fast gradient signed
method (FGSM) (Goodfellow et al., 2015) and the CW attack (Carlini & Wagner, 2017).

Robust Learning under Adversarial Attacks. Currently, several works have realized the impact of
label noise on adversarial training. For example, in Sanyal et al. (2021), the authors identified label
noise as one of the causes for adversarial vulnerability but no defense methods are proposed to solve
this problem. The work Zhu et al. (2021) empirically studies the efficacy of AT for mitigating the
effect of label noise in training data. However, their proposed annotator algorithm (RAA) is based on
the label correction strategy, which may introduce more extra noisy labels due to the bottleneck of
the selected classifier. Furthermore, both of these methods are only considered label noise problems
instead of outliers, especially the error that comes from the sample itself. Therefore, an outlier robust
adversarial training method is urgently needed to fill this gap. Several works (Augustin et al., 2020;
Bitterwolf et al., 2020) connect adversarial robustness to out-of-distribution (OOD) problems. Note
that the notion of outliers is different from OOD points. One assumption for the OOD problem is that
the training and test data distributions are mismatched. However, we do not have this assumption in
this work. More related works are discussed in Appendix A.

3 METHOD

In ORAT, we combine the rank-based AoRR loss (Eq.(1)) and adversarial training (Eq.(2)) into the
same framework. Let L

(
{(xj , yj)}nj=1

)
:= {ℓ(fθ(x1), y1), · · · , ℓ(fθ(xn), yn)} be the set of all

individual losses on the training samples. For notational brevity, we drop the explicit dependence
on the individual loss ℓ, the parametric model fθ, but it should be clear that the set changes with
the training dataset {(xj , yj)}nj=1. In addition, we denote ℓ[i]

(
{(xj , yj)}nj=1

)
as the i-th largest

individual loss after sorting the elements in set L
(
{(xj , yj)}nj=1

)
(ties can be broken in any consistent

way). With these definitions, we define the learning objective of ORAT as a bi-level optimization
problem (Gould et al., 2016) as

min
θ

1

k −m

k∑
i=m+1

ℓ(fθ(x̃[i]), y[i]), s.t. (x̃[i], y[i]) = argmaxx̃j∈Bϵ(xj)
ℓ[i]({x̃j , yj}nj=1), (3)

where k and m are two integers such that 0 ≤ m < k ≤ n. The notations here require some further
explanation. First, x̃j is the result of adversarial perturbation of an original data point xj with a
perturbation strength ϵ, and y[i] is the corresponding label of the original xj . So the maximization
sub-problem of Eq.(3) reads as follows. For each original training sample (xj , yj), we find the
extreme adversarial input x̃j within the ϵ-ball centered at xj . Then we calculate the individual loss
of the perturbed samples ℓ(fθ(x̃j), yj) and sort the losses to find the adversarial sample and label
(x̃[i], y[i]) corresponding to the top-i individual loss. The outer minimization problem of Eq.(3) is
the average of ranked range of (m, k] individual losses found with such a procedure. Note that
ORAT contains the original AT as a special case with k = n and m = 0.

The robustness to outliers and adversarial attacks of the ORAT (Eq.(3)) can be more clearly understood
as follows. The overall method can be viewed as a sample selection method and can filter incorrect
data samples according to the top-k and top-m individual losses. Specifically, the perturbed samples
with small losses are most likely come from the clean data. Therefore, it ignores m samples with a
large loss (i.e., top-1 to top-m losses) during the training. On the other hand, the perturbed samples
with an extremely low loss value are most likely very easy to be learned in the training procedure.
They usually come from the majority group in a dataset. On the contrary, the perturbed samples from
the minority subgroup can be also viewed as hard samples, which are very hard to be learned. In this
case, ignoring the bottom n− k would reduce the influence of the majority subgroup of data, which
further prevents the effect of the imbalance data and enhance the impact of the minority subgroup of
the data. Figure 1 also demonstrates this influence.
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Although ORAT is designed by combining AoRR and AT, this combination has not been explored in
the existing literature. More importantly, we will demonstrate and validate both theoretically (Section
4) and experimentally (Section 5) that this combination makes sense. To the best of our knowledge, no
robust losses are combined with AT that can handle both low-quality training data (with outliers) and
adversarial attacks in inference. In addition, the ρ-margin loss (Awasthi et al., 2021), a generalization
of the ramp loss, is proved to satisfy the calibration and consistency. Inspired by this loss, we naturally
thought that the truncated robust loss could be used to design a new adversarial surrogate loss that
satisfies H-calibration and consistency. Therefore, we choose AoRR loss to create ORAT because it
is a well-defined truncated loss. The ranking operation in ORAT is the main obstacle to using Eq.(3)
as a learning objective in an efficient way. However, we can substitute the ranking operation by
introducing two auxiliary variables λ and λ̂ and use the equivalent form of ORAT in the following
result.
Theorem 1. Denote [a]+ = max{0, a} as the hinge function. Eq.(3) is equivalent to

1

k −m
min
θ,λ

max
λ̂

n∑
i=1

L̂(fθ, λ, λ̂) :=
[k −m

n
λ+

n−m

n
λ̂− [λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+

]
,

s.t. x̃i = arg max
x̃∈Bϵ(xi)

ℓ(fθ(x̃), yi).

(4)

Furthermore, λ̂ > λ, when the optimal solution is achieved.

Algorithm 1: Outlier Robust Adversarial Training
Input: A training dataset S of size n
Output: A robust model with parameters θ∗

Initialization: θ(0), λ(0), λ̂(0), t=0, η, k, m, ϵ, α, and P
for e = 1 to num_epoch do

for b = 1 to num_batch do
Sample a mini-batch Sb = {(xi, yi)}|Sb|

i=1 from S
for i = 1 to batch_size do

x̃i ← xi

while P > 0 do
x̃i=ΠBϵ(xi)(x̃i+αsign(∇x̃iℓ(fθ(t)(x̃i), yi)))
P ← P − 1

end
end
θ(t+1)←θ(t)− η

|Sb|
∑

i∈Sb
∂θL̂(fθ(t) , λ

(t), λ̂(t))

λ(t+1)←λ(t)− η
|Sb|

∑
i∈Sb

∂λL̂(fθ(t) , λ
(t), λ̂(t))

λ̂(t+1)← λ̂(t)+ η
|Sb|

∑
i∈Sb

∂λ̂L̂(fθ(t) , λ
(t), λ̂(t))

t← t+ 1
end

end

The proof of Theorem 1 can be found
in Appendix C.1. Using Theorem 1, we
can develop a learning algorithm based on
stochastic (mini-batch) gradient descent
to optimize Eq.(3). Specifically, with ini-
tial choice for the values of θ(0), λ(0), and
λ̂(0), at the t-th iteration, a mini-batch set
Sb of training samples is chosen uniformly
at random from the training set and used to
estimate the (sub)gradient of the objective.
Since the optimal solution of parameters
of θ, λ, and λ̂ do not depend on the factor
of 1

k−m , we can replace it to 1
|Sb| for mini-

batch optimization, where |Sb| is the size
of Sb. Following the original AT (Madry
et al., 2018), we use the projected gradient
descent approach to approximately solve
the constraint. ΠBϵ(xi)(·) is the projection
function that projects the adversarial data
back into the ϵ-ball centered at xi if nec-
essary. ∂θL̂, ∂λL̂, and ∂λ̂L̂ are the (sub)gradients of L̂ with respect to θ, λ, and λ̂, respectively. Their
explicit forms can be found in Appendix B. The pseudo-code of optimizing ORAT is described in
Algorithm 1. Note that our optimization process is similar to the traditional adversarial training
algorithms (Madry et al., 2018; Zhang et al., 2021; Liu et al., 2021) with one additional minimization
with respect to λ and one additional maximization for λ̂. Therefore, our algorithm has the same time
complexity to original AT. We will show that our algorithm can converge in experiments.

4 ANALYSIS

In this section, we prove that ORAT is a H-consistent adversarial surrogate loss and study its
generalization property. Subsequently, we focus on the case of binary classification (Y={±1}) with
margin-based loss function, i.e., ℓ(yf(x))=ℓ(f(x), y)=ℓ(f,x, y), where we omit model parameter
θ for simplicity. We first introduce several notations. Let H be a Hypothesis function set from
Rd to R. We say H is symmetric, if for any f ∈ H, −f is also in H. The 0/1 risk of a classifier
f ∈ H is Rℓ0=E(x,y)∼D[ℓ0(f(x), y)], where ℓ0(f(x), y)=1yf(x)≤0 is the 0/1 loss. Denote the
adversarial 0/1 risk as Rℓ̃0

(f)=E(x,y)∼D[ℓ̃0(f(x), y)], where ℓ̃0(f(x), y)=supx̃∈Bϵ(x) 1yf(x̃)≤0 is
the adversarial 0/1 loss. We also define the ℓs-risk of f for a surrogate loss ℓs(f(x), y) as Rℓs(f)=
E(x,y)∼D[ℓs(f(x), y)] and the minimal (ℓs, H)-risk, which is defined by R∗

ℓs,H=inff∈H Rℓs(f).
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4.1 CLASSIFICATION CALIBRATION AND CONSISTENCY

Designing a robust algorithm entails using an appropriate surrogate loss to the standard 0/1 loss since
0/1 loss is very hard to optimize for most hypothesis sets (Awasthi et al., 2021; Bao et al., 2020). We
first provide a definition of H-consistency.
Definition 1. (H-Consistency). (Awasthi et al., 2021) Given a hypothesis set H, we say that a loss
function ℓ1 is H-consistent w.r.t. a loss function ℓ2, if, for all probability distributions and sequences
of {fn}n∈N ⊂ H, there holds Rℓ1(fn)−R∗

ℓ1,H
n→+∞−−−−−→ 0⇒Rℓ2(fn)−R∗

ℓ2,H
n→+∞−−−−−→ 0.

H-consistency guarantees that the optimal minimizers of the surrogate adversarial loss are equal to or
near the optimal minimizers of the 0/1 adversarial loss on a restricted hypothesis set H.

For a distribution D over X × Y with random variables X and Y . Let η := Pr(Y = 1|X =
x) ∈ [0, 1], for any x ∈ X . Using conditional expectation, we can rewrite Rℓs(f) as Rℓs(f) =
EX [Cℓs(f,x, η)], where Cℓs(f,x, η) := ηℓs(f,x, 1) + (1 − η)ℓs(f,x,−1),∀x ∈ X . Furthermore,
the minimal inner ℓs-risk on H is denoted by C∗

ℓs,H(x, η) := inff∈H Cℓs(f,x, η). We now define
H-calibration.
Definition 2. (H-Calibration). (Awasthi et al., 2021) Given a hypothesis set H, we say that a loss
function ℓ1 is H-calibrated with respect to a loss function ℓ2 if, for any τ > 0, η ∈ [0, 1], and
x ∈ X , there exists δ > 0 such that, for all f ∈ H, Cℓ1(f,x, η)< C∗ℓ1,H(x, η) + δ ⇒ Cℓ2(f,x, η)<
C∗ℓ2,H(x, η) + τ .

As shown in Steinwart (2007), if ℓ1 is H-calibrated with respect to ℓ2, then H-consistency holds for
any probability distribution verifying the additional condition of minimizability.

Without considering the adversarial perturbations and omitting the parameter θ, the population version
of the objective function of Eq.(4) can be formulated as follows:

min
λ

max
λ̂

1

k −m

n∑
i=1

L̂(f, λ, λ̂)
k−m

n
→ν,m

n
→µ

−−−−−−−−−−→
n→∞

1

ν
min
λ

max
λ̂

E
[
λ̂−[λ̂−[ℓ(Y f(X))−λ]+]+

]
+νλ−µλ̂.

Throughout the paper, we assume that µ > 0 since if µ = 0 then it will lead to λ̂ = ∞. As
such, the population version of our ORAT loss is given by (f∗

0 , λ
∗, λ̂∗) = arg inff,λ supλ̂

{
E
[
λ̂ −

[λ̂ − [ℓ(Y f(X)) − λ]+]+

]
+ νλ − µλ̂

}
. It is difficult to directly work with the optima f∗

0 since
the above problem is a non-convex minmax problem and the standard minmax theorem does not
apply here. Instead, we assume the existence of λ∗ and λ̂∗ and work with the minimizer f∗ =

arg inff L(f, λ∗, λ̂∗) where L(f, λ∗, λ̂∗) := E
[
λ̂∗−[λ̂∗−[ℓ(Y f(X))−λ∗]+]+

]
+νλ∗−µλ̂∗. Since

the term νλ∗−µλ̂∗ does not depend on f , we have f∗ = arg inff E
[
λ̂∗−[λ̂∗−[ℓ(Y f(X))−λ∗]+]+

]
.

From the above observations, we denote by ϕORAT and ϕ̃ORAT for ORAT loss without and with the
adversarial perturbation, respectively, as follows:

ϕORAT(t) = λ̂∗ − [λ̂∗ − [ℓ(t)− λ∗]+]+, ϕ̃ORAT(f,x, y) = sup
x̃∈Bϵ(x)

ϕORAT(yf(x̃)). (5)

We can then obtain the following theorem. Its proof can be found in Appendix C.2.
Theorem 2. Let H be a symmetric hypothesis set consisting of the family of all measurable functions
Hall, suppose ν > min{λ̂∗,R∗

ℓ,H}, 0 ≤ λ∗ < λ̂∗, λ∗ and λ̂∗ are bounded, and ℓ is a non-negative,
continuous, and non-increasing margin-based loss.

(i) Then ϕ̃ORAT is H-calibrated with respect to ℓ̃0.

(ii) Furthermore, ϕ̃ORAT is H-consistent with respect to ℓ̃0 for all distributions D over X × Y that
satisfy: R∗

ℓ̃0,H
= 0 and there exists f∗ ∈ H such that RϕORAT(f

∗) = R∗
ϕORAT,Hall

< +∞.

H can be linear models or deep neural networks. The commonly used hinge loss, logistic loss,
and cross-entropy loss all satisfy the conditions of ℓ (See Appendix C.3 for details). Furthermore,
according to Theorem 1 and assuming ℓ ≥ 0, we have 0 ≤ λ∗ < λ̂∗. For ν, it should be larger
than the smaller value among λ̂∗ and minimal (ℓ, H)-risk, which means k and m should be as far
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away from each other as possible. We call R∗
ℓ̃0,H

= 0 as the realizability condition. Therefore, we
can conclude that ORAT loss satisfies H-consistency. Our proof is mainly inspired by Awasthi et al.
(2021). However, our analysis for the ϕ̃ORAT adversarial surrogate loss is more involved since it is a
composition function based on ℓ for which we need to consider the different conditions of λ∗ and λ̂∗.

4.2 GENERALIZATION ERROR

In this subsection, we present the generalization error bound for the proposed ORAT loss. Define
the adversarial surrogate loss ℓ̃(yf(x)) = maxx̃∈Bϵ(x) ℓ(yf(x̃)) and the composite function class
ℓ̃H := {ℓ̃(yf(x)) : f ∈ H}. The generalization error studies the discrepancy between the empirical
adversarial risk Rℓ̃(f ;S) defined on the training data and its population risk Rℓ̃(f) measuring the
performance on the test data, where Rℓ̃(f ;S) = infλ supλ̂

1
k−m

∑n
i=1 L̂(f, λ, λ̂). First, we need the

Rademacher complexity (Bartlett & Mendelson, 2002) which is defined as follows.
Definition 3 (Rademacher complexity). For any function class H, given a dataset {xi}ni=1, the

empirical Rademacher complexity is defined as Rn(H) = 1
nEσ

[
supf∈H

∑n
i=1 σif(xi)

]
, where

σ1, · · · , σn are i.i.d. Rademacher random variables with P[σi = 1] = P[σi = −1] = 1/2.
With these preparations, we can get the following theorem.
Theorem 3. Suppose that the range of ℓ(f(x), y) is [0,M ] . Then, for any δ ∈ (0, 1), with probability
at least 1− δ over the draw of an i.i.d. training dataset of size n, the following holds for all f ∈ H,

Rℓ̃(f)−Rℓ̃(f ;S) ≤
2

ν

(
2Rn(ℓ̃H) +

M(2
√
2 + 3

√
log(2/δ))√

2n

)
.

The proof of Theorem 3 is by rewriting the empirical risk and population risk with optimal λ∗ and
λ̂∗, and then analytically bound the Rademacher complexity of λ∗ and λ̂∗ by utilizing the boundness
condition. See Appendix C.4 for details. Theorem 3 characterizes uniform convergence between the
training and testing on ORAT given hypothesis set H. The generalization error depends on the limit
of ranked range k−m

n → ν as well as the Rademacher complexity of the adversarial loss function
class. It is worth noting the i.i.d. assumption over the sample is restrictive but required for applying
the symmetrization trick in the proof, and how to relax this assumption to a more realistic assumption,
for example, n − m i.i.d. inliers with m outliers (Laforgue et al., 2021), is future work for us.
Nevertheless, Theorem 3 still highlights the generalization ability of our ORAT objective with respect
to the ranked range and adversarial loss in this ideal setting. We provide hypothesis set examples
of linear classifiers and neural networks in Appendix C.5 for further characterizing the Rademacher
complexity Rn(ℓ̃H).
Remark 1. Theorem 3 together with Theorem 2 indicates that learning with ORAT asymptoti-
cally converges to zero on the adversarial 0/1 risk. Let f∗∗ = arg inff∈H Rℓ̃(f) and f∗∗

S =

arg inff∈H Rℓ̃(f ;S). By standard error decomposition, Rℓ̃(f
∗∗
S ) − Rℓ̃(f

∗∗) =
(
Rℓ̃(f

∗∗
S ) −

Rℓ̃(f
∗∗
S ;S)

)
+
(
Rℓ̃(f

∗∗
S ;S)−Rℓ̃(f

∗∗;S)
)
+
(
Rℓ̃(f

∗∗;S)−Rℓ̃(f
∗∗)
)
. The first term converges to

0 as n goes to ∞ and Rn(ℓ̃H) is bounded. The second term is always non-positive as f∗∗
S minimizes

Rℓ̃(f ;S). The last term is bounded by O(1/
√
n) with high probability by Hoeffding’s inequality

(Hoeffding, 1994). Therefore, Rℓ̃(f
∗∗
S )−Rℓ̃(f

∗∗) → 0 as n → ∞. Combined with Theorem 2 (ii)
and Definition 1, it shows that Rℓ̃0

(f∗∗
S )−Rℓ̃0

(f∗∗) → 0 as n → ∞.

5 EXPERIMENTS

We evaluate the performance of the proposed ORAT with numerical experiments. Due to the limit of
the space, we present the most significant information and results of our experiments. More detailed
information, additional results, and code are in Appendix D, E, and supplementary files, respectively.

5.1 EXPERIMENTAL SETTINGS

Datasets, Networks, and Baselines. Our experiments are based on three popular datasets, namely
MNIST (LeCun et al., 1998), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009). We follow
the same training/testing splitting from the original datasets. The pixel values of all images are
normalized into the range of [0,1]. We adopt LeNet (LeCun et al., 1998), Small-CNN (Wang et al.,
2020), and ResNet-18 (He et al., 2016) for MNIST, CIFAR-10, and CIFAR-100, respectively. Settings
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of networks are in Appendix D.2. We compare ORAT with standard training (ST), adversarial training
(AT). In addition, as there are no dedicated adversarial training methods for handling outliers, we
compare three instance-reweighted AT methods GAIRAT (Zhang et al., 2021), MAIL (Liu et al.,
2021), and WMMR (Zeng et al., 2021a), because they are the most recent works with the best
performance against adversarial attacks. We also compare RAA (Zhu et al., 2021) since it considers
label correction in training. To support our claims about the drawbacks of using a self-learning strategy
to remove outliers before adversarial training in Section 1, we use the AoRR approach to remove
examples with larger losses (potential outliers) from the original training set and obtain a cleaner set
for adversarial training. We call this baseline AT w/o and compare it with our method. Appendix E.5
shows more details of this baseline. All methods are designed based on the cross-entropy loss.

Defense Settings and Robustness Evaluation. In training, following Zeng et al. (2021a); Liu et al.
(2021), we consider robustness by setting p = ∞. For each dataset, we test two different perturbation
bounds ϵ, i.e., ϵ ∈ {0.1, 0.2} for MNIST and ϵ ∈ {2/255, 8/255} for CIFAR-10 and CIFAR-100.
The training attack is PGD10 with random start and step size ϵ/4. We evaluate the robustness of our
method and baselines using the standard accuracy on natural test data (Natural), FGSM, PGD20, and
the CW attack because they are frequently used in the literature of our compared methods. We also
evaluate all methods on a very strong attack, AutoAttack (AA) (Croce & Hein, 2020), under specific
settings. All of them are constrained by the same perturbation limit ϵ.

Hyperparameters (k and m) and Outliers Generation. Following Hu et al. (2020), we apply a grid
search to select the values of k and m. To simulate the outliers in the training dataset, as in the work
of Wang et al. (2019), we add the symmetric (uniform) and asymmetric (class-dependent) noises to
the labels of the training data. For symmetric noise creation, we randomly choose training samples
with a given probability γ and change each of their labels to another random label. For asymmetric
noise creation, given γ, flipping labels only within a specific set of classes. More details of the
simulation can be found in Appendix D.4. Note that we use 4 different γ ∈ {10%, 20%, 30%, 40%}.

5.2 RESULTS

Overall Performance. We report the overall results (accuracy on the testing sets) in Table 1. First,
when there is no noise in the datasets, ORAT outperforms the AT method in three different attack
settings on all datasets by a significant margin (0, 2.14%]. This is probably due to that the original
datasets may contain outliers, which has been verified in a recent work Sanyal et al. (2021).

Second, under the symmetric noise setting, ORAT outperforms all compared methods in all attack
scenarios in general. We observe the performance gap between noise and noise-free settings is small
on MNIST because it is a relatively smaller dataset and LeNet achieves almost perfect performance.
However, on a larger dataset such as CIFAR-10 and using a more complex neural network, the outliers
have a stronger impact. The instance-reweighted AT methods such as GAIRAT, MAIL, and MAIL are
inferior to AT and ORAT in 20%, 30%, 40% settings under ϵ = 2/255, because they allocate the loss
of the most outliers with higher weight during the training. For CIFAR-100, which is larger and more
challenging than CIFAR-10 and the training network ResNet is also larger than Small-CNN. In this
case, we find that outliers have a large influence on robust training. Compared to noise-free settings,
the performance of AT is reduced by half under the noise settings. However, ORAT still outperforms
all baselines in all settings. The performance gap between the baselines and ORAT is more than 2%
and even can be achieved near 10% (in 30% symmetric noise, MAIL, FGSM, and ϵ=2/255 settings).
Furthermore, we find RAA is more robust than other compared methods but vulnerable to adversarial
samples than ORAT. As we discussed before, their label correction approach may correct the wrong
labels but inevitably introduces more extra noisy labels during training.

Third, for asymmetric noise settings, we can get similar observations. Note that ORAT can even
outperform the baselines over 10% on the CIFAR-10 dataset. All adversarial methods outperform ST
in all attack settings since ST does not have a mechanism to handle adversarial samples. In general,
increasing the noise percentage, we can find there is a decreasing trend in the performance among all
methods. On the other hand, increasing the value of ϵ will also decrease all model performance. Even
a small amount of label noise causes classifiers to have significant adversarial errors.

We also report testing accuracy for AA on all datasets with 20% symmetric noise in Table 2. We
can find our method outperforms all compared methods even if using a strong attack strategy. In
addition, we compare AT w/o with our method and report performance in Table 3. Comparing Table
1 and Table 3 under the same setting, it is evident that simply removing outliers from training data
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Noise Defense
MNIST (LeNet) CIFAR-10 (Small-CNN) CIFAR-100 (ResNet-18)

ϵ=0.1 ϵ=0.2 ϵ=2/255 ϵ=8/255 ϵ=2/255 ϵ=8/255
Na FG PGD CW Na FG PGD CW Na FG PGD CW Na FG PGD CW Na FG PGD CW Na FG PGD CW

0
ST 99.51 92.43 85.68 86.05 99.41 50.19 16.76 18.65 92.48 44.27 24.87 25.06 92.63 15.03 6.82 7.15 73.67 19.64 10.66 11.13 73.86 3.58 1.61 1.66
AT 99.51 98.60 97.93 97.9499.16 97.33 95.14 95.1989.78 79.40 73.52 73.6485.52 54.61 33.34 34.2867.05 53.70 48.18 47.4655.13 33.66 25.46 23.28

Ours 99.53 98.70 98.03 98.04 99.30 97.79 96.43 96.38 89.54 79.53 73.96 73.86 85.91 54.85 33.46 34.56 68.00 55.60 50.06 49.50 57.82 35.51 27.22 25.26
Sy

m
m

et
ri

c
N

oi
se

10
%

ST 99.32 93.72 89.09 87.17 99.32 67.55 36.76 26.02 62.22 29.24 25.72 24.80 61.80 14.70 9.72 11.38 29.60 14.17 11.41 9.96 29.41 5.22 2.54 2.19
AT 99.12 97.98 97.36 97.2898.39 96.62 95.25 95.1163.03 51.36 46.02 44.9559.53 34.17 23.33 22.2831.02 22.04 20.25 18.9728.96 15.08 12.42 10.49

GAIRAT99.11 97.87 97.33 97.2098.35 96.57 95.22 95.0860.41 49.23 44.72 42.0257.12 35.48 24.22 21.5231.05 21.31 19.76 18.0827.73 15.13 12.28 10.26
MAIL 99.09 98.06 97.50 97.4098.48 96.69 95.47 95.2055.14 47.44 44.75 39.6453.54 33.61 26.18 20.2329.06 18.90 16.62 14.7927.65 13.21 10.03 7.26

WMMR 99.14 97.95 97.32 97.2398.36 96.58 95.25 95.1161.83 51.43 46.56 44.9757.97 34.74 25.15 21.9629.74 20.11 18.65 16.8629.23 14.78 11.84 9.96
RAA 99.22 98.01 97.37 97.3198.65 96.83 95.32 95.1462.94 51.32 46.55 45.3658.28 33.58 23.71 22.8930.72 21.95 20.34 18.8328.99 15.60 13.03 11.03
Ours 99.52 98.45 97.78 97.79 99.20 97.61 96.07 96.11 63.83 52.04 48.77 46.65 60.42 36.13 26.86 23.48 35.76 25.72 22.27 21.28 35.35 20.37 15.50 14.02

20
%

ST 99.12 93.35 89.05 86.87 99.14 70.18 41.67 29.30 58.89 31.23 25.97 24.13 57.28 15.88 12.8 13.26 26.16 14.74 11.98 10.29 26.22 5.09 2.45 1.92
AT 98.88 97.67 97.03 96.8997.97 95.98 94.67 94.5061.10 50.67 46.76 45.2856.96 34.55 25.54 24.3427.52 20.12 18.49 17.1526.77 14.39 11.87 9.96

GAIRAT98.82 97.59 96.96 96.7997.86 95.81 94.57 94.3058.58 49.26 45.44 40.6253.55 34.40 25.52 22.1526.77 19.93 18.30 16.7824.80 14.28 12.03 10.32
MAIL 98.81 97.82 97.29 97.1297.98 96.14 94.81 94.5854.04 47.05 44.78 41.0552.93 34.28 27.74 21.9025.13 17.01 16.06 14.3224.54 12.85 10.02 7.09

WMMR 98.88 97.59 97.00 96.8997.85 95.89 94.50 94.3659.01 49.64 45.96 43.7156.04 34.65 26.22 23.7026.72 19.43 18.04 16.5326.61 13.81 11.94 9.82
RAA 99.07 97.70 97.07 97.0598.25 96.28 94.41 94.2059.53 49.56 45.73 45.6056.71 33.24 24.51 24.1228.16 20.73 19.15 17.7425.34 14.79 12.46 10.25
Ours 99.56 98.37 97.65 97.64 99.06 97.33 95.71 95.68 61.03 51.85 48.48 46.16 54.37 35.71 27.76 24.70 34.45 25.07 22.21 20.92 32.83 19.45 15.49 13.34

30
%

ST 98.91 93.01 88.62 85.73 98.97 68.59 41.24 27.73 58.17 30.55 25.71 24.54 57.55 14.18 11.50 11.41 23.38 14.26 11.84 10.10 24.29 5.30 2.90 2.35
AT 98.58 97.21 96.67 96.5397.26 94.94 93.48 93.1757.78 49.56 46.22 44.8054.35 34.21 26.07 24.3323.79 18.96 17.49 16.2625.66 13.84 11.78 9.87

GAIRAT98.51 97.14 96.58 96.4797.15 94.70 93.28 92.8755.41 47.20 44.04 40.0949.48 33.44 26.26 21.7824.04 18.93 17.89 16.5024.41 14.11 11.84 9.73
MAIL 98.50 97.39 96.88 96.7197.31 95.35 94.11 93.6652.94 45.13 42.47 39.0147.31 32.18 25.78 21.9921.93 14.55 13.67 12.1422.61 12.47 9.62 7.09

WMMR 98.58 97.23 96.69 96.5997.23 95.10 93.59 93.3158.21 49.31 46.40 44.1753.99 34.16 26.83 23.7023.68 18.27 17.08 15.4625.45 13.60 11.46 9.32
RAA 98.84 97.35 96.63 96.5997.66 95.45 93.74 93.4058.72 48.78 45.20 44.8550.81 30.50 24.49 22.6024.53 20.06 18.54 17.0322.08 13.95 11.62 9.67
Ours 99.55 98.30 97.51 97.53 98.85 96.99 95.31 95.35 58.99 50.29 47.11 45.01 55.34 34.89 27.66 25.00 31.27 23.81 21.35 19.59 31.13 18.96 15.47 13.21

40
%

ST 98.87 92.37 88.36 84.85 98.91 68.43 41.60 29.62 57.60 21.03 19.46 18.03 56.67 15.22 12.02 11.53 21.25 13.95 12.15 10.21 21.55 6.03 3.77 2.96
AT 98.33 96.86 96.27 96.1196.56 94.37 92.55 92.1837.16 43.45 41.54 40.1340.65 31.59 26.74 24.9822.20 18.28 17.33 15.9223.41 13.75 11.25 9.29

GAIRAT98.10 96.70 96.15 95.8896.17 93.93 92.08 91.5937.24 40.24 38.08 36.5140.05 30.33 25.93 23.4521.87 18.06 17.17 15.6721.99 12.97 11.26 9.42
MAIL 98.33 97.06 96.44 96.2096.50 94.45 93.01 92.5433.63 39.43 37.97 35.6036.28 29.91 26.32 23.3118.83 14.22 13.49 12.0820.47 12.50 10.33 7.35

WMMR 98.15 96.79 96.10 95.9196.50 94.24 92.46 92.0435.99 41.95 39.64 37.8730.30 27.14 24.47 22.2721.04 17.33 16.22 14.7623.39 12.79 11.13 9.10
RAA 98.67 96.90 96.07 96.0097.05 94.47 92.37 92.2243.37 37.13 35.16 33.8240.01 28.94 25.16 23.7322.44 18.59 17.54 16.0120.74 13.30 11.56 9.56
Ours 99.36 98.00 97.22 97.20 98.63 96.49 94.48 94.5340.20 43.75 41.92 40.60 41.86 31.70 27.18 25.19 29.38 22.99 20.85 19.20 26.80 17.30 14.32 11.95

A
sy

m
m

et
ri

c
N

oi
se

10
%

ST 99.39 93.05 86.09 89.09 99.39 65.48 22.17 35.02 65.20 31.18 22.97 22.95 64.90 13.41 9.65 10.10 31.81 15.10 11.23 10.03 31.71 4.34 1.84 1.71
AT 99.46 98.14 97.36 97.6199.08 97.29 95.21 95.6464.71 51.75 45.88 45.7060.82 33.98 20.71 21.3033.21 22.38 20.53 19.0930.83 15.80 12.49 10.55

GAIRAT99.44 98.13 97.34 97.5099.03 97.20 95.14 95.4562.31 49.42 43.64 41.2858.32 35.07 23.65 21.9733.03 22.73 20.63 19.3829.88 15.58 12.49 10.57
MAIL 99.50 98.20 97.38 97.7399.08 97.52 95.79 96.3556.91 48.29 45.40 36.39 53.96 35.75 28.61 14.9431.45 21.36 17.92 16.4329.66 13.99 10.18 7.64

WMMR 99.45 98.11 97.38 97.5999.08 97.28 95.30 95.6763.93 51.58 46.73 43.9260.01 34.71 23.37 20.7032.52 22.08 19.63 17.8130.89 14.86 11.91 10.01
RAA 99.42 98.11 97.34 97.5199.08 97.24 95.17 95.4562.05 50.39 45.61 45.5258.56 32.75 22.70 22.1333.01 23.07 21.07 19.6930.35 16.09 12.79 10.70
Ours 99.50 98.58 97.81 98.04 99.18 97.68 96.11 96.36 65.41 52.76 47.75 46.21 61.28 36.54 28.88 23.52 37.09 27.07 23.65 22.59 35.72 20.51 15.46 13.83

20
%

ST 99.19 92.64 86.00 88.63 99.23 64.76 20.49 32.18 62.29 22.77 18.34 16.56 62.14 10.46 6.89 6.96 30.46 14.79 11.57 10.38 30.49 4.92 2.14 2.03
AT 99.44 98.12 97.29 97.5999.07 97.11 95.20 95.8437.29 46.54 42.36 41.6335.48 32.05 24.20 23.3331.67 21.15 19.44 18.1929.96 15.47 12.46 10.51

GAIRAT99.41 98.10 97.20 97.5499.01 96.99 95.16 95.6637.36 43.98 40.30 38.7335.12 31.98 24.05 23.0631.64 21.64 19.80 18.4229.15 15.45 12.58 10.70
MAIL 99.46 98.19 97.38 97.7899.17 97.38 95.67 96.2632.26 41.99 39.28 32.29 27.98 32.09 25.97 17.2430.94 20.38 16.98 15.6028.48 13.32 9.89 7.18

WMMR 99.44 98.11 97.19 97.6099.06 97.07 95.22 95.8333.63 45.84 42.90 40.4436.56 31.97 25.58 23.2431.90 20.82 18.96 17.3130.61 14.28 11.75 9.81
RAA 99.40 98.14 97.32 97.6099.13 97.05 95.05 95.4446.36 36.75 33.35 32.22 44.47 29.30 22.48 21.1431.91 21.75 20.08 18.7530.13 15.90 12.83 10.72
Ours 99.51 98.60 97.87 98.16 99.12 97.56 96.11 96.55 39.26 47.54 43.76 41.97 37.35 34.17 26.38 23.84 36.05 25.76 22.83 21.47 34.11 19.55 15.12 13.70

30
%

ST 99.07 91.12 83.58 85.97 99.12 59.61 20.58 29.17 61.11 19.98 16.08 14.82 60.42 10.40 6.54 6.73 28.19 14.94 11.91 10.76 28.80 3.97 1.68 1.41
AT 99.41 98.07 97.14 97.5598.95 96.90 95.12 95.8035.76 45.32 41.21 40.1937.28 32.10 24.20 23.4730.19 20.77 18.72 17.5828.42 14.57 11.93 10.15

GAIRAT99.37 98.06 97.27 97.6599.02 97.01 94.90 95.6536.28 43.59 40.07 38.5535.00 31.77 24.61 23.4029.99 20.64 18.69 17.2727.33 15.00 11.64 9.94
MAIL 99.44 98.12 97.41 97.5699.13 97.33 95.48 96.1131.88 40.47 38.32 30.84 31.27 31.08 25.84 16.8629.28 19.12 16.09 14.7127.23 12.99 9.43 6.89

WMMR 99.40 98.07 97.15 97.6399.05 97.03 94.98 95.7534.78 43.87 41.06 38.4925.40 29.75 23.85 22.2630.20 19.46 17.70 16.1729.02 13.98 11.27 9.20
RAA 99.40 98.07 97.20 97.5399.04 97.00 95.11 95.6246.44 38.01 34.80 33.0743.22 27.58 21.07 20.2030.58 21.08 19.19 17.9829.08 15.18 12.28 10.38
Ours 99.47 98.51 97.82 98.12 99.24 97.45 95.98 96.63 39.98 46.51 42.98 41.30 35.71 33.71 26.04 24.06 34.58 24.18 21.05 20.11 33.80 19.35 14.84 13.70

40
%

ST 97.43 81.71 73.74 75.11 97.58 50.69 16.99 22.82 58.87 19.16 16.29 16.04 59.07 10.52 7.01 8.81 26.99 12.97 10.29 9.56 27.11 4.32 1.91 1.67
AT 99.33 97.81 96.90 97.2298.89 96.82 94.63 95.4635.53 43.65 39.66 38.9533.18 31.06 23.61 22.9728.18 20.20 18.52 17.1327.09 13.90 11.32 9.85

GAIRAT99.26 97.70 96.78 97.0398.85 96.65 94.36 95.2432.71 42.02 38.33 36.3033.97 31.28 23.17 23.2628.42 19.67 17.88 16.7525.70 14.49 11.55 9.85
MAIL 99.24 97.74 96.87 96.8498.79 96.94 94.93 95.2628.46 38.43 36.80 29.87 31.10 30.08 25.02 17.4427.68 17.73 15.77 13.9125.82 11.76 9.00 6.92

WMMR 99.35 97.84 96.89 97.2298.91 96.70 94.58 95.3029.93 39.10 36.70 35.4331.28 28.22 22.57 21.1928.65 19.15 17.54 15.9427.70 13.69 11.33 9.67
RAA 99.40 98.02 97.14 97.2398.96 96.91 95.02 95.2946.09 34.71 30.34 29.21 41.07 28.04 20.81 20.2028.25 19.97 18.58 17.3627.68 14.42 11.70 10.21
Ours 99.41 98.38 97.68 97.97 99.09 97.25 95.62 96.19 35.89 44.05 40.85 40.33 34.22 31.36 25.98 24.06 33.65 23.25 20.76 19.46 31.69 18.47 14.16 12.81

Table 1: Testing accuracy (%) of seven methods on MNIST, CIFAR-10, and CIFAR-100 with different levels of
symmetric and asymmetric noisy. The best results are shown in bold. We color the performance of all adversarial
training methods on three different attacks. The performance gap between current method and ORAT are shown
in green: ≤2%; yellow: (2%,5%]; orange: (5%,10%]; blue: >10%. According to results, ORAT outperforms
all adversarial training methods on all attack settings. ‘Na’ represents Natural. ‘FG’ represents FGSM.

cannot significantly improve AT performance, and our method still achieves the best performance.
The stability evaluation results of each method with 10 random runs are shown in Table 4, where
we use 40% symmetric noisy data as an example. Comparing Table 1 and Table 4 under the same
setting, it is clear that the performance gap becomes larger when we report scores by using mean
and standard deviation, and our method shows a stable and stronger ability in handling outliers and
adversarial attacks.

Convergence and Robustness Tendency. We show the tendency curves of the training loss on all
datasets with different noise when using Algorithm 1 in the left panel of Figure 2. The sharp drops in
the curves correspond to decreases in training learning rate. We can observe a steady decrease in the
training loss on all datasets with the increase of training epochs when training against adversarial
samples, which supports that Algorithm 1 can effectively optimize and solve Eq. (4) even if it is
a non-smooth loss. We also compare the robust accuracy of AT and ORAT by using four attack
strategies on all datasets with 20% symmetric noise in Figure 2 right panel. It is clear that our method
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Defense
Data MNIST CIFAR-10 CIFAR-100

ϵ=0.1 ϵ=0.2 ϵ=2/255 ϵ=8/255 ϵ=2/255 ϵ=8/255
ST 84.13 23.78 23.54 10.41 10.22 1.72
AT 96.73 93.23 44.56 23.06 17.11 9.89

GAIRAT 96.78 93.57 40.82 20.57 16.54 9.97
MAIL 97.01 93.80 40.39 18.95 13.67 7.29

WMMR 96.88 93.60 43.52 20.68 15.69 8.73
RAA 96.98 93.62 45.07 22.29 17.70 9.78
Ours 97.67 95.05 45.59 23.35 19.74 12.22

Table 2: Testing accuracy (%) on AutoAttack.
Noise Defense MNIST (ϵ = 0.1) CIFAR-100 (ϵ = 2/255)

Na FG PGD CW Na FG PGD CW

10% AT w/o 98.91 98.08 97.61 97.55 29.81 21.09 19.59 18.23
Ours 99.52 98.45 97.78 97.79 35.76 25.72 22.27 21.28

30% AT w/o 97.82 96.97 96.47 96.35 24.18 19.17 17.31 16.71
Ours 99.55 98.30 97.51 97.53 31.27 23.81 21.35 19.59

Table 3: Testing accuracy (%) of AT w/o and ORAT on
symmetric noisy data.

Noise Defense MNIST (ϵ = 0.1) CIFAR-100 (ϵ = 2/255)
Na FG PGD CW Na FG PGD CW

40
%

Sy
m

m
et

ri
c

N
oi

se

ST 98.38
(0.18)

77.47
(5.79)

59.31
(11.13)

51.47
(12.79)

21.53
(0.71)

13.95
(0.16)

12.12
(0.28)

10.12
(0.28)

AT 96.60
(0.87)

95.11
(1.17)

94.36
(1.31)

94.16
(1.37)

21.82
(0.30)

18.14
(0.27)

17.02
(0.29)

15.62
(0.32)

GAIRAT 98.04
(0.11)

96.60
(0.08)

95.98
(0.13)

95.79
(0.12)

21.58
(0.30)

17.94
(0.36)

16.88
(0.36)

15.50
(0.33)

MAIL 98.06
(0.17)

96.88
(0.16)

96.31
(0.12)

96.11
(0.10)

17.52
(0.74)

14.31
(0.43)

13.46
(0.40)

12.09
(0.37)

WMMR 98.07
(0.14)

96.69
(0.10)

96.04
(0.08)

95.85
(0.08)

20.64
(0.29)

17.14
(0.33)

16.10
(0.30)

14.76
(0.27)

RAA 98.58
(0.11)

96.82
(0.08)

95.99
(0.10)

95.91
(0.09)

22.21
(0.32)

18.27
(0.32)

17.22
(0.30)

15.85
(0.33)

Ours 99.34
(0.03)

98.02
(0.07)

97.19
(0.08)

97.18
(0.07)

30.12
(0.47)

23.62
(0.42)

21.48
(0.49)

20.02
(0.41)

Table 4: Mean and standard deviation (in parentheses)
of testing accuracy (%) across 10 random runs.

Figure 2: The tendency curves of training adversarial
loss and test accuracy on three datasets.

Figure 3: Effect of k and m on the test accuracy of
ORAT on three datasets.

outperforms the original AT method in all settings. In general, these plots illustrate that we can
consistently reduce the value of the objective function of ORAT, thus producing an increasingly robust
classifier.

Effect of k and m. We study how the choices of k and m affect the performance of ORAT with two
types of experiments on all datasets under 20% symmetric noise setting, together with those from
other defense methods. In the first set of experiments, we fix k to the total number of training samples
and run the algorithm with different values of m. The results are plotted in Figure 3 (left panel). We
can see that there is a clear range of m with better performance than all compared methods. In the
second set of experiments, we fix m with the best performance from the first set of experiments and
run ORAT with different values of k. The results are shown in Figure 3 (right panel). Note that there
is also a range of k with better performance, in particular, the optimal value of k is less than the
number of total training samples. Similar trends are observed on all datasets.

6 CONCLUSION

In this work, we introduce the outlier robust adversarial training (ORAT), which considers both
outliers in training data and adversarial attacks in the model training. We provide an optimizing
algorithm and analyze the theoretical aspects of ORAT. Empirical results showed the effectiveness
and robustness of ORAT on three benchmark datasets. In the future, we will study the optimization
error or convergence rate of our proposed learning algorithm. We will also evaluate our method on
large datasets and large deep neural networks. Although achieving fairness is not a goal of this work,
we have found that our method can benefit the minority subgroup of data (see Figure 1 right panel).
Studying fairness with ORAT is an interesting direction in the future. Furthermore, we plan to design
an efficient method to automatically determine the hyperparameters k and m during the training.
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Appendix

A RELATED WORKS

Traditional Robust Learning. Training accurate machine learning models in the presence of
noisy data is of great practical importance (Sukhbaatar et al., 2015). However, a degradation in the
performance of classification models is inevitable when there are outliers in the training data. To
combat outliers, the traditional robust learning methods are designed from four directions. 1) The
label correction methods (Wang et al., 2018) improve the quality of the raw labels by correcting
wrong labels into correct ones. However, it requires an extra clean dataset or potentially expensive
detection process to estimate the outliers. 2) The loss correction methods (Han et al., 2020; Liu
& Guo, 2020) improve the robustness by modifying the loss function based on an estimated noise
transition matrix that defines the probability of mislabeling one class with another. However, these
methods are sensitive to the noise transition matrix, which is also hard to be estimated. 3) The refined
training strategies such as Co-teaching (Han et al., 2018; Yu et al., 2019), MentorNet (Jiang et al.,
2018; Yu et al., 2019) are robust to outliers. These studies all rely on an auxiliary network for sample
weighting or learning supervision, which is hard to adapt and tune. 4) Some simpler and arguably
generic robust loss functions are also designed for robust learning. For example, a recent work Hu
et al. (2020) proposed AoRR loss, which can mitigate the influence of the outliers if their proportion
in training data is known. Furthermore, Some smoothing methods are proposed in (Lukasik et al.,
2020; Chaudhari et al., 2019; Foret et al., 2020) and have been proved to be effective in solving the
problems of label and data noise. However, none of these methods are related to adversarial robust
learning.

Adversarial Robust Learning. The omnipotent DNN models are surprisingly vulnerable to adver-
sarial examples (Goodfellow et al., 2015; Carlini & Wagner, 2017), which can easily mislead a DNN
model to make erroneous predictions. To mitigate this issue, the adversarial training (AT) (Madry
et al., 2018) is first proposed as one of the most effective robust learning methodologies against
adversarial attacks. To improve adversarial robustness, instance-reweighted AT methods are studied
by considering the unequal importance of the adversarial data in several recent works. Intuitively, the
samples assigned a low weight to correspond to samples on which the classifier is already sufficiently
robust. Specifically, the reweight mechanism in WMMR (Zeng et al., 2021a) and MAIL (Liu et al.,
2021) is based on the multi-class probabilistic margin margin of the model outputs (Koltchinskii &
Panchenko, 2002; Zhang & Liang, 2019). The reweighting method in work GAIRAT (Zhang et al.,
2021) identifies non-robust (easily be-attacked) data by estimating how many steps the PGD method
needs to attack natural data successfully. The most recent work BiLAW (Holtz et al., 2021) uses a
validation set to learn weights based on bi-level optimization and meta-learning. The most significant
assumption in these works is that the natural dataset is clean. However, the performance of the model
based on these methods will be degraded if the training dataset contains outliers. In Sanyal et al.
(2021), the authors identified label noise as one of the causes of adversarial vulnerability. However, no
defense methods are proposed to solve this problem. The work Zhu et al. (2021) empirically studies
the efficacy of AT for mitigating the effect of label noise in training data. However, their proposed
annotator algorithm is based on the label correction strategy, which inevitably introduces more extra
noisy labels due to the bottleneck of the classifier. In Dong et al. (2020), the authors proposed an
adversarial distributional training. They focus on the distribution shift of adversarial samples but they
do not consider the outliers problem. Several works Augustin et al. (2020); Bitterwolf et al. (2020);
Lee et al. (2018) connect adversarial robustness to out-of-distribution (OOD) problems. However,
they are in different settings from ours because the notion of outliers is different from OOD points.

B EXPLICIT FORMS OF ∂θL̂, ∂λL̂, AND ∂λ̂L̂

From Eq.(4), we have L̂(fθ, λ, λ̂) := k−m
n λ+ n−m

n λ̂− [λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+. Denote I[a] as
an indicator function with I[a] = 1 if a is true and 0 otherwise. Then we can get

∂θL̂(fθ(t) , λ(t), λ̂(t)) = ∂ℓ(fθ(t)(x̃i), yi) · I[λ̂(t)>[ℓ(f
θ(t)

(x̃i),yi)−λ(t)]+] · I[ℓ(fθ(t) (x̃i),yi)>λ(t)],

∂λL̂(fθ(t) , λ(t), λ̂(t)) =
k −m

n
− I[λ̂(t)>[ℓ(f

θ(t)
(x̃i),yi)−λ(t)]+] · I[ℓ(fθ(t) (x̃i),yi)>λ(t)],

14



Under review as a conference paper at ICLR 2023

∂λ̂L̂(fθ(t) , λ(t), λ̂(t)) =
n−m

n
− I[λ̂(t)>[ℓ(f

θ(t)
(x̃i),yi)−λ(t)]+].

C PROOFS

C.1 PROOF OF THEOREM 1

Denote [a]+ = max{0, a} as the hinge function. First, we introduce two Lemmas as follows,
Lemma 1. (Hu et al., 2020) For a set of real numbers S = {s1, · · · , sn}, si ∈ R, and s[i] represents
the i-th largest value after sorting the elements in S, we have

k∑
i=1

s[i] = min
λ∈R

{
kλ+

n∑
i=1

[si − λ]+

}
.

Furthermore, s[k] ∈ argminλ∈R{kλ+
∑n

i=1[si − λ]+}.

Proof. We know
∑k

i=1 s[i] is the solution of

max
p

p⊤S, s.t. p⊤1 = k,0 ≤ p ≤ 1.

We apply Lagrangian to this equation and get

L = −p⊤S − v⊤p+ u⊤(p− 1) + λ(p⊤1− k)

where u ≥ 0, v ≥ 0 and λ ∈ R are Lagrangian multipliers. Taking its derivative w.r.t. p and set it to
0, we have v = u− S + λ1. Substituting it back into the Lagrangian, we get

min
u,λ

u⊤1+ kλ, s.t. u ≥ 0,u+ λ1− S ≥ 0.

This means
k∑

i=1

s[i] = min
λ

{
kλ+

n∑
i=1

[si − λ]+

}
. (C.1)

Furthermore, we can see that λ = s[k] is always one optimal solution for Eq.(C.1). So

s[k] ∈ argmin
λ

{
kλ+

n∑
i=1

[si − λ]+

}
.

Lemma 2. For a set of real numbers S = {s1, · · · , sn}, si ∈ R, we have
n∑

i=m+1

s[i] = max
λ∈R

{
(n−m)λ−

n∑
i=1

[λ− si]+

}
.

Furthermore, s[m] ∈ argmaxλ∈R{(n−m)λ−
∑n

i=1[λ− si]+}.

Proof.
n∑

i=m+1

s[i] =

n∑
i=1

si −
m∑
i=1

s[i]

=

n∑
i=1

si −min
λ

{
mλ+

n∑
i=1

[si − λ]+

}

= −min
λ

{
−

n∑
i=1

(si − λ)− (n−m)λ+

n∑
i=1

[si − λ]+

}

= −min
λ

{
− (n−m)λ+

n∑
i=1

[λ− si]+

}

= max
λ

{
(n−m)λ−

n∑
i=1

[λ− si]+

}

.
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The second equation holds because of Lemma 1. The fourth equation holds because the fact of
[a]+ − a = [−a]+. Furthermore, we can see that λ = s[m] is always one optimal solution. So

s[m] ∈ argmax
λ∈R

{
(n−m)λ−

n∑
i=1

[λ− si]+

}
.

Theorem C.1. (Theorem 1 restated) Suppose λ ∈ R, λ̂ ∈ R, then Eq.(3) is equivalent to

min
θ,λ

max
λ̂

1

k −m

n∑
i=1

[k −m

n
λ+

n−m

n
λ̂− [λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+

]
s.t. x̃i = arg max

x̃∈Bϵ(xi)
ℓ(fθ(x̃), yi)

(C.2)

Furthermore, λ̂ > λ, when the optimal solution is achieved.

Proof. To extract the sum of (m, k)-ranked range individual losses, we can first select a subset,
which contains the bottom n−m losses from the ranked list of L

(
{(xj , yj)}nj=1

)
. Then we select

top-(k −m) individual losses from this subset as the finalized (m, k)-ranked range. Therefore, We
sum the bottom n−m individual losses as follows,

n∑
i=m+1

ℓ(fθ(x̃[i]), y[i]) = min
q

n∑
i=1

qiℓ(fθ(x̃[i]), y[i]) s.t. qi ∈ {0, 1}, ||q||0 = n−m,

where q = {q1, · · · , qn} ∈ {0, 1}n, and qi is an indicator. When qi = 0, it indicates that the i-th
individual loss is not included in the objective function. Otherwise, the objective function should
include this individual loss. Next, we sum the top-(k −m) individual losses from the bottom n−m
individual losses as follows,

min
q

k−m∑
i=1

(qℓ(fθ(x̃), y))[i] s.t. qi ∈ {0, 1}, ||q||0 = n−m

=min
λ,q

(k −m)λ+

n∑
i=1

[qiℓ(fθ(x̃i), yi)− λ]+ s.t. qi ∈ {0, 1}, ||q||0 = n−m

=min
λ,q

(k −m)λ+

n∑
i=1

qi[ℓ(fθ(x̃i), yi)− λ]+ s.t. qi ∈ [0, 1], ||q||0 = n−m

=min
λ

(k −m)λ+

n∑
i=m+1

[[ℓ(fθ(x̃), y)− λ]+][i]

=min
λ

(k −m)λ+max
λ̂

{
(n−m)λ̂−

n∑
i=1

[λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+

}
,

(C.3)

where qℓ(fθ(x̃), y) = {q1ℓ(fθ(x̃1), y1), · · · , qnℓ(fθ(x̃n), yn)}. The first equation holds because
of Lemma 1. Since qiℓ(fθ(x̃i), yi) ≥ 0, we know the optimal λ∗ ≥ 0 from Lemma 1. If qi = 0,
[qiℓ(fθ(x̃i), yi) − λ∗]+ = 0 = qi[ℓ(fθ(x̃i), yi) − λ∗]+. If qi = 1, [qiℓ(fθ(x̃i), yi) − λ∗]+ =
[ℓ(fθ(x̃i), yi) − λ∗]+ = qi[ℓ(fθ(x̃i), yi) − λ∗]+. Thus the second equation holds. It should be
mentioned that the discrete indicator qi can be replaced by a continue one, which means qi ∈ [0, 1].
The third equation holds because we take the optimal q∗ into the objective function and remove the
constraints. The fourth equation can be obtained by applying Lemma 2.

Therefore,

min
θ

1

k −m

k∑
i=m+1

ℓ(fθ(x̃[i]), y[i])

= min
θ

1

k −m

{
min
λ

(k −m)λ+max
λ̂

{
(n−m)λ̂−

n∑
i=1

[λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+

}}

= min
θ,λ

max
λ̂

1

k −m

n∑
i=1

[k −m

n
λ+

n−m

n
λ̂− [λ̂− [ℓ(fθ(x̃i), yi)− λ]+]+

]
.

(C.4)
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Furthermore, according to Lemma 1 and 2, we know the optimal λ∗ and λ̂∗ can be obtained at the
top-k and top-m values of loss ℓ, respectively. Since m < k, we have λ∗ < λ̂∗. Therefore, λ̂ > λ,
when the optimal solution is achieved.

C.2 PROOF OF THEOREM 2

To prove Theorem 2, we first introduce the calibration function as follows,
Definition 4. (Calibration function). (Awasthi et al., 2021) Given a hypothesis set H, we define the
calibration function δmax for a pair of losses (ℓ1, ℓ2) as follows: for all x ∈ X , η ∈ [0, 1] and τ > 0,

δmax(τ,x, η) = inff∈H{Cℓ1(f,x, η)− C∗
ℓ1,H(x, η)|Cℓ2(f,x, η)− C∗

ℓ2,H(x, η) ≥ τ}. (C.5)

The calibration function gives the maximal δ satisfying the calibration condition (Definition 2). The
following proposition is an important result from Steinwart (2007).
Proposition 1. (Steinwart, 2007). Given a hypothesis set H, loss ℓ1 is H-calibrated with respect
to ℓ2 if and only if its calibration function δmax satisfies δmax(τ,x, η) > 0 for all x ∈ X , η ∈ [0, 1],
and τ > 0.

Next, we define the adversarial loss of f ∈ H at (x, y) as

ℓ̃s(f,x, y) = sup
x̃∈Bϵ(x)

ℓs(yf(x̃)). (C.6)

The above naturally motivates supremum-based surrogate losses that are commonly used to optimize
the adversarial 0/1 loss (Goodfellow et al., 2015; Madry et al., 2018; Zhang et al., 2019). When ℓs is
non-increasing, the following equality holds (Yin et al., 2019):

sup
x̃∈Bϵ(x)

ℓs(yf(x̃)) = ℓs

(
inf

x̃∈Bϵ(x)
yf(x̃)

)
. (C.7)

Therefore, the adversarial 0/1 loss ℓ̃0 has the equivalent form

ℓ̃0(f,x, y) := sup
x̃∈Bϵ(x)

1yf(x̃)≤0 = 1 inf
x̃∈Bϵ(x)

yf(x̃)≤0. (C.8)

In this paper, we aim to characterize surrogate losses ℓ1 satisfying H-calibration (Definition 2) with
ℓ2 = ℓ̃0 and for the hypothesis sets H which are regular for adversarial calibration.

For convenience, let M(f,x, ϵ) := inf x̃∈Bϵ(x) f(x̃) and M(f,x, ϵ) := − inf x̃∈Bϵ(x) −f(x̃) =
supx̃∈Bϵ(x) f(x̃). Then we provide three useful Lemmas as follows,

Lemma 3. (Awasthi et al. (2021), Lemma 28). Let H be a symmetric hypothesis set, ℓ be a surrogate
loss function, and X2 ={x ∈ X : there exists f ′ ∈ H such that M(f ′,x, ϵ) > 0 }. If X2 = ∅, any
loss ℓ is H-calibrated with respect to ℓ̃0. If X2 ̸= ∅, then ℓ is H-calibrated with respect to ℓ̃0 if and
only if for any x ∈ X2,

inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

Cℓ(f,x,
1

2
) > inf

f∈H
Cℓ(f,x,

1

2
), and

inf
f∈H:M(f,x,ϵ)≤0

Cℓ(f,x, η) > inf
f∈H

Cℓ(f,x, η), ∀η ∈ (
1

2
, 1], and

inf
f∈H:0≤M(f,x,ϵ)

Cℓ(f,x, η) > inf
f∈H

Cℓ(f,x, η), ∀η ∈ [0,
1

2
).

(C.9)

Lemma 4. (Awasthi et al. (2021), Theorem 23 and Theorem 24). Let H be a symmetric hypothesis
set consisting of the family of all measurable functions Hall, ϕ be a non-increasing margin-based
loss, and ϕ̃(f,x, y) = supx̃∈Bϵ(x) ϕ(yf(x̃)). If ϕ̃ is H-calibrated with respect to ℓ̃0, then ϕ̃ is

H-consistent with respect to ℓ̃0 for all distributions D over X × Y that satisfy: R∗
ℓ̃0,H

= 0 and there
exists f∗ ∈ H such that Rϕ(f

∗) = R∗
ϕ,Hall

< +∞.

The proofs of the above two Lemmas can be found in Awasthi et al. (2021).
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Lemma 5. Let H be a symmetric hypothesis set and f ∈ H. Suppose 0 ≤ λ∗ < λ̂∗, ν >

min{λ̂∗,R∗
ℓ,H}, ℓ(yf(x)) ≥ 0 ∀x, and λ∗ is bounded, then λ∗ < ℓ(0).

Proof. Based on the definition of (f∗
0 , λ

∗, λ̂∗) = arg inff,λ supλ̂

{
E
[
λ̂−[λ̂−[ℓ(Y f(X))−λ]+]+

]
+

νλ− µλ̂
}

. We choose f = 0, λ = ℓ(0) and λ̂ = λ̂∗ there holds

νλ∗ − µλ̂∗ ≤ E
[
λ̂∗ − [λ̂∗ − [ℓ(Y f∗

0 (X))− λ∗]+]+

]
+ νλ∗ − µλ̂∗

≤ E
[
λ̂∗ − [λ̂∗ − [ℓ(0)− ℓ(0)]+]+

]
+ νℓ(0)− µλ̂∗

= νℓ(0)− µλ̂∗

Thus νλ∗ ≤ νℓ(0) which shows that λ∗ ≤ ℓ(0). Let β = ℓ(0)− λ which implies

(f∗
0 , β

∗, λ̂∗) = arg inf
f,λ

sup
λ̂

{
E
[
λ̂− [λ̂− [ℓ(Y f(X)) + β − ℓ(0)]+]+

]
− νβ − µλ̂

}
.

Let (f∗
0 , β

∗, λ̂∗) be the minimizer. we have, for any f and choosing β = ℓ(0), that

−νβ∗ − µλ̂∗ ≤ E
[
λ̂∗ − [λ̂∗ − [ℓ(Y f(X)) + β∗ − ℓ(0)]+]+

]
− νβ∗ − µλ̂∗

≤ E
[
λ̂∗ − [λ̂∗ − [ℓ(Y f(X)) + ℓ(0)− ℓ(0)]+]+

]
− νℓ(0)− µλ̂∗.

Therefore, we have
−νβ∗ ≤ E

[
λ̂∗ − [λ̂∗ − [ℓ(Y f(X))]+]+

]
− νℓ(0).

Since f is arbitrary, β∗ ≥
ν−E
[
λ̂∗−[λ̂∗−[ℓ(Y f∗(X))]+]+

]
ν . Since ℓ(Y f∗(X)) ≥ 0, we have

0 ≤ E
[
λ̂∗ − [λ̂∗ − [ℓ(Y f∗(X))]+]+

]
= E

[
λ̂∗ − [λ̂∗ − ℓ(Y f∗(X))]+

]
≤ min

{
λ̂∗, inf

f
E[ℓ(yf(x))]

}
.

By using the assumption ν > min{λ̂∗,R∗
ℓ,H}=min

{
λ̂∗, inff E[ℓ(yf(x))]

}
, we get β∗ ≥

ν−E
[
λ̂∗−[λ̂∗−[ℓ(Y f∗(X))]+]+

]
ν > 0. Consequently, the above arguments show that 0 ≤ λ∗ =

ℓ(0)− β∗ < ℓ(0) if ν > min
{
λ̂∗, inff E[ℓ(yf(x))]

}
.

Theorem C.2. (Theorem 2 restated) Let H be a symmetric hypothesis set consisting of the family of
all measurable functions Hall, suppose ν > min{λ̂∗,R∗

ℓ,H}, 0 ≤ λ∗ < λ̂∗, λ∗ and λ̂∗ are bounded,
and ℓ is a non-negative, continuous, and non-increasing margin-based loss.

(i) Then ϕ̃ORAT is H-calibrated with respect to ℓ̃0.

(ii) Furthermore, ϕ̃ORAT is H-consistent with respect to ℓ̃0 for all distributions D over X × Y that
satisfy: R∗

ℓ̃0,H
= 0 and there exists f∗ ∈ H such that RϕORAT(f

∗) = R∗
ϕORAT,Hall

< +∞.

Proof. Below we will prove the theorem using Lemma 3 which is from Awasthi et al. (2021). Recall
that, from the definition of ϕORAT(t) in Eq.(5), ℓ(t) is a continuous and non-increasing function, and
λ∗ and λ̂∗ are bounded, we can conclude ϕORAT(t) is bounded, continuous, non-increasing.

By Lemma 3, if X2 = ∅, ϕ̃ORAT is H-calibrated with respect to ℓ̃0 . Consequently, it suffices to
consider the case where X2 ̸= ∅. In this case, in order to show ϕ̃ORAT is H-calibrated with respect to
ℓ̃0, from Lemma 3 we only need to show, ∀x ∈ X2, that

inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

Cϕ̃ORAT
(f,x,

1

2
) > inf

f∈H
Cϕ̃ORAT

(f,x,
1

2
), and

inf
f∈H:M(f,x,ϵ)≤0

Cϕ̃ORAT
(f,x, η) > inf

f∈H
Cϕ̃ORAT

(f,x, η), ∀η ∈ (
1

2
, 1], and

inf
f∈H:0≤M(f,x,ϵ)

Cϕ̃ORAT
(f,x, η) > inf

f∈H
Cϕ̃ORAT

(f,x, η), ∀η ∈ [0,
1

2
).
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To this end, recall that, by the definition of inner ℓs-risk, the inner ϕ̃ORAT-risk is given by

Cϕ̃ORAT
(f, x, η) = ηϕ̃ORAT(f,x,+1) + (1− η)ϕ̃ORAT(f,x,−1)

= ηϕORAT

(
inf

x̃∈Bϵ(x)
f(x̃)

)
+ (1− η)ϕORAT

(
inf

x̃∈Bϵ(x)
−f(x̃)

)
= ηϕORAT

(
M(f,x, ϵ)

)
+ (1− η)ϕORAT

(
−M(f,x, ϵ)

)
.

For any x ∈ X2, let Mx = supf∈H M(f,x, ϵ) > 0. Since H is symmetric consisting of all
measurable functions, we have −Mx = inff∈H M(f,x, ϵ) < 0. Since ϕORAT(·) is continuous,
for any x ∈ X2 and τ > 0, there exists fτ

x ∈ H such that ϕORAT(M(fτ
x ,x, ϵ)) < ϕORAT(Mx) +

τ , ϕORAT(−M(fτ
x ,x, ϵ)) < ϕORAT(0) + τ , M(fτ

x ,x, ϵ) ≥ M(fτ
x ,x, ϵ) > 0, M(−fτ

x ,x, ϵ) ≤
M(−fτ

x ,x, ϵ) = −M(fτ
x ,x, ϵ) < 0, and ϕORAT(M(−fτ

x ,x, ϵ)) < ϕORAT(0) + τ . Next we analyze
three cases:

1. When η = 1
2 , since ϕORAT is non-increasing,

inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

Cϕ̃ORAT
(f,x,

1

2
)

= inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

1

2
ϕORAT

(
M(f,x, ϵ)

)
+

1

2
ϕORAT

(
−M(f,x, ϵ)

)
≥ 1

2
ϕORAT(0) +

1

2
ϕORAT(0)

= ϕORAT(0)

= λ̂∗ − [λ̂∗ − [ℓ(0)− λ∗]+]+.

For any x ∈ X2, there exists f ′ ∈ H such that M(f ′,x, ϵ) > 0 and −M(f ′,x, ϵ) ≤ −M(f ′,x, ϵ) <
0, we obtain

Cϕ̃ORAT
(f ′,x,

1

2
) =

1

2
ϕORAT

(
M(f ′,x, ϵ)

)
+

1

2
ϕORAT

(
−M(f ′,x, ϵ)

)
According to Lemma 5, we have 0 ≤ λ∗ < λ̂∗ and λ∗ < ℓ(0). Therefore, we also analyze two cases:

(a) If 0 < λ∗ + λ̂∗ ≤ ℓ(0), then we have

inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

Cϕ̃ORAT
(f,x,

1

2
) ≥ λ̂∗ − [λ̂∗ − [ℓ(0)− λ∗]+]+ = λ̂∗.

On the other hand, since ϕORAT is continuous, there exists f ′ ∈ H and t = M(f ′,x, ϵ), then
0 ≤ ϕORAT

(
M(f ′,x, ϵ)

)
< λ̂∗. Thus,

Cϕ̃ORAT
(f ′,x,

1

2
) =

1

2
ϕORAT

(
M(f ′,x, ϵ)

)
+

1

2
ϕORAT

(
−M(f ′,x, ϵ)

)
≤ 1

2
ϕORAT

(
M(f ′,x, ϵ)

)
+

1

2
λ̂∗

<
1

2
λ̂∗ +

1

2
λ̂∗ = λ̂∗.

Therefore, for any x ∈ X2,

inf
f∈H

Cϕ̃ORAT
(f,x,

1

2
) ≤ Cϕ̃ORAT

(f ′,x,
1

2
) < λ̂∗ ≤ inf

f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)
Cϕ̃ORAT

(f,x,
1

2
). (C.10)

(b) If λ∗ + λ̂∗ > ℓ(0),

inf
f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)

Cϕ̃ORAT
(f,x,

1

2
) ≥ λ̂∗ − [λ̂∗ − [ℓ(0)− λ∗]+]+ = ℓ(0)− λ∗.
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On the other hand, recall both ϕORAT(·) and ℓ(·) are continuous and non-increasing and ℓ(0) > λ∗

from Lemma 5. Therefore, we can find f ′ ∈ H such that ℓ(0) > ℓ(M(f ′,x, ϵ)) > λ∗, λ∗ + λ̂∗ >
ℓ(−M(f ′,x, ϵ)) > ℓ(0) > λ∗, and ℓ(M(f ′,x, ϵ)) + ℓ(−M(f ′,x, ϵ)) < 2ℓ(0). Consequently, there
holds

Cϕ̃ORAT
(f ′,x,

1

2
)

=
1

2
ϕORAT

(
M(f ′,x, ϵ)

)
+

1

2
ϕORAT

(
−M(f ′,x, ϵ)

)
=

1

2

[
λ̂∗ − [λ̂∗ − [ℓ(M(f ′,x, ϵ))− λ∗]+]+

]
+

1

2

[
λ̂∗ − [λ̂∗ − [ℓ(−M(f ′,x, ϵ))− λ∗]+]+

]
=

1

2
[ℓ(M(f ′,x, ϵ))− λ∗] +

1

2
[ℓ(−M(f ′,x, ϵ))− λ∗]

=
1

2
[ℓ(M(f ′,x, ϵ)) + ℓ(−M(f ′,x, ϵ))]− λ∗

<
1

2
× 2ℓ(0)− λ∗ = ℓ(0)− λ∗.

Therefore, for any x ∈ X2,

inf
f∈H

Cϕ̃ORAT
(f,x,

1

2
) ≤ Cϕ̃ORAT

(f ′,x,
1

2
) < ℓ(0)− λ∗ ≤ inf

f∈H:M(f,x,ϵ)≤0≤M(f,x,ϵ)
Cϕ̃ORAT

(f,x,
1

2
).

(C.11)

2. When η ∈ ( 12 , 1], since ϕORAT is non-increasing, for any x ∈ X2,

inf
f∈H:M(f,x,ϵ)≤0

Cϕ̃ORAT
(f,x, η) = inf

f∈H:M(f,x,ϵ)≤0
ηϕORAT

(
M(f,x, ϵ)

)
+ (1− η)ϕORAT

(
−M(f,x, ϵ)

)
≥ ηϕORAT(0) + (1− η)ϕORAT(Mx).

On the other hand, for any x ∈ X2 and τ > 0,

Cϕ̃ORAT
(fτ

x ,x, η) = ηϕORAT

(
M(fτ

x ,x, ϵ)
)
+ (1− η)ϕORAT

(
−M(fτ

x ,x, ϵ)
)

< η[ϕORAT(Mx) + τ ] + (1− η)[ϕORAT(0) + τ ]

= ηϕORAT(Mx) + (1− η)ϕORAT(0) + τ.

Since η > 1
2 and Mx > 0, we have

inf
f∈H:M(f,x,ϵ)≤0

Cϕ̃ORAT
(f,x, η)− Cϕ̃ORAT

(fτ
x ,x, η)

> [ηϕORAT(0) + (1− η)ϕORAT(Mx)]− [ηϕORAT(Mx) + (1− η)ϕORAT(0) + τ ]

= [2η − 1][ϕORAT(0)− ϕORAT(Mx)]− τ

> 0,

where we take 0 < τ < [2η − 1][ϕORAT(0)− ϕORAT(Mx)]. Therefore, for any η ∈ ( 12 , 1] and x ∈ X2,
there exists 0 < τ < [2η − 1][ϕORAT(0)− ϕORAT(Mx)] such that

inf
f∈H

Cϕ̃ORAT
(f,x, η) ≤ Cϕ̃ORAT

(fτ
x ,x, η) < inf

f∈H:M(f,x,ϵ)≤0
Cϕ̃ORAT

(f,x, η). (C.12)

3. When η ∈ [0, 1
2 ), since ϕORAT is non-increasing, for any x ∈ X2,

inf
f∈H:M(f,x,ϵ)≥0

Cϕ̃ORAT
(f,x, η) = inf

f∈H:M(f,x,ϵ)≥0
ηϕORAT

(
M(f,x, ϵ)

)
+ (1− η)ϕORAT

(
−M(f,x, ϵ)

)
≥ (1− η)ϕORAT(0) + inf

f∈H:M(f,x,ϵ)≥0
ηϕORAT

(
M(f,x, ϵ)

)
≥ (1− η)ϕORAT(0) + ηϕORAT

(
Mx

)
.
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On the other hand, for any x ∈ X2 and τ > 0,

Cϕ̃ORAT
(−fτ

x ,x, η) = ηϕORAT

(
M(−fτ

x ,x, ϵ)
)
+ (1− η)ϕORAT

(
−M(−fτ

x ,x, ϵ)
)

= ηϕORAT

(
M(−fτ

x ,x, ϵ)
)
+ (1− η)ϕORAT

(
M(fτ

x ,x, ϵ)
)

< η[ϕORAT(0) + τ ] + (1− η)ϕORAT

(
M(fτ

x ,x, ϵ)
)

< η[ϕORAT(0) + τ ] + (1− η)[ϕORAT(Mx) + τ ]

= ηϕORAT(0) + (1− η)ϕORAT(Mx) + τ.

Since η < 1
2 and Mx > 0, we have

inf
f∈H:M(f,x,ϵ)≥0

Cϕ̃ORAT
(f,x, η)− Cϕ̃ORAT

(−fτ
x ,x, η)

> [(1− η)ϕORAT(0) + ηϕORAT(Mx)]− [ηϕORAT(0) + (1− η)ϕORAT(Mx) + τ ]

= (1− 2η)[ϕORAT(0)− ϕORAT(Mx)]− τ,

where we take 0 < τ < (1− 2η)[ϕORAT(0)− ϕORAT(Mx)]. Therefore for any η ∈ [0, 1
2 ) and x ∈ X2,

there exists 0 < τ < (1− 2η)[ϕORAT(0)− ϕORAT(Mx)] such that
inf
f∈H

Cϕ̃ORAT
(f,x, η) ≤ Cϕ̃ORAT

(−fτ
x ,x, η) < inf

f∈H:M(f,x,ϵ)≥0
Cϕ̃ORAT

(f,x, η) (C.13)

From (C.10), (C.11), (C.12), (C.13), we conclude that ϕ̃ORAT is H-calibrated with respect to ℓ̃0. Thus,
(i) holds.

According to Lemma 4, we can conclude that the ϕ̃ORAT is H-consistent with respect to ℓ̃0 for all
distributions D over X × Y that satisfy: R∗

ℓ̃0,H
= 0 and there exists f∗ ∈ H such that RϕORAT(f

∗) =

R∗
ϕORAT,Hall

< +∞. Therefore, (ii) holds.

C.3 CROSS-ENTROPY AS A MARGIN-BASED LOSS

The cross-entropy loss can be rewritten as a margin-based loss. For example, in binary classification,
the conventional binary cross-entropy (bce) loss is given by bce = −(ylog(σ(f(x)))+(1−y)log(1−
σ(f(x)))) when y = {0, 1}. Here σ is the sigmoid function. It is clear that this conventional bce
loss is not a margin-based loss. However, we can transfer the negative label 0 to -1. In this case,
by the property of the sigmoid function 1− σ(x) = σ(−x), the original bce loss can be rewritten
as bce = −log(σ(yf(x))) when y = {−1, 1}. This is in fact a non-negative, continuous, and
non-increasing margin-based loss.

C.4 PROOF OF THEOREM 3

To get the generalization error bound, we need an equivalent formulation of equation 4 which is
stated in the following lemma.
Lemma 6. Suppose λ ∈ R, λ̂ ∈ R, then the empirical risk Rℓ̃(f ;S) defined by Eq. equation 4 is
equivalent to

Rℓ̃(f ;S) =
1

k −m

(
min
λ∈R

{
kλ+

n∑
i=1

[ℓ(f(x̃i), yi)−λ]+

}
−min

λ̂∈R

{
mλ̂+

n∑
i=1

[ℓ(f(x̃i), yi)− λ̂]+

})
(C.14)

Proof. According to Eq.(C.3), we have

min
λ

(k −m)λ+max
λ̂

{
(n−m)λ̂−

n∑
i=1

[λ̂− [ℓ(f(x̃i), yi)− λ]+]+

}
=min

λ
(k −m)λ+

n∑
i=m+1

[[ℓ(f(x̃), y)− λ]+][i]

=min
λ,q

(k −m)λ+

n∑
i=1

qi[ℓ(f(x̃i), yi)− λ]+ s.t. qi ∈ [0, 1], ||q||0 = n−m.
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Under the constraints, we can rewrite the last formula as

(k −m)λ+

n∑
i=1

qi[ℓ(f(x̃i), yi)− λ]+

=(k −m)λ+

n∑
i=1

[ℓ(f(x̃i), yi)− λ]+ −
n∑

i=1

(1− qi)[ℓ(f(x̃i), yi)− λ]+

=kλ+

n∑
i=1

[ℓ(f(x̃i), yi)− λ]+ −
n∑

i=1

(1− qi){[ℓ(f(x̃i), yi)− λ]+ + λ}.

The last equality holds because
∑n

i=1(1− qi) = n− (n−m) = m.

For the term
∑n

i=1(1 − qi){[ℓ(f(x̃i), yi) − λ]+ + λ}, we assume ℓ(f∗(x̃i), yi), ∀i, are sorted in
descending order when getting the optimal model f∗. For example, ℓ(f∗(x̃1), y1) ≥ ℓ(f∗(x̃2), y2) ≥
· · · ≥ ℓ(f∗(x̃n), yn). Since λ∗ ≥ 0, the optimal q∗ should be q∗1 = · · · = q∗m = 0, q∗m+1 = · · · =
q∗n = 1. Note that λ∗ must be an optimal solution of the problem

min
λ

(k −m)λ+

n∑
i=m+1

q∗i [ℓ(f
∗(x̃i), yi)− λ]+.

From Lemma 1, we know ℓ(f∗(x̃m+1), ym+1) ≥ λ∗, which implies that ℓ(f∗(x̃i), yi) − λ∗ ≥ 0
holds for qi < 1. Therefore,

∑n
i=1(1− qi){[ℓ(f(x̃i), yi)− λ]+ + λ} =

∑n
i=1(1− qi)ℓ(f(x̃i), yi).

Furthermore, we know

min
λ̂

{
mλ̂+

n∑
i=1

[ℓ(f(x̃i), yi)− λ̂]+

}
= max

q

{ n∑
i=1

(1− qi)ℓ(f(x̃i), yi)
∣∣∣ qi ∈ [0, 1], ||q||0 = n−m

}
.

Then we get

1

k −m

(
min
λ

(k −m)λ+max
λ̂

{
(n−m)λ̂−

n∑
i=1

[λ̂− [ℓ(f(x̃i), yi)− λ]+]+

})

=
1

k −m

(
min
λ

{
kλ+

n∑
i=1

[ℓ(f(x̃[i]), y[i])− λ]+

}
−min

λ̂

{
mλ̂+

n∑
i=1

[ℓ(f(x̃[i]), y[i])− λ̂]+

})
.

The proof is complete.

Considering the limit case of equation C.14, the population risk Rℓ̃(f) can be written as

1

k −m

(
min
λ∈R

{
kλ+

n∑
i=1

[ℓ(f(x̃[i]), y[i])− λ]+

}
−min

λ̂∈R

{
mλ̂+

n∑
i=1

[ℓ(f(x̃[i]), y[i])− λ̂]+

})
k−m

n →ν,mn →µ
−−−−−−−−−→

n→∞

1

ν

(
min
λ∈R

{
(ν+µ)λ+E[ℓ̃(f(x), y)−λ]+

}
−min

λ̂∈R

{
µλ̂+E[ℓ̃(f(x), y)−λ̂]+

})
= Rℓ̃(f).

The next Lemma tells us if the loss function is bounded, we can constrain the problem of Rℓ̃(f) and
Rℓ̃(f ;S) in the bounded range as well.
Lemma 7. Suppose that the range of ℓ is [0,M ]. Then we have

Rℓ̃(f) =
1

ν

(
min

λ∈[0,M ]

{
(ν + µ)λ+ E[ℓ̃(f(x), y)− λ]+

}
− min

λ̂∈[0,M ]

{
µλ̂+ E[ℓ̃(f(x), y)− λ̂]+

})
,

(C.15)
and so does the empirical risk

Rℓ̃(f ;S) =
1

k −m

(
min

λ∈[0,M ]

{
kλ+

n∑
i=1

[ℓ̃(f(xi), y)−λ]+

}
− min

λ̂∈[0,M ]

{
mλ̂+

n∑
i=1

[ℓ̃(f(xi), y)−λ̂]+

})
.

(C.16)
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Proof. The proof of equation C.16 is straight forward. By Lemma 1 and Lemma 2, we know
λ∗
S = ℓ̃(f(x[k]), y[k]) and λ̂∗

S = ℓ̃(f(x[m]), y[m]) are a pair of solution of equation C.16. Since
ℓ̃(f(x), y) = maxx̃∈Bϵ(x) ℓ(f(x̃), y) ∈ [0,M ] for any x, y, we have λ∗

S , λ̂
∗
S ∈ [0,M ].

Next we move on to equation C.15. Let λ∗ and λ̂∗ be a pair of solution of equation C.15. Let λ = M ,
then we have

(ν + µ)λ∗ ≤ (ν + µ)λ∗ + E[ℓ̃(f(x), y)− λ∗]+

≤ (ν + µ)M + E[ℓ̃(f(x), y)−M ]+

≤ (ν + µ)M + E[M −M ]+ = (ν + µ)M,

which implies λ∗ ≤ M . On the other hand, assume λ∗ = −ε for some ε > 0. Let λ = 0, then we
have

−(ν + µ)ε+ E[ℓ̃(f(x), y) + ε]+ = (1− (ν + µ))ε+ E[ℓ̃(f(x), y)]+ ≤ E[ℓ̃(f(x), y)]+,

which contradicts with (1− (ν + µ))ε > 0. Therefore we have λ∗ ≥ 0. Similarly, we can show that
λ̂∗ ∈ [0,M ]. The proof is complete.

The next lemma shows the uniform convergence of learning with ORAT without using perturbation.

Lemma 8. Suppose that the range of ℓ(f(x), y) is [0,M ]. Then, for any δ ∈ (0, 1), with probability
at least 1− δ over the draw of an i.i.d. training dataset of size n, the following holds for all ℓf ∈ ℓH,

Rℓ(f)−Rℓ(f ;S) ≤
2

ν

(
2Rn(ℓH) +

M(2
√
2 + 3

√
log(2/δ))√

2n

)
.

Proof. By the subadditivity of max operator, for any ℓf ∈ ℓH, we have

Rℓ(f)−Rℓ(f ;S)

=
1

ν
min

λ∈[0,M ]

{
(ν + µ)λ+ E[ℓ(f(x), y)− λ]+

}
− 1

ν
min

λ∈[0,M ]

{
(ν + µ)λ+

1

n

n∑
i=1

(ℓ(f(x), y)− λ)+

}
+

1

ν
min

λ̂∈[0,M ]

{
µλ̂+

1

n

n∑
i=1

(ℓ(f(x), y)− λ̂)+

}
− 1

ν
min

λ̂∈[0,M ]

{
µλ̂+ E[ℓ(f(x), y)− λ̂]+

}
≤ max

λ∈[0,M ]

{1
ν
E[ℓ(f(x), y)− λ]+ − 1

nν

n∑
i=1

(ℓ(f(x), y)− λ)+

}
:= L1(f, ℓ) (C.17)

+ max
λ̂∈[0,M ]

{ 1

nν

n∑
i=1

(ℓ(f(x), y)− λ̂)+ − 1

ν
E[ℓ(f(x), y)− λ̂]+

}
:= L2(f, ℓ). (C.18)

Without loss of generality, we consider equation C.17, the bound for equation C.18 can be derived in
a similar manner. Taking supremum on both sides, we have

sup
ℓf∈ℓH

L1(f, ℓ) ≤ sup
ℓf∈ℓH,λ∈[0,M ]

{1
ν
E[ℓ(f(x), y)− λ]+ − 1

nν

n∑
i=1

(ℓ(f(x), y)− λ)+

}
:= Φ(S).

It is standard to verify that Φ(S) satisfies the bounded differences condition with parameter M
ν and

one can apply McDiarmid’s inequality (McDiarmid et al., 1989) so that with probability at least
1− δ/4, there holds

Φ(S) ≤ E[Φ(S)] + M

ν

√
log(4/δ)

2n
.

By further standard reduction from the expectation to Rademacher complexity (Theorem 3.3 Mohri
et al. (2018)), with probability at least 1− δ/2, there holds

Φ(S) ≤ 2Rn

(1
ν
(G)+

)
+

3M

ν

√
log(4/δ)

2n
, (C.19)
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where G = {ℓf − λ|ℓf ∈ ℓH, λ ∈ [0,M ]} and (·)+ = max(·, 0). Since the ramp function (·)+ is
1-Lipschitz and (0)+ = 0, by Ledoux-Talagrand contraction inequality (Ledoux & Talagrand, 1991)
we have

Rn

(1
ν
(G)+

)
≤1

ν
Rn(G) =

1

ν
Eσ

[
sup

ℓf∈ℓH,λ∈[0,M ]

( 1
n

n∑
i=1

σiℓ(f(xi), yi)−
1

n

n∑
i=1

σiλ
)]

≤1

ν

(
Eσ

[
sup

ℓf∈ℓH

1

n

n∑
i=1

σiℓ(f(xi), yi)
]
+ Eσ

[
sup

λ∈[0,M ]

1

n

n∑
i=1

σiλ
])

≤1

ν

(
Rn(ℓH) +

M

n
Eσ

∣∣∣ n∑
i=1

σi

∣∣∣)
≤1

ν

(
Rn(ℓH) +

M√
n

)
, (C.20)

where the last inequality follows by
(
Eσ

[∑n
i=1 σi

])2
≤ Eσ

(∑n
i=1 σi

)2
= n. By putting equa-

tion C.20 into equation C.19, we have

sup
ℓf∈ℓH

L1(f, ℓ) ≤
1

ν

(
2Rn(ℓH) +

M(2
√
2 + 3

√
log(4/δ))√

2n

)
with probability at least 1 − δ/2. The lemma holds by noting supℓf∈ℓH{R(f, ℓ) − Rn(f, ℓ)} ≤
supℓf∈ℓH L1(f, ℓ) + supℓf∈ℓH L2(f, ℓ).

The next corollary is straight-forward from Lemma 8 by replacing ℓ with ℓ̃.

Corollary 1 (Theorem 3 restated). Suppose that the range of ℓ(f(x), y) is [0,M ]. Then, for any
δ ∈ (0, 1), with probability at least 1 − δ over the draw of an i.i.d. training dataset of size n, the
following holds for all ℓf ∈ ℓH,

Rℓ̃(f)−Rℓ̃(f ;S) ≤
2

ν

(
2Rn(ℓ̃H) +

M(2
√
2 + 3

√
log(2/δ))√

2n

)
.

C.5 EXAMPLES OF HYPOTHESIS SETS

We give two examples of hypothesis sets: linear classifiers and nonlinear neural networks, that
satisfy the condition in Theorem 2 and 3. Suppose ℓ : R → [0,M ] is monotonically non-increasing
and L-Lipschitz continuous. In this case, the adversarial loss can be written (Yin et al., 2019) as
ℓ̃(fθ(x), y) := maxx̃∈Bϵ(x) ℓ(fθ(x̃), y) = ℓ

(
minx̃∈Bϵ(x) yfθ(x)

)
. Therefore, given any function

class H, we can define the function class H̃ ⊆ RX×{±1}, such that H̃ = {minx̃∈Bϵ(x) yfθ(x) :
fθ ∈ H}. By the Ledoux-Talagrand contraction inequality (Ledoux & Talagrand, 1991), we have
Rn(ℓ̃H) ≤ LRn(H̃). Hence we only need to characterize the Rademacher complexity of H̃ given H.

Linear Classifiers. Let the hypothesis set Hlin ⊆ RX be a set of linear functions of x ∈ X .
More specifically, we consider prediction vector θ with lp (p ≥ 1) norm constraint, i.e. Hlin =
{fθ(x) = θ⊤x : ∥θ∥p ≤ r}. Then it is straight-forward to check Hlin is a symmetric hypothesis set.

Furthermore, let d̃ = d1−1/p. Awasthi et al. (2020) showed that max
{
Rn(Hlin), ϵr

max{d̃,1}
2
√
2n

}
≤

Rn(H̃lin) ≤ Rn(Hlin) + ϵrmax{d̃,1}
2
√
n

. Combined with Theorem 3 with probability at least 1− δ, we

have Rℓ̃(f)−Rℓ̃(f ;S) ≤
2
ν

(
2LRn(Hlin)+Lϵrmax{d̃,1}

2
√
n

+
M(2

√
2+3

√
log(2/δ))√

2n

)
, where Rn(Hlin)

is given by classical result in Kakade et al. (2008).

Neural Networks. We consider feedforward neural networks with ReLU activation function ρ, i.e.
ρ(t) = max{0, t}. In particular, if the hypothesis set is one-layer neural networks defined as Hone =

{fθ(x) = θ⊤0 ρ(Θx) : ∥θ0∥1 ≤ r0, ∥Θi∥p ≤ r} where Θi ∈ Rd is the i-th row of Θ ∈ Rd′×d. This
is a symmetric hypothesis set. Furthermore, the Rademacher complexity can be upper bounded
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(Awasthi et al., 2020) as Rn(H̃one) ≤ rr0 max{1,d̃(∥X∥∞+ϵ)}√
n

(1 +
√

d(d′ + 1) log(36)), where X =

(x1, · · · ,xn)
⊤. Combined with Theorem 3 with probability at least 1 − δ, we have Rℓ̃(f) −

Rℓ̃(f ;S) ≤
2
ν

(
2Lrr0 max{1,d̃(∥X∥∞+ϵ)}√

n
× (1 +

√
d(d′ + 1) log(36)) +

M(2
√
2+3

√
log(2/δ))√

2n

)
. Such

bound implies the generalization error depends on the perturbation size ϵ, which demonstrates the
intrinsic complexity of adversarial training.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 SOURCE CODE

For the purpose of review, the source code is accessible in the supplementary file.

D.2 SETTINGS OF NETWORKS AND COMPUTING INFRASTRUCTURE DESCRIPTION

For all networks, we training them by using (mini-batch) stochastic gradient descent with momentum
0.9, weight decay 2e-4, batch size 128, epochs 50 (for LeNet) / 100 (for Small-CNN) / 100 (for
ResNet-18), and initial learning rate 0.03 (for LeNet) / 0.1 (for Small-CNN) / 0.1 (for ResNet-18)
which is divided by the 10 at 20-th and 40-th epoch for LeNet / 30-th and 60-th epoch for Small-CNN
and ResNet-18.

All algorithms are implemented in Python 3.6 and trained and tested on an Intel(R) Xeon(R) CPU
W5590 @3.33GHz with 48GB of RAM and an NVIDIA Quadro RTX 6000 GPU with 24GB memory.

D.3 TRAINING SETTINGS ON TOY EXAMPLES

In this section, we provide more details about how to generate synthetic datasets in Figure 1.

We generate two sets of 2D synthetic data (Figure 1). Each dataset contains 200 samples from
Gaussian distributions with different means and variances. We consider both the case of the balanced
(Figure 1 left) and the imbalanced (Figure 1 right) data distributions, in the former, the training data
for the two classes are approximately equal while in the latter one class has a dominating number of
samples in comparison to the other. In the balanced dataset (Figure 1 left), we create two outliers.
One is in the blue class (shown as red ×), the other is in the red class (shown as blue ◦). In the
imbalanced dataset, we create one outlier in the blue class (shown as red ×). For both datasets, the
yellow squares around data samples represent the samples are perturbed within a ℓ∞ ball.

For the balanced dataset (Figure 1 left), we build a simple network contains two linear layers and one
ReLU layer (Nair & Hinton, 2010). The number of hidden units is three. For the imbalanced dataset
(Figure 1 right), the network contains four linear layers and three ReLU layers. The number of hidden
units is 20. We train these networks using SGD with 0.9 momentum for 3000 (balanced dataset) /
100,000 (imbalanced dataset) iterations with the learning rate of 0.02. We set k = 20 and m = 2 for
balanced dataset, and k = 20 and m = 1 for imbalanced dataset when run our ORAT algorithm. In
AT and ORAT , the training attack is PGD10 and we set the perturbation bound ϵ = 0.01 and the PGD
step size ϵ/4.

D.4 DETAILS OF OUTLIERS GENERATION BY USING ASYMMETRIC NOISE

In asymmetric noise generation procedure, for MNIST, flipping 2→7, 3→8, 5↔6 and
7→1; for CIFAR-10, flipping TRUCK→AUTOMOBILE, BIRD→AIRPLANE, DEER→HORSE,
CAT↔DOG; for CIFAR-100, the 100 classes are grouped into 20 super-classes with each having 5
sub-classes, then flipping between two randomly selected sub-classes within each super-class.

D.5 k AND m SETTINGS ON REAL DATASETS

We provide a reference for setting k and m to reproduce our ORAT experimental results (Table 1) on
real datasets in Table D.1.
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Noise
MNIST CIFAR-10 CIFAR-100

ϵ=0.1 ϵ=0.2 ϵ=2/255 ϵ=8/255 ϵ=2/255 ϵ=8/255
k m k m k m k m k m k m

0 60000 1 60000 1 45000 1 45000 1 49950 1 49950 1
Sy

m
m

et
ri

c
N

oi
se

10% 59950 2000 60000 2000 50000 300 50000 500 50000 300 50000 500
20% 59950 6000 60000 3000 50000 300 50000 300 50000 500 49800 500
30% 59950 5000 60000 5000 50000 10 50000 200 49800 100 50000 500
40% 59950 11000 60000 11000 50000 100 50000 50 49950 100 49950 500

A
sy

m
m

et
ri

c
N

oi
se

10% 60000 100 60000 10 49950 300 50000 500 49900 100 49950 500
20% 59950 100 59950 100 49950 500 50000 300 50000 100 50000 500
30% 59950 10 60000 100 49950 200 50000 300 50000 100 50000 500
40% 59950 10 60000 10 50000 450 50000 500 50000 100 49800 500

Table D.1: The k and m settings of ORAT on real datasets in different noise.

(a) Standard Training (ST) (b) Adversarial Training (AT) (c) ORAT

Figure E.1: An additional illustrative example of standard training (ST), adversarial training (AT), and ATRR
for binary classification on an imbalanced synthetic dataset with one outlier (shown as red ×) in the blue class.
The yellow squares around data samples represent the samples are perturbed within a ℓ∞ ball. The dashed line
is the decision boundary. The figure is better viewed in color.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 MORE EXPERIMENTS ON TOY EXAMPLE

We generate additional 2D synthetic data as shown in Figure E.1 to demonstrate the performance of
our ORAT method. This imbalanced dataset contains 200 samples from Gaussian distribution with
different means and variances. For this dataset, we create one outlier in the blue class (shown as red
×). In order to train this dataset, we build a network, which contains two linear layers and one ReLU
layer. The number of hidden units is 64. We train this network using SGD with 0.9 momentum for
100,000 iterations with a learning rate of 0.1. We set k = 5 and m = 1 for ORAT . Similarly, in AT
and ORAT , the training attack is PGD10, the perturbation bound ϵ = 0.01, and the PGD step size is
ϵ/4.

From Figure E.1, we can find the classifiers are trained from ST (a) and AT (b) cannot separate
two classes in the training data. However, we find the classifier is training by using our proposed
ORAT can separate these two classes. The results demonstrate that our ORAT can eliminate the
influence of the outliers when doing the adversarial training.

E.2 MORE EXPERIMENTS ON REAL DATASETS

In the main paper, we only show the tendency curves for MNIST when ϵ=0.1 and CIFAR-10 and
CIFAR-100 when ϵ=2/255. In this section, we show more results on three datasets with 20%
symmetric noise by setting a big value of ϵ in Figure E.2. Similar to the observations in Figure 2, we
can find the losses are dramatically decreased in the first row of Figure E.2, which means Algorithm
1 can be successfully applied to solve ORAT optimization problem. From the second row of Figure
E.2, it is obvious that the performance of our method is higher than the original AT approach on all
attacks.
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Figure E.2: The tendency curves of training adversarial loss and test accuracy on three datasets. The
sharp drops in the curves correspond to decreases in training learning rate.

Figure E.3: Effect of k and m on the test accuracy of ORAT on three datasets.

E.3 MORE EXPERIMENTS ON THE EFFECT OF k AND m

We conduct more experiments to study the effect of hyperparameters k and m with using 20%
symmetric noise on all datasets by setting a big value of ϵ. The results are shown in Figure E.3.
Similar to the results that we get in Figure 3, we can see that there is a clear range of m with better
performance than all compared methods. Fix m and test various k, we can find the performance can
be improved by using some specific k values.

E.4 CONNECTION WITH ADVERSARIAL TRAINING ON OUT-OF-DISTRIBUTION PROBLEMS

Out-of-Distribution (OOD) problem exists due to the training and test data distributions mismatching
(Hendrycks et al., 2021). Although the OOD problem setting is different from our outliers problem
setting, some similarities exist between OOD data and outliers. For example, both of them are not
from the data generating distribution. Therefore, whether the OOD methods can directly apply to
solving our outlier problem in adversarial training is a question. Some works such as Zeng et al.
(2021b); Varshney et al. (2022); Yi et al. (2021) connect adversarial robustness to out-of-distribution
(OOD) problems.
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Noise Defense CIFAR-100(ϵ = 2/255)
Na FG PGD CW

Sy
m

m
et

ri
c

N
oi

se 10% pre-trained AT 24.20 17.09 14.83 14.17
Ours 35.76 25.72 22.27 21.28

20% pre-trained AT 19.53 16.64 14.01 13.26
Ours 34.45 25.07 22.21 20.92

30% pre-trained AT 19.41 16.22 13.06 13.04
Ours 31.27 23.81 21.35 19.59

40% pre-trained AT 18.86 15.63 12.78 11.91
Ours 29.38 22.99 20.85 19.20

A
sy

m
m

et
ri

c
N

oi
se 10% pre-trained AT 20.15 19.66 17.78 16.9

Ours 37.09 27.07 23.65 22.59

20% pre-trained AT 24.60 17.43 16.67 15.15
Ours 36.05 25.76 22.83 21.47

30% pre-trained AT 22.86 16.92 15.94 14.89
Ours 34.58 24.18 21.05 20.11

40% pre-trained AT 21.58 16.18 15.32 14.48
Ours 33.65 23.35 20.76 19.46

Table E.1: Testing accuracy (%) of pre-trained AT and our method (ORAT) on CIFAR-100 (ϵ = 2/255)
with different levels of symmetric and asymmetric noise. The best results are shown in bold.

Specifically, Zeng et al. (2021b) focuses on OOD detection. The problem in Zeng et al. (2021b) is that
not enough labeled OOD samples can be used for training the OOD detection model. To improve the
diversity of the unlabeled data augmentation, they apply an adversarial attack technique on unlabeled
data to generate pseudo-positive samples. Then use these pseudo-positive samples with labeled data
to improve the performance of the OOD detection model. However, their approach cannot directly
apply to our setting since we only focus on supervised learning. All training data points are labeled in
our setting, and the adversarial training works on labeled data. The authors in Varshney et al. (2022)
test different selective prediction approaches for Natural Language Processing systems in in-domain,
OOD, and adversarial settings. They regard several existing datasets as adversarial datasets for testing.
However, no adversarial training approach is proposed and involved in Varshney et al. (2022). For Yi
et al. (2021), the authors theoretically and experimentally show that a model (original AT Madry et al.
(2018) or pre-trained AT (Salman et al., 2020)) robust to input perturbation generalizes well on OOD
data.

Therefore, we test whether the pre-trained AT method (Salman et al., 2020) can solve outlier problems
in adversarial training. Following the experimental setting from Yi et al. (2021), we download the
ImageNet-based adversarially pre-trained robust ResNet-18 model in the setting of L∞ and ϵ = 2/255
from the public repository 1. Then fine-tune it on our noisy training datasets. We report pre-trained
AT testing accuracy (%) on CIFAR-100 in Table E.1. To make the comparison explicit, we also attach
our method performance. From Table E.1, we can find our method outperforms pre-trained AT under
all settings. Most of the performance gaps between pre-trained AT and our method in Table E.1 are
more than 5%. One reason is that the pre-trained AT is not designed to handle outliers. According to
these results, it is clear that pre-trained AT cannot directly apply to solving our problem even if it has
a good performance on OOD data.

E.5 EXTENSION OF TABLE 3

Self-learning (Han et al., 2019) is a useful strategy for learning model on noise data. For example,
we can use AoRR to filter examples with larger loss (potential outliers), then conducting adversarial
training on the cleaner set. We call this method AT w/o. However, it is not an end-to-end training
approach. In contrast, our method is an end-to-end method, which means it is very easy to be
conducted. To compare the effectiveness of ORAT and this AT w/o approach, we conduct experiments
on MNIST with symmetric noise and CIFAR-100 with symmetric noise as follows.

In the first stage, for each dataset, we apply a grid search to select the values of k and m for training
the model using the AoRR approach that can return a good testing accuracy. Then we use the trained

1https://github.com/microsoft/robust-models-transfer
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Noise Defense MNIST (ϵ = 0.1) CIFAR-100 (ϵ = 2/255)
Na FG PGD CW Na FG PGD CW

Sy
m

m
et

ri
c

N
oi

se 10% AT w/o 98.91 98.08 97.61 97.55 29.81 21.09 19.59 18.23
Ours 99.52 98.45 97.78 97.79 35.76 25.72 22.27 21.28

20% AT w/o 98.77 97.76 97.20 97.12 27.81 20.92 19.15 17.95
Ours 99.56 98.37 97.65 97.64 34.45 25.07 22.21 20.92

30% AT w/o 97.82 96.97 96.47 96.35 24.18 19.17 17.31 16.71
Ours 99.55 98.30 97.51 97.53 31.27 23.81 21.35 19.59

40% AT w/o 97.03 95.85 95.22 95.05 21.17 17.81 16.85 15.48
Ours 99.36 98.00 97.22 97.20 29.38 22.99 20.85 19.20

Table E.2: Testing accuracy (%) of self-learning based method (Self-learning) and our method
(ORAT) on MNIST (ϵ = 0.1) and CIFAR-100 (ϵ = 2/255) with different levels of symmetric noise.
The best results are shown in bold.

model to test the loss for each sample from the training set. Therefore, we can obtain a training
sample loss list. Next, we delete data points for the m largest losses in the training set to construct a
clean set. This is because the AoRR uses m to determine how many examples (potential outliers)
with the largest losses are ignored during each training epoch.

In the second stage, after we get a clean set, we use the conventional AT approach to train the model
on the clean set and test the trained model on the testing set.

We report the testing accuracy (%) of the AT w/o approach on MNIST (symmetric noise, ϵ = 0.1)
and CIFAR-100 (symmetric noise, ϵ = 2/255) in Table E.2. To make the comparison explicit, we
also attach our method performance. From Table E.2, we can find our method outperforms the AT
w/o approach under all settings. For example, the performance gap between the AT w/o approach and
our method (ORAT) on MNIST can achieve more than 2% under the 40% symmetric noise setting.
Most of the performance gaps on CIFAR-100 can achieve more than 4%.

One reason for low performance from the self-learning approach is that the training data points
ignored by AoRR may contain clean data points. In this case, the constructed clean set is smaller than
the original dataset. This may hurt the final model performance. Moreover, removing the examples
with the largest losses before the adversarial training may lose the important feature information
from the original training dataset. In other words, this compromises the richness and representational
power of the data. In contrast, our ORAT method considers all examples during adversarial training.
According to these results, it is clear that our approach (ORAT) gives a better solution than the
self-learning approach for solving outlier problems in adversarial training either in the algorithm
efficiency or effectiveness.

E.6 MORE ANALYSIS ON STABILITY OF ORAT

To evaluate the stability of each method, we report the the mean and standard deviation of testing
accuracy (%) of all methods on MNIST (40% symmetric noise, ϵ = 0.1) and CIFAR-100 (40%
symmetric noise, ϵ = 2/255) in Table 4. For each method, the reported performance is obtained
by averaging the testing accuracy according to 10 random seeds. From Table 4, we can find our
method still outperforms the compared methods in both datasets. For MNIST, our method can even
outperform AT by more than 2%. Most importantly, we can find that the standard deviation in our
method is less than or equal to that of other compared methods. For CIFAR-100, we can find the
mean value of our method ORAT even higher than the reported performance in our submission. The
standard deviation of the performance of our method differs from the comparison methods by at
most 0.26% (compared to ST on FGSM attack). Comparing Table 4 and Table 1, it is clear that the
performance gap becomes larger when we report scores by using mean and standard deviation, and
our method shows a stable and stronger ability in handling outliers and adversarial attacks.
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